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Chapter 3. Higher Dimensionality Effects 

The descriptions of the basic quantum-mechanical effects, given in the previous chapter, may be 
extended to higher dimensions in an obvious way. This is why this chapter is focused on the phenomena 
(such as the AB effect and the Landau levels) that cannot take place in one dimension due to topological 
reasons, and also on the key 2D and 3D problems (such as the Born approximation in the scattering 
theory, and the axially and spherically symmetric systems) that are most important for applications. 

 

3.1. Quantum interference and the AB effect 

 In the past two chapters, we have already discussed some effects of the de Broglie wave 
interference. For example, standing waves inside a potential well, or even on the top of a potential 
barrier, may be considered as a result of interference of incident and reflected waves. However, there are 
some remarkable new effects made possible by the spatial separation of such waves, and such separation 
requires a higher (either 2D or 3D) dimensionality. A good example of wave separation is provided by 
the Young-type experiment (Fig. 1) in which particles, emitted by the same source, are passed through 
two small holes (or narrow slits) in an otherwise opaque partition.  

 

 

 

 

 

 

 

 

According to Eq. (1.22), if particle interactions are negligible (which is always true if the 
emission rate is sufficiently low), the average rate of particle counting by the detector is proportional to 
the probability density w(r, t) = (r, t) *(r, t) to find a single particle at the detector’s location r, 
where (r, t) is the solution of the single-particle Schrödinger equation (1.25) for the system. Let us 
calculate this rate for the case when the incident particles may be represented by virtually 
monochromatic waves of energy E (e.g., very long wave packets), so their wavefunction may be taken 
in the form given by Eqs. (1.57) and (1.62): (r, t) = (r) exp{–iEt/}. In this case, in the free-space 
parts of the system, where U(r) = 0, (r) satisfies the stationary Schrödinger equation (1.78a): 
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With the standard definition k  (2mE)1/2/, it may be rewritten as the 3D Helmholtz equation:

022   k .     (3.1b) 

Fig. 3.1. The scheme of the “two-slit” 
(Young-type) interference experiment. 
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The opaque parts of the partition may be well described as classically forbidden regions, so if their size 
scale a is much larger than the wavefunction penetration depth   described by Eq. (2.59), we may use 
on their surface S the same boundary conditions as for the well’s walls of infinite height:  

      0S .      (3.2) 

Eqs. (1) and (2) describe the standard boundary problem of the theory of propagation of scalar waves of 
any nature. For an arbitrary geometry, this problem does not have a simple analytical solution. However, 
for a conceptual discussion of wave interference, we may use certain natural assumptions that will allow 
us to find its particular, approximate solution.  

First, let us discuss the wave emission, into free space, by a small-size, isotropic source located 
at the origin of our reference frame. Naturally, the emitted wave should be spherically symmetric: (r) 
= (r). The well-known expression for the Laplace operator in spherical coordinates1 shows that in this 
case, Eq. (1) is reduced to the following ordinary differential equation: 
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Let us introduce a new function, f(r)  r(r). Plugging the reciprocal relation  = f/r into Eq. (3), we see 
that for the function f, it gives the standard 1D wave equation: 
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As was discussed in Sec. 2.2, for a fixed k, the general solution of Eq. (4) may be represented in the 
form of two traveling waves: 

       ikrikr efeff 
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so the full solution of Eq. (3) is 
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If the source is located at point r’  0, the obvious generalization of Eq. (6) is     
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The first term of this solution describes a spherically symmetric wave propagating from the 
source outward, while the second one represents a wave converging onto the source point r’ from large 
distances. Though the latter solution is possible in some very special circumstances (say, when the 
outgoing wave is reflected back from a perfectly spherical shell), for our current problem, only the 
outgoing waves are relevant, so we may keep only the first term (proportional to f+) in Eq. (7). Note that 
the factor R in its denominator (that was absent in the 1D geometry) has a simple physical sense: it 
provides the independence of the full probability current I = 4R2j(R), with j(R) k*  1/R2, of the 
distance R between the observation point and the source. 

1 See, e.g., MA Eq. (10.9) with / = / = 0. 
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Now let us assume that the partition’s geometry is not too complicated – for example, it is either 
planar as shown in Fig. 1, or nearly-planar, and consider the region of the particle detector location far 
behind the partition (at z >> 1/k), and at a relatively small angle to the normal: x << z. Then it should 
be physically clear that the spherical waves (7) emitted by each point inside the slit cannot be perturbed 
too much by the opaque parts of the partition, and their only role is the restriction of the set of such 
emitting points to the area of the slits. Hence, an approximate solution of the boundary problem is given 
by the following Huygens principle: the wave behind the partition looks as if it was the sum of the 
contributions (7) from two point sources located in the slits, with each source’s strength f+ proportional 
to the amplitude of the wave arriving at this pseudo-source from the real source – see Fig. 1. This 
principle finds its confirmation in the strict wave theory, which shows that with our assumptions, the 
solution of the boundary problem (1)-(2) may be represented as the following Kirchhoff integral:2 

   
i

k
cr'de

R

'
c ikR




2
with  ,

)(
)(

slits

2  
r

r .   (3.8) 

If the source is also far from the partition, its wave’s front is almost parallel to the slit plane, and 
if the slits are not too broad, we can take (r’) constant (1,2) at each slit, so Eq. (8) is reduced to 
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where A1,2 are the slit areas, and l”1,2 are the distances from the slits to the detector. The wavefunctions 
on the slits may be calculated approximately3 by applying the same Eq. (7) to the region before the slits: 
1,2  (f+/l’1,2)exp{ikl’1,2}, where  l’1,2 are the distances from the source to the slits – see Fig. 1. As a 
result, Eq. (9) may be rewritten as 
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 (As Fig. 1 shows, each of l1,2 is the full length of the classical path of the particle from the source, 
through the corresponding slit, and further to the observation point r.) 

According to Eq. (10), the resulting rate of particle counting at point r is proportional to  
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where 
                 )( 1212 llk       (3.12) 

is the difference between the total wave phase accumulations along each of the two alternative paths. 
The last expression may be evidently generalized as   

2 For the proof and a detailed discussion of Eq. (8), see, e.g., EM Sec. 8.5. 
3 A possible (and reasonable) concern about the application of Eq. (7) to the field in the slits is that it ignores the 
effect of opaque parts of the partition. However, as we know from Chapter 2, the main role of the classically 
forbidden region is reflecting the incident wave toward its source (i.e. to the left in Fig. 1). As a result, the 
contribution of this reflection to the field inside the slits is insignificant if A1,2 >> 2, and even in the opposite case 
provides just some rescaling of the amplitudes a1,2, which is not important for our conceptual discussion. 
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              
C
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with integration along the virtually closed contour C (see the dashed line in Fig. 1), i.e. from point 1, in 
the positive (i.e. counterclockwise) direction all the way to point 2. (From our discussion of the 1D 
WKB approximation in Sec. 2.4, we may expect such generalization to be valid even if k changes, 
sufficiently slowly, along the paths.) 

Our result (11)-(12) shows that the particle counting rate oscillates as a function of the difference 
(l2 – l1), which in turn changes with the detector’s position, giving the famous interference pattern, with 
its amplitude proportional to the product a1a2, and hence vanishing if any of the slits is closed. For 
the wave theory, this is a well-known result,4 but for particle physics, it was (and still is :-) rather 
shocking. Indeed, our analysis is valid for a very low particle emission rate, so there is no other way to 
interpret the pattern other than resulting from a particle’s interference with itself – or rather the 
interference of its de Broglie waves passing through each of two slits.5 As was already noted in Sec. 
1.1(v), nowadays such interference is reliably observed not only for electrons but also for much heavier 
particles: atoms and molecules including very complex organic ones.  

 Let us now discuss a very interesting effect of magnetic field on quantum interference. To 
simplify our discussion, let us consider a slightly different version of the two-slit experiment, in which 
each of the two alternative paths is constricted to a narrow channel using lateral confinement – see Fig. 
2. (In this arrangement, moving the particle detector without changing the channels’ geometry and hence 
local values of k may be more problematic experimentally, so let us think about its position r as fixed.) 
In this case, because of the effect of the walls providing the path confinement, we cannot use  Eqs. (10) 
for the amplitudes a1,2. However,  from the discussions in Sec. 1.6 and Sec. 2.2, it should be clear that 
the first of the expressions (10) remains valid, though maybe with a value of k specific for each channel. 

 

 

 

 

 

 
 
In this geometry, we can apply some local magnetic field B, say normal to the plane of particle 

motion, whose lines would pierce but not touch the contour C drawn along the particle propagation 
channels – see the dashed line in Fig. 2. In classical electrodynamics,6 the external magnetic field’s 
effect on a particle with electric charge q is described by the Lorentz force 

4 See, e.g., a detailed discussion in EM Sec. 8.4. 
5 Here I have to mention the fascinating experiments (first performed in 1987 by C. Hong et al. with photons, and 
recently, in 2015, by R. Lopes et al., with non-relativistic particles – helium atoms) on the interference of de 
Broglie waves of independent but identical particles, in the same internal quantum state and virtually the same 
values of E and k. These experiments raise the important issue of particle indistinguishability, which will be 
discussed in Sec. 8.1. 
6 See, e.g., EM Sec. 5.1. Note that Eq. (14), as well as all other formulas of this course, are in the SI units. 

Fig. 3.2. The AB effect. 
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         B vF qB ,      (3.14) 

where B is the field value at the point of its particle’s location, so for the experiment shown in Fig. 2, 
FB = 0, and the field would not affect the particle motion at all. In quantum mechanics, this is not so, 
and the field does affect the probability density w, even if B = 0 at all points where the wavefunction 
(r) is not equal to zero.  

 In order to describe this surprising effect, let us first develop a general framework for an account 
of electromagnetic field effects on a charged quantum particle, which will also give us some by-product 
results important for forthcoming discussions. To do that, we need to calculate the Hamiltonian of such 
a particle in electric and magnetic fields. For an electrostatic field, this is easy. Indeed, from classical 
electrodynamics7 we know that this field may be represented as a gradient of its electrostatic potential ,  

           ,rE      (3.15) 

so the force exerted by the field on a particle with electric charge q, 

               ,E EqF       (3.16) 

may be described by adding the field-induced potential energy,   

           rr qU  ,     (3.17) 

to other possible components of the full potential energy. As was already discussed in Sec. 1.4, such 
potential energy may be included in the particle’s Hamiltonian operator just by adding it to the kinetic 
energy operator – see Eq. (1.41).  

However, the magnetic field’s effect is peculiar: since its Lorentz force (14) is perpendicular to 
the classical particle’s velocity, it cannot do any work on it: 

    ,0)(  dtqdtdd vvvFrF BBBBW    (3.18) 

and hence the field cannot be represented by any potential energy, so it may not be immediately clear 
how to account for it in the Hamiltonian. The crucial help comes from the analytical-mechanics 
approach to classical electrodynamics:8 in the non-relativistic limit, the Hamiltonian function of a 
particle in an electromagnetic field looks like that in the electric field only: 
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however, the momentum p  mv that participates in this expression is now the difference 

              APp q .      (3.20) 

Here A is the vector potential of the field, defined by the well-known relations:9 
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7 Note that here (until Chapter 9) we are describing the particle quantum-mechanically but the fields, classically.  
8 See, e.g., EM Sec. 9.7, in particular, Eq. (9.196). 
9 See, e.g., EM Sec. 6.1, in particular Eqs. (6.7). 
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while P is the canonical momentum, whose Cartesian components may be calculated (in classics) from 
the Lagrangian function L by using the standard formula of analytical mechanics,  

   
j

j v

L
P




 .      (3.22) 

To emphasize the difference between the two momenta, p = mv is frequently called the 
kinematic momentum (or “mv-momentum”). The distinction between p and P = p + qA becomes more 
clear if we notice that the vector potential is not gauge-invariant: according to the second of Eqs. (21), 
at the so-called gauge transformation 

        AA ,     (3.23) 

with an arbitrary single-valued scalar gauge function  = (r, t), the magnetic field does not change. 
Moreover, according to the first of Eqs. (21), if we make the simultaneous replacement 

        
t


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 ,      (3.24) 

the gauge transformation does not affect the electric field either. With that, the gauge function’s choice 
does not affect the classical particle’s equation of motion, and hence the velocity v and momentum p. 
Hence, the kinematic momentum is gauge-invariant, while P is not, because according to Eqs. (20) and 
(23), the introduction of  changes it by q. 

Now the standard way of transfer to the wave mechanics is to use Eq. (1.26) for the operator of 
the canonical rather than the kinematic momentum:10 

    iP̂ .      (3.25) 

Hence the Hamiltonian operator corresponding to the classical Hamiltonian function (19) is 
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so the stationary Schrödinger equation (1.60) of a particle moving in an electromagnetic field (but 
otherwise free) is 
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 We may now repeat all the calculations of Sec. 1.4 for the case A  0, and get the following 
generalized expression for the probability current density: 
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We see that the current density is gauge-invariant (as required for any observable) only if at the 
transformation (23), the wavefunction’s phase   changes as 

10 The validity of this choice is clear from the fact that if the kinetic momentum was described by this differential 
operator, the Hamiltonian operator corresponding to the classical Hamiltonian function (19), and the 
corresponding Schrödinger equation would not describe the magnetic field effects at all. 
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        


q
 .     (3.29) 

 This may be a point of conceptual concern: since quantum interference is described by the 
spatial dependence of the phase , can the observed interference pattern depend on the gauge function’s 
choice? (That would not make any sense, because we may change the gauge in our mind.) Fortunately, 
this is not true, because according to Eq. (29), the spatial phase difference between two interfering paths, 
participating in Eq. (12), is gauge-transformed as  

          .121212  


q
     (3.30) 

But  has to be a single-valued function of coordinates; hence in the limit when the points 1 and 2 
coincide, 1  = 2, so 12 is gauge-invariant, and so is the interference pattern. 

 However, the difference 12 may be affected by the magnetic field, even if it is localized outside 
the channels in which the particle propagates. Indeed, in this case, the field cannot affect the particle 
distribution across the channels, so, for an externally-fixed total flow of particles in each of them, we 
can take   

               00 )()(  
BB

rjrj ,     (3.31) 

and the last form of Eq. (28) yields 
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Integrating this equation along the contour C (Fig. 2), for the phase difference between points 1 and 2 
we get  

                 
C

d
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00 1212 BB
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where the integral should be taken along the same contour C as before (in Fig. 2, from point 1, 
counterclockwise along the dashed line to point 2). But from classical electrodynamics, we know11 that 
as points 1 and 2 tend to each other, i.e. the contour C becomes closed, the last integral is just the 
magnetic flux   Bnd

2r through any smooth surface limited by this contour, so Eq. (33) may be 
rewritten as 
         Φ00 1212



q
  BB

 .     (3.34a) 

In terms of the interference pattern, this means a shift of interference fringes, proportional to the 
magnetic flux.  

This phenomenon is usually called the “Aharonov-Bohm” (or just the AB) effect.12 For particles 
with a single elementary charge, q = e, this result is frequently represented as 

11 See, e.g., EM Sec. 5.3. 
12 I prefer the latter, less personable name because the effect had been actually predicted by Werner Ehrenberg 
and Raymond Siday in 1949, i.e. well before it was rediscovered (also theoretically) by Y Aharonov and D. Bohm 
in 1959. To be fair to Aharonov and Bohm, it was their work that triggered a wave of interest in the phenomenon, 
leading to its first experimental observation by Robert G. Chambers in 1960 and several other groups soon after 
that. Later, the experiments were improved using ferromagnetic cores and/or superconducting shielding to provide 
a better separation between the electrons and the applied field – as in the work whose result is shown in Fig. 3. 
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where the fundamental constant 0’  2/e  4.1410-15 Wb has the meaning of the magnetic flux 
necessary to change 12 by 2, i.e. to shift the interference pattern (11) by one period, and is called the 
normal magnetic flux quantum – “normal” because of the reasons we will soon discuss. 

 

 

 

 

 

 

 

 

 
  
 The AB effect may be “almost explained” classically, in terms of Faraday’s electromagnetic 
induction. Indeed, a change  of magnetic flux in time induces a vortex-like electric field E around 
it. That field is not restricted to the magnetic field’s location, i.e. may reach the particle’s trajectories. 
The field’s magnitude (or rather of its integral along the contour C) may be readily calculated by 
integration of the first of Eqs. (21):  

              
dt

d
dV

C

Φ
ΔΔ   rE .     (3.35) 

I hope that in this expression the reader readily recognizes the integral (“undergraduate”) form of 
Faraday’s induction law.13 To calculate the effect of this electric field on the particles, let us assume that 
the variable separation described by Eq. (1.57) may be applied to the endpoints 1 and 2 of the particle’s 
alternative trajectories as two independent systems,14 and that the magnetic flux’ change by a certain 
amount  does not change the spatial factors 1,2, provided that the phases 1,2 are included into the 
time-dependent factors a1,2. Then we may repeat the arguments that were used in Sec. 1.6 at the 
discussion of the Josephson effect, and since the change (35) leads to the change of the potential energy 
difference U = qV between the two points, we may rewrite Eq. (1.72) as 
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d 



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
12

.    (3.36)  

Integrating this relation over the time of the magnetic field’s change, we get  

13 See, e.g., EM Sec. 6.1. 
14 This assumption may seem a little bit of a stretch, but the resulting relation (37) may be indeed proven for a 
rather realistic model, though that would take more time/space than I can afford. 

Fig. 3.3. Typical results of a two-paths interference experiment by A. Tonomura et al., Phys. Rev. 
Lett. 56,  792 (1986), showing the AB effect for electrons shielded from the applied magnetic field. 
In this particular experimental geometry, the AB effect produces a relative shift of the interference 
patterns inside and outside the dark ring. (a)  = 0’/2, (b)  = 0’. © 1986 APS. 

(a)       (b) 
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           


q
12 ,     (3.37)  

– superficially, the same result as given by Eq. (34).  

 However, this interpretation of the AB effect is limited. Indeed, it requires the particle to be in 
the system (on the way from the source to the detector) during the flux change, i.e. when the induced 
electric field E may affect its dynamics. On the contrary, Eq. (34) predicts that the interference pattern 
would shift even if the field change has been made when there was no particle in the system, and hence 
the field E could not be felt by it. Experiment confirms the latter conclusion. Hence, there is something 
in the space where a particle propagates (i.e., outside of the magnetic field region), that transfers the 
information about even the static magnetic field to the particle. The standard interpretation of this 
surprising fact is as follows: the vector potential A is not just a convenient mathematical tool, but a 
physical reality (just as its scalar counterpart  is), despite the large freedom of choice we have in 
prescribing specific spatial and temporal dependences of these potentials without affecting any 
observable – see Eqs. (23)-(24).  

 To conclude this section, let me briefly discuss the very interesting form taken by the AB effect 
in superconductivity. To be applied to this case, our results require two changes. The first one is simple: 
since superconductivity may be interpreted as a result of the Bose-Einstein condensate of Cooper pairs 
with electric charge q = –2e, 0’ has to be replaced by the so-called superconducting flux quantum15 

          .cmGs1007.2Wb1007.2Φ 2 7 15
0  

e


    (3.38) 

Second, since the pairs are Bose particles and are all condensed in the same (ground) quantum 
state described by the same wavefunction, the total electric current density, proportional to the 
probability current density j, may be extremely large – in practical superconducting materials, up to 
~1012 A/m2. In these conditions, one cannot neglect the contribution of that current into the magnetic 
field and hence into its flux , which (according to the Lenz rule of the Faraday induction law) tries to 
compensate for changes in external flux. To see possible results of this contribution, let us consider a 
closed superconducting loop (Fig. 4).  Due to the Meissner effect (which is just another version of the 
flux self-compensation), the current and magnetic field penetrate into a superconductor by only a small 
distance (called the London penetration depth) L ~ 10-7 m.16 If the loop is made of a superconducting 
“wire” that is considerably thicker than L, we may draw a contour deep inside the wire, at which the 
current density is negligible. According to the last form of Eq. (28), everywhere at the contour,  

      0 A


q .     (3.39) 

Integrating this equation along the contour as before (in Fig. 4, from some point 1, all the way around 
the ring to the virtually coinciding point 2), we need to have the phase difference 12 equal to 2n, 
because the wavefunction    exp{i} at the initial and final points 1 and 2 should be “essentially” the 
same, i.e. produce the same observables. As a result, we get 

15 One more bad, though common term: a wire may (super)conduct, but a quantum hardly can! 
16 For more detail, see EM Sec. 6.4. 
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                  .2Φ 0  nn
q

d
C


rA      (3.40) 

This is the famous flux quantization effect,17 which justifies the term “magnetic flux quantum” for the 
constant 0 given by Eq. (38). 

 

 

 

 

 

 

 
  
 Here I have to mention the very interesting effects of “flux semi-quantization” that arise when 
superconductor loops are closed with Josephson junctions, forming the so-called Superconducting 
QUantum Interference Devices (“SQUIDs”).  Such devices may be used, in particular, for supersensitive 
magnetometry and ultrafast low-power computing,18 and are currently explored as a possible basis for 
quantum computation and cryptography – see Sec. 8.5 below. 

 

3.2. Landau levels and quantum Hall effect 

In the last section, we have used the Schrödinger equation (27) for an analysis of static magnetic 
field effects in “almost-1D”, circular geometries shown in Figs. 1, 2, and 4. However, this equation 
describes very interesting effects in fully higher dimensions as well, especially in the 2D case. Let us 
consider a quantum particle free to move within the [x, y] plane only (say, due to its strong confinement 
in the perpendicular direction z – see the discussion at the beginning of Sec. 2.1). In this case, Eq. (27) 
reduces to a similar equation but with the Laplace operator acting only in the directions x and y: 

          E
q

i
yxm yx 


















22

2
Ann




.    (3.41) 

Let us find its solutions for the simplest case when the applied static magnetic field is uniform 
and normal to the motion plane: 
            znBB .      (3.42) 

According to the second of Eqs. (21), this relation imposes the following restriction on the choice of the 
vector potential: 

      B








y

A

x

A
xy ,     (3.43) 

17 It was predicted in 1949 by Fritz London and experimentally discovered (independently and virtually 
simultaneously) in 1961 by two experimental groups: B. Deaver and W. Fairbank, and R. Doll and M. Näbauer. 
18 A brief review of these applications, and recommendations for further reading may be found in EM Sec. 6.5.  

Fig. 3.4. The magnetic flux quantization in a 
superconducting loop (schematically). 
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but the gauge transformations still give us a lot of freedom in its choice. The natural axially symmetric 
form, A = nB/2, where   = (x2 + y2)1/2 is the distance from some z-axis, leads to cumbersome math. 
In 1930, L. Landau realized that the energy spectrum of Eq. (41) may be obtained by making a much 
simpler, though very counter-intuitive gauge choice: 

          ,,0 0xxAA yx  B      (3.44) 

(with arbitrary x0), which evidently satisfies Eq. (43), though ignores the physical symmetry of the x and 
y directions for the field (42). 

 Now, expanding the eigenfunction into the Fourier integral in the y-direction: 

            dkyyikxXyx k  0exp)(),( ,    (3.45) 

we see that for each component of this expansion, Eq. (41) yields a specific equation  

             kkyx EXXxx
q

ki
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nn .   (3.46) 

Since the two vectors inside the curly brackets are mutually perpendicular, its square has no cross-terms, 
so Eq. (46) reduces to  

 
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B
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k
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q
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2

22

  where,
22

.  (3.47) 

But this 1D Schrödinger equation is identical to Eq. (2.261) for a 1D harmonic oscillator,19 with the 
center at point x0’, and the frequency 0 equal to 

         
m

qB
c .      (3.48) 

In the last expression, it is easy to recognize the cyclotron frequency of the classical particle’s rotation in 
the magnetic field. (It may be readily obtained using the 2nd Newton law for a circular  orbit of radius r, 

              BB qvF
r

v
m 

2

,     (3.49) 

and noting that the resulting ratio v/r = qB /m is just the radius-independent angular velocity c of the 
particle’s rotation.) Hence, the energy spectrum for each Fourier component of the expansion (45) is the 
same: 

               





 

2

1
c nEn  ,     (3.50) 

independent of x0, y0, and k. 

19 This result may become a bit less puzzling if we recall that at the classical circular cyclotron motion of a 
particle, each of its Cartesian coordinates, including x, performs sinusoidal oscillations with frequency (48), just 
as a 1D harmonic oscillator with this frequency. 
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 Hence, this is a good example of a highly degenerate system: for each eigenvalue En, there are 
many similarly-structured eigenfunctions that differ by the positions {x0, y0} of their centers and the rate 
k of their phase change along the y-axis. They may be used to assemble a large variety of linear 
combinations, including 2D wave packets whose centers move along classical circular orbits. Note, 
however, that the radius of such rotation cannot be smaller than the so-called Landau radius, 

                  

2/12/1

c
L 
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
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


Bqm
r




,    (3.51) 

which characterizes the minimum size of the wave packet, and follows from Eq. (2.276) after the 
replacement 0  c. This radius is remarkably independent of the particle mass, and may be 
interpreted in the following way: the scale BAmin of the applied magnetic field’s flux through the 

effective area Amin = 2rL
2 of the smallest wave packet is just one normal flux quantum 0’  2/ q . 

 A detailed analysis of such wave packets (for which we would not have time in this course) 
proves, in particular, the virtually evident fact: the applied magnetic field does not change the average 
density dN2/dE of different 2D states on the energy scale, given by Eq. (1.92), but just “assembles” the 
states them on the Landau levels (see Fig. 5a), so the number of different orbital states on each Landau 
level (per unit area) is 
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n    (3.52) 

This expression may again be interpreted in terms of magnetic flux quanta: nL0’ = B, i.e. there is one 
particular state on each Landau level per each normal flux quantum.  

 

 

 

 

 

 

 

 The most famous application of the Landau levels picture is the explanation of the quantum Hall 
effect20. It is usually observed in the “Hall bar” geometry sketched in Fig. 6, where electric current I is 
passed through a rectangular conducting sample placed into magnetic field B perpendicular to the 
sample’s plane. The classical analysis of the effect may be based on the notion of the Lorentz force (14). 
As the magnetic field is turned on, this force starts to deviate the effective charge carriers (electrons or 
holes) from their straight motion between the electrodes, bending them toward the insulated sides of the 

20 It was first observed in 1980 by a group led by Klaus von Klitzing, while the classical version (54) of the effect 
was first observed by Edwin Hall a century earlier – in 1879. 

Fig. 3.5. (a) The “assembly” of 
2D states on Landau levels, and 
(b) filling the levels with 
electrons at the quantum Hall 
effect. 
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bar (in Fig. 6, parallel to the x-axis). Here the carriers accumulate, generating a gradually increasing 
electric field E until its force (16) exactly balances the Lorentz force (14): 

        BE xy qvq  ,      (3.53) 

where vx is the drift velocity of the carriers along the bar (Fig. 6), providing the sustained balance 
condition Ey/vx = B  at each point of the sample. 

 

 

 

 

 

  

 With n2 carriers per unit area, in a sample of width w, this balance condition yields the following 
classical expression for the so-called Hall resistance RH, remarkably independent of w and l: 

       
22

H qnwvqn

w

I

V
R

x

y

x

y BE
 .     (3.54) 

This formula is broadly used in practice for the measurement of the 2D density n2 of the charge carriers 
and of the carrier type: electrons with q = –e < 0, or holes with the effective charge q = +e > 0.  

 However, in experiments with high-quality (low-defect) 2D samples, at sub-kelvin 
temperatures21 and high magnetic fields, the linear growth of RH with B, described by Eq. (54), is 
interrupted by virtually horizontal plateaus (Fig. 7).  

 

 

 

 

 

 

 

 

 

21 In some systems, such as the graphene (virtually perfect 2D sheets of carbon atoms – see Sec. 4 below), the 
effect may be more stable to thermal fluctuations, due to their topological properties, so it may be observed even 
at room temperature – see, e.g., K. Novoselov et al., Science 315, 1379 (2007). Note also that in some 
spontaneously-magnetized ferromagnetic layers, the quantum Hall effect may be observed in the absence of an 
external magnetic field – see, e.g., M. Götz et al., Appl. Phys. Lett. 112, 072102 (2018) and references therein. 

Fig. 3.7. A typical record of the integer 
quantum Hall effect. The lower trace (with 
sharp peaks) shows the diagonal element, 
Vx/Ix, of the resistance tensor. (Adapted from 
https://www.nobelprize.org/nobel_prizes/phy
sics/laureates/1998/press.html ). 
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Most remarkably, the experimental values of RH on these plateaus are reproduced with extremely 
high accuracy (up to ~10-9) from sample to sample.22 They are described by the following formula: 

                
2KKH

2
  where,

1

e
RR

i
R


 ,    (3.55) 

with the following value:         
                k 30445980725.812KR ,    (3.56) 

and i is (only until the end of this section, following tradition!) the plateau number, i.e. a real integer. 

This effect may be explained using the Landau-level picture. The 2D sample is typically in weak 
contact with 3D electrodes whose conductivity electrons, at low temperatures, fill all states with 
energies below a certain Fermi energy EF – see Fig. 5b.  According to Eqs. (48) and (50), as B is 

increased, the spacing c between the Landau levels increases proportionately, so fewer and fewer of 
these levels are below EF (and hence in equilibrium, all their states are filled), and within certain ranges 
of field variations, the number i of the filled levels is constant. (In the schematic Fig. 5b, i = 2.) So, 
plugging  n2 = inL and q = –e into Eq. (54), and using Eq. (52) for nL, we get 

       ,
211

2
L

H eiqni
R




B
     (3.57) 

i.e. exactly the experimental result (55). 

 This admittedly oversimplified explanation of the quantum Hall effect does not take into account 
at least two important factors: 

(i) the nonuniformity of the background potential U(x, y) in realistic Hall bar samples, and the 
role of the quasi-1D edge channels this nonuniformity produces;23 and 

(ii) the Coulomb interaction of the electrons, in high-quality samples leading to the formation of 
RH plateaus with not only integer but also fractional values of i (1/3, 2/5, 3/7, etc.).24 

Unfortunately, a thorough discussion of these very interesting features is well beyond the 
framework of this course.25,26 

22Due to this high accuracy (which is a rare exception in solid-state physics!), the von Klitzing constant RK was 
used in metrology for the “legal” ohm’s definition. Since 2018, the values of  and e, and hence of RK, are 
considered exactly known and fixed – see Appendix UCA: Selected Units and Constants. 
23 Such quasi-1D regions, with the width of the order of rL, form along the lines where the Landau levels cross the 
Fermi surface and are actually responsible for all the electron transfer at the quantum Hall effect (giving the 
pioneering example of what is nowadays called the topological insulators). The particle motion along these 
channels is effectively one-dimensional; because of this, it is unaffected by modest unintentional nonuniformities 
of the potential U(x, y). This fact is responsible for the extraordinary accuracy of Eq. (55).  
24 This fractional quantum Hall effect was discovered in 1982 by D. Tsui, H. Stormer, and A. Gossard. In 
contrast, the effect described by Eq. (55) with integer i (Fig. 7) is now called the integer quantum Hall effect.  
25 For a comprehensive discussion of these effects, I can recommend either the monograph by D. Yoshioka, The 
Quantum Hall Effect, Springer, 1998, or the review by D. Yennie, Rev. Mod. Phys. 59, 781 (1987). (See also the 
later publications cited above.) 
26 Note also that the quantum Hall effect is sometimes discussed in terms of the so-called Berry phase, one of the 
geometric phases – the notion apparently pioneered by S. Pancharatnam in 1956. However, in the “usual” 
quantum Hall effect the Berry phase equals zero, and I believe that this concept should be saved for the discussion 
of more topologically involved systems. Unfortunately, I will have no time/space for a discussion of such systems 

Quantum 
Hall 
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3.3. Scattering and diffraction 

The second class of quantum effects that become richer in multi-dimensional spaces, is typically 
referred to as either diffraction or scattering – depending on the context. In classical physics, these two 
terms are used to describe very different effects. The term “diffraction” is used for the interference of 
the waves re-emitted by elementary components of extended objects, under the effect of a single 
incident wave.27 On the other hand, the term “scattering” is used in classical mechanics to describe the 
result of the interaction of a beam of particles28 incident upon an object called the scatterer – see Fig. 8.  

 

 

 

 

 

 
 

Most commonly, the detector of the scattered particles is located at a large distance r >> a from 
the scatterer. In this case, the main observable independent of r is the flux (the number per unit time) of 
particles scattered in a certain direction, i.e. their flux per unit solid angle . Since it is proportional to 
the incident flux of particles per unit area, the efficiency of scattering in a particular direction may be 
characterized by the ratio of these two fluxes. This ratio is called the differential cross-section of the 
scatterer: 

          
areaunit per  particlesincident  offlux 

angle solidunit per  particles scatterd offlux 


d

d
.   (3.58) 

Such terminology and notation stem from the fact that the integral of d/d over all scattering angles,  

             
areaunit per per flux incident 

particles scattered offlux  total
Ω

Ω
  d

d

d ,   (3.59) 

evidently having the dimensionality of area, has a simple interpretation as the total cross-section of 
scattering. (For the simplest case when a solid object scatters all classical particles hitting its surface but 
does not affect the particles flying by it,   is just the geometric area of the scatterer, as observed from 
the direction of the incident particles.) In classical mechanics, we first calculate the particle’s scattering 
angle as a function of its impact parameter b and then average the result over all values of b, considered 
random. 29 

in this course, and have to refer the interested reader to special literature – see, e.g., either the key original papers 
collected by A. Shapere and F. Wilczek, Geometric Phases in Physics, World Scientific, 1992, or the monograph 
by A. Bohm et al., The Geometric Phase in Quantum Systems, Springer, 2003. 
27 The notion of interference is very close to diffraction, but the former term is typically reserved for the wave re-
emission by just a few components, such as two slits in the Young experiment – see Figs. 1 and 2. A detailed 
discussion of diffraction and interference of electromagnetic waves may be found in EM Secs. 8.3-8.8. 
28 In the classical wave theory, the term “scattering” is typically reserved for wave interaction with disordered sets 
of small objects – see, e.g., EM Sec. 8.3. 
29 See, e.g., CM Sec. 3.5. 
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 In quantum mechanics, due to the particle/wave duality, a relatively broad, parallel beam of 
incident particles of the same energy E may be fairly represented with a plane de Broglie wave (1.88): 

              rk  ii exp iai ,     (3.60) 

with the free-space wave number ki = k = (2mE)1/2/. As a result, the particle scattering becomes a 
synonym of the de Broglie wave diffraction, and (somewhat counter-intuitively) the description of the 
effect becomes simpler, excluding the notion of the impact parameter. Indeed, the wave (60) 
corresponds to a constant probability current density (1.49): 

        i

2

ii kj
m

a


 ,     (3.61)  

which is exactly the flux of incident particles per unit area that is used in the denominator of Eq. (58), 
while the numerator of that fraction may be simply expressed via the probability current density js of the 
scattered de Broglie waves: 
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     (3.62) 

 Hence the task of finding d/d is reduced to the calculation of js at sufficiently large distances r 
from the scatterer. For the elastic scattering (when the energy E of the scattered particles is the same as 
that of the incident particles) this may be done by solving the stationary Schrödinger equation (1.65). 
Let us rewrite it in the form  

            
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ˆwith  ,)(ˆ

22
2

2

00


  r ,  (3.63) 

where the potential energy U(r) describes the scatterer’s effect. Looking for the solution of Eq. (62) in 
the natural form 
        si   ,      (3.64) 

where i is the incident wave (60) and s has the sense of the scattered wave, and taking into account 
that the former wave satisfies the free-space Schrödinger equation 

       ii0
ˆ  EH  ,      (3.65) 

we may reduce Eq. (63) to either of the following equivalent forms: 
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 For applications, an integral version of this equation is frequently more convenient. To derive it, 
we may look at the second of Eqs. (66) as a linear inhomogeneous differential equation for the function 
s, thinking of its right-hand side as a known “source”. The solution of such an equation obeys the 
linear superposition principle, i.e. we may represent it as the sum of the waves outcoming from all 
elementary volumes d3r’ of the scatterer. Mathematically, this sum may be expressed as either 

         r'd'G''U
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2s ),()()(
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,    (3.67a) 
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or, equivalently, as30 

      r'd'G''U
m 3
2i ),()()(

2
)( rrrrrr  


,    (3.67b) 

where G(r, r’) is the spatial Green’s function, defined as such an elementary, spherically symmetric 
response of the 3D Helmholtz equation to a point source, i.e. the outward-propagating solution of the 
following equation31 
            )(22 'Gk rr   .     (3.68) 

 However, we already know such a solution of this equation – see Eq. (7) and its discussion: 

      'e
R

f
'G ikR rrR rr    where,),( ,    (3.69) 

so we need just to calculate the coefficient f+ for Eq. (68). This can be done in several ways, for example 
by noticing that at R << k-1, the second term on the left-hand side of Eq. (68) is negligible, so it is 
reduced to the well-known Poisson equation with a delta-functional right-hand side, which describes, for 
example, the electrostatic potential induced by a point electric charge. Either recalling the Coulomb law 
or applying the Gauss theorem,32 we readily get the asymptote 
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which is compatible with Eq. (69) only if f+ = –1/4, i.e. if 
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Plugging this result into Eq. (67a), we get the following formal solution of Eq. (66): 
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Note that if the function U(r) is smooth, the singularity in the denominator is integrable (i.e. not 
dangerous); indeed, the contribution of a uniform sphere of radius R  0, with the center at point r’, 
into this integral scales as  
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 So far, our result (72) is exact, but its apparent simplicity is deceiving because the wavefunction 
 on its right-hand side generally includes not only the incident wave I but also the scattered wave s 

30 This formula is sometimes called the Lipmann-Schwinger equation, though more frequently this term is 
reserved for either its operator form or the resulting equation for the spatial Fourier components of   and i. 
31 Please notice both the similarity and difference between this Green’s function and the propagator discussed in 
Sec. 2.1. In both cases, we use the linear superposition principle to solve wave equations, but while Eq. (67) gives 
the solution of the inhomogeneous equation (66), Eq. (2.44) does that for a homogeneous Schrödinger equation. 
In the latter case, the elementary wave sources are the elementary parts of the initial wavefunction, rather than of 
the equation’s right-hand side as in our current problem. 
32 See, e.g., EM Sec. 1.2. 
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– see Eq. (64). The most straightforward, and most common simplification of this problem, called the 
Born approximation,33 is possible if the scattering potential U(r) is in some sense small. (We will derive 
the quantitative condition of this smallness in a minute.)  Since at U(r) = 0, the scattering wave s has to 
disappear, at small but non-zero U(r), s has to be much smaller than i  =  ai . In this case, on the 
right-hand side of Eq. (73), we may ignore s in comparison with i, getting   
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 Actually, Eq. (74) gives us even more than we wanted: it evaluates the scattered wave at any 
point, including those within of the scattering object, while to spell out Eq. (62), we only need to find 
the wave far from the scatterer, at r  . However, before going to that limit, we can use Eq. (74) to 
find a quantitative criterion of the Born approximation’s validity. For that, let us estimate the magnitude 
of the right-hand side of this equation for a scatterer of a linear size ~a, and the potential magnitude’s 
scale U0. The results are different in the following two limits: 

 (i) If ka << 1, then inside the scatterer (i.e., at distances r’ ~ a), both exp{ikr’} and the second 
exponent under the integral in Eq. (74) change little, and a crude but fair estimate of the solution’s 
magnitude is 

            2
0i2s 2

~ aUa
m


 .     (3.75) 

 (ii) In the opposite limit ka >>1, the function under the integral is nearly periodic in one of the 
spatial directions (that of the incident wave’s propagation), so the net integral accumulates only on 
distances of the order of the de Broglie wavelength, ~k–1, and the integral is correspondingly smaller:  
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 These relations allow us to spell out the Born approximation’s condition, s << ai , as 

          ]1,[max
2

2

0 ka
ma

U


 .     (3.77) 

In the front fraction on the right-hand side of this relation, we may readily recognize the scale of the 
kinetic (quantum-confinement) energy Ea of the particle inside a potential well of a size of the order of 
a. As a result, the Born approximation is valid if the potential energy of particle’s interaction with the 
scatterer is smaller than Ea  2/ma2 at low energies (ka << 1) and than 2k/ma ~ (EaE)1/2 in the opposite 
limit. Note, however, that the estimate (76) is not valid in some special situations when the effects of 
scattering accumulate in some direction. This is frequently the case for small-angle scattering by 
extended objects, when ka >> 1, but ka  ≾ 1. 

33 Named after M. Born, who was the first to apply this approximation in quantum mechanics. However,  the 
basic idea of this approach had been developed much earlier (in 1881) by Lord Rayleigh in the context of 
electromagnetic wave scattering – see, e.g., EM Sec. 8.3. Note also that the contents of that section repeat some 
aspects of our current discussion – perhaps regrettably but unavoidably so, because the Born approximation is a 
centerpiece of the theory of scattering/diffraction for both the electromagnetic waves and the de Broglie waves. 
Hence I felt I had to cover it in this course for the benefit of the readers who skipped the EM part of my series. 

Born 
approximation 
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 Now let us proceed to large distances r >> r’ ~ a, and simplify Eq. (74) using an approximation 
similar to the dipole expansions in electrodynamics.34 Namely, in the denominator’s R, we may ignore r’ 
in comparison with the much larger r, but the exponents require more care, because even if r’ ~ a << r, 
the product kr’ ~ ka may still be of the order of 1. As Fig. 9a shows, in the first approximation in r’, we 
may take 
           'r'R r rnrr  ,      (3.78) 

and since the directions of the vectors k and r coincide, i.e. k = knr, we get 

       'iikrikR eee'krkR rkrk    i.e., .    (3.79) 

 

 

 

 

 

 

 

 With this replacement, Eq. (74) yields 
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 This relation is a particular case of a more general formula35  
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kk
 ,     (3.81) 

where f(k, ki) is called the scattering function.36 The physical sense of this function becomes clear from 
the calculation of the corresponding probability current density js. For that, generally, we need to use 
Eq. (1.47) with the gradient operator having all spherical-coordinate components.37 However, at kr >> 1, 
the main contribution to s, proportional to k >> 1/r, is provided by differentiating the factor eikr, 
which changes in the common direction of vectors r and k, so 

    1at  ,sss 



 kr
rr  kn ,    (3.82) 

and Eq. (1.47) yields 

34 See, e.g., EM Sec. 8.2. 
35 It is easy to prove that this form is an asymptotic form of any solution s of the scattering problem (even that 
beyond the Born approximation) at sufficiently large distances r >> a, k-1. 
36 Note that the function f  has the dimension of length, and does not account for the incident wave. This is why 
sometimes a dimensionless function, S = 1 + 2ikf,  is used instead. This function S is called the scattering matrix, 
because it may be considered a natural generalization of the 1D matrix S defined by Eq. (2.124), to higher 
dimensionality. 
37 See, e.g., MA Eq. (10.8). 

Scattering 
function: 
definition 

 

Fig. 3.9. (a) The long-range expansion of R, and (b) the definitions of q,  , and . 
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Plugging this expression and also Eq. (61) into Eq. (62), for the differential cross-section we get simply 
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,     (3.84) 

while the total cross-section is 
             Ω),(

2

i df kk ,     (3.85) 

so the scattering function f(k, ki) gives us everything we need – and in fact more because the function 
also contains information about the phase of the scattered wave. 

 Comparing Eqs. (80) and (81), we see that in the Born approximation, the scattering function is 
given by the so-called Born integral 

              rdieU
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,    (3.86) 

where, just for the notation simplicity, r’ was replaced with r, and q is the following scattering vector: 

          ikkq  ,      (3.87) 

with the length q = 2k sin( /2), where   is the scattering angle between the vectors k and ki – see Fig. 
9b. For the differential cross-section, Eqs. (84) and (86) yield38  
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 This is the basic result of this section; it may be further simplified for spherically symmetric 
scatterers, with 
      ).()( rUU r       (3.89) 

In this case, it is convenient to represent the exponent in the Born integral as exp{-iqrcos}, where  is 
the angle between the vectors k (i.e. the direction nr toward the detector) and q (rather than the incident 
wave vector ki!) – see Fig. 9b. Now, for a fixed q, we can take this vector’s direction for the polar axis 
of a spherical coordinate system, and reduce Eq. (86) to a 1D integral: 
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38 Note that according to Eq. (88), in the Born approximation, the scattering intensity does not depend on the sign 
of the potential U, and also that scattering in a certain direction is completely determined by a specific Fourier 
component of the function U(r), namely by its harmonic with the wave vector equal to the scattering vector q. 

d/d: 
Born 
approximation 

Born 
integral 
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 As a simple example, let us use the Born approximation to analyze scattering on the following 
spherically symmetric potential: 
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In this particular case, it is better to avoid the temptation to exploit the spherical symmetry by using Eq. 
(90), and instead, use the general Eq. (88) because it may be represented as a product of three similar 
Cartesian factors: 
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and similar integrals for Iy and Iz. From Chapter 2, we already know that the Gaussian integrals like Ix 
may be readily worked out by complementing the exponent to the full square, in our current case giving 
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Now, the total cross-section   is an integral of d/d over all directions of the vector k. Since 
in our case the scattering intensity does not depend on the azimuthal angle , the only nontrivial 
integration is over the scattering angle   (see Fig. 9b again): 
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 (3.94) 

 Let us analyze these results. In the low-energy limit, ka << 1 (and hence qa << 1 for any 
scattering angle), the scattered wave is virtually isotropic: d/d   const – a very typical feature of a 
scalar-wave scattering39 by small objects, in any approximation. Note that according to Eq. (77), the 
Born expression for , following from Eq. (94) in this limit, 
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is only valid if  is much smaller than the geometric cross-section a2 of the scatterer. In the opposite, 
high-energy limit ka >>1, the scattering is dominated by small angles    q/k ~ 1/ka ~ /a: 

39 Note that this is only true for scalar (e.g., the de Broglie) waves but not the vector ones, in particular, the 
electromagnetic waves where the intensity of the dipole radiation, and hence the scattering by small objects 
vanishes in the direction of the incident field’s polarization – see, e.g., EM Eqs. (8.26) and (8.139). 



Essential Graduate Physics                QM: Quantum Mechanics 

    
Chapter 3             Page 22 of 64 

          222

2

2

2
02 exp2 

ak
amU

a
d

d











 
.    (3.96) 

This is, again, very typical for diffraction. Note, however, that due to the smooth character of the 
Gaussian potential (91), the diffraction pattern (98) exhibits no oscillations of d/d as a function of the 
diffraction angle .  

 Such oscillations naturally appear for scatterers with sharp borders. Indeed, let us consider a 
uniform spherical scatterer described by the potential  
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In this case, integration by parts of Eq. (90) readily yields 
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According to this result, the scattered wave’s intensity drops very fast with q, so one needs a semi-log 
plot (such as that used in Fig. 10) to reveal small diffraction fringes,40 with the nth destructive 
interference (zero-intensity) point tending to qR = (n + ½) at n  . Since, as Fig. 9b shows, q may 
only change from 0 to 2k, these intensity minima are only observable at sufficiently large values of the 
parameter kR when they correspond to real values of the scattering angle . (At  kR >> 1, approximately 
kR/ of these minima, i.e. “dark rings” of low scattering probability, are observable.) On the contrary, at 
kR << 1 all allowed values of qR are much smaller than 1, so in this limit, the differential cross-section 
does not depend on qR, i.e. the scattering by the sphere (as by any object in this limit) is isotropic.  

  

 

 

 

 

 

 

 

 

  

 These two examples show that in quantum mechanics, the notions of particle scattering and 
diffraction are essentially inseparable. 

40 Their physics is very similar to that of the Fraunhofer diffraction on a 1D scatterer – see, e.g., EM Sec. 8.4.  
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Fig. 3.10. The differential cross-section of 
the Born scattering of a particle by a 
“hard” (sharp-border) sphere (97), 
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 The Born approximation, while being very simple and used more than any other scattering 
theory, is not without shortcomings. For example, it is not too difficult (and hence is left for the reader’s 
exercise) to prove the so-called optical theorem, valid for an arbitrary scatterer: 
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f kk .     (3.99) 

However, Eq. (86) shows that in the Born approximation, the function f is purely real at q = 0 (i.e. for k 
= ki), and hence cannot satisfy the optical theorem. Even more evidently, it cannot describe such a 
simple effect as a dark shadow (  0) cast by a virtually opaque object (say, with U >> E). There are 
several ways to improve the Born approximation, while still keeping its general idea of an approximate 
treatment of U.  

 (i) Instead of the main assumption s  U0, we may use a complete perturbation  series:  

      ...21s        (3.100) 

with n  U0
n, and find successive approximations n one by one. In the 1st approximation, we return to 

the Born formula, but already the 2nd approximation yields 
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where 1 is the total cross-section calculated in the 1st approximation, so the optical theorem (99) is 
“almost satisfied”.41 

 (ii) As was mentioned above, the Born approximation does not work very well for the objects 
strongly stretched along the direction (say, z) of the initial wave vector: kz >> 1. This deficiency may 
be corrected in the so-called eikonal42 approximation. In the particular case of a sufficiently narrow 
scatterer (x, y << z), the approximation is reduced to the replacement of Eq. (60) with a WKB-like 
exponent, though still in the 1st approximation in U  0:  
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The results of this approach satisfy the optical theorem (99) already in the 1st approximation.   

 Another way toward quantitative results in the theory of scattering, beyond the Born 
approximation, may be pursued for spherically symmetric potentials (89); I will discuss it in Sec. 8, after 
a general discussion of particle motion in such potentials in Sec. 7. 

 

3.4. Energy bands in higher dimensions 

 In Sec. 2.7, we have discussed the 1D band theory for potential profiles U(x) that obey the 
periodicity condition (2.192). For what follows, let us notice that the condition may be rewritten as 

         )()( xUXxU  ,     (3.103) 

41 An even simpler way to satisfy the theorem (even in the Born approximation) is to change the definition of the 
function f(k, ki) so that for forward scattering (k = ki), it includes the incident de Broglie wave as well. 
42 From the Greek word , meaning “image”. In our current context, this term is purely historic. 
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where X = a, with   being an arbitrary integer. One may say that the set of points X forms a periodic 
1D lattice in the direct (r-) space. We have also seen that each Bloch state (i.e., each eigenstate of the 
Schrödinger equation for such periodic potential) is characterized by the quasimomentum q, and its 
energy does not change if q is changed by a multiple of 2/a. Hence if we form, in the reciprocal (q-) 
space, a 1D lattice of points Q = lb, with b  2/a and integer l, any two points from these two mutually 
reciprocal lattices satisfy the following rule: 
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because the product of any two integers l and  is also an integer. 

 In this form, the results of Sec. 2.7 may be readily extended to d-dimensional periodic potentials 
whose translational symmetry obeys the following natural generalization of Eq. (103): 

                         )()( rRr UU  ,     (3.105) 

where the points R, which may be numbered by d integers j, form the so-called Bravais lattice:43 
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with d primitive vectors aj.44 The simplest example of a 3D Bravais lattice is given by the simple cubic 
lattice (Fig. 11a), which may be described by a system of mutually perpendicular primitive vectors aj of 
equal length. However, not in any lattice these vectors are perpendicular; for example, Figs. 11b and 11c 
show possible sets of the primitive vectors of, respectively, the face-centered cubic (fcc) lattice and the 
body-centered cubic (bcc) lattice. The science of crystallography based on group theory distinguishes, 
by their symmetry properties, 14 different 3D Bravais lattices, which may be grouped into 7 distinct 
crystal systems.45  

 

 

 

 

 

 

 

 

43 Named after A. Bravais, the crystallographer who introduced this notion in 1850. 
44 The smallest volume that, when translated by all vectors (106), fills all space without voids and overlaps, is 
called the primitive cell of the lattice. The choice of the cell, for a given Bravais lattice, is not unique; it may be, 
for example, the parallelepiped subtended by the primitive vectors aj. 
45 An exceptionally clear and well-illustrated introduction to the Bravais lattices is given in Chapters 4 and 7 of 
the famous textbook by N. Ashcroft and N. Mermin, Solid State Physics, Saunders College, 1976. 
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Fig. 3.11. The simplest (and most common) 3D Bravais lattices: (a) simple cubic, (b) face-centered cubic 
(fcc), and (c) body-centered cubic (bcc), and possible choices of their primitive vector sets (blue arrows). 
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 Note, however, not all highly symmetric sets of single points form Bravais lattices. As probably 
the most striking example, the nodes of the very simple 2D honeycomb lattice (Fig. 12a)46 cannot be 
described by a Bravais lattice – while those of the 2D hexagonal lattice shown in Fig. 12b, can. The 
most prominent 3D case of such a lattice is the diamond structure (Fig. 12c), which describes, in 
particular, silicon crystals. In cases like these, the band theory is much facilitated by the fact that these 
systems may be described by Bravais lattices of not single points but some point groups called bases (or 
“motifs”).47 For example, Fig. 12a shows a possible choice of the primitive vectors for the honeycomb 
lattice, with the basis formed by any two adjacent points of the original system (say, those within the 
dashed ovals on that panel). Similarly, the diamond lattice may be described as an fcc Bravais lattice 
with a two-point basis – see Fig. 12c.48 

 

 

 

 

 

 

 

  

 
 
Now we are ready for the following generalization of the 1D Bloch theorem, given by Eqs. 

(2.193) and (2.210), to higher dimensions: any eigenfunction of the Schrödinger equation describing a 
particle’s motion in the spatially-unlimited periodic potential (105) may be represented either as 

          RqrRr  ie)()(  ,     (3.107) 
or as 
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where the quasimomentum q is again a constant of motion, but now it is a vector. The key notion of the 
band theory in d dimensions is the reciprocal lattice in the wave vector (q-) space, formed as 
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46 This structure describes, for example, the now-famous graphene – isolated monolayer sheets of carbon atoms 
forming a honeycomb lattice with an interatomic distance of 0.142 nm. 
47 A harder case is presented by so-called quasicrystals (whose idea may be traced down to medieval Islamic 
tilings, but was discovered in natural crystals, by D. Shechtman et al., only in 1984), which obey a high (say, the 
5-fold) rotational symmetry, but cannot be described by a Bravais lattice with any finite basis. For a popular 
review of quasicrystals, see, for example, P. Stephens and A. Goldman, Sci. Amer. 264, #4, 24 (1991). 
48 Alternatively, any Bravais lattice with an N-point basis may be interpreted as a superposition of N single-point 
lattices; for example, the diamond structure (Fig. 12c) may be represented as a superposition of two single-point 
fcc lattices of side a, mutually shifted by the vector {1, 1, 1}a/4. 
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Fig. 3.12. Two important periodic structures that require two-point bases for their Bravais lattice representation: 
(a) 2D honeycomb lattice and (c) 3D diamond lattice, and their primitive vectors. For contrast, panel (b) shows 
the 2D hexagonal lattice that is a Bravais lattice with a single-point basis.  
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with integer lj, and vectors bj selected in such a way that the following natural generalization of Eq. 
(104) is valid for any two points of the direct and reciprocal lattices: 

          1RQie .      (3.110) 

 One way to describe the physical sense of the lattice Q is to say that according to Eqs. (80) 
and/or (86), it gives the set of the vectors q  k – ki for that the interference of the waves scattered by all 
Bravais lattice points is constructive, and hence strongly enhanced.49 Another way to look at the 
reciprocal lattice follows from the first formulation of the Bloch theorem, given by Eq. (107): if we add 
to the quasimomentum q of a particle any vector Q of the reciprocal lattice, the wavefunction does not 
change. This means, in particular, that all information about the system’s eigenfunctions is contained 
inside just one primitive cell in the reciprocal space q. Its most frequent choice,  called the 1st Brillouin 
zone, is the set of all points q that are closer to the origin than to any other point of the lattice Q. 
(Evidently, the 1st Brillouin zone in one dimension, discussed in Sec. 2.7, falls under this definition – 
see, e.g., Figs. 2.26 and 2.28.) 

It is easy to see that the primitive vectors bj of the reciprocal lattice may be constructed as  
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Indeed, from the “operand rotation rule” of the vector algebra50 it is evident that ajbj’ = 2jj’. Hence, 
with the account of Eq. (109), the exponent on the left-hand side of Eq. (110) is reduced to 

             3322112exp  llliei  RQ .    (3.112) 

Since all lj and all j are integers, the expression in the parentheses is also an integer, so the exponent 
indeed equals 1, thus satisfying the definition of the reciprocal lattice given by Eq. (110). 

 As the simplest example, let us return to the simple cubic lattice of a period a (Fig. 11a), oriented 
in space so that   
             .,, 321 zyx aaa nanana      (3.113) 

According to Eq. (111), its reciprocal lattice is also simple cubic: 

        zzyyxx lll
a

nnnQ 
2

,    (3.114) 

so the 1st Brillouin zone is a cube with the side b = 2/a. Similar calculations show that the reciprocal 
lattice of fcc is bcc, and vice versa. Figure 13 shows the resulting 1st Brillouin zone of the fcc lattice. 

The notion of the reciprocal lattice makes the multi-dimensional band theory not much more 
complex than that in 1D, especially for numerical calculations, at least for the single-point Bravais 
lattices. Indeed, repeating all the steps that have led us to Eq. (2.218), but now with a d-dimensional 
Fourier expansion of the functions U(r) and u(r), we readily get its generalization:  

49 This is why the notion of the Q-lattice is also the main starting point of X-ray diffraction studies of crystals. 
Indeed, it allows rewriting the well-known Bragg condition for diffraction peaks in an extremely simple form: k = 
ki + Q, where ki and k are the wave vectors of the, respectively, incident and diffracted waves – see, e.g., EM Sec. 
8.4 (where it was more convenient for me to use the notation k0 for ki ). 
50 See, e.g., MA Eq. (7.6). 
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where l is now a d-dimensional vector of integer indices lj. The summation in Eq. (115) should be 
carried over all essential components of this vector (i.e. over all relevant nodes of the reciprocal lattice), 
so writing a corresponding computer code requires a bit more care than in 1D. However, this is just a 
homogeneous system of linear equations for coefficients ul, and numerous routines of finding its 
eigenvalues E are readily available from both public sources and commercial software packages.  

 

 

 

 

 

 

 

 

 

 What is indeed more complex than in 1D is the representation (and hence comprehension :-) of 
the calculated results and experimental data. Typically, the representation is limited to plotting the 
Bloch state eigenenergy as a function of the vector q’s components along certain special directions in  
the reciprocal space of quasimomentum (see, e.g., the red lines in Fig. 13), typically on a single panel. 
Fig. 14 shows perhaps the most famous (and certainly the most practically important) of such plots, the 
band structure of electrons in crystalline silicon. The dashed horizontal lines mark the so-called indirect 
gap of width ~1.12 eV between the lower “valence” (nominally occupied) and the next “conduction” 
(nominally unoccupied) energy bands. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14. The band structure of silicon, plotted along 
the special directions shown in Fig. 13. (Adapted from 
https://www.tf.uni-kiel.de/matwis/amat/semi_en/.) 

Fig. 3.13. The 1st Brillouin zone of the fcc 
lattice, and the traditional notation of its 
main directions. Adapted from 
http://en.wikipedia.org/wiki/Band_structure, 
as a public domain material. 
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In order to understand the reason for such complexity, let us see how would we start to calculate 
such a picture in the weak-potential approximation, for the simplest case of a 2D square lattice – which 
is a subset of the cubic lattice (106), with 3 = 0. Its 1st Brillouin zone is of course also a square, of the 
area (2/a)2 – see the dashed lines in Fig. 15. Let us draw the lines of the constant energy of a free 
particle (U = 0) in this zone. Repeating the arguments of Sec. 2.7 (see especially Fig. 2.28 and its 
discussion), we may conclude that Eq. (2.216) should be now generalized as follows,  
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with all possible integers lx and ly. Considering this result only within the 1st Brillouin zone, we see that 
as the particle’s energy E grows, the lines of equal energy, for the lowest energy band, evolve as shown 
in Fig. 15. Just like in 1D, the weak-potential effects are only important at the Brillouin zone boundaries 
and may be crudely represented as the appearance of narrow energy gaps. However, one can see that the 
band structure in the q-space is complex enough even without these effects – and becomes even more 
involved at higher E. 

 

 

 

 

 

 

 

 The tight-binding approximation is usually easier to follow. For example, for the same square 2D 
lattice, we may repeat the arguments that have led us to Eq. (2.203), to write 51 

         1,01,00,10,10,0   aaaaai n ,    (3.117) 

where the indices correspond to the deviations of the integers x and y from an arbitrarily selected 
minimum of the potential energy – and hence of the wavefunction’s “hump” that is quasi-localized at 
this minimum. Now, looking for the stationary solution of these equations, that would obey the Bloch 
theorem (107), instead of Eq. (2.206) we get 
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 Figure 16 shows this result, within the 1st Brillouin zone, in two forms: as color-coded energy 
isolines, and as a 3D plot. It is evident that the plots of this function along different lines on the q-plane, 
for example along one of the axes (say, qx) and along a diagonal of the 1st Brillouin zone (say, with qx = 
qy) give different curves E(q), qualitatively similar to those of silicon (Fig. 14).  

51 Actually, using the same values of n in both directions (x and y) implies some sort of symmetry of the quasi-
localized states. For example, the s-states of axially-symmetric potentials (see the next section) always have such 
symmetry. 

Fig. 3.15. The lines of constant 
energy E of a free particle, within 
the 1st Brillouin zone of a square 
Bravais lattice, for: (a) E/E1  0.95, 
(b) E/E1  1.05; and (c) E/E1  2.05, 
where E1  22/2ma2. 
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 However, the latter structure is further complicated by the fact that the basis of its Bravais lattice 
contains two points – see Fig. 12c and its discussion. In this case, even the tight-binding picture 
becomes more complex. Indeed, even if all atoms represented by points of the basis are similar (as they 
are, for example, in both graphene and silicon), and hence the effective potential wells near those points 
and the corresponding local wavefunctions u(r) are similar as well, the Bloch theorem (which only 
pertains to Bravais lattices!) does not forbid the considered particle from having different complex 
probability amplitudes a(t) whose time evolution should be described by a specific differential equation. 

 As the simplest example, to describe a crystal with the honeycomb lattice shown in Fig. 12a, we 
have to prescribe different probability amplitudes to the particle states quasi-located at “top” and 
“bottom” points of its basis – say,  and , correspondingly. Since each of these points is surrounded by 
three neighbors of the opposite type, instead of Eq. (117) we have to write two equations: 
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where each summation is over three nearest-neighbor points. (In these two sums, I am using different 
summation indices just to emphasize that these directions are different for the “top” and “bottom” points 
of the basis – see Fig. 12a.) Now using the Bloch theorem (107) in the form similar to Eq. (2.205), we 
get two coupled systems of linear algebraic equations: 
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where rj and r’j’ are the nearest-neighbor positions, as seen from the top and bottom points, respectively. 
Writing the condition of consistency of this system of homogeneous linear equations, we get two equal 
and opposite values for energy correction for each value of q: 
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(Due to the symmetry of the considered lattice, the double sum  is real for any q.) According to Eq. 
(120), the difference between these two energy bands corresponds to an additional phase shift  between 
any two adjacent quasi-localized wavefunctions u(r ). 

Fig. 3.16. The allowed band 
energy  n  E – En for a square 
2D lattice, in the tight-binding 
approximation.
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The most interesting corollary of such energy symmetry, augmented by the honeycomb lattice’s 
symmetry, is that for certain values qD of the vector q (that turn out to be in each of six corners of the 
honeycomb-shaped 1st Brillouin zone), the double sum  vanishes, i.e. the two band surfaces E(q) 
touch each other. As a result, in the vicinities of these so-called Dirac points,52 the dispersion relation is 
linear: 

DD

~  where,~ qqqqqq  nn vEE  ,    (3.122) 

with vn  n being a constant with the dimension of velocity53 – for graphene, close to 106 m/s. This 
linear dispersion relation ensures several interesting transport properties of graphene, in particular of the 
quantum Hall effect in it – as was already mentioned in Sec. 2. However, for their more detailed 
discussion, I have to refer the reader to special literature.54 

 

3.5. Axially symmetric systems 

 I cannot conclude this chapter (and hence our review of wave mechanics) without addressing the 
exact solutions of the stationary Schrödinger equation55 possible in the cases of highly symmetric 
functions U(r). Such solutions are very important, in particular, for atomic and nuclear physics, and will 
be used in the later chapters of this course. 

In some rare cases, such symmetries may be exploited by the separation of variables in Cartesian 
coordinates. The most famous (and rather important) example is the d-dimensional isotropic harmonic 
oscillator – a particle moving inside the potential well 
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Separating the variables exactly as we did in Sec. 1.7 for the rectangular hard-wall box (1.77), for each 
degree of freedom we get the Schrödinger equation (2.261) of a 1D oscillator, whose eigenfunctions are 
given by Eq. (2.284), and the energy spectrum is described by Eq. (2.162). As a result, the total energy 
spectrum may be indexed by a vector n = {n1, n2,…, nd} of d independent integer quantum numbers nj: 

52 This term is based on a (rather indirect) analogy with the Dirac theory of relativistic quantum mechanics, to be 
discussed in Chapter 9 below. 
53 It may be interpreted as the velocity of elementary excitations (massless quasiparticles) of energies  << En, n. 
54 See, e.g., the reviews by A. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009) and by X. Lu et al., Appl. Phys. 
Rev. 4, 021306 (2017).  
55 This is my best chance to mention, in passing, that the eigenfunctions n(r) of any such problem do not feature 
the instabilities typical for the deterministic chaos effects of classical mechanics – see, e.g., CM Chapter 9. (This 
is why the term quantum mechanics of classically chaotic systems is preferable to the occasionally used term 
“quantum chaos”.) It is curious that at the initial stages of the time evolution of the wavefunctions of such 
systems, their certain correlation functions still grow exponentially, reminding the Lyapunov exponents  of their 
classical chaotic dynamics. This growth stops at the so-called Ehrenfest times tE ~ -1ln(S/), where S is the action 
scale of the problem – see, e.g., I. Aleiner and A. Larkin, Phys. Rev. E 55, R1243 (1997). In a stationary quantum 
state, the most essential trace of the classical chaos in a system is the unusual statistics of its eigenvalues, in 
particular of the energy spectra. We will have a chance for a brief look at such statistics in Chapter 5, but 
unfortunately, I will not have time/space to discuss this field in much detail. Perhaps the best available book for 
further reading is the monograph by M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, 1991. 
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each ranging from 0 to . Note that every energy level of this system, with the only exception of its 
ground state, 
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is degenerate: several different wavefunctions, each with its own different set of the quantum numbers 
nj, but the same value of their sum, have the same energy.  

 However, the harmonic oscillator problem is an exception: for other axially and spherically 
symmetric problems, the solution is made much easier by using the appropriate curvilinear coordinates. 
Let us start with the simplest axially symmetric problem: the so-called planar rotor (or “rotator”), i.e. a 
particle of mass m,56 constrained to move along a plane circle of radius R (Fig. 17).57 

 

 

 

 

 
 
 
Let us assume that the effects of the particle’s confinement in both directions normal to n have 

already been taken into account by the corresponding energy shifts.58 Then, for this simple geometry, in 
the general formula for differential operator  in the cylindrical coordinates, 59 we may take  = R = 
const, getting simply 
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so the momentum and Hamiltonian operators of the rotor become   
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These expressions coincide with those for a 1D particle moving in a constant direction, with the linear 
coordinate l = R. (Physically, this means that, just as in classical mechanics, the circle’s curvature does 
not have any direct effect on the free 1D motion of the particle along its arc l – see Fig. 17.) 

56 From this point on (until the chapter’s end), I will use this exotic font for the particle’s mass, to avoid any 
chance of its confusion with the impending “magnetic” quantum number m, which is traditionally used in axially 
symmetric problems. 
57 This is a reasonable model for the confinement of light atoms, notably hydrogen, in some organic compounds, 
but I am addressing this system mostly as the basis for the forthcoming, more complex problems.  
58

 See the discussions in Sec. 2.1 and the solution of Problem 2.1. 
59 See, e.g., MA Eq. (10.2). 

Fig. 3.17. A planar rigid rotor. 
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Either from this similarity, or by solving the corresponding simple 1D stationary Schrödinger 
equation, we may conclude that the system’s eigenfunctions have a structure similar to Eq. (2.19):   
exp{i}, where  is come constant. The “only” new feature of the rotor is that in it, all observables 
should be 2-periodic functions of the angle . Indeed, as we have already discussed in Sec. 1 (see Fig. 
4 and the accompanying text), as the particle makes one turn around the central point 0, its 
wavefunction’s phase may only change by 2m, with an arbitrary integer m (ranging from – to +): 

         ime  2)()2(  .     (3.128)  

This periodicity requirement immediately gives the quantization condition  = m. Thus, the 
eigenfunctions may be indexed by this magnetic quantum number m: 

                      imCmm exp ,      (3.129) 

and the energy spectrum of the system is discrete: 
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 This simple model allows an exact analysis of an external magnetic field’s effect on a confined 
motion of an electrically charged particle. Indeed, in the simplest case when this field is axially 
symmetric (e.g., uniform) and directed normally to the rotor’s plane, it does not violate the axial 
symmetry of the system. According to Eq. (26),  in this case, we have to generalize the second of Eqs. 
(127) as 
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Here, in contrast to the Cartesian gauge choice (44), which was so instrumental for the solution of the 
Landau level problem, it is beneficial to take the vector potential in the axially symmetric form A = 
A()n, where   {x, y} is the 2D radius vector, with the magnitude  = (x2 + y2)1/2. Using the well-
known expression for the curl operator in the cylindrical coordinates,60 we can readily check that the 
requirement A = Bnz, with B = const, is satisfied by the following function (which was already 
mentioned in Sec. 2): 
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For the planar rotor, ρ = R = const, so the stationary Schrödinger equation becomes  
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 A little bit surprisingly, this equation is still satisfied with the same simple exponential 
eigenfunctions as at B = 0! Moreover, since the periodicity condition (128) is also unaffected by the 
applied magnetic field, we return to the periodic eigenfunctions (129), independent of B. However, the 
field does affect the system’s eigenenergies: 

60 See, e.g., MA Eq. (10.5). 

Planar rotor: 
eigenfunctions 

Planar rotor: 
eigenenergies 
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where   R2B is the magnetic flux through the area limited by the particle’s trajectory, and 0’  

2/q is the “normal” magnetic flux quantum we have already met in the AB effect’s context – see Eq. 
(34) and its discussion. The field also changes the circular electric current of the particle for each m: 
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Normalizing the wavefunction (129) to have Wm = 1, we get Cm 2 = 1/2R, so Eq. (135) becomes 
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The functions Em() and Im () are shown in Fig. 18. Note that since 0’  1/q, for any sign of 
the particle’s charge q, dIm/d < 0. It is easy to verify that this means that the current is diamagnetic for 
any sign of q:61 the field-induced current flows in such a direction that its own magnetic field tries to 
compensate for the external magnetic flux applied to the loop. This result may be interpreted as a 
different manifestation of the AB effect.62 In contrast to the interference experiment that was discussed 
in Sec. 1, in the situation shown in Fig. 17 the particle is not absorbed by the detector but travels around 
the ring continuously. As a result, its wavefunction is “rigid”: due to the periodicity condition (128), the 
quantum number m is discrete, and the applied magnetic field cannot change the wavefunction 
gradually. In this sense, the system is similar to a superconducting loop – see Fig. 4 and its discussion. 
The difference between these systems is two-fold: 

 

 

 

 

        

 

 

 

 

  

 

61 This effect, whose qualitative features remain the same for all 2D or 3D localized states (see Chapter 6 below), 
is frequently referred to as orbital diamagnetism. In magnetic materials consisting of particles with 
uncompensated spins, this effect competes with an opposite effect, spin paramagnetism  – see, e.g., EM Sec. 5.5. 
62 It is straightforward to check that the final forms of Eqs. (134)-(136) remain valid even if the magnetic field is 
localized well inside the rotor’s circumference so its lines do not touch the particle’s trajectory. 

Planar rotor: 
magnetic 

field’s effect 

Fig. 3.18. The magnetic field’s effect on a 
charged planar rotor. Dashed arrows show 
possible inelastic transitions between 
metastable and ground states, due to weak 
interaction with the environment, as the 
external magnetic field is slowly increased. 
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  (i) For a single charged particle, in macroscopic systems with practicable values of q, R, and m, 
the scale I0 of the induced current is very small. For example, for m = me, q = –e, and R = 1 m, Eq. 
(136) yields I0  3 pA.63 With the ring’s inductance L  of the order of 0R,64 the contribution I = L I ~ 
0RI0 ~ 10–24 Wb of such a small current to the net magnetic flux  is negligible in comparison with 0’ 
~ 10–15 Wb, so the wavefunction quantization does not lead to the constancy of the total magnetic flux. 

 (ii) As soon as the magnetic field raises the eigenstate energy Em above that of another eigenstate 
Em’, the former state becomes metastable, and a weak interaction of the system with its environment 
(which is neglected in our simple model, but will be discussed in Chapter 7) may induce a quantum 
transition of the system to the lower-energy state, thus reducing the diamagnetic current’s magnitude – 
see the dashed lines in Fig. 18. The flux quantization in superconductors is much more robust to such 
perturbations.65 

 Now let us return, once again, to the key Eq. (129), and see what it gives for one more important 
observable, the particle’s angular momentum 

          prL  ,      (3.137) 

where p is the linear momentum. In this particular geometry, the vector L has just one component, 
normal to the rotor plane: 
          RpLz  ,      (3.138) 

independently on the direction of the vector p. In classical mechanics, the rotor’s Lz should be conserved 
(due to the absence of an external torque), but it may take arbitrary values. In quantum mechanics, the 
situation changes: Eqs. (127) and (129) yield pm = m/R, so 

               mL mz )( .      (3.139) 

Thus, the angular momentum is quantized: it may be only a multiple of the Planck constant  – 
confirming N. Bohr’s guess – see Eq. (1.8). As we will see in Chapter 5, this result is very general 
(though it may be modified by spin effects), and the wavefunctions (129) may be interpreted as 
eigenfunctions of the angular momentum operator. 

 Let us see whether this quantization persists in more general but still axial-symmetric systems. 
To implement the planar rotor in our 3D world, we needed to provide rigid confinement of the particle 
both in the motion plane and along the 2D radius . Let us consider a more general situation when only 
the former confinement is strict, i.e. the case when a 2D particle moves in an arbitrary axially symmetric 
potential 

      )()( UU ρ .      (3.140) 

63 Such weak persistent, macroscopic diamagnetic currents in non-superconducting systems have been 
experimentally observed by measuring the weak magnetic field induced by the currents, in systems of a large 
number (~107) of similar conducting rings – see L. Lévy et al., Phys. Rev. Lett. 64, 2074 (1990). Due to the 
dephasing effects of electron scattering by phonons and other electrons (unaccounted for in our simple theory), 
the effect’s observation required submicron rings and millikelvin temperatures. 
64 See, e.g., EM Sec. 5.3. 
65 Interrupting a superconducting ring with a weak link (Josephson junction), i.e. forming a SQUID, we may get a 
switching behavior similar to that shown with dashed arrows in Fig. 18 – see, e.g., EM Sec. 6.5. 
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Using the well-known expression for the 2D Laplace operator in polar coordinates,66 we may represent 
the 2D stationary Schrödinger equation in the form 
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Separating the radial and angular variables as67 

                )()(  FR ,     (3.142) 

we get, after the division of all terms by   and their multiplication by ρ2, the following equation: 
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The fraction (d2F/d2)/F should be a constant (because all other terms of the equation may be functions 

only of ρ), so for the function F() we get an ordinary differential equation, 
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,     (3.144) 

where 2 is the variable separation constant. The fundamental solutions of Eq. (144) are evidently F  

exp{i}. Now requiring, as we did for the planar rotor, the 2 periodicity of any observable, i.e. 

        ime  2)()2( FF  ,     (3.145) 

where m is an integer, we see that the constant   has to be equal to m. Thus we get, for the angular 
factor, the same result as for the full wavefunction of the planar rotor – cf. Eq. (129): 
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Plugging the resulting relation (d2F/d2)/F  = –m2 back into Eq. (143), we may rewrite it as  
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The physical interpretation of this equation is that the full energy is a sum, 

      , EEE        (3.148) 

of the radial-motion part 
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and the angular-motion part 

66 See, e.g., MA Eq. (10.3) with /z = 0. 
67 At this stage, I do not want to mark the particular solution (eigenfunction)   and corresponding eigenenergy E 
with any single index, because based on our experience in Sec. 1.7, we already may expect that in a 2D problem, 
the role of this index will be played by two integers – two quantum numbers. 
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Now let us recall that a similar separation exists in classical mechanics, because the total energy 
of either 2D or 3D particle moving in a central field may be represented as 68                   
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The comparison of the latter relation with Eqs. (139) and (150) gives us grounds to expect that the 
quantization rule Lz = m may be valid not only for this 2D problem but in 3D cases as well. In Sec. 5.6 
below, we will see that this is indeed the case. 

 Returning to Eq. (147), with our 1D wave mechanics experience we may expect that at any fixed 
m, this ordinary, linear, second-order differential equation should have (for a motion confined to a 
certain final region of its argument ρ) a discrete energy spectrum described by another integer quantum 
number – say, n. This means that the eigenfunctions (142) and corresponding eigenenergies (148) and 
R(ρ) should be indexed by two quantum numbers, m and n. So, the variable separation is not as “clean” 

as it was for the rectangular potential well. Normalizing the angular function F  to the full circle,  = 

2, we may rewrite Eq. (142) as 
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 A good (and important) example of an analytically solvable problem of this type is a 2D particle 
whose motion is rigidly confined to a disk of radius R, but otherwise free: 

     








.for ,

,0for ,0
)(





R

R
U     (3.154) 

In this case, the solutions Rm,n() of Eq. (147) are proportional to the first Bessel functions Jm(knρ), ща 
еру ашкые лштв69 with the spectrum of possible values kn following from the boundary condition 
Rm,n(R) = 0. Let me leave a detailed analysis of this problem for the reader’s exercise. 

  

3.6. Spherically symmetric systems: Brute force approach 

Now let us proceed to the mathematically more involved, but practically even more important 
case of the 3D motion in a spherically symmetric potential 

      ).()( rUU r       (3.155) 

68 See, e.g., CM Sec. 3.5. 
69 A summary of the main properties of these functions, including the most important plots and a useful table of 
values, may be found in EM Sec. 2.7. 
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 Let us start, again, with solving the eigenproblem for a rotor – now a spherical rotor, i.e. a 
particle confined to move on the spherical surface of radius R. The classical rotor’s position on the 
surface is completely described by two coordinates – say, the polar angle  and the azimuthal angle . 
Its kinetic energy is limited to the angular motion, so for the quantum-mechanical description, in the 
Laplace operator expressed in spherical coordinates70 we may keep only those parts, with fixed r = R. 
Because of this, the stationary Schrödinger equation becomes  
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(Again, we will attach indices to  and E in a minute.) With the natural variable separation, 

      )()(  F ,     (3.157) 

Eq. (156), with all terms multiplied by sin2/F, yields  
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Just as in Eq. (143), the fraction (d2F/d2)/F may be a function of  only and hence has to be constant, 
giving Eq. (144) for it. So, with the same periodicity condition (145), the azimuthal functions are 
expressed by (146) again; in the normalized form, 
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With this, the fraction (d2F/d2)/F in Eq. (158) equals (-m2), and after the multiplication of all terms of 

that equation by /sin2, it is reduced to the following ordinary linear differential equation for the polar 
eigenfunctions (): 
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 It is common to recast it into an equation for a new function P()  (), with   cos  : 

              0
1

11
2

2
2 


















 P

m
ll

d

dP

d

d





,   (3.161) 

where a new notation for the normalized energy is introduced: l(l+1)  . The motivation for such 
notation is that, according to the mathematical analysis of Eq. (161) with integer m,71 it has physically 
suitable solutions, with P being an either odd or even function of , only if l (called the orbital quantum 
number) is an integer: l = 0, 1, 2,…, and only it is not smaller than  m , i.e. if 

        lml  .      (3.162)  

70 See, e.g., MA Eq. (10.9). 
71 This analysis was first carried out by A.-M. Legendre (1752-1833). Just as a historic note: besides many 
original mathematical achievements, Dr. Legendre had authored a famous textbook, Éléments de Géométrie, 
which dominated teaching geometry through the 19th century.
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This fact immediately gives the following spectrum of the spherical rotor’s angular72 energy E – and, as 
we will see later, that of any spherically symmetric system:  
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so the only effect of the magnetic quantum number m here is imposing the restriction (162) on the non-
negative orbital quantum number l. This means, in particular, that each energy level (163) corresponds 
to (2l + 1) different values of m, i.e. is (2l + 1)–degenerate.  

 To understand the nature of this degeneracy, we need to explore the corresponding 
eigenfunctions of Eq. (161). They are naturally numbered by two integers, m and l, and are called the 
associated Legendre functions Pl

m. (Note that here m is an upper index, not a power!) For the particular, 
simplest case m = 0, these functions are the so-called Legendre polynomials Pl()  Pl

0(), which may 
be defined as the solutions of the following Legendre equation, resulting from Eq. (161) at m = 0: 
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and may be calculated explicitly from the following Rodrigues formula:73 

        ,...2,1,0,)1(
!2

1
)( 2  l

d

d

l
P l

l

l

ll 


 .    (3.165) 

Using this formula, it is easy to spell out a few lowest Legendre polynomials: 
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though such explicit expressions become bulkier and bulkier as l is increased. As these expressions (and 
Fig. 19) show, as the argument  is increased, all these functions end up at the same point, Pl(+1) = + 1, 
while starting at either at the same point or at the opposite point: Pl(–1) = (–1)l.  

 

 

 

 

 

 

 

 

 

 

72 This qualification is important because this E does not include the energy of radial confinement – see Sec. 2.1. 
73 This wonderful formula may be readily proved by plugging it into Eq. (164), but was not so easy to discover! 
This was done (independently) by B. O. Rodrigues in 1816, J. Ivory in 1824, and C. Jacobi in 1827.  
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 On the way between these two endpoints, the lth polynomial crosses the horizontal axis exactly l 
times, i.e. Eq. (164) has exactly l roots. (In this behavior, we may readily recognize the “standing wave” 
pattern typical for all 1D eigenproblems – cf. Figs. 1.8 and 2.35, as well as the discussion of the Sturm 
oscillation theorem at the end of Sec. 2.9.) It is also easy to use the Rodrigues formula (165) and the 
integration by parts to show that on the segment –1    +1, th polynomials form a full orthogonal set 
of functions, with the following normalization rule: 
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For m > 0, the associated Legendre functions (now not necessarily polynomials!), may be 
expressed via the Legendre polynomials (165) using the following formula:74 
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while the functions with a negative magnetic quantum number may be found as 
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On the segment –1    +1, the associated Legendre functions with a fixed index m form a full 
orthogonal set, with the normalization relation 
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which is evidently a generalization of Eq. (167) to arbitrary m. 

 Since the difference between the angles  and  is, to a large extent, artificial (due to an arbitrary 
direction of the polar axis), physicists prefer to use not the functions ()  m

lP (cos) and Fm()  eim 

separately, but normalized products of the type (157), which are called the spherical harmonics: 
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The specific front factor in Eq. (171) is chosen in a way to simplify the following two expressions: the 
relation of the spherical harmonics with opposite signs of the magnetic quantum number:  
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and the following normalization relation: 
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74 Note that some texts use different choices for the front factor (called the Condon-Shortley phase) in the 
functions Pl

m, which do not affect the final results for the spherical harmonics Yl
m. 
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with the integration over the whole solid angle. The last formula shows that on a spherical surface, the 
spherical harmonics form an orthonormal set of functions. This set is also full, so any function defined 
on the surface may be uniquely represented as a linear combination of Yl

m.   

Despite the somewhat intimidating character of the formulas given above, they yield quite 
simple expressions for the lowest spherical harmonics, which are most important for applications: 
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It is important to understand the general structure and symmetry of these functions, and in such 
matters, pictures are invaluable. Since the spherical harmonics with m  0 are complex, the most popular 
way of their graphical representation is to normalize their real and imaginary parts as 
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(for m = 0, Yl0  Yl
0), and then plot the magnitude of these real functions75 in the spherical coordinates as 

the distance from the origin, while using two colors to show their sign – see Fig. 20. 

Let us start from the simplest case l = 0. According to Eq. (162), for this lowest orbital quantum 
number, there may be only one magnetic quantum number: m = 0, and according to Eq. (174), the 
spherical harmonic corresponding to that state is just a constant. Thus the wavefunction of this so-called 
s state76 is uniformly distributed over the sphere. Since this function has no gradient in any angular 
direction, it is only natural that the angular kinetic energy (163) of a particle in this state equals zero.  

 According to the same Eq. (162), for l = 1, there are 3 different p states, with m = –1, m = 0, and 
m = +1 – see Eq. (175). As the second row of Fig. 20 shows, these states are essentially identical in 
structure and are just differently oriented in space, thus readily explaining the 3-fold degeneracy of the 
kinetic energy  (163).  

75 Such real functions Ylm, which also form a full orthonormal set, and are frequently called the real (or “tesseral”) 
spherical harmonics, are more convenient than the complex harmonics Yl

m for several applications, especially 
when the variables of interest are real by definition. 
76 The letter names for the states with various values of l stem from the history of optical spectroscopy – for 
example, the letter “s” (used for states with l = 0) originally denoted the “sharp” optical line series, etc. The 
sequence of the letters is as follows: s, p, d, f, g, and then continuing in alphabetical order. 
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 Such a simple explanation, however, is not valid for the 5 different d states (l = 2), shown in the 
third row of Fig. 20, as well as the states with higher l: despite their equal energies, they differ not only 
by their spatial orientation but their structure as well. All states with m = 0 have a nonzero gradient only 
in the  direction. On the contrary, the states with the ultimate values of m (l), change only 
monotonically (as sinl) in the polar direction, while oscillating in the azimuthal direction. The states 
with intermediate values of m provide a gradual transition between these two extremes, oscillating in 
both directions, stronger and stronger in the azimuthal direction as  m  is increased. Still, the magnetic 
quantum number, surprisingly, does not affect the angular energy for any l. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  
 
Another counter-intuitive feature of the spherical harmonics follows from the comparison of Eq. 

(163) with the second of Eqs. (152), which, in classical mechanics, is valid for the total angular 
momentum as well. They coincide only if we interpret 

)1(22  llL  ,     (3.178) 

as the value of the total L2   L2 , including the  and  components of the vector L, in the state with 
eigenfunction Yl

m. On the other hand, the structure (159) of the azimuthal component F() of the 
wavefunction is exactly the same as in 2D axially symmetric problems, implying that Eq. (139) still 
gives correct values Lz = m for the z-component of the angular momentum. This fact invites a question: 
why for any state with l > 0, (Lz)

2 = m22  l22 is always less than L2 = l(l + 1)2? In other words, what 
prevents the angular momentum vector to be fully aligned with the z-axis? 

Fig. 3.20. Plots of several lowest real spherical harmonics Ylm. (Adapted from 
https://en.wikipedia.org/wiki/Spherical_harmonics under the CC BY-SA 3.0 license.) 
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 Besides the difficulty of answering this question using the above formulas, this analysis (though 
mathematically complete), is as intellectually unsatisfactory as the harmonic oscillator analysis in Sec. 
2.9. In particular, it does not explain the meaning of the extremely simple relations for the eigenvalues 
of the energy and the angular momentum, coexisting with rather complicated eigenfunctions. 

We will obtain natural answers to all these questions and concerns in Sec. 5.6 below, and now let 
us proceed to the extension of our wave-mechanical analysis to the 3D motion in an arbitrary 
spherically symmetric potential (155). In this case, we have to use the full form of the Laplace operator 
in spherical coordinates.77 The variable separation procedure is an evident generalization of what we 
have done above, with the particular solutions of the type 

            ),()(Θ)(  FR r      (3.179) 

whose substitution into the stationary Schrödinger equation yields 
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It is evident that the angular part of the left-hand side (the two last terms in the square brackets) 
separates from the radial part, and that for the former part, we get Eq. (156) again, with the only change, 
R  r. This change does not affect the fact that the eigenfunctions of that equation are still the spherical 
harmonics (171), which obey Eq. (164). As a result, Eq. (180) gives the following equation for the radial 
function R(r): 
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Note that no information about the magnetic quantum number m has crept into this radial equation 
(besides setting the limitation (162) for the possible values of l) so it includes only the orbital quantum 
number l. The equation may be also rewritten in a form similar to Eq. (148): 
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expressing the same separability of the particle’s energy in the central field into the radial and angular 
components as in classical mechanics – cf. Eqs. (151)-(152), and also Eq. (163). In particular, since the 
expectation value of the latter component cannot be negative at l  0, this means that the ground state of 
any spherically symmetric system is an s-state, with l = 0 and hence m = 0. 

 Let us explore the radial equation for the simple case of a 3D particle free to move inside the 
sphere of radius R – say, confined there by the potential78  
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In this case, Eq. (181a) is reduced to 

77 Again, see MA Eq. (10.9). 
78 This problem, besides giving a simple example of the quantization in spherically symmetric systems, is also an 
important precursor for the discussion of scattering by spherically symmetric potentials in Sec. 8. 
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Multiplying both parts of this equality by r2R, and introducing the dimensionless argument   kr, where 

k2 is defined by the usual relation 2k2/2m = E, we obtain the canonical form of this equation, 
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which is satisfied with the so-called spherical Bessel functions of the first and second kind, jl() and 
yl().79 These functions are directly related to the Bessel functions of semi-integer order,80 
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but are actually much simpler than even the “usual” Bessel functions, such as Jn() and Yn() of an 
integer order n, because the former ones may be directly expressed via elementary functions: 
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A few lowest-order spherical Bessel functions are plotted in Fig. 21. 

 

 

 

 

 

 

 

 

 

 

 

 

79 Alternatively, yl() are called “spherical Weber functions” or “spherical Neumann functions”. 
80 Note that the Bessel functions J() and Y() of any order  obey the universal recurrence relations and 
asymptotic formulas (discussed, e.g., in EM Sec. 2.7), so many properties of the functions jl() and yl() may be 
readily derived from these relations and Eqs. (185).  
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Fig. 3.21. Several lowest-order spherical Bessel functions. 
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 As these formulas and plots show, the functions yl() are diverging at   0, and thus cannot be 
used in the solution of our current problem (182), so we have to take 

              krjr ll  constR .     (3.187) 

Still, even for these functions, with the sole exception of the simplest function j0(), the characteristic 
equation jl(kR) = 0, resulting from the boundary condition R(R)= 0, can be solved only numerically. 

However, the roots l,n of the equation jl() = 0, where the integer n (= 1, 2, 3,…) is the root’s number, 
are tabulated in virtually any math handbook, and we may express the eigenvalues we are interested in, 
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via these tabulated numbers. The table on the right lists 
several smallest roots, and the corresponding eigenenergies 
(normalized to their natural unit E0  2/2mR2), in the order 
of their growth. It shows a very interesting effect: going up 
the energy spectrum, the first energies grow due to unit 
increments of the orbital quantum number l and the 
corresponding increases of the first roots of the functions 
jl(), at the same (lowest) radial quantum number n = 1. 
Then, suddenly, the second root of j0(), accompanied by a 
jump to n = 2, cuts into this orderly sequence, just to be followed by the first root of j3(), returning to 
the initial sequence with n = 1. With the further growth of energy, the sequences of l and n become even 
more entangled. 

 To complete the discussion of our current problem (182), note again that the energy levels listed 
in the table above are (2l +1)-degenerate because each of them corresponds to (2l + 1) different 
eigenfunctions, each with a specific value of the magnetic quantum number m: 
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3.7 Atoms 

 Now we are ready to discuss atoms, starting from the simplest, exactly solvable Bohr atom 
problem, i.e. that of a single particle’s motion in the so-called attractive Coulomb potential81 

       .0with  ,)(  C
r

C
rU      (3.190) 

The natural scales of E and r in this problem are commonly defined by the requirement of equality of the 
kinetic and potential energy magnitude scales (dropping all numerical coefficients): 

81 Historically, the solution of this problem in 1928, which reproduced the main results (1.12)-(1.13) of the “old” 
quantum theory developed by N. Bohr in 1912, but without its phenomenological assumptions, was the decisive 
step toward the general acceptance of Schrödinger’s wave mechanics. 

Attractive 
Coulomb 
potential 
 

l n l,n El,n/E0 = (l,n)
2 

0 1   3.1415 2  9.87 

1 1 4.493 20.19 

2 1 5.763 33.21 

0 2 2  6.283 42  39.48 

3 1 6.988 48.83 
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similar to its particular case (1.13b). Solving this system of two equations, we get82 
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In the normalized units   E/E0 and   r/r0, Eq. (181) for our case (190) looks relatively simple, 
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but unfortunately, its eigenfunctions may be called elementary only in the most generous meaning of the 
word. With the normalization 
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these (mutually orthogonal) functions may be represented as 
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Here )(q
pL  are the so-called generalized (or “associated”) Laguerre polynomials, which may be 

calculated as 
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from the simple Laguerre polynomials Lp()   0
pL .83 In turn, the easiest way to obtain Lp() is to use 

one more Rodrigues formula:84 
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Note that in contrast with the associated Legendre functions Pl
m, participating in the spherical 

harmonics, all Lp
q are just polynomials, and those with small indices p and q are indeed quite simple: 

82 For the most important case of the hydrogen atom, with C = e2/40, these scales are reduced, respectively, to 
the Bohr radius rB (1.10) and the Hartree energy EH (1.13a). Note also that according to Eq. (192), for the so-
called hydrogen-like atom (actually, a positive ion) with C = Z(e2/40), these two key parameters are rescaled as 
r0 = rB/Z and E0 = Z2EH.  
83 In Eqs. (196)-(197), p and q are non-negative integers, with no relation whatsoever to the particle’s momentum 
or electric charge. Sorry for this notation, but it is absolutely common, and can hardly result in any confusion. 
84 Named after the same B. O. Rodrigues, and belonging to the same class as his other famous result, Eq. (165) for 
the Legendre polynomials. 
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 Returning to Eq. (195), we see that the natural quantization of the radial equation (193) has 
brought us a new integer quantum number n. To understand its range, we should notice that according to 
Eq. (197), the highest power of terms in the polynomial Lp+q is (p + q), and hence, according to Eq. 
(196), that of q

pL is p, so the highest power in the polynomial participating in Eq. (195) is (n – l – 1). 

Since the power cannot be negative to avoid the unphysical divergence of wavefunctions at r  0, the 
radial quantum number n has to obey the restriction n  l + 1. Since l, as we already know, may take the 
values l = 0, 1, 2,…, we may conclude n may only take the following values: 

                   ,...3,2,1n       (3.199) 

What makes this relation very important is the following, most surprising result: the eigenenergies 
corresponding to the wavefunctions (179), which are indexed with three quantum numbers: 
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i.e. agree with Bohr’s formula (1.12). Because of this reason, n is usually called the principal quantum 
number, and the above relation between it and the “subordinate” orbital quantum number l is rewritten 
as 
            1 nl .      (3.202) 

Together with the inequality (162), this gives us the following, very important hierarchy of the three 
quantum numbers involved in the Bohr atom problem: 

        lmlnln  101 .   (3.203) 

Taking into account the (2l +1)-degeneracy related to m, and using the well-known formula for the 
arithmetic progression,85 we see that the nth energy level (201) has the following orbital degeneracy:  
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Due to its importance for atoms, let us spell out the hierarchy (203) of a few lowest-energy states, using 
the traditional state notation in that the value of n is followed by the letter that denotes the value of l: 

    0      )state 1  one(  0 :1  msln .    (3.205) 
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85 See, e.g., MA Eq. (2.5a). 
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Figure 22 shows plots of the radial functions (195) of the listed states. The most important of 
them is of course the ground (1s) state with n = 1 and hence E = –E0/2. According to Eqs. (195) and 
(198), its radial function is just a simple decaying exponent 
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while its angular distribution is uniform – see Eq. (174). The gap between the ground state energy Eg = –
E0/2 and the energy E = –E0/8 of the lowest excited states (with n = 2) in a hydrogen atom (in which E0 
= EH  27.2 eV) is as large as ~ 10 eV, so their thermal excitation requires temperatures as high as ~105 
K, and the overwhelming part of all hydrogen atoms in the visible Universe are in their ground state. 
Since atomic hydrogen makes up about 75% of the “normal” matter,86 we are very fortunate that such 
simple formulas as Eqs. (174) and (208) describe the atomic states prevalent in Mother Nature! 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

According to Eqs. (195) and (198), the radial functions of the lowest excited states, 2s (with n = 
2 and l = 0), and 2p  (with n = 2 and l = 1) are also not too complicated: 

86 Excluding the so-far hypothetical dark matter and dark energy. 
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Fig. 3.22. The lowest radial functions 
of the Bohr atom. 
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with the former of these states (2s) having a uniform angular distribution, and the three latter (2p) states, 
with different m = 0, 1, having simple angular distributions, which differ only by their spatial 
orientation – see  Eq. (175) and the second row of Fig. 20. The most important trend here, clearly visible 
from the comparison of the two top panels of Fig. 22 as well, is a larger radius of the decay exponent in 
the radial functions (2r0 for n = 2 instead of r0 for n = 1), and hence a larger radial extension of the 
states. This trend is confirmed by the following general formula:87  
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The second important trend is that at a fixed n, the orbital quantum number l determines how fast 
the wavefunction changes with r near the origin, and how much it oscillates in the radial direction at 
larger values of r. For example, the 2s eigenfunction R2,0(r) is different from zero at r = 0, and “makes 
one wiggle” (has one root) in the radial direction, while the eigenfunctions 2p equal zero at r = 0 but do 
not cross the horizontal axis after that. Instead, those wavefunctions oscillate as the functions of an 
angle – see the second row of Fig. 20. The same trend is clearly visible for n = 3 (see the bottom panel 
of Fig. 22), and continues for the higher values of n. 

The states with l = lmax  n – 1 may be viewed as crude analogs of the circular motion of a 
particle in a plane whose orientation defines the quantum number m. On the other hand, the best 
classical image of the s-state (l = 0) is a purely radial, spherically symmetric motion of the particle to 
and from the attracting center. (The latter image is especially imperfect because the motion needs to 
happen simultaneously in all radial directions.) The classical language becomes reasonable only for the 
highly degenerate Rydberg states, with n >> 1, whose linear superpositions may be used to compose 
wave packets closely following the classical (circular or elliptic) trajectories of the particle – just as was 
discussed in Sec. 2.2 for the free 1D motion. 

Besides Eq. (210), mathematics gives us several other simple relations for the radial functions 
Rn,l (and, since the spherical harmonics are normalized to 1, for the eigenfunctions as the whole), 
including those that we will use later in the course:88 
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In particular, the first of these formulas means that for any eigenfunction n,l,m, with all its complicated 
radial and angular dependencies, there is a simple relation between the potential and full energies: 
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so the average kinetic energy of the particle, Tn,l = En – Un,l, is equal to En – 2En = En > 0.  

87 Note that even at the largest value of l, equal to (n –1), the second term l(l + 1) in the square brackets of Eq. 
(210) is equal to (n2 – n), and hence cannot over-compensate the first term 3n2. 
88 The first of these relations may be proved using the Hellmann-Feynman theorem (see Sec. 1.8); this proof will 
be offered for the reader’s exercise after a more general form of this theorem has been proved in Chapter 6. 
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 As in the several previous cases we have met, simple results (201) and (210)-(212) are in sharp 
contrast with the rather complicated expressions for the corresponding eigenfunctions. Historically, this 
contrast gave an additional motivation for the development of more general approaches to quantum 
mechanics, that would replace or at least complement the brute-force (wave-mechanics) analysis. A 
discussion of such an approach will be the main topic of the next chapter.  

 Rather strikingly, the above classification of the quantum numbers, with a few steals from the 
later chapters of this course, allows a semi-quantitative explanation of the whole system of chemical 
elements. The “only” two additions we need are the following facts: 

(i) due to their unavoidable interaction with relatively low-temperature environments, atoms tend 
to relax into their lowest-energy state, and 

(ii) due to the Pauli principle (valid for electrons as the Fermi particles), each orbital eigenstate 
discussed above may house two electrons with opposite spins.  

Of course, atomic electrons do interact, so their quantitative description requires quantum 
mechanics of multiparticle systems, which is rather complex. (Its main concepts will be discussed in 
Chapter 8.) However, the lion’s share of this interaction is reduced to simple electrostatic screening, i.e. 
a partial compensation of the electric charge of the atomic nucleus, as felt by a particular electron, by 
other electrons of the atom. This screening changes quantitative results (such as the energy scale E0) 
much; however, the quantum number hierarchy and hence the state classification, are not affected.  

The system of atoms is most often represented as the famous periodic table of chemical 
elements,89 whose simple version is shown in Fig. 23. (The table in Fig. 24 presents a sequential list of 
the elements with their electron configurations, following the convention already used in Eqs. (205)-
(207), with the additional upper index showing the number of electrons with the indicated values of 
quantum numbers n and l.) The number in each table’s cell, and in the first column of the list, is the so-
called atomic number Z, which physically is the number of protons in the particular atomic nucleus, and 
hence the number of electrons in an electrically neutral atom.  

The simplest atom, with Z = 1, is hydrogen (chemical symbol H) – the only atom for which the 
theory discussed above is quantitatively correct.90 According to Eq. (195), the ground state of its only 
electron corresponds to the quantum number values n = 1, l = 0, and m = 0 – see Eq. (205). In most 
versions of the periodic table, the cell of H is placed in the top left corner.  

In the next atom, helium (symbol He, Z = 2), the same orbital quantum state (1s) houses two 
electrons. As will be discussed in detail in Chapter 8, electrons of the same atom are actually 
indistinguishable, so their quantum states are not independent and may be entangled. These factors are 
important for several properties of helium atoms (and heavier elements as well); however, a bit counter-
intuitively, for atom classification purposes, they are not crucial, and we may think about the two 
electrons of a helium atom just having “opposite spins”. Due to the twice higher electric charge of the 
nucleus of the helium atom, i.e. the twice higher value of the constant C in Eq. (190), resulting in a four-
fold increase of the constant E0 given by Eq. (192), the binding energy of each electron is crudely four 
times higher than that of the hydrogen atom – though the electron interaction decreases it by about 25% 

89 Also called the Mendeleev table, after D. I. Mendeleev who put forward the concept of the quasi-periodicity of 
chemical element properties as functions of Z phenomenologically in 1869. (The explanation of this periodicity 
had to wait for 60 more years until the advent of quantum mechanics in the late 1920s.) 
90 Besides very small fine-structure and hyperfine-splitting corrections – to be discussed, respectively, in Chapters 
6 and 8. 
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– see Sec. 8.2 below. This is why taking one electron away (i.e. the positive ionization of a helium atom) 
requires relatively high energy, ~24.6 eV, which is not available in the usual chemical reactions. On the 
other hand, a neutral helium atom cannot bind one more electron (i.e. form a negative ion) either. As a 
result, helium, and all other elements with fully completed electron shells (the term meaning the sets of 
states with eigenenergies well separated from higher energy levels) is a chemically inert noble gas, thus 
starting the whole right-most column of the periodic table, allocated for such elements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
The situation changes rather dramatically as we move to the next element, lithium (Li), with Z = 

3 electrons. Two of them are still accommodated by the inner shell with n = 1 (listed in Fig. 24 as the 
helium shell [He]), but the third one has to reside in the next shell with n = 2, l = 0, and m = 0, i.e. in the 
2s state. According to Eq. (201), the binding energy of this electron is much lower, especially if we take 
into account that according to Eqs. (210)-(211), the 1s electrons of the [He] shell are much closer to the 
nucleus and almost completely compensate for two-thirds of its electric charge +3e. As a result, the 2s-
state electron is approximately but reasonably described by Eq. (201) with Z = 1 and n = 2, giving its 
binding energy close to 3.4 eV (actually, ~5.39 eV), so a lithium atom can give out that electron rather 
easily – to either an atom/ion of another element to form a chemical compound or to the common 
conduction band of the solid-state lithium; as a result, at the ambient conditions, this is a typical alkali 
metal. The similarity of chemical properties of lithium and hydrogen, with the chemical valence of 
one,91 places Li as the starting element of the second period (row), with the first period limited to only H 
and He – see Fig. 23. 

91 Chemical valence (or “valency”) is a not very precise term describing the number of the atom’s electrons 
involved in chemical bonding. For the same atom, especially with a large number of electrons in its outer shell, 
this number may depend on the chemical compound formed. (For example, the valence of iron is two in the 
ferrous oxide, FeO, and three in the ferric oxide, Fe2O3.) 

Fig. 3. 23. The periodic table of elements, showing their atomic numbers and chemical symbols, as well as the 
color-coded basic physical/chemical properties at the so-called ambient (meaning usual laboratory) conditions. 
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Fig. 3.24. Atomic electron configurations. The upper index shows the number of electrons in the states with 
the indicated quantum numbers n (the first digit) and l (letter-coded as was discussed above). 

Atomic 
number 

Atomic 
symbol 

Electron 
states 

Atomic 
number 

Atomic 
symbol

Electron 
states 

Atomic 
number 

Atomic 
symbol

Electron 
 states 

77 Ir 4f145d 76s2 Period 1  Period 5  [Kr] shell, 
plus: 78 Pt 4f145d 96s1 

1 H 1s1 37 Rb 5s1 79 Au 4f145d106s1 
2 He 1s2 38 Sr 5s2 80 Hg 4f145d106s2 

39 Y 4d 15s2 81 Tl 4f145d106s26p1 Period 2 [He] shell, 
plus: 40 Zr 4d 25s2 82 Pb 4f145d106s26p2 

3 Li 2s1 41 Nb 4d 45s1 83 Bi 4f145d106s26p3 
4 Be 2s2 42 Mo 4d 55s1 84 Po 4f145d106s26p4 
5 B 2s22p1 43 Tc 4d 55s2 85 At 4f145d106s26p5 
6 C 2s22p2 44 Ru 4d 75s1 86 Rn 4f145d106s26p6 
7 N 2s22p3 45 Rh 4d 85s1 
8 O 2s22p4 46 Pd 4d 10 

Period 7 [Rn] shell, 
plus: 

9 F 2s22p5 47 Ag 4d 105s1 87 Fr 7s1 
10 Ne 2s22p6 48 Cd 4d 105s2 88 Ra 7s2 

49 In 4d 105s25p1 89 Ac 6d 17s2 Period 3 [Ne] shell, 
plus: 50 Sn 4d 105s25p2 90 Th 6d 27s2 

11 Na 3s1 51 Sb 4d 105s25p3 91 Pa 5f26d37s2 
12 Mg 3s2 52 Te 4d 105s25p4 92 U 5f26d17s2 
13 Al 3s23p1 53 I 4d 105s25p5 93 Np 5f 46d17s2 
14 Si 3s23p2 54 Xe 4d 105s25p6 94 Pu 5f 67s2 
15 P 3s23p3 95 Am 5f 77s2 
16 S 3s23p4 

Period 6 [Xe] shell, 
plus: 96 Cm 5f 76d17s2 

17 Cl 3s23p5 55 Cs 6s1 97 Bk 5f 97s2 
18 Ar 3s23p6 56 Ba 6s2 98 Cf 5f 107s2 

57 La 5d 16s2 99 Es 5f117s2 Period 4 [Ar] shell, 
plus: 58 Ce 4f 15d16s2 100 Fm 5f127s2 

19 K 4s1 59 Pr 4f 36s2 101 Md 5f137s2 
20 Ca 4s2 60 Nd 4f 46s2 102 No 5f147s2 
21 Sc 3d 14s2 61 Pm 4f 56s2 103 Lr 5f147s 17p2 
22 Ti 3d 24s2 62 Sm 4f 66s2 104 Rf 5f146d 27s2 
23 V 3d 34s2 63 Eu 4f 76s2 105 Db 5f146d 37s2 
24 Cr 3d 54s1 64 Gd 4f 75d 16s2 106 Sg 5f146d 47s2 
25 Mn 3d 54s2 65 Tb 4f 96s2 107 Bh 5f146d 57s2 
26 Fe 3d 64s2 66 Dy 4f106s2 108 Hs 5f146d 67s2 
27 Co 3d 74s2 67 Ho 4f116s2 109 Mt 5f146d 77s2 
28 Ni 3d 84s2 68 Er 4f126s2 110 Ds 5f146d 87s2 
29 Cu 3d 104s1 69 Tm 4f136s2 111 Rg 5f146d 97s2 
30 Zn 3d 104s2 70 Yb 4f146s2 112 Cn 5f146d107s2 
31 Ga 3d 104s24p1 71 Lu 4f145d16s2 113 Nh 5f146d107s27p1 
32 Ge 3d 104s24p2 72 Hf 4f145d 26s2 114 Fl 5f146d107s27p2 
33 As 3d 104s24p3 73 Ta 4f145d 36s2 115 Mc 5f146d107s27p3 
34 Se 3d 104s24p4 74 W 4f145d 46s2 116 Lv 5f146d107s27p4 
35 Br 3d 104s24p5 75 Re 4f145d 56s2 117 Ts 5f146d107s27p5 
36 Kr 3d 104s24p6 

 

76 Os 4f145d 66s2 

 

118 Og 5f146d107s27p6 
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 In the next element, beryllium (symbol Be, Z = 4), the 2s state (n = 2, l = 0, m = 0) houses one 
more electron, with the “opposite spin”. Due to the higher electric charge of the nucleus, Q = +4e, with 
only half of it compensated by 1s electrons of the [He] shell, the binding energy of the 2s electrons is 
somewhat higher than that in lithium, so the ionization energy increases to ~9.32 eV. As a result, 
beryllium is also chemically active with the valence of two, but not as active as lithium, and is also is 
metallic in its solid-state phase, but with a lower electric conductivity than lithium. 

Moving in this way along the second row of the periodic table (from Z = 3 to Z = 10), we see a 
gradual filling of the rest of the total 2n2 = 222 = 8 different electron states of the n = 2 shell (see Eq. 
(204), with the additional spin degeneracy factor of 2), including two 2s states with m = 0, and six 2p 
states with m = 0, 1, with a gradually growing ionization potential (up to ~21.6 eV in Ne with Z = 10), 
i.e. a growing reluctance to either conduct electricity or form positive ions. However, the last elements 
of the row, such as oxygen (O, with Z = 8) and especially fluorine (F, with Z = 9) can readily pick up 
extra electrons to fill up their 2p states, i.e. form negative ions. As a result, these elements are 
chemically active, with a double valence for oxygen and a single valence for fluorine. However, the 
final element of this row, neon, has its n = 2 shell completely full, and cannot form a stable negative ion. 
This is why it is a noble gas, like helium. Traditionally, in the periodic table, such elements are placed 
right under helium (Fig. 23), to emphasize the similarity of their chemical properties. But this 
necessitates making at least a 6-cell gap in the 1st row. (Actually, the gap is often made larger, to 
accommodate the next rows – keep reading.) 

Period 3, i.e. the 3rd row of the table, starts exactly like period 2, with sodium (Na, with Z = 11), 
also a chemically active alkali metal whose atom features 2+8 = 10 electrons filling the shells with n = 1 
and n = 2 (in Fig. 24, collectively called the neon shell [Ne]), plus one electron in the 3s state (n = 3, l = 
0, m = 0), which may be again reasonably well described by the hydrogen atom theory – see, e.g., the 
red curve on the last panel of Fig. 22. Continuing along this row, we could naively expect that, 
according to Eq. (204), and with the account of double spin degeneracy, this period of the table should 
have 2n2 = 232 = 18 elements, with a gradual, sequential filling of first, two 3s states, then six 3p states, 
and then ten 3d states. However, here we run into a big surprise: after argon (Ar, with Z = 18), a 
relatively inert element with an ionization energy of ~15.7 eV due to the fully filled 3s and 3p subshells, 
the next element, potassium (K, with Z = 19) is an alkali metal again! 

The reason for that is the difference of the actual electron energies from those of the hydrogen 
atom, which is due mostly to electron-electron interactions, and gradually accumulates with the growth 
of Z. It may be semi-quantitatively understood from the results described in Sec. 6. In hydrogen-like 
atoms/ions, the electron state energies do not depend on the quantum number l (as well as m) – see Eq. 
(201). However, the orbital quantum number does affect the wavefunction of an electron. As Fig. 22 
shows, the larger l the less the probability for an electron to be close to the nucleus, where its positive 
charge is less compensated by other electrons. As a result of this effect (and also the relativistic 
corrections to be discussed in Sec. 6.3), the electron’s energy grows with l. Actually, this effect is 
visible already in period 2 of the table: it manifests itself in the filling order  – the p states after the s 
states. However, for potassium (K, with Z = 19) and calcium (Ca, with Z = 20), the energies of the 3d 
states become so high that the energies of the two 4s states are lower, and the latter states are filled first. 
As described by Eq. (210), and also by the first of Eqs. (211), the effect of the principal number n on the 
distance from the nucleus is stronger than that of l, so the 4s wavefunctions of K and Ca are relatively 
far from the nucleus, and determine the chemical valence (equal to 1 and 2, correspondingly) of these 
elements. The next atoms, from Sc (Z = 21) to Zn (Z = 30), with the gradually filled “internal” 3d states, 
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are the so-called transition metals whose (comparable) ionization energies and chemical properties are 
determined by the 4s electrons.92 

This fact is the origin of the difference between various forms of the “periodic” table. In its most 
popular option, shown in Fig. 23, K is used to start the next period 4, and then a new period is started 
each time and only when the first electron with the next principal quantum number (n) appears.93 This 
topology of the table provides a very clear match of the chemical properties of the first element of each 
period (an alkali metal), as well as its last element (a noble gas). It also automatically means making 
gaps in all previous rows. Usually, this gap is made between the atoms with completely filled s states 
and with those with the first electron in a p state, because here the properties of the elements make a 
somewhat larger step. (For example, the step from Be to B makes the material an insulator, but the step 
from Mg to Al makes a smaller difference.) As a result, the elements of the same column have only 
approximately similar chemical valences and physical properties. 

In order to accommodate the lower, longer rows, such representation is inconvenient, because 
the whole table would be too broad. This is why the so-called rare earth elements, including lanthanides 
(with Z from 57 to 70, of the 6th row, with a gradual filling of the 4f and 5d subshells) and actinides (Z 
from 89 to 103, of the 7th row,  with a gradual filling of the 5f and 6d subshells), are usually represented 
as outlet rows – see Fig. 23. This is quite acceptable for basic chemistry because chemical properties of 
the elements within each such group are rather close. 

To summarize my very short review of this extremely important topic,94 the “periodic table of 
elements” is not periodic in the strict sense of the word. Nevertheless, it has had an enormous historic 
significance for chemistry, as well as atomic and solid-state physics, and is still very convenient for 
many purposes. For our course, the most important aspect of its discussion is the surprising possibility to 
describe, at least for classification purposes, such a complex multi-electron system as an atom as a 
system of quasi-independent electrons in certain quantum states indexed with the same quantum 
numbers n, l, and m as those of the hydrogen atom. This fact enables the use of various perturbation 
theories, which give a more quantitative description of atomic properties. Some of these techniques will 
be reviewed in Chapters 6 and 8. 

 

3.8. Spherically symmetric scatterers 

 The machinery of the Legendre polynomials and the spherical Bessel functions, discussed in Sec. 
6, may also be used for the analysis of particle scattering by spherically symmetric potentials (155) 
beyond the Born approximation (Sec. 3), provided that such a potential U(r) is also localized, i.e. 
reduces sufficiently fast at r  .95 Indeed, directing the z-axis along the propagation of the incident 
plane de Broglie wave i, and taking its origin in the center of the scatterer, we may expect the scattered 
wave s to be axially symmetric, so its expansion in the series over the spherical harmonics includes 

92 The sequence of shell and subshell formation with the atomic number’s growth approximately follows the so-
called Madelung rule (saying that the orbitals with the lowest sum (n + l) are filled first), while the order of state 
filling inside each subshell closely follows the Hund rules, to be discussed in Sec. 8.3. 
93 Another popular option is to return to the first column as soon an atom has one electron in the s state (like it is 
in Cu, Ag, and Au, in addition to the alkali metals). 
94 For a bit more detailed (but still succinct) discussion of the valence and other chemical aspects of atomic 
structure, I can recommend Chapter 5 of the very clear text by L. Pauling, General Chemistry, Dover, 1988. 
95 The quantification of this condition is left for the reader’s exercise. 
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only the terms with m = 0.  Hence, the solution (64) of the stationary Schrödinger equation (63) in this 
case may be represented as96 

        
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where k  (2mE)1/2/ is defined by the energy E of the incident particle. At large distances r >> R, where 
R is the effective radius of the scatterer, the potential U(r) is negligible, and Eq. (63) is satisfied by the 
first term of Eq. (213) separately. Hence the second term, describing the scattered wave, has to satisfy 
this equation as well, so the radial functions Rl(r) have to satisfy Eq. (183). In contrast to its analysis in 
Sec. 6, we should look for that equation’s solution using a linear superposition of the spherical Bessel 
functions of both kinds:  
            RrkryBkrjAr lllll  at  ,R ,    (3.214) 

because Eq. (183) is now invalid at r  0, so our former argument for dropping the functions yl(kr) is no 
longer valid as well. In Eq. (214), Al and Bl are some complex coefficients determined by the scattering 
potential U(r), i.e. by the solution of Eq. (181) at r ~ R.   

 As the explicit expressions (186) show, the spherical Bessel functions jl() and yl() represent 
standing de Broglie waves, with equal real amplitudes, so their simple linear combinations (called the 
spherical Hankel functions of the first and second kind), 

                       llllll iyjhiyjh  21   and, ,   (3.215) 

represent traveling spherical waves propagating, respectively, from the origin (i.e. from the center of the 
scatterer), and toward the origin. In particular, at  >> 1, l, i.e. at large distances r >> 1/k, l/k,97  
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But using the same physical argument as at the beginning of Sec. 1, we may argue that in the case of a 
localized scatterer, there should be no latter waves at r >> R; hence, we have to require the amplitude of 
the term proportional to hl

(2) to be zero. With the relations reciprocal to Eqs. (215), 
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which enable us to rewrite Eq. (214) as 
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this means that the combination (Al + iBl) has to be equal zero, i.e. Bl = iAl. Hence we have just one 
unknown coefficient (say, Al) for each l,98 and may rewrite Eq. (218) in an even simpler form: 

96 The particular terms in this sum are frequently called partial waves. 
97 For arbitrary l, this result may be confirmed using Eqs. (185) and the asymptotic formulas for the “usual” 
Bessel functions – see, e.g., EM Eqs. (2.135) and (2.152), valid for an arbitrary (not necessarily integer) index n. 
98 Moreover, it is easy to show (and hence is left for the reader’s exercise) that this complex coefficient is fully 
defined by just one real parameter, for example, the so-called partial phase shift l – the phase of the lth spherical 
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and use Eqs. (213) and (216) to write the following expression for the scattered wave at large distances: 
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 Comparing this expression with the general Eq. (81), we see that for a spherically symmetric, 
localized scatterer,  
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so the differential cross-section (84) is 
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The last expression is more convenient for the calculation of the total cross-section (59): 
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where   cos , because this result may be much simplified by using Eq. (167):99 
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 Hence the solution of the scattering problem is reduced to the calculation of the partial wave 
amplitudes Al defined by Eq. (219) – and for the total cross-section, merely of their magnitudes. 
Generally, this has to be done by comparing Eq. (220) with the long-range asymptote of the exact 
solution of Eq. (63). This task is much facilitated by using the following formula100 for the expansion of 
the incident plane wave into a series over the Legendre polynomials, 

         

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
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cos12cos

l
ll Pkrjliee likrikz  .   (3.225) 

 As the simplest example, let us consider scattering by a completely impenetrable and “hard” 
(meaning sharp-boundary) sphere, which may be described by the following potential: 

          
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


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rR

Rr
rU      (3.226) 

harmonic of the scattered wave. However, I will not use this notion, because, at least for the basic practical 
problems, calculations are simpler and more physically transparent without it. 
99 Physically, this reduction of the double sum to a single one means that due to the orthogonality of the spherical 
harmonics, the total scattering probability flows due to each partial wave just add up. 
100 It may be proved by using the Rodrigues formula (165) and integration by parts – the task left for the reader’s 
exercise.  

Spherically 
symmetric 

scatterer:  
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In this case, the total wavefunction has to vanish at r  R, and hence for the external problem (r  R), the 
sphere enforces the boundary condition   0 + s = 0 for all values of , at r = R. With Eqs. (213), 
(220), and (225), this condition becomes 

                    0cos12
0

i 


l
lll PkRjliRa l R .    (3.227) 

Due to the orthogonality of the Legendre polynomials, this condition may be satisfied for all angles  
only if all the coefficients before all Pl(cos) vanish, i.e. if 

               kRjliR ll
l 12 R .     (3.228) 

On the other hand, for r > R, U(r) = 0, so Eq. (183) and its outward-wave solution (219) are valid for all 
r, giving 

      kRiykRjAR llll R .     (3.229) 

Requiring the last two displayed expressions for Rl(r) to give the same result, we get 
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so Eqs. (222) and (224) yield: 

             
         

   kRykRj

kRj

k

l
P

kRiykRj

kRj
l

kd

d

ll

l
ll

l ll

l
22

2

2

2

0
2

124
,cos12

1








 






. (3.231) 

 As Fig. 25a shows, the first of these results gives an angular structure of the scattered de Broglie 
wave, which is qualitatively similar to that given by the Born approximation – cf. Eq. (98) and Fig. 10.  
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Fig. 3.25. Particle scattering by an impenetrable hard sphere: (a) the differential cross-section 
normalized to the geometric cross-section g  R2 of the sphere, as a function of the scattering 
angle , and (b) the (similarly normalized) total cross-section and its lowest spherical components, 
as functions of the dimensionless product kR  E1/2. 
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 Namely, at low particle’s energies (kR << 1), the scattering is essentially isotropic, while in the 
opposite, high-energy limit kR >> 1, it is mostly confined to small angles  ~ /kR << 1, and exhibits 
numerous local destructive-interference minima at angles n ~ n/kR. However, in our current (exact!) 
theory, these minima are different from zero because the theory describes an effective bending of the de 
Broglie waves along the back side of the sphere, which smears the interference pattern. 

 This bending is also responsible for a rather counter-intuitive fact (sometimes called wave 
extinction paradox), described by the second of Eqs. (231) and clearly visible in Fig. 25b: even at kR  
, the total cross-section  of scattering tends to 2g  2R2, rather than to the geometric cross-section 
g as in the purely-classical scattering theory. First discovered for optical waves, this effect is common 
for all large non-absorbing scatterers. The fact that at kR << 1, the cross-section is also larger than g, 
approaching 4g at kR  0, is much less surprising, because in this limit the de Broglie wavelength  = 
2/k is much larger than the sphere’s radius R, so the sphere effect on the incident wave extends to the 
area of the order of 2 >> g  R2. 

 The above analysis may be readily generalized to the case of a step-like (sharp but finite) 
potential (97) – the problem left for the reader’s exercise. On the other hand, for a finite and smooth 
scattering potential U(r), by plugging Eq. (225) into Eq. (213) and the result into Eq. (66), and requiring 
the coefficients before each angular function Pl(cos) to be balanced, we get the following 
inhomogeneous generalization of Eq. (181) for the radial functions defined by Eq. (213): 
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 This differential equation has to be solved i the whole scatterer volume (i.e. for all r ~ R) with 
the boundary conditions for the functions Rl(r) to be finite at r  0, and to tend to the asymptotic form 
(219) at r >> R. The last requirement enables the evaluation of the coefficients Al that are needed for 
spelling out Eqs. (222) and (224), for any particular potential U(r). Unfortunately, due to the lack of 
time/space, for particular examples, I have to refer the interested reader to special literature.101 

  

3.9. Exercise Problems 

3.1. A particle of energy E is incident (in the figure on the right, within 
the plane of the drawing) on a sharp potential step: 









  .0for  ,

,0for  ,0
)(

0 xU

x
U r  

Calculate the particle reflection probability R as a function of the incidence 
angle , and discuss this function for various magnitudes and signs of U0. 
 
 3.2. For a charged particle moving in a magnetic field B, calculate the commutation relations 
between Cartesian components of the kinetic (“mv-”) momentum operator defined by Eq. (20). Can the 
result be represented in a vector form? 

101 See, e.g., J. Taylor, Scattering Theory, Dover, 2006. 
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 3.3. In the classical mechanics version of the Landau-level problem discussed in Sec. 3.2 of the 
lecture notes, the geometric center of the particle’s orbit is an integral of motion, determined by initial 
conditions. Calculate the commutation relation between the quantum-mechanical operators 
corresponding to the Cartesian coordinates of the center. 
 
 3.4.* Analyze how are the Landau levels (50) modified by an additional uniform electric field E 
directed along the plane of the particle’s motion. Contemplate the physical meaning of your result and 
its implications for the quantum Hall effect in a 
gate-defined Hall bar. (The area lw of such a 
bar is defined by metallic “gate” electrodes 
parallel to the 2D electron gas plane – see the 
figure on the right. The negative voltage Vg 
applied to the gates squeezes the 2D gas from the 
area under them into the complementary, Hall-
bar part of the plane.) 
  
 3.5. Analyze how are the Landau levels (50) modified if a 2D particle is confined in an 
additional 1D potential well U(x) = m0

2x2/2. 
 
 3.6. Find the stationary states of a spinless, charged 3D particle moving in “crossed” (mutually 
perpendicular) uniform electric and magnetic fields, with E << cB. For such states, calculate the 
expectation values of the particle’s velocity in the direction perpendicular to both fields and compare the 
result with the solution of the corresponding classical problem. 

Hint: You may like to generalize Landau’s solution for 2D particles, discussed in Sec. 2, to the 
3D case. 

 
3.7. Use the Born approximation to calculate the angular dependence and the total cross-section 

of scattering of an incident plane wave propagating along the x-axis, by the following pair of similar 
point inhomogeneities: 


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Analyze the results in detail. Derive the condition of the Born approximation’s validity for such delta-
functional scatterers. 

 
 3.8. Use the Born approximation to analyze the scattering of particles of energy E by a very thin, 
straight, uniform rod of length l, oriented normally to the incident particle’s velocity. In particular, 
calculate the differential and total cross-sections of scattering and analyze the results in the low-energy 
and high-energy limits. 

 
3.9. Complete the analysis of the Born scattering by a uniform spherical potential (97), started in 

Sec. 3, by calculation of its total cross-section. Analyze the result in the limits kR << 1 and kR >>1. 
 
 3.10. Use the Born approximation to calculate the differential cross-section of particle scattering 
by a very thin spherical shell, whose potential may be approximated as U(r) = W(r – R). Analyze the 
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results in the limits kR << 1 and kR >> 1, and compare them with those for a uniform sphere considered 
in Sec. 3. 

3.11. Use the Born approximation to calculate the differential and total cross-sections of electron 
scattering by a screened Coulomb field of a point charge Ze, with the electrostatic potential102 

  re
r

Ze 


 
04

r , 

neglecting spin interaction effects, and analyze the result’s dependence on the screening parameter . 
Compare the results with those given by the classical (“Rutherford”) formula103 for the unscreened 
Coulomb potential (  0), and formulate the condition of Born approximation’s validity in this limit.  

3.12. A quantum particle with electric charge Q is scattered by the field of a localized distributed 
charge with a spherically symmetric density (r) and zero total charge. Use the Born approximation to 
calculate the differential cross-section of the forward scattering (with the scattering angle  = 0), and 
evaluate it for the scattering of electrons by a hydrogen atom in its ground state. 
 
 3.13. Prove the optical theorem (99). 

Hint: For the general solution (64) of the scattering problem, with i given by Eq. (6) and s in 
the form (81), calculate the full probability current I through a spherical surface of radius r >> k–1, and 
then require that in accordance with the continuity relation (1.48), in this stationary situation, I = 0. 
 

3.14. Reformulate the Born approximation for the 1D case. Use the result to find the scattering 
and transfer matrices of a “rectangular” (flat-top) scatterer 



 


  otherwise.,0

,2/for ,
)( 0 dxU

xU  

Compare the results with those of the exact calculations carried out earlier in Chapter 2 and analyze how 
their relationship changes in the eikonal approximation. 
  
 3.15. In the tight-binding approximation, find the lowest stationary states of a particle placed into 
a system of three similar, isotropic, weakly coupled potential wells located in the vertices of an 
equilateral triangle. 

3.16. The figure on the right shows a fragment of a periodic 2D lattice, 
with the red and blue points showing the positions of different local potentials.  

 (i) Find the reciprocal lattice and the 1st Brillouin zone of the system. 
 (ii) Calculate the wave number k of the monochromatic de Broglie wave 
incident along the x-axis, at which the lattice creates the lowest-order diffraction 
peak within the [x, y] plane, and the direction toward this peak. 
 (iii) Semi-quantitatively, describe the evolution of the intensity of the 
peak when all local potentials become similar. 

102 This Yukawa potential was first suggested in 1935 by H. Yukawa as a model for strong interactions. 
103 See, e.g., CM Sec. 3.5, in particular Eq. (3.73). 

a

a

x

y



Essential Graduate Physics                QM: Quantum Mechanics 

    
Chapter 3             Page 60 of 64 

 Hint: The order of diffraction on a multidimensional Bravais lattice is a somewhat ambiguous 
notion dependent on the lattice type, but the lowest-order peak is always that corresponding to the 
smallest non-zero magnitude of the vector Q. 
 
 3.17. For the 2D hexagonal lattice (Fig. 12b): 

(i) find the reciprocal lattice Q and the 1st Brillouin zone;  
(ii) use the tight-binding approximation to calculate the dispersion relation E(q) for a 2D particle 

moving through a potential profile with such periodicity, with an energy close to the eigenenergy of 
similar isotropic states quasi-localized at the lattice points; 

(iii) analyze and sketch/plot the resulting dispersion relation E(q) inside the 1st Brillouin zone. 
 
3.18. Complete the tight-binding-approximation calculation of the band structure of the 

honeycomb lattice, that was started at the end of Sec. 4. Analyze the results; in particular, prove that the 
Dirac points qD are located in the corners of the 1st Brillouin zone, and express the velocity vn 
participating in Eq. (122), in terms of the coupling energy n.  

 
3.19. Examine the basic properties of the so-called Wannier functions104 defined as 

qdeC i 3

BZ

)()(   Rqrr qR  , 

where q(r) is the Bloch wavefunction (108), R is any vector of the Bravais lattice, C is a normalization 
constant, and the integration over the quasimomentum q is extended over any (e.g., the first) Brillouin 
zone. 

 
3.20. Evaluate the long-range interaction (the so-called London dispersion force) between two 

similar, electrically neutral atoms or molecules, modeling each of them as an isotropic 3D harmonic 
oscillator with the electric dipole moment d = qs, where s is the oscillator’s displacement from its 
equilibrium position. 

Hint: You may like to represent the total Hamiltonian of the system as a sum of Hamiltonians of 
independent 1D harmonic oscillators, and calculate their total ground-state energy as a function of the 
distance between the dipoles. 105   

 
3.21. Derive expressions for the stationary wavefunctions and the corresponding energies of a 

2D particle of mass m, free to move inside a round disk of radius R. What is the degeneracy of each 
energy level? Calculate the five lowest energy levels with an accuracy better than 1%. 
 
 3.22. Calculate the ground-state energy of a 2D particle of mass m, localized in a very shallow 
flat-bottom potential well 

104 Named after G. Wannier who introduced these functions in 1939. 
105 This explanation of the interaction between electrically-neutral atoms was put forward in 1930 by F. London, 
on the background of a prior (1928) work by C. Wang. Note that in some texts this interaction is (rather 
inappropriately) referred to as the “van der Waals force”, though it is only one (long-range) component of the van 
der Waals model – see, e.g., SM Sec. 4.1.  
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 3.23. Estimate the energy E of the localized ground state of a 2D particle of mass m, in an axially 
symmetric potential well of a finite radius R, with an arbitrary but very small potential U(). (Quantify 
this condition.) 
 
 3.24. Spell out the spherical harmonics ),(0

4 Y and ),(4
4 Y . 

 
3.25. Calculate x and x2 in the ground states of the planar and spherical rotors of radius R. 

What can you say about px and px
2? 

3.26. A spherical rotor with r = R = const and mass m is in a state with the following 
wavefunction:  = C(⅓ + sin2), where C is a constant. Calculate the energy of its angular motion. 
 
 3.27. According to the discussion at the beginning of Sec. 5, stationary wavefunctions of a 3D 
isotropic harmonic oscillator may be calculated as products of three similar 1D “Cartesian oscillators” – 
see, in particular Eq. (125), with d = 3. However, per the discussion in Sec. 6, the wavefunctions of the 
type (200), proportional to the spherical harmonics Yl

m, also describe stationary states of this spherically 
symmetric system. Represent the wavefunctions (200) of: 

 (i) the ground state of the oscillator, and 
 (ii) each of its lowest excited states,  

as linear combinations of products of the 1D oscillator’s stationary wavefunctions. Also, calculate the 
degeneracy of the nth energy level of the oscillator. 
 
 3.28. A particle of mass m is placed into a spherical, flat-bottom potential well  

  .0with  
,for ,0
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 (i) Calculate the smallest U0 at which the particle has a bound (localized) stationary state. 
 (ii) Calculate the energy of this state if U0 is barely larger than that minimum value. 
 (iii) Does such a localized state exist in a very narrow and deep well that may be described as 
U(r) = –W(r) with a positive and finite W? 
  
 3.29. A 3D particle of mass m is placed into a spherically symmetric potential well with – < 
U(r)  U() = 0. Relate its ground-state energy to that of a 1D particle of the same mass, moving in the 
following potential well:  

   

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
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
.0for   ,

,0for  ,

x

xxU
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Use the found relation to: 

 (i) discuss the origin of the difference between the solutions of Task (i) of the previous problem 
and of Problem 2.21, брали нумерацию,and 
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 (ii) calculate the energy spectrum of an electron moving over an impenetrable plane surface of a 
perfect conductor. 
 

3.30. Calculate the smallest value of the parameter U0, for that the following spherically 
symmetric potential well: 

  0,with  00 ,/   RUeUrU Rr , 

has a bound (localized) eigenstate for a particle of mass m. 

 Hint: You may like to introduce the following new variables: f  rR and   Ce–r/2R, with a  
proper constant C. 

3.31.* A particle of mass m moves in the field of an attractive spherically symmetric potential 
U(r)  U()  0. Find a condition necessary for it to have at least one bound state. Compare the result 
with those of Problems 28 and 30. 

 
 3.32. A particle of mass m, moving in a certain central potential U(r), has a stationary state with 
the following wavefunction:  

,cos  reCr   

where C, , and  > 0 are constants. Calculate: 

 (i) the probabilities of all possible values of the quantum numbers m and l, and 
 (ii) the confining potential and the state’s energy. 
 
 3.33. For an isotropic 3D harmonic oscillator, calculate: 

 (i) the energy spectrum resulting from the Bohr quantization of circular classical orbits, and 
 (ii) the energy spectrum of the s-states in the WKB approximation. 

Compare the results with the exact energy spectrum of the oscillator, and comment. 
 
 3.34. For a particle of mass m, moving in the spherically symmetric potential U(r) = ar4: 

 (i) use the variational method to estimate the ground-state energy, 
 (ii) calculate the energy spectrum resulting from the Bohr quantization of circular orbits, and 
 (iii) calculate the energy spectrum of the s-states in the WKB approximation. 

Compare the results and comment. 
 
 3.35. For a particle of mass m, moving in the attracting Coulomb potential U(r) = –C/r (e.g., the 
electron in a hydrogen atom): 

 (i) estimate the ground state energy by using the trial wavefunction trial = A/(r + a)b, where both 
a > 0 and b > 1 are fitting parameters, and  
 (ii) calculate the energy spectrum of the s-states in the WKB approximation. 

Compare the results with the exact energy spectrum of the atom. 
 
 3.36. Calculate the energy spectrum of a particle moving in a monotonic but otherwise arbitrary 
spherically symmetric attractive potential U(r) < 0, in the approximation of very large orbital quantum 
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numbers l. Formulate the quantitative condition(s) of validity of your theory. Check that for the 
Coulomb potential U(r) = –C/r, your result agrees with Eq. (201). 

 Hint: Try to solve Eq. (181) approximately by introducing the same new function f(r)  rR(r) 
that was already used in Sec. 1 and in the solutions of a few earlier problems.  
 
 3.37. Prove Eq. (210) and the first two of Eqs. (211) for the ground state of a hydrogen-like 
atom/ion. 
 

3.38. For the ground state of a particle in the Coulomb potential (190), calculate the probability 
to find it farther from the attracting center than the radius the same particle with the same energy would 
have on a classical circular orbit. 
 
 3.39. For the ground state and the lowest excited states of the hydrogen atom: 

 (i) calculate the spatial distribution of the electric current flowing around the nucleus, 
 (ii) evaluate its highest density, and 
 (iii) calculate and evaluate its magnetic field at the position of the nucleus. 
 
 3.40. An electron had been in the ground state of a hydrogen-like atom/ion with nuclear charge 
Ze when the charge suddenly changed to (Z + 1)e.106 Calculate the probabilities for the electron of the 
changed system to be: 

 (i) in its ground state, and 
 (ii) in one of the lowest excited states. 
 
 3.41. Due to a very short pulse of an external force, the nucleus of a hydrogen-like atom/ion, 
initially at rest in its ground state, starts moving with velocity v. Calculate the probability Wg that the 
atom remains in its ground state. Evaluate the energy to be given, by the pulse, to a hydrogen atom in 
order to reduce Wg to 50%. 
 
 3.42. Calculate x2 and px

2 in the ground state of a hydrogen-like atom/ion. Compare the 
results with Heisenberg’s uncertainty relation. What do these results tell about the electron’s velocity in 
the system? 
 
 3.43. Use the Hellmann-Feynman theorem (see Problem 1.7) to prove: 

 (i) the first of Eqs. (211), and 
 (ii) the fact that for a spinless particle in an arbitrary spherically symmetric attractive potential 
U(r), the ground state is always an s-state (with the orbital quantum number l = 0). 
 
 3.44. For the ground state of a hydrogen atom, calculate: 

 (i) the expectation value of E, where E is the electric field created by the atom as a whole, and 
 (ii) the expectation value of E2 at distances r >> r0 from the nucleus.  

106 Such a fast change happens, for example, at the beta-decay, when one of the nucleus’ neurons spontaneously 
turns into a proton, emitting a high-energy electron and a neutrino, which leave the system very fast (instantly on 
the atomic time scale), and do not affect directly the atom transition’s dynamics. 
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Interpret the obtained relation between E2 and E 2 at distant observation points. 
 
 3.45. Find the condition at which a particle of mass m, moving in the field of a very thin 
spherical shell with U(r) = W(r – R) and W < 0,  has at least one localized (“bound”) stationary state.  

 
3.46. Calculate the lifetime of the lowest metastable state of a particle in the same spherical shell 

potential as in the previous problem, but now with W > 0, for sufficiently large W. (Quantify this 
condition.) 
 
 3.47. A particle of mass m and energy E is incident on a very thin spherical shell of radius R, 
whose localized states were the subject of two previous problems, with an arbitrary “weight” W. 

 (i) Derive general expressions for the differential and total cross-sections of scattering. 
 (ii) Spell out the contribution 0 to the total cross-section , given by the spherically symmetric 
component of the scattered de Broglie wave.  
 (iii) Analyze the result for 0 in the limits of very small and very large magnitudes of W, for both 

signs of this parameter. In particular, in the limit W  +, relate the result to the metastable state’s 

lifetime   calculated in the previous problem.  
 
 3.48. Calculate the spherically symmetric contribution 0 to the total cross-section of particle 
scattering by a uniform sphere of radius R, described by the following potential: 

 


 


otherwise,,0

   ,for  ,0 RrU
rU  

with an arbitrary constant U0. Analyze the result in detail, and give an interpretation of its most 
remarkable features. 
 
 3.49. Prove that for a spherically symmetric scatterer, the complex amplitude Al of each partial 
scattered wave, as defined by Eq. (214), is indeed determined by just one real parameter – for example, 
the phase shift l of the wave. Express the partial cross-section l of scattering via this phase shift and 
use this result to re-solve the problem of scattering by an impenetrable sphere – see Eq. (226). 

 
 3.50. Use the finite difference method with the step h = a/2 to calculate as many energy levels as 
possible, for a particle confined to the interior of: 

(i) a square with sides a, and 
(ii) a cube with sides a,  

with hard walls. For the square, repeat the calculations by using the finer step h = a/3. Compare the 
results for different values of h with each other and with the exact formulas. 

 Hint: It is advisable to either first solve (or review the solution of) the similar 1D Problem 1.18, 
or start from reading about the finite difference method.107 Also: try to exploit the symmetry of the 
systems. 

107 See, e.g., CM Sec. 8.5 or EM Sec. 2.11. 


