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Chapter 5. Some Exactly Solvable Problems 

The objective of this chapter is to describe several relatively simple but important applications of the 
bra-ket formalism, including a few core problems of wave mechanics we have already started to discuss 
in Chapters 2 and 3.  

 

5.1. Two-level systems 

 The discussion of the bra-ket formalism in the previous chapter was peppered with numerous 
illustrations of its main concepts on the examples of “spin-½-like” systems with the smallest non-trivial 
(two-dimensional) Hilbert space. In such a system, the bra- and ket-vectors of an arbitrary quantum state 
 may be represented as a linear superposition of just two basis vectors, for example 

           ,     (5.1) 

where the states  and  are defined as the eigenstates of the Pauli matrix z – see Eq. (4.105). For the 
genuine spin-½ particles (such as electrons) placed in a z-oriented time-independent magnetic field, 
these states are the stationary “spin-up” and “spin-down” stationary states of the Pauli Hamiltonian 
(4.163), with the corresponding two energy levels (4.167).  

 However, an approximate but reasonable quantum description of some other important systems 
may also be given in such Hilbert space. For example, as was discussed in Sec. 2.6, two weakly coupled 
space-localized orbital states of a spin-free particle are sufficient for an approximate description of its 
quantum oscillations between two potential wells. A similar coupling of two traveling waves explains 
the energy band splitting in the weak-potential approximation of the band theory – Sec. 2.7. As will be 
shown in the next chapter, in systems with time-independent Hamiltonians, such a situation almost 
unavoidably appears each time when two energy levels are much closer to each other than to other 
levels. Moreover, as will be shown in Sec. 6.5, a similar truncated description is adequate even in cases 
when two levels En and En’ of an unperturbed system are not close to each other, but the corresponding 
states become coupled by an applied ac field of a frequency  very close to the difference (En – En’ )/. 
Such two-level systems are nowadays the focus of additional attention in the view of prospects of their 
use for quantum information processing and encryption.1 This is why I will spend a bit more time 
reviewing the main properties of an arbitrary two-level system.   

 The most general form of the Hamiltonian of a two-level system is represented, in an arbitrary 
basis, by a 22 matrix  
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.     (5.2)

1 In the last context, to be discussed in Sec. 8.5, the two-level systems are usually called qubits. 

According to the discussion in Secs. 4.3-4.5, since the Hamiltonian operator has to be Hermitian, the 
diagonal elements of the matrix H have to be real, and its off-diagonal elements have to be complex 
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conjugate: H21 = H12*. As a result, we may not only represent H as a linear combination (4.106) of the 
identity matrix and the Pauli matrices but also reduce it to a more specific form: 
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where the scalar b and the Cartesian components of the vector c are real c-number coefficients: 
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If such a Hamiltonian does not depend on time, the corresponding characteristic equation (4.103) for the 
system’s energy levels E, 
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is a simple quadratic equation, with the following roots:  
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 The parameter b  (H11 + H22)/2 evidently gives the average energy E(0) of the system, which 
does not contribute to the level splitting 

        
2/12

21

2

2211

2/1222 422 



   HHHccccEEE zyx .  (5.7) 

So, the splitting is a hyperbolic function of the coefficient cz  (H11 – H22)/2. A plot of this function is 
the famous level-anticrossing diagram (Fig. 1), which has already been discussed in Sec. 2.7 in the 
particular context of the weak-potential limit of the 1D band theory.  

 

 

 

 

 

 

 

 
 
The physics of the diagram becomes especially clear if the two states of the basis used to spell 

out the matrix (2) may be interpreted as the stationary states of two potentially independent subsystems, 
with the energies, respectively, H11 and H22. (For example, in the case of two weakly coupled potential 
wells discussed in Sec. 2.6, these are the ground-state energies of two very distant wells.) Then the off-
diagonal elements c–  H12 and c+  H21 = H12

* describe the subsystem coupling, and the anticrossing 

Fig. 5.1. The level-anticrossing diagram 
for an arbitrary two-level system. 
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diagram shows how do the eigenenergies of the coupled system depend (at fixed coupling) on the 
difference of the subsystem energies. As was already discussed in Sec. 2.7, the most striking feature of 
the diagram is that any non-zero coupling c  (cx

2 + cy
2)1/2 changes the topology of the eigenstate 

energies, creating a gap of the width E. 

  As it follows from our discussions of particular two-level systems in Secs. 2.6 and 4.6, the 
dynamics of such systems also has a general feature – the quantum oscillations. Namely, if we put any 
two-level system into any initial state different from one of its eigenstates , and then let it evolve on its 
own, the probability of its finding the system in any of the “partial” states exhibits oscillations with the 
frequency 

          


 



EEEc2

,     (5.8) 

lowest at the exact subsystem symmetry (cz = 0, i.e. H11 = H22), when it is proportional to the coupling 
strength: min = 2c/  2H12/ = 2H21/.  

 In the case discussed in Sec. 2.6, these are the oscillations of a particle between the two coupled 
potential wells (or rather of the probabilities to find it in either well) – see, e.g., Eqs. (2.181). On the 
other hand, for a spin-½ particle in an external magnetic field, these oscillations take the form of spin 
precession in the plane normal to the field, with periodic oscillations of its Cartesian components (or 
rather their expectation values) – see, e.g.,  Eqs. (4.173)-(4.174). Some other examples of the quantum 
oscillations in two-level systems may be rather unexpected; for example, the ammonium molecule NH3 
(Fig. 2) has two similar states that differ only by the inversion of the nitrogen atom relative to the 
common plane of the three hydrogen atoms. These states are weakly coupled due to the quantum-
mechanical tunneling of the nitrogen atom through this plane.2 Since for this particular molecule, in the 
absence of external fields, the level splitting E corresponds to an experimentally convenient frequency 
/2  24 GHz, it played an important historic role in the initial development of the atomic frequency 
standards and microwave quantum generators (masers) in the early 1950s,3 which paved the way for 
laser technology.  

 

 

 

 

 

 
 
  
 Now let us now discuss a very convenient geometric representation of an arbitrary quantum state 
 of any two-level system. As Eq. (1) shows, such a state is completely described by two complex 

2 Since the hydrogen atoms are much lighter, it may be fairer to speak about the tunneling of their triangle around 
the (nearly immobile) nitrogen atom. 
3 In particular, these molecules were used in the demonstration of the first maser by C. Townes’ group in 1954. 

Fig. 5.2. An ammonia molecule and its inversion. 
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coefficients (c-numbers) – say,  and . If the vectors of the basis states  and  are normalized, then 
these coefficients must obey the following restriction:   

         1
22****   W . (5.9) 

This requirement is automatically satisfied if we take the moduli of   and  equal to the sine and 
cosine of the same real angle. Thus we may write, for example, 
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ii ee .    (5.10) 

Moreover, according to the general Eq. (4.125), if we deal with just one two-level system,4 the common 
phase factor exp{i} drops out of the calculation of any expectation value, so we may take  = 0, and Eq. 
(10) is reduced to 

  .
2

sin,
2

cos  ie       (5.11) 

 The reason why the argument of these sine and cosine functions is usually taken in the form /2, 
is clear from Fig. 3a: Eq. (11) conveniently maps each state  of a two-level system onto a certain 
representation point on a unit-radius Bloch sphere,5 with the polar angle  and the azimuthal angle .  

 

 

 

 

 

 

 

 

 

 

 
 
In particular, the basis state , described by Eq. (1) with  = 1 and  = 0, corresponds to the 

North Pole of the sphere ( = 0), while the opposite state , with  = 0 and  = 1, to its South Pole ( 
= ). Similarly, the eigenstates  and  of the matrix x, described by Eqs. (4.122), i.e. having  = 

4 If you need a reminder of why this condition is crucial, please revisit the discussion at the end of Sec. 1.6. Note 
also that the mutual phase shifts between different two-level systems are important, in particular, for quantum 
information processing (see Sec. 8.5 below), so most discussions of these applications have to start from Eq. (10) 
rather than Eq. (11). 
5 This representation was suggested in 1946 by the same Felix Bloch who pioneered the energy band theory 
discussed in Chapters 2-3. 
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sphere 
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Fig. 5.3. The Bloch sphere: (a) the representation of an arbitrary state (solid red point) and the 
eigenstates of the Pauli matrices (black-dotted points), and (b, c) the two-level system’s evolution: (b) 
in a constant “field” c directed along the z-axis, and (c) in an arbitrarily orientated field.  
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1/2 and  = 1/2, correspond to the equator ( = /2) points with, respectively,  = 0 and  = . 
Two more special points (denoted in Fig. 3a as ⊙ and ) are also located on the sphere’s equator, at  = 
/2 and  = /2; it is easy to check that they correspond to the eigenstates of the matrix y (in the same 
z-basis).  

To understand why this mutually perpendicular location of these three special point pairs on the 
Bloch sphere is not occasional, let us plug Eqs. (11) into Eqs. (4.131)-(4.133) for the expectation values 

of the spin-½ components. In terms of the Pauli vector operator (4.117),  2//ˆˆ Sσ  , the result is    

              cos,sinsin,cossin  zyx ,   (5.12) 

showing that the radius vector of any representation point is just the expectation value .  

Now let us use Eq. (3) to see how the representation point moves in various cases, ignoring the 
term bI – which, again, describes the offset of the total energy of the system relative to some reference 
level, and does not affect its dynamics. First of all, according to Eq. (4.158), if c = 0 (when the 
Hamiltonian operator turns to zero, and hence the state vectors do not depend on time) the point does 
not move at all, and its position is determined by initial conditions, i.e. by the system’s preparation. If c 
 0, we may re-use some results of Sec. 4.6, obtained for the Pauli Hamiltonian (4.163a), which 
coincides with Eq. (3) if6 

           
2


Bc .      (5.13) 

In particular, if the field B, and hence the vector c, is directed along the z-axis and is time-independent, 
Eqs. (4.170) and (4.173)-(4.174) show that the representation point  on the Bloch sphere rotates 
within a plane normal to this axis (see Fig. 3b) with the angular velocity  

          


z
z

c

dt

d 2
 B

.     (5.14)  

Almost evidently, since the selection of the coordinate axes is arbitrary, this picture should 
remain valid for any orientation of the vector c, with the representation point rotating, on the Bloch 
sphere, around its direction, with the angular speed    = 2c/ – see Fig. 3c. This fact may be proved 
using any picture of the quantum dynamics, discussed in Sec. 4.6. Actually, the reader may already have 
done that by solving Problems 4.27-4.28, just to see that even for the particular, simple initial state of 
the system (), the final results for the Cartesian components of the vector  are somewhat bulky. 
However, this description may be readily simplified, even for an arbitrary time dependence of the 
“field” vector c(t) in Eq. (3), by using the geometric vector language. 

For that, let us rewrite Eq. (3) (again, with b = 0) in the operator form, 

         σc ˆˆ  tH ,      (5.15) 

valid in an arbitrary basis. According to Eq. (4.199), the corresponding Heisenberg equation of motion 
for the jth Cartesian components of the vector-operator σ̂  (which does not depend on time explicitly, 

0/ˆ  t ) is 

6 This correspondence justifies using the use of the term “field” for the vector c. 
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Now using the commutation relations (4.155), which remain valid in any basis and in any picture of time 
evolution,7 we get 
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where jj’j” is the Levi-Civita symbol. But it is straightforward to verify that the usual vector product of 
two 3D vectors may be represented in a similar Cartesian-component form: 
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As a result, the right-hand side of Eq. (17) may be rewritten as   jti σc ˆ2  , and that relation may be 

recast in a vector form – or rather several equivalent forms: 

            ,ˆˆor  ,ˆ
2

ˆor  ,ˆ2ˆ σΩσσcσσcσ  tttii 


    (5.19) 

where the vector  is defined as 

           tt cΩ 
2


      (5.20) 

– an evident vector generalization of Eq. (14).8 As we have seen in Sec. 4.6, any linear relation between 
two Heisenberg operators is also valid for the expectation values of the corresponding observables, so 
the last form of Eq. (19) yields: 
        σΩσ  t .     (5.21) 

 But this is the well-known kinematic formula9 for the rotation of a constant-length classical 3D 
vector  around the instantaneous direction of the vector (t), with the instantaneous angular velocity 
(t).  So, the time evolution of the representation point on the Bloch sphere is quite simple, especially in 
the case of a time-independent c, and hence  – see Fig. 3c.10 Note that it is sufficient to turn off the 
field to stop the precession instantly. (Since Eq. (21) is the first-order differential equation, the 
representation point has no effective inertia.11) Hence, changing the direction and the magnitude of the 

7 Indeed, if some three operators in the Schrödinger picture are related as [ SS
ˆ,ˆ BA ] = SĈ , then according to Eq. 

(4.190), in the Heisenberg picture: 

HSSSHHHHHHHH
ˆˆˆˆˆˆ,ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ]ˆˆˆ,ˆˆˆ[]ˆ,ˆ[ †

][
††††††† CuCuuBAuuAuuBuuBuuAuuBuuAuBA  . 

8 It is also easy to verify that in the particular case  = nz, Eqs. (19) are reduced, in the z-basis, to Eqs. (4.200) 
for the spin-½  vector matrix S = (/2). 
9 See, e.g., CM Sec. 4.1, in particular Eq. (4.8). 
10 The bulkiness of the solutions of Problems 4.27-4.28 (which were offered just as useful exercises in quantum 
dynamic formalisms) reflects the awkward expression of the resulting simple circular motion of the vector  
(see Fig. 3c) via its Cartesian components. 
11 This is also true for the classical angular momentum L at its torque-induced precession – see, e.g., CM Sec. 4.5. 
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effective external field, it is possible to drive the representation point of a two-level system from any 
initial position to any final position on the Bloch sphere, i.e. make the system take any of its possible 
quantum states. 

 In the particular case of a spin-½ in a magnetic field B(t), it is more customary to use Eqs. (13) 
and (20) to rewrite Eq. (21) as the following equation for the expectation value of the spin vector S = 
(/2): 
                          tB SS  .     (5.22) 

As we know from the discussion in Chapter 4, such a classical description of the spin’s evolution does 
not give a full picture of the quantum reality; in particular, it does not describe the possible large 
uncertainties of its components – see, e.g., Eqs. (4.135). The situation, however, is different for a 
collection of N >> 1 similar, non-interacting spins, initially prepared to be in the same state – for 
example by polarizing all spins with a strong external field B0, at relatively low temperatures T, with 

kBT << B0. (A practically important example of such a collection is a set of nuclear spins in 
macroscopic condensed-matter samples, where the spin interaction with each other and the environment 
is typically very small.) For such a collection, Eq. (22) is still valid, while the relative uncertainty of the 
resulting sample’s magnetization M = nm = nS (where n  N/V is the spin density) is proportional 
to 1/N1/2 << 1. Thus, the evolution of magnetization may be described, with good precision, by the 
essentially classical equation:  

       tB MM  .     (5.23) 

This equation, or the equivalent set of three Bloch equations12 for its Cartesian components,  
with the right-hand side augmented with small terms describing the effects of dephasing and relaxation 
(to be discussed in Chapter 7), is used, in particular, to describe the magnetic resonance, taking place 
when the frequency (4.164) of the magnetization’s precession in a strong dc magnetic field approaches 
the frequency of an additionally applied (and usually weak) ac/rf field. Two species of this effect, the 
electron paramagnetic resonance (EPR) and the nuclear magnetic resonance (NMR) are broadly used in 
material science, chemistry, and medicine. Unfortunately, I will not have time to discuss the related 
technical issues and methods (in particular, interesting ac/rf pulsing techniques, including the so-called 
spin echo and Ramsey interferometry) in detail, and have to refer the reader to special literature.13 

 

5.2. The Ehrenfest theorem 

 In Sec. 4.7, we have derived all the basic relations of wave mechanics from the bra-ket 
formalism, which will also enable us to get some important additional results in that area. One of them is 
a pair of very interesting relations, together called the Ehrenfest theorem. To derive them, for the 
simplest case of 1D orbital motion, let us calculate the following commutator: 

12 They were introduced by F. Bloch in the same 1946 paper as the Bloch-sphere representation. In the 1950s 
when the value of Eq. (21) for quantum optics became recognized, this equation and its open-system 
generalizations became known as optical Bloch equations. Currently, the term ‘Bloch equations’ is frequently 
used for any two-level systems, regardless of the physical origin of the Hamiltonian (15). 
13 For introductions see, e.g., J. Wertz and J. Bolton, Electron Spin Resonance, 2nd ed., Wiley, 2007; J. Keeler, 
Understanding NMR Spectroscopy, 2nd ed., Wiley, 2010. 
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           .ˆˆˆˆˆˆˆ,ˆ 2 xppppxpx xxxxx       (5.24) 

Let us apply the commutation relation (4.238), in the following form: 

      ,ˆˆˆˆˆ Iixppx xx       (5.25) 

to the first term of the right-hand side of Eq. (24) twice, with the goal to chase the coordinate operator 
into the rightmost position: 

              .ˆ2ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ xxxxxxxxxxxxx pixpppiIixpppipxppIixpppx    (5.26) 

The first term of this result cancels with the last term of Eq. (24), so the commutator becomes  quite 
simple: 

        .ˆ2ˆ,ˆ 2
xx pipx        (5.27) 

Let us use this equality to calculate the Heisenberg-picture equation of motion of the operator x̂ , 
by applying the general Heisenberg equation (4.199) to the 1D orbital motion described by the 
Hamiltonian (4.237), but possibly with a more general, time-dependent potential energy U: 
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    (5.28) 

The potential energy operator is a function of the coordinate operator and hence, as we know, commutes 
with it. Thus, the right-hand side of Eq. (28) is proportional to the commutator (27), and we get 

             .
ˆˆ

m

p

dt

xd x       (5.29) 

In this operator equation, we readily recognize the full analog of the classical relation between the 
particle’s momentum and its velocity. 

 Now let us see what a similar procedure gives for the momentum’s derivative: 
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    (5.30) 

The kinetic energy operator commutes with the momentum operator and hence drops from the right-
hand side of this equation. To calculate the remaining commutator of the momentum and the potential 
energy, let us use the fact that any smooth (infinitely differentiable) function may be represented by its 
Taylor expansion: 
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where the derivatives of U may be understood as c-numbers (evaluated at x = 0, and the given time t), so 
we may write 
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Applying Eq. (25) k times to the last term in the parentheses, exactly as we did in Eq. (26), we get 

Heisenberg 
equation 
for 
coordinate 
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But the last sum is just the Taylor expansion of the derivative U/x. Indeed, 
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where at the last step, the summation index was changed from k’ to k – 1. As a result, we may recast Eq. 
(5.32b) as 

       ),ˆ(
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so Eq. (30) yields: 
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      (5.35) 

This equation also coincides with the classical equation of motion! Moreover, averaging Eqs. (29) and 
(35) over the initial state (as Eq. (4.191) prescribes), we get similar results for the expectation values:14 
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 , .    (5.36) 

However, it is important to remember that the similarity of these quantum-mechanical equations 
and their classical mechanics analogs is superficial, and the degree of difference between the two 
mechanics very much depends on the problem. As one extreme, let us consider the case when a 
particle’s state, at any moment between t0 and t, may be accurately represented by one, relatively px-
narrow wave packet. Then we may interpret Eqs. (36) as the equations of the essentially classical motion 
of the wave packet’s center, and consider this fact as a manifestation of the correspondence principle. 
However, even in this case, it is important to remember the purely quantum mechanical effects of non-
zero wave packet broadening and its spread in time, which were discussed in Sec. 2.2.  

 As an opposite extreme, let us revisit the “leaky” potential well discussed in Sec. 2.5 – see Fig. 
2.15. Since both the potential U(x) and the initial wavefunction of that system are symmetric relative to 
point x = 0 at all times, the right-hand sides of both Eqs. (36) identically equal zero, and hence they 
predict that the average values of the coordinate and the momentum stay equal to zero at all times. Of 
course, this prediction is correct, but it does not tell us much about the rich dynamics of the system: the 
finite lifetime of the metastable state, the formation of two wave packets, their waveform and 
propagation speed (see Fig. 2.17), and about the insights the full solution gives for the quantum 
measurement theory and the system’s irreversibility. Another similar example is the energy band theory 
(Sec. 2.7), with its purely quantum effect of the allowed energy bands and forbidden energy gaps, of 
which Eqs. (36) give no clue. 

 To summarize, the Ehrenfest theorem is useful as an illustration of the correspondence principle 
and as the sanity check of quantum-mechanical calculation results, but its predictive power should not 
be exaggerated. 

 

14 The equation set (36) constitutes the Ehrenfest theorem, named after its author, Paul Ehrenfest. 
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5.3. The Feynman path integral 

 As has been already mentioned, even within the realm of wave mechanics, the bra-ket language 
may simplify some calculations that would be very bulky using the notation used in Chapters 1-3. 
Probably the best example is the famous alternative, path-integral formulation of quantum mechanics.15 
I will review this important concept, cutting one math corner for the sake of brevity.16 (This shortcut 
will be clearly marked below.)  

 Let us inner-multiply both parts of Eq. (4.157a), which is essentially the definition of the time-
evolution operator, by the bra-vector of state x, 

       ,)(),(ˆ)( 00 tttuxtx        (5.37) 

insert the identity operator before the ket-vector on the right-hand side, and then use the closure 
condition in the form of Eq. (4.252), with x’ replaced with x0: 

        .)(),(ˆ)( 00000 txxttuxdxtx       (5.38) 

According to Eq. (4.233), this equality may be represented as 

           ),(),(ˆ),( 00000 txxttuxdxtx  .    (5.39) 

Comparing this expression with Eq. (2.44), we see that the long bracket in this relation is nothing other 
than the 1D propagator that was discussed in Sec. 2.2, i.e. 

       0000 ),(ˆ),;,( xttuxtxtxG  .    (5.40) 

Let me hope that the reader sees that this equality corresponds to the physical sense of the propagator. 

 Now let us break the time segment [t0, t] into N (for the time being, not necessarily equal) parts 
by inserting (N – 1) intermediate points (Fig. 4) with 

      ttttt Nk  110  ,     (5.41) 

and use the definition (4.157) of the time evolution operator to write  

            ),(ˆ),(ˆ),(ˆ),(ˆ),(ˆ 01122110 ttuttuttuttuttu NNN  .   (5.42) 

 

 

 

 
 

15 This formulation was developed in 1948 by Richard P. Feynman. (According to his memories, this work was 
motivated by a “mysterious” remark by P. Dirac in his pioneering 1930 textbook on quantum mechanics.) 
16 A more thorough discussion of the path-integral approach may be found in the famous text by R. Feynman and 
A. Hibbs, Quantum Mechanics and Path Integrals, first published in 1965. (For its latest edition by Dover in  
2010, the book was emended by D. Styler.) For a more recent monograph, which reviews more applications, see 
L. Schulman, Techniques and Applications of Path Integration, Wiley, 1981. 

Fig. 5.4. Time partition and coordinate 
notation at the initial stage of the 
Feynman path integral’s derivation. tttttt NNk 1210 ...... 
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 After plugging Eq. (42) into Eq. (40), let us insert the identity operator, again in the closure form 
(4.252), but written for xk rather than x’, between each two partial evolution operators including the time 
argument tk. The result is 

.),(ˆ),(ˆ),(ˆ);,( 00112211111210,0 xttuxxttuxxttuxdxdxdxtxtxG NNNNNNNN      (5.43) 

The physical sense of each integration variable xk is the wavefunction’s argument at time tk – see Fig. 4. 

The key Feynman’s step was the realization that if all intervals are taken similar and sufficiently 
small, tk – tk-1 = d → 0, all the partial brackets participating in Eq. (43) may be expressed via the free-
particle’s propagator given by Eq. (2.49), even if the particle is not free, but moves in a stationary 
potential profile U(x). To show that, let us use either Eq. (4.175) or Eq. (4.181), which, for a small time 
interval d, give the same result: 
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expˆexp),(ˆ
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  (5.44) 

Generally, an exponent of a sum of two operators may be treated as that of c-number arguments, and in 
particular factored into a product of two exponents, only if the operators commute. (In that case, we can 
use all the standard algebra for the exponents of c-number arguments.) In our case, this is not so because 
the operator mp 2/ˆ 2  does not commute with x̂ , and hence with U( x̂ ). However, it may be shown17 that 

for an infinitesimal time interval d, the non-zero commutator  

            ,0)ˆ(,
2

ˆ 2









 dxUd
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p
     (5.45) 

proportional to (d)2, may be ignored in the first, linear approximation in d. As a result, we may factor 
the right-hand side in Eq. (44) by writing 
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.   (5.46) 

(This approximation is very much similar in spirit to the trapezoidal-rule approximation in the usual 1D 
integration,18 which is also asymptotically impeachable.) 

 Since the second exponential function on the right-hand side of Eq. (46) commutes with the 
coordinate operator, we may move it out of each partial bracket participating in Eq. (43), with U(x) 
turning into a c-number function: 
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  (5.47) 

But the remaining bracket is just the propagator of a free particle, so for it, we may use Eq. (2.49): 

17 This is exactly the corner I am going to cut because a strict mathematical proof of this (intuitively evident) 
statement would take more time/space than I can afford. 
18 See, e.g., MA Eq. (5.2).  
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As the result, the full propagator (43) takes the form 
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At N   and hence d  (t – t0)/N  0, the sum under the exponent in this expression may be 
approximated with the corresponding integral: 
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  (5.50) 

and the expression in the square brackets is just the particle’s Lagrangian function L.19 The integral of 
this function over time is the classical action S calculated along a particular “path” x().20 As a result, 
defining the (1D) path integral as 
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lim)]([ 121
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    (5.51a) 

we can bring our result to the following (superficially simple) form: 

          )]([)(exp);,( 0,0  xDx
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txtxG  





 S


.    (5.51b) 

 The name “path integral” for the mathematical construct (51a) may be readily explained if we 
keep the number N of time intervals large but still finite, and also approximate each of the enclosed 
integrals with a sum over M  >> 1 discrete points along the coordinate axis – see Fig. 5a.  

 

 

 

 

 

 

 
  
 Then the path integral (51a) is the product of (N – 1) sums corresponding to different values of 
time , each of them with M terms, each of those representing the function under the integral at a 
particular spatial point. Multiplying those (N – 1) sums, we get a sum of (N – 1)M terms, each 

19 See, e.g., CM Sec. 2.1. 
20 See, e.g., CM Sec. 10.3. 
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evaluating the function at a specific spatial-temporal point [x, ]. These terms may be now grouped to 
represent all possible different continuous classical paths x[ ] from the initial point [x0, t0] to the finite 
point [x, t]. It is evident that the last interpretation remains true even in the continuous limit N, M    
(see Fig. 5b). 

Why does such a path representation of the sum make sense? This is because in the classical 
limit, the particle follows just a certain path, corresponding to the minimum of the action Scl. As a result, 
for all close trajectories, the difference (S  – Scl) is proportional to the square of the deviation from the 

classical trajectory. Hence, for a quasiclassical motion, with Scl >> , there is a bunch of close 

trajectories, with (S  – Scl) << , that give substantial contributions to the path integral. On the other 

hand, strongly non-classical trajectories, with (S  – Scl) >> , give phases S/ rapidly oscillating from 
one trajectory to the next one, and their contributions to the path integral are averaged out.21 As a result, 
for a quasi-classical motion, the propagator’s exponent may be evaluated on the classical path only: 
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The sum of the kinetic and potential energies is the full energy E of the particle, which remains constant 
for motion in a stationary potential U(x), so we may rewrite the expression under the last integral as22 
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(5.53) 

With this replacement, Eq. (52) yields 
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  (5.54) 

where p is the classical momentum of the particle. But (at least, leaving the pre-exponential factor alone) 
this is the WKB approximation result that was derived and studied in detail in Chapter 2!  

 One may question the value of such a complicated calculation, which yields results that could be 
readily obtained from Schrödinger’s wave mechanics. Feynman’s approach is indeed not used too often, 
but it has its merits. First, it has an important philosophical (and hence heuristic) value. Indeed, Eq. (51) 
may be interpreted by saying that the essence of quantum mechanics is the exploration, by the system, of 
all possible paths x(), each of them classical-like, in the sense that the particle’s coordinate x and 
velocity dx/d are exactly defined simultaneously at each point. The resulting contributions to the path 
integral are added up coherently to form the actual propagator G, and via it, the final probability W  
G2 of the particle’s propagation from [x0, t0] to [x, t]. As the scale of the action S  of the motion 

21 This fact may be proved by expanding the difference (S – Scl) in the Taylor series in the path variation (leaving 
only the leading quadratic terms) and working out the resulting Gaussian integrals. This integration, together with 
the pre-exponential coefficient in Eq. (51a), gives exactly the pre-exponential factor that we have 
already found refining the WKB approximation in Sec. 2.4. 
22 The same trick is often used in analytical classical mechanics – say, for proving the Hamilton principle, and for 
the derivation of the Hamilton-Jacobi equations – see, e.g., CM Secs. 10.3-4. 
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decreases and becomes comparable to , more and more paths produce substantial contributions to this 
sum, and hence to W, providing a larger and larger difference between the quantum and classical 
properties of the system. 

 Second, the path integral provides a justification for some simple explanations of quantum 
phenomena. A typical example is the quantum interference effects discussed in Sec. 3.1 – see, e.g., Fig. 
3.1 and the corresponding text. In that discussion, we used the Huygens principle to argue that at the 
two-slit interference, the WKB approximation might be restricted to contributions from two paths that 
pass through different slits, but otherwise consist of straight-line segments. To have another look at that 
assumption, let us generalize the path integral to multi-dimensional geometries. Fortunately, the simple 
structure of Eq. (51b) makes such generalization virtually evident: 
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where the definition (51a) of the path integral should be also modified correspondingly. (I will not go 
into these technical details.) For the Young-type experiment (Fig. 3.1), where a classical particle could 
reach the detector only after passing through one of the slits, the classical paths dominating the 
contribution from each slit are the straight-line segments shown in Fig. 3.1, and if they are much longer 
than the de Broglie wavelength, the propagator may be well approximated by the sum of two integrals of 
Ld = ip(r)dr/  – just as this was done in Sec. 3.1. 

 Last but not least, the path integral allows simple solutions to some problems that would be hard 
to obtain by other methods. As the simplest example, let us consider the problem of tunneling in multi-
dimensional space, sketched in Fig. 6 for the 2D case – just for the graphics’ simplicity. Here, the 
potential profile U(x, y) has a saddle-like shape. (Another helpful image is a mountain path between two 
summits, in Fig. 6 located on the top and at the bottom of the shown region.) A particle of energy E may 
move classically in the left and right regions with U(x, y) < E, but if E is not sufficiently high, it can pass 
from one of these regions to another one only via the quantum-mechanical tunneling under the pass. Let 
us calculate the transparency of this potential barrier in the WKB approximation, ignoring the possible 
pre-exponential factor. 23 

 

 

 

 

 

 

 

 

23 Actually, one can argue that the pre-exponential factor should be close to 1, just like in Eq. (2.117), especially 
if the potential is smooth, in the sense of Eq. (2.107), in all spatial directions. (Let me remind the reader that for 
most practical applications of quantum tunneling, the pre-exponential factor is of relatively minor importance.) 

Fig. 5.6. A saddle-type 2D 
potential profile and the instanton 
trajectory of a particle of energy 
E (schematically). 
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According to the evident multi-dimensional generalization Eq. (54), for the classically forbidden 
region, where E < U(x, y), and hence p(r)/ = i(r), the contributions to the propagator (55) are 
proportional to  
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i
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,   (5.56) 

where      may be calculated just in the 1D case – cf. Eq. (2.97): 
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 Hence the path integral in this region is much simpler than in the classically allowed region 
because the spatial exponents are purely real and there is no complex interference between them. Due to 
the minus sign before I in the exponent (56), the largest contribution to G evidently comes from the 
trajectory (or a narrow bundle of close trajectories) for which the integral I has the smallest value, so the 
barrier transparency may be calculated as 
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where r and r0 are certain points on the opposite classical turning-point surfaces: U(r) = U(r0) = E – see 
Fig. 6. 

Thus the barrier transparency problem is reduced to finding the trajectory (including the points r 
and r0) that connects these two surfaces and minimizes the functional I. This is of course a well-known 
problem of the calculus of variations,24 but it is interesting that the path integral provides a simple 
alternative way of solving it. Let us consider an auxiliary problem of particle’s motion in the potential 
profile Uinv(r) that is inverted relative to the particle’s energy E, i.e. is defined by the following equality: 

            ).()(inv rr UEEU        (5.59) 

As was discussed above, at fixed energy E, the path integral for the WKB motion in the classically 
allowed region of  potential Uinv(x, y) (that coincides with the classically forbidden region of the original 
problem) is dominated by the classical trajectory corresponding to the minimum of 
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where kinv should be determined from the WKB relation 
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But comparing Eqs. (57), (59), and (61), we see that kinv = κ at each point! This means that in the WKB 
limit, the tunneling path corresponds to the classical (so-called instanton25) trajectory of the same 

24 For a concise introduction to the field see, e.g., I. Gelfand and S. Fomin, Calculus of Variations, Dover, 2000, 
or L. Elsgolc, Calculus of Variations,  Dover, 2007. 
25 In the quantum field theory, the instanton concept may be formulated somewhat differently and has more 
complex applications – see, e.g. R. Rajaraman, Solitons and Instantons, North-Holland, 1987. 
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particle moving in the inverted potential Uinv(r). If the initial point r0 is fixed, this trajectory may be 
readily found by means of classical mechanics. (Note that the initial kinetic energy, and hence the initial 
velocity of the instanton launched from point r0 should be zero because by the classical turning point 
definition, Uinv(r0) = U(r0) = E.) Thus the problem is further reduced to a simpler task of maximizing the 
transparency (58) by choosing the optimal position of r0 on the equipotential surface U(r0) = E – see 
Fig. 6. Moreover, for many symmetric potentials, the position of this point may be readily guessed even 
without calculations – as it is in Problems 6 and 7, left for the reader’s exercise. 

 Note that besides the calculation of the potential barrier’s transparency, the instanton trajectory 
has one more important implication: the so-called traversal time t of the classical motion along it, from 
the point r0 to the point r, in the inverted potential defined by Eq. (59), plays the role of the most 
important (though not the only one) time scale of the particle’s tunneling under the barrier.26 

 

5.4. Revisiting harmonic oscillator 

 Now let us return to the 1D harmonic oscillator, which may be understood as any system, 
regardless of its physical nature, described by the Hamiltonian (4.237) with the potential energy (2.111): 
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 .     (5.62) 

In Sec. 2.9 we have used a “brute-force” (wave-mechanics) approach to analyze the eigenfunctions 
n(x) and eigenvalues En of this Hamiltonian, and found that, unfortunately, this approach required 
relatively complex mathematics, which does not enable an easy calculation of the key characteristics of 
the system. Fortunately, the bra-ket formalism helps to make such calculations. 

 First, by introducing the normalized (dimensionless) operators of coordinates and momentum:27 
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       (5.63) 

where x0  (/m0)
1/2 is the natural coordinate scale discussed in detail in Sec. 2.9, we can represent the 

Hamiltonian (62) in a very simple and x  p symmetric form: 
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H .     (5.64) 

This symmetry, as well as our discussion of the very similar coordinate and momentum representations 

in Sec. 4.7, hints that much may be gained by treating the operators  ˆ and ̂ on equal footing. Inspired 
by this clue, let us introduce a new operator 
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26 For more on this interesting issue see, e.g., M. Buttiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982), and 
references therein. 
27 This normalization is not really necessary, it just makes the following calculations less bulky – and thus more 
aesthetically appealing. 
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Since both operators  ˆ  and  ˆ  correspond to real observables, i.e. have real eigenvalues and hence are 
Hermitian (self-adjoint), the Hermitian conjugate of the operator â  is simply its complex conjugate: 
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Because of the reason that will be clear very soon, aa ˆand ˆ  
† (in this order!) are called the creation and 

annihilation operators.  

 Now solving the simple system of two linear equations (65) for  ˆ  and  ˆ , we get the following 
reciprocal relations: 

      
i

aa
mp

aa

m
x

i

aaaa

2

ˆˆ
ˆ,

2

ˆˆ
ˆ  i.e.,

2

ˆˆˆ,
2

ˆˆˆ
††††

2/1
0

2/1

0



















 


 


. (5.66) 

Our Hamiltonian (64) includes only squares of these operators. Calculating them, we have to be careful 
to avoid swapping the new operators, because they do not commute.  Indeed, for the normalized 
operators (63), Eq. (2.14) gives 
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so Eqs. (65) yield 
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With such due caution, Eq. (66) gives 
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Plugging these expressions back into Eq. (64), we get 
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.     (5.70) 

This expression is elegant enough but may be recast into an even more convenient form. For 
that, let us rewrite the commutation relation (68) as 

Iaaaa ˆˆˆˆˆ ††    (5.71) 
and plug it into Eq. (70). The result is 
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where, in the last form, one more (evidently, Hermitian) operator 

          aaN ˆˆˆ †       (5.73) 

has been introduced. Since, according to Eq. (72), the operators Ĥ  and N̂  differ only by the addition of 
the identity operator and multiplication by a c-number, these operators commute. Hence, according to 
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the general arguments of Sec. 4.5, they share a set of stationary eigenstates n (they are frequently called 
the Fock states), and we can write the standard eigenproblem (4.68) for the new operator as 

      nNnN nˆ ,      (5.74) 

where Nn are some eigenvalues that, according to Eq. (72), determine also the energy spectrum of the 
oscillator: 
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 So far, we know only that all eigenvalues Nn are real; to calculate them, let us carry out the 
following calculation – splendid in its simplicity and efficiency. Consider the result of the action of the 

operator N̂ on the ket-vector â †n. Using the definition (73) and then the associative rule of the bra-ket 
formalism, we may write 

        naaanaaanaN 
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Now using the commutation relation (71), and then Eq. (74), we may continue as 
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For clarity, let us summarize the result of this calculation: 
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Performing a similar calculation for the operator â , we get a similar formula, but with a different sign: 

             naNnaN n ˆ1ˆˆ  .     (5.79) 

 It is time to stop the calculations for a minute, and translate their results into plain English: if n 
is the eigenket of the operator N̂  with an eigenvalue Nn, then â †n and â n are also eigenkets of that 
operator, with the eigenvalues (Nn + 1) and (Nn – 1), respectively. This statement may be vividly 
represented by the so-called ladder diagram shown in Fig. 7.  

 

 

 

 

  

 

 

Fig. 5.7. The “ladder diagram” of eigenstates of a 1D 
harmonic oscillator. Arrows show the actions of the 
creation and annihilation operators on the eigenstates. 
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 The operator â † moves the system one step up this ladder, while the operator â  brings it one 
step down. In other words, the former operator creates a new excitation of the system,28 while the latter 
operator kills (“annihilates”) such excitation.29 On the other hand, according to Eq. (74) inner-multiplied 

by the bra-vector n, the operator N̂  does not change the state of the system, but “counts” its position 
on the ladder: 

         .ˆ
nn NnNnnNn       (5.80) 

This is why N̂  is called the number operator, in our current context meaning the number of the 
elementary excitations of the oscillator. 

This calculation still needs completion. Indeed, we still do not know whether the ladder shown in 
Fig. 7 shows all eigenstates of the oscillator, and what exactly the numbers Nn are. Fascinating enough, 
both questions may be answered by exploring just one paradox. Let us start with some state n (read: a 
step of the ladder), and keep going down the ladder, applying the operator â  again and again. According 
to Eq. (79), at each step, the eigenvalue Nn is decreased by one, so eventually, it should become 
negative. However, this cannot happen because any actual eigenstate, including the states represented by 
kets d  â n and n, should have a positive norm – see Eq. (4.16). Comparing the norms, 
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   (5.81) 

we see that both of them cannot be positive simultaneously if Nn is negative. 

 To resolve this paradox let us notice that the action of the creation and annihilation operators on 
the stationary states n may consist of not only their promotion to an adjacent step of the ladder diagram 
but also by their multiplication by some c-numbers: 

        .1ˆ,1ˆ †  nA'nanAna nn     (5.82) 

(The linear relations (78)-(79) clearly allow that.) Let us calculate the coefficients An assuming, for 
convenience, that all eigenstates, including the states n and (n –1), are normalized: 
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From here, we get  An  = (Nn)
1/2, i.e. 

            1ˆ 2/1  neNna n
n

i
,     (5.84) 

where n is an arbitrary real phase. Now let us consider what happens if all numbers Nn are integers. 
(Because of the definition of Nn, given by Eq. (74), it is convenient to call these integers n, i.e. to use  
the same letter as for the corresponding eigenstate.)  Then when we have come down to the state with n 
= 0, an attempt to make one more step down gives 

        100ˆ a .      (5.85)  

28 For electromagnetic field oscillators, such excitations are called photons; for mechanical wave oscillators, 
phonons, etc. 
29 This is exactly why â † is called the creation operator, and â , the annihilation operator. 
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But according to Eq. (4.9), the state on the right-hand side of this equation is the “null state”, i.e. does 
not exist.30 This gives the (only known :-) resolution of the state ladder paradox: the ladder has the 
lowest step with Nn = n = 0. 

 As a by-product of our discussion, we have obtained a very important relation Nn = n, which 
means, in particular, that the state ladder shown in Fig. 7 includes all eigenstates of the oscillator. 
Plugging this relation into Eq. (75), we see that the full spectrum of eigenenergies of the harmonic 
oscillator is described by the simple formula 

               2,1,0,
2

1
0 






  nnEn  ,    (5.86) 

which was already discussed in Sec. 2.9. It is rather remarkable that the bra-ket formalism has allowed 
us to derive it without calculating the corresponding (rather cumbersome) wavefunctions n(x) – see 
Eqs. (2.284).  

Moreover, this formalism may be also used to calculate virtually any matrix element of the 
oscillator, without using n(x). However, to do that, we should first calculate the coefficient A’n 
participating in the second of Eqs. (82). This may be done similarly to the above calculation of An; 
alternatively, since we already know that  An = (Nn)

1/2 = n1/2, we may notice that according to Eqs. (73) 
and (82), the eigenproblem (74), which in our new notation for Nn becomes 

  nnnN ˆ ,      (5.87)  

may be rewritten as  

    nAAnAanaanN '
nnn 11ˆˆˆˆ ††
 .    (5.88) 

Comparing the right-hand sides of Eqs. (87) and (88), we see that A’n-1 = n/An = n1/2, i.e. A’n = (n + 
1)1/2exp(in’). Taking all phases n and n’ equal to zero for simplicity, we may spell out Eqs. (82) as31 

                1ˆ,11ˆ 2/12/1†  nnnannna .   (5.89) 

Now we can use these formulas to calculate, for example, the matrix elements of the operator x̂  
in the Fock state basis: 
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  (5.90) 

Taking into account the Fock state orthonormality: 

        nnnn' ' ,      (5.91) 

this result becomes 

30 Please note again the radical difference between the null state on the right-hand side of Eq. (85) and the state 
described by the ket-vector 0 on the left-hand side of that relation. The latter state does exist and, moreover, 
represents the most important, ground state of the system, with n = 0 – see Eqs. (2.274)-(2.275). 
31 A useful mnemonic rule for these key relations is that the c-number coefficient in any of them is equal to the 
square root of the largest number of the two states it relates. 
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. (5.92) 

Acting absolutely similarly, for the momentum’s matrix elements we get a similar expression:  
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   (5.93) 

Hence the matrices of both operators in the Fock-state basis have only two diagonals adjacent to the 
main diagonal; all other elements (including the main-diagonal ones) are zeros.  

The matrix elements of higher powers of these operators, as well as their products, may be 
handled similarly, though the higher the power, the bulkier the result. For example,  
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For applications, the most important of these matrix elements are those on its main diagonal: 
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This expression shows, in particular, that the expectation value of the oscillator’s potential energy in the 
nth Fock state is 
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   (5.96) 

This is exactly one-half of the total energy (86) of the oscillator. As a sanity check, an absolutely similar 
calculation for the momentum squared, and hence for the kinetic energy p2/2m, yields 
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  (5.97) 

i.e. both partial energies are equal to En/2, just as in a classical oscillator.32   

 Note that according to Eqs. (92) and (93), the expectation values of both x and p in any Fock 
state are equal to zero: 
       ,0ˆ,0ˆ  npnpnxnx     (5.98) 

32 Still note that operators of the partial (potential and kinetic) energies do not commute with either each other or 
with the full-energy (Hamiltonian) operator, so the Fock states n are not their eigenstates. This fact maps onto the 
well-known oscillations of these partial energies (with the frequency 20) in a classical oscillator, at the full 
energy staying constant. 
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This is why, according to the general Eqs. (1.33)-(1.34), the results (95) and (97) also give the variances 
of the coordinate and the momentum, i.e. the squares of their uncertainties, (x)2 and (p)2. In particular, 
for the ground state (n = 0), these uncertainties are  
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000
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22
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x
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.   (5.99) 

In the theory of precise measurements (to be reviewed in brief in Chapter 10), these expressions are 
often called the standard quantum limit. 

 

5.5. Glauber states and squeezed states 

 There is a huge difference between a quantum stationary (Fock) state of the oscillator and its 
classical state. Indeed, let us write the well-known classical equations of motion of the oscillator (using 
capital letters to distinguish classical variables from the arguments of quantum wavefunctions): 33 
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      (5.100) 

The simplest method to solve these equations is to introduce the dimensionless complex variable 
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t     (5.101)  

With this definition, Eqs. (100) are conveniently merged into one equation, 

                    ,0 i       (5.102) 

with an evident, very simple solution 

                      ,exp)0()( 0tit    

so per Eq. (102):           (5.103) 

       tixmtPtixtX 00000 exp)0(Im2)(,exp)0(Re2)(   , 

where the constant (0) is just the (normalized) classical complex amplitude of the oscillations, so their 
real amplitude is A = 2x0(t)  = 2x0(0) .34 By the appropriate choice of the time origin, the complex 
amplitude may be always made real; then X  cos0t and P  –sin0t. 

 On the so-called phase plane, with the Cartesian coordinates x and p, this solution describes a 
clockwise rotation of the representation point {X(t), P(t)} along an elliptic trajectory starting from the 
initial point {X(0), P(0)}. The normalization of the momentum by m0, similar to the one performed by 
the second of Eqs. (63), makes this trajectory pleasingly circular, with a constant radius equal to the 
oscillation amplitude A, corresponding to the constant full energy  
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33 If Eqs. (100) are not evident, please consult a classical mechanics course – e.g., CM Sec. 3.2 and/or Sec. 10.1. 
34 See, e.g., CM Chapter 5, especially Eqs. (5.4). 
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determined by the initial conditions – see Fig. 8.)  

 

 

 

 

 

 

 

 

 

 
 
 
 
On the other hand, according to the basic Eq. (4.161), the time dependence of a Fock state, as of 

a stationary state of the oscillator, is limited to the phase factor exp{–iEnt/}. This factor drops out at the 
averaging (4.125) for any observable. As a result, in this state the expectation values of x, p, or any 
function thereof are time-independent; moreover, as Eqs. (98) show, x = p = 0. Taking into account 
Eqs. (96)-(97), the closest (though very imperfect) geometric image35 of such a state on the phase plane 
is a static circle of the radius An = x0(2n + 1)1/2, along which the wavefunction is uniformly spread – see 
the blue rings in Fig. 8. For the ground state (n = 0), with the wavefunction (2.275), a better image may 
be a blurred round spot, of a radius ~x0, at the origin. (It is easy to criticize such blurring, intended to 
represent the non-vanishing spreads (99), because it fails to reflect the fact that the total energy of the 
oscillator in the state, E0 = 0/2 is definite, without any uncertainty.) 

 So, the difference between a classical state of the oscillator and its Fock state n is very profound; 
it is much similar to the difference between the classical picture of a freely moving 1D particle and the 
traveling de Broglie wave (1.88). However, the Fock states are not the only possible quantum states of 
the oscillator: according to the basic Eq. (4.6), any state described by the ket-vector 







0n

n n      (5.105) 

with an arbitrary set of (complex) c-numbers n, is also its legitimate state, subject only to the 
normalization condition  = 1, giving 

  1
0

2 


n
n .      (5.106) 

35 I have to confess that such geometric mapping of a quantum state onto the phase plane [x, p] is not exactly 
defined; you may think about colored areas in Fig. 8 as the regions of the observable pairs {x, p} most probably 
obtained in measurements. A quantitative definition of such a mapping will be given in Sec. 7.3 using the Wigner 
function, though, as we will see there, even such imaging has certain internal contradictions. Still, such cartoons 
as Fig. 8 have a substantial heuristic value, provided that their limitations are kept in mind. 

Fig. 5.8. Representations of various states of a 
harmonic oscillator on the phase plane. The bold black 
point represents a classical state with displacement 
amplitude A, with the dashed line showing its 
trajectory. The (very imperfect) classical images of the 
Fock states with n = 0, 1, and 2 are shown in blue. The 
blurred red spot is the (equally schematic) image of 
the Glauber state , with    = A/2x0. Finally, the 
magenta elliptical spot is a classical image of a 
squeezed ground state – see below. Arrows show the 
direction of the states’ evolution in time. 2n

1n

x

0/ mp

X

0/ mP
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It is natural to ask: could we select the coefficients n in such a special way that the state properties 
would be closer to the classical one; in particular the expectation values x and p of the coordinate and 
momentum would evolve in time as the classical values X(t) and P(t), while the uncertainties of these 
observables would be, just as in the ground state, given by Eqs. (99), and hence have the smallest 
possible uncertainty product, xp = /2. As early as 1926, E. Schrödinger showed that the answer was 
positive. In particular, by using special properties of the Hermite polynomials (2.281), he showed that 
the corresponding wavefunction, in the coordinate representation, is 
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  (5.107)  

where               
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     (5.108) 

 This solution, whose validity may be readily verified by its substitution to the full Schrödinger 
equation for the oscillator’s Hamiltonian (2.271) with the account of Eqs. (100), shows that such a 
Glauber state36 is essentially the ground state but with its center shifted from the phase plane’s origin to 
the classical oscillation point {X(t), P(t)} – see the blurred red spot in Fig. 8. Moreover, it clearly shows 
that the coordinate’s uncertainty, which is not affected by the x-independent phase shift (t), does not 
change with time, i.e. that in the harmonic oscillator, the Gaussian wave packet (107), once formed, 
does not spread with time. (As we have seen in Sec. 2.2, for a free particle, this is impossible.)  

  Moreover, a similar (though bulkier) calculation shows that the wavefunction (107), with the 
appropriately modified phase (t), also satisfies the Schrödinger equation of an oscillator under the 
effect of a pulse of a classical force F(t), provided that the oscillator initially was in its ground state and 
that the classical evolution law {X(t), P(t)} takes this force into account.37 Since for many experimental 
implementations of the harmonic oscillator, the ground state may be readily formed (for example, by 
letting the oscillator relax via its weak coupling to a low-temperature environment), the Glauber state is 
usually easier to form than any Fock state with n > 0. This is why the Glauber states are so important 
and deserve a thorough discussion. 

 However, for such a discussion, the usual methods of wave mechanics and even the expansion 
(105) are rather inconvenient, because of the bulky coordinate representation (2.284) of the Fock states 
n. Instead, the needed calculations may be more readily done in the bra-ket formalism.  

 Let us start by expressing the double shift of the ground state (by X and by P), which is so 
evident in Eq. (107), in the operator language. Forgetting about the P for a minute, let us find the 

translation operator XT̂  that would produce the desired shift of an arbitrary wavefunction (x) by a c-
number distance X along the coordinate argument x. This means that 

36 Named after R. J. Glauber who studied these states in detail in the mid-1960s using operator methods – see 
below. Another popular adjective, “coherent”, for the Glauber states is very misleading, because all quantum 
states of all systems we have studied in this course so far, including the Fock states of the harmonic oscillator, 
may be represented as coherent (pure) superpositions of the basis states. This is why I will not use this term for 
the Glauber states. 
37 To find it, it is sufficient to integrate Eqs. (100) with F(t) added to the right-hand side of the second of these 
equations. For their solution for an arbitrary F(t), see, e.g., CM Eqs. (5.27) and (5.34) with  = 0. 
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           )()(ˆ XxxX T .     (5.109) 

Representing the wavefunction  as the standard wave packet (4.264), we see that  
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Hence, the shift may be achieved by the multiplication of each Fourier component of the packet, with 
the momentum p, by exp{–ipX/}. This gives us a hint that the general form of the translation operator, 
valid in any representation, should be 

             










Xp
iX

ˆ
expT̂ .     (5.111) 

The proof of this formula is provided merely by the fact that, as we know from Chapter 4,  any operator 
is uniquely determined by the set of its matrix elements in any full and orthogonal basis, in particular, 
the basis of the momentum states p. According to Eq. (110), the analog of Eq. (4.235) for the p-
representation, applied to the translation operator (which is evidently local), is 
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pX

ip'p'pdp X 






 

T ,   (5.112) 

so the operator (111) does exactly the job we need it to. 

 The operator that provides the shift of momentum by a c-number P is absolutely similar in 
structure – with the opposite sign under the exponent, due to the opposite sign of the exponent in the 
reciprocal Fourier transform, so the simultaneous shift by both X and P may be achieved by the 
following translation operator: 

           






 




XpxP
i

ˆˆ
expˆ

T .                           (5.113) 

As we already know, for a harmonic oscillator, the creation-annihilation operators are more natural, so 
we may use Eqs. (66) to recast Eq. (113) as 

   ,ˆˆexpˆ  so,ˆˆexpˆ †*†*†





 





  aaaa   TT                    (5.114) 

where  (which, generally, may be a function of time) is the c-number defined by Eq. (101). Now, 
getting clues from Eq. (107), we may form the Glauber state’s ket-vector just as 

                 0ˆ
 T .      (5.115) 

 This formula, valid in any representation, is very elegant, but using it for practical calculations 
(say, of the expectation values of observables) is not too easy because of the exponent-of-operators form 
of the translation operator (113). Fortunately, it turns out that a much simpler representation of the 
Glauber state is possible. To show this, let us start with the following general (and very useful) property 
of  exponential functions of an operator argument: if 

            ,ˆˆ,ˆ IBA       (5.116) 

(where Â and B̂ are arbitrary linear operators, and   is a c-number), then 

Translation 
operator 
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         .ˆˆˆexpˆˆexp IBABA      (5.117) 

This relation may be readily proved by expanding the operator    ABAf ˆexpˆˆexp)(ˆ    in the 

Taylor series with respect to the c-number parameter , and then evaluating the result for   = 1. (This 
simple exercise is left for the reader.) 

 Let us apply Eqs. (116)-(117) to two cases, both with   

        ,ˆˆˆ †* aaA      so      .ˆˆexp,ˆˆexp †
 TT  AA   (5.118) 

First, let us take IB ˆˆ  ; then Eq. (116) is valid with  = 0, and Eq. (117) yields 

          Îˆˆ †  TT ,      (5.119) 

This equality means that the translation operator is unitary – not a big surprise, because if we shift a 
classical point on the phase plane by a complex number (+) and then by (–), we certainly must come 
back to the initial position. Eq. (119) means merely that this fact is true for any quantum state as well.  

 Second, let us take aB ˆˆ  ; in order to find the corresponding parameter , we must calculate the 
commutator on the left-hand side of Eq. (116) for this case. By using, at the due step of the calculation, 
Eq. (68), we get 

        ,ˆˆ,ˆˆ,ˆˆˆ,ˆ ††* IaaaaaBA  







      (5.120) 

so in this case  = , and Eq. (117) yields 

               .̂ˆˆˆˆ † Iaa  TT      (5.121) 

We have approached the summit of this beautiful calculation. Let us consider the following operator: 

          TTT ˆˆˆˆ †a .      (5.122) 

Using Eq. (119), we may reduce this product to T̂â , while the application of Eq. (121) to the same 

expression (122) yields  TT ˆˆˆ a . Hence, we get the following operator equality: 

                TTT ˆˆˆˆˆ  aa ,     (5.123) 

which may be applied to any state. Now acting by both sides on the ground state’s ket 0, and using the 

fact that â 0 is the null state (while per Eq. (115),  0T̂ ), we finally get a very simple and 

elegant result:38 
         â .                (5.124) 

38 This result is also somewhat counterintuitive. Indeed, according to Eq. (89), the annihilation operator â , acting 
upon a Fock state n, “beats it down” to the lower-energy state (n – 1). However, according to Eq. (124), the action 
of the same operator on a Glauber state  does not lead to the state change and hence to any energy change! The 
resolution of this paradox is given by the representation of the Glauber state as a series of Fock states – see Eq. 
(134) below. The operator â  indeed transfers each Fock component of this series to a lower-energy state, but it 
also re-weighs each term of the series, so the complete energy of the Glauber state remains constant. 

Glauber 
state as 
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Thus any Glauber state  is one of the eigenstates of the annihilation operator, namely the one 
with the eigenvalue equal to the c-number parameter  of the state, i.e. to the complex representation 
(101) of the classical point which is the center of the Glauber state’s wavefunction.39 This fact makes the 
calculations of all Glauber state properties much simpler. As an example, let us calculate x in the 
Glauber state with some c-number : 

          




 





   †† ˆˆ

2
ˆˆ

2
ˆ 00 aa

x
aa

x
xx .  (5.125) 

In the first term in the parentheses, we can apply Eq. (124) directly, while in the second term, we can 

use the bra-counterpart of that relation, *†ˆ  a . Now assuming that the Glauber state is 

normalized,    = 1, and using Eq. (101), we get 

           X
xx

x  **

22
00   ,   (5.126) 

Acting absolutely similarly, we may verify that  p = P, and that x and p do indeed obey Eqs. (99), 
i.e. do not depend on the shift . (This simple exercise is highly recommended to the reader.) 

 As the last sanity check, let us use Eq. (124) to re-calculate the Glauber state’s wavefunction 
(107). Inner-multiplying both sides of that relation by the bra-vector x, and using the definition (65a) of 
the annihilation operator, we get 
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Since x is the bra-vector of the eigenstate of the Hermitian operator x̂ , they may be swapped, with the 
operator giving its eigenvalue x; acting on that bra-vector by the (local!) operator of momentum, we 
have to use it in the coordinate representation – see Eq. (4.245). As a result, we get 
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But x is nothing else than the Glauber state’s wavefunction , so Eq. (128) gives a first-order 
differential equation: 
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Chasing  and x to the opposite sides of the equation, and using the definition (101) of the parameter 
, we can bring this equation to the following form: 
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.    (5.130) 

Integrating both parts (over x only!), we return to Eq. (107). 

39 This fact means that the spectrum of eigenvalues  in Eq. (124), viewed as an eigenproblem, is continuous – it 
may be any complex number. 
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 Now we can use Eq. (124) for finding the coefficients n in the expansion (105) of the Glauber 
state  in the series over the Fock states n. Plugging Eq. (105) into both sides of Eq. (124), using the 
second of Eqs. (89) on the left-hand side, and requiring the coefficients at each ket-vector n in both 
parts of the resulting relation to be equal, we get the following recurrence relation: 

               .
)1( 2/11 nn n




      (5.131)  

Applying this relation sequentially for n = 0, 1, 2, etc., we get 
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Now we can find 0 from the normalization requirement (106), getting 
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In this sum, we may readily recognize the Taylor expansion of the function exp{2}, so the final 
result (besides an arbitrary common phase multiplier) is 
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 .    (5.134) 

Hence, if the oscillator is in the Glauber state , the probabilities Wn  nn* of finding the 
system on the nth energy level (86) obey the well-known Poisson distribution (Fig. 9): 
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,     (5.135) 

where n is the statistical average of n – see Eq. (1.37): 
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Fig. 5.9. The Poisson distribution (135) 
for several values of n. Note that Wn are 
defined only for integer values of n, so the 
lines are only guides for the eye. 
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Note that the result of such summation is not necessarily an integer; in our particular case, 

               
2n .      (5.137) 

 For applications, perhaps the most important property of this distribution is that for any n, 

                 2/12/1222 ~ that  so,~ nnnnnnn   .   (5.138) 

Another important property is that at n >> 1, the Poisson distribution approaches the Gaussian one, 
with Wn peaking at n = n =   2, and a small relative r.m.s. uncertainty: n/n << 1 – see Fig. 9. 

 Now let us discuss the Glauber state’s evolution in time. In the wave-mechanics language, it is 
completely described by the dynamics (100) of the c-number shifts X(t) and P(t) participating in the 
wavefunction (107). An alternative and equivalent way of dynamics description is to use the Heisenberg 
equation of motion. As Eqs. (29) and (35) tell us, such equations for the Heisenberg operators of 
coordinate and momentum have to be similar to the classical equations (100): 

.ˆˆ,
ˆ

ˆ H
2
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H xmp

m
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x       (5.139) 

Now using Eqs. (66), for the Heisenberg-picture creation and annihilation operators we get the equations 

                         ,†ˆ†ˆ,ˆˆ H0HH0H aiaaia        (5.140) 

which are completely similar to the classical equation (102) for the c-number parameter  and its 
complex conjugate, and hence have the solutions identical to Eq. (103): 
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.   (5.141) 

As was discussed in Sec. 4.6, such equations are very convenient because they enable simple calculation 
of time evolution of observables for any initial state of the oscillator (Fock, Glauber, or any other) by 
using Eq. (4.191). In particular, Eq. (141), without any calculations, shows that regardless of its initial 
state, the oscillator always returns to it exactly with the period 2/0.40  

 Applied to the particular case of the ground state of the oscillator, Eq. (141) confirms that the 
Gaussian wave packet of the special width (99) does not spread in time at all – even temporarily. At this 
point, I have to notice that there exist other ground-like states whose initial wave packets are still 
Gaussian but have different widths, say x < x0/2. As we already know from Sec. 2.2, the momentum 
spread p has to be correspondingly larger, but the uncertainty product may still be the smallest: xp = 
/2. Such squeezed ground states , with zero expectation values of x and p, may be generated from the 
Fock/Glauber ground state: 

         0ˆ
 S ,              (5.142a) 

by using the so-called squeezing operator: 

40 Actually, this fact is also evident from the Schrödinger picture of the oscillator’s time evolution: due to the 
exactly equal distances 0 between the eigenenergies (86), the time functions an(t) in the fundamental expansion 
(1.69) of its wavefunction oscillate with frequencies n0, and hence they all share the basic time period 2/0. 
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which depends on the complex c-number parameter  = rei, where r and  are real. The parameter’s 
modulus r determines the squeezing degree; if   is real (i.e.   = 0), then  
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 .   (5.143) 

On the phase plane (Fig. 8), this state, with r > 0, may be represented by an oval spot squeezed along 
one of two mutually perpendicular axes (hence the state’s name), and stretched by the same factor er 
along the counterpart axis; the same formulas but with r < 0 describe squeezing along the other axis. On 
the other hand, the phase  of the squeezing parameter  determines the angle  /2 of the 
squeezing/stretching axes about the phase plane origin – see the magenta ellipse in Fig. 8. If   0, Eqs. 
(143) are valid for the variables {x’, p’} obtained from {x, p} via clockwise rotation by that angle. For 
any of such origin-centered squeezed ground states, the time evolution is reduced to an increase of the 
angle with the rate 0, i.e. to the clockwise rotation of the ellipse, without its deformation, with the 
angular velocity 0 – see the magenta arrows in Fig. 8. As a result, the uncertainties x and p oscillate 
in time with the double frequency 20. Such squeezed ground states may be formed, for example, by a 
parametric excitation of the oscillator,41 with a parameter modulation depth close to, but still below the 
threshold of the excitation of degenerate parametric oscillations.  

 By action of an additional external force (or by appropriate initial state preparation), the center 
of a squeezed state may be displaced from the origin to an arbitrary point {X, P}. Such a displaced 
squeezed state may be described by the action of the translation operator (113) upon the ground 

squeezed state, i.e. by the action of the operator product ST ˆˆ on the usual (Fock/Glauber, i.e. non-

squeezed) ground state. Calculations similar to those that led us from Eq. (114) to Eq. (124), show that 
the displaced squeezed state is an eigenstate of the following mixed operator:   

     rearab i sinhˆcoshˆˆ †  ,               (5.144) 

with the same parameters r and , with the eigenvalue 

     rer i sinhcosh *   ,               (5.145) 

thus generalizing Eq. (124), which corresponds to r = 0. For the particular case  = 0, Eq. (145) yields  
= 0, i.e. the action of the operator (144) on the squeezed ground state  yields the null state. Just as Eq. 
(124) in the case of the Glauber states, Eqs. (144)-(145) make the calculation of the basic properties of 
the squeezed states (for example, the proof of Eqs. (143) for the case  =   = 0) very straightforward. 

 Unfortunately, I do not have more time/space for a further discussion of the squeezed states in 
this chapter (besides a few problems given for the reader’s exercise), but their importance for precise 
quantum measurements will be discussed in Sec. 10.2  below.42  

41 For a discussion and classical theory of this effect, see, e.g., CM Sec. 5.5. 
42 For more on the squeezed states see, e.g., Chapter 7 in the monograph by C. Gerry and P. Knight, Introductory 
Quantum Optics, Cambridge U. Press, 2005. Also, note the spectacular measurements of the Glauber and 
squeezed states of electromagnetic (optical) oscillators by G. Breitenbach et al., Nature 387, 471 (1997), a large 

Squeezing 
operator 
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5.6. Orbital angular momentum 

 One more blank spot to fill has been left by our study, in Sec. 3.6, of wave mechanics of particle 
motion in spherically symmetric 3D potentials. Indeed, while the azimuthal components of the 
eigenfunctions (the spherical harmonics) of such systems are very simple, 

        ,...2,1,0with  ,2 2/1   meim
m

 ,   (5.146) 

their polar components include the associated Legendre functions Pl
m(cos), which may be expressed 

via elementary functions only indirectly – see Eqs. (3.165) and (3.168). This makes all the calculations 
less than transparent and, in particular, does not allow a clear insight into the origin of the very simple 
energy spectrum of such systems – see, e.g., Eq. (3.163). The bra-ket formalism, applied to the angular 
momentum operator, not only enables such insight and produces a very convenient tool for many 
calculations involving spherically symmetric potentials but also opens a clear way toward the 
unification of the orbital momentum with the particle’s spin – the latter task to be addressed in the next 
section. 

 Let us start by using the correspondence principle to spell out the quantum-mechanical vector 
operator of the orbital angular momentum L  rp of a point particle: 

        



3

1,
321

321 ˆˆˆ  i.e.,
ˆˆˆ
ˆˆˆˆˆˆ

j"j'
jj'j"j"j'j

zyx
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rrr 
nnn

prL ,    (5.147) 

where jj’j” is the Levi-Civita permutation symbol, which we have already used in Sec. 4.5, and also in 
Sec. 1 of this chapter in similar expressions (17)-(18). From this definition, we can readily calculate the 
commutation relations for all Cartesian components of the vector operators of L, r, and p, for example, 
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1,
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1,
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jkj"j"kj'j ririprrrprrL   . (5.148) 

The summary of all these calculations may be represented in similar forms: 
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1
'

3

1
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1

ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ,ˆ
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jj'j"j"jj
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jj'j"j"j'j
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jj'j"j"j'j LiLLpipLrirL   ; (5.149)  

the last of them shows that the commutator of two different Cartesian components of L̂ is proportional 
to its complementary component. 

 Also introducing, in a natural way, the (scalar!) operator of the observable L2  L2, 

       ,ˆˆˆˆ
3

1

22222 



j

jzyx LLLLL      (5.150) 

it is straightforward to check that this operator commutes with each of the Cartesian components: 

(ten-fold) squeezing achieved in such oscillators by H. Vahlbruch et al., Phys. Rev. Lett. 100, 033602 (2008), and 
the first results on the ground state squeezing in micromechanical oscillators, with resonance frequencies 0/2 as 
low as a few MHz, by using their parametric coupling to microwave electromagnetic oscillators – see, e.g., E. 
Wollman et al., Science 349, 952 (2015) and/or J.-M. Pirkkalainen et al., Phys. Rev. Lett. 115, 243601 (2015). 
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           .0ˆ,ˆ2 jLL       (5.151) 

This result, at first sight, may seem to contradict the last of Eqs. (149). Indeed, haven’t we learned in 

Sec. 4.5 that commuting operators (e.g., 2L̂  and any of jL̂ ) share their eigenstate sets? If yes, shouldn’t 

this set has to be common for all four angular momentum operators? The resolution in this paradox may 
be found in the condition that was mentioned just after Eq. (4.138), but (sorry!) was not sufficiently 
emphasized there. According to that relation, if an operator has degenerate eigenstates (i.e. if some Aj = 
Aj’ even for j  j’), they should not be necessarily all shared by another compatible operator. 

This is exactly the situation with the orbital angular momentum operators, which may be 

schematically represented by the Venn diagram43 shown in Fig. 10: the eigenstates of the operator 2L̂  

are highly degenerate,44 and their set is broader than those of any component operator jL̂  (that, as will 

be shown below, are non-degenerate – until we consider the particle’s spin).  

 

 

 

 

 

 

 

 

 Let us focus on just one of these three joint sets of eigenstates – by tradition, of the operators 2L̂  

and zL̂ . (This tradition stems from the canonical form of the spherical coordinates, in which the polar 
angle is measured from the z-axis. Indeed, in the coordinate representation, we may write 

                

























  i
x

iy
y

ixpypxL xyz ˆˆˆ .   (5.152) 

Writing the standard eigenproblem for the operator in this representation, mzmz LL  ˆ , we see that it 

is satisfied by the eigenfunctions (146), with eigenvalues Lz = m – the fact that was already conjectured 
in Sec. 3.5.) More specifically, let us consider a set of eigenstates {l, m} corresponding to a certain 

degenerate eigenvalue of the operator 2L̂ , and all possible eigenvalues of the operator zL̂ , i.e. all 

possible quantum numbers m. (At this point, l  is just a label of the eigenvalue of the operator 2L̂ ; it will 

43 This is just a particular example of the Venn diagrams (introduced in the 1880s by John Venn) that show 
possible relations (such as intersections, unions, complements, etc.) between various sets of objects, and are a 
very useful notion of the general set theory. 
44 Note that this particular result is consistent with the classical picture of the angular momentum vector: even 
when its length is fixed, the vector may be oriented in various directions, corresponding to different values of its 
Cartesian components. However, in the classical picture, all these components may have exactly fixed values 
simultaneously, while in the quantum picture, this is not true. 

Fig. 5.10. The Venn diagram showing the partitioning of 

the set of eigenstates of the operator 2L̂ . Each inner sector 
corresponds to the states shared with one of the Cartesian 

component operators jL̂ , while the outer (shaded) ring 

represents the eigenstates of 2L̂ that are not shared with 

either of jL̂  – for example, all linear combinations of the 

eigenstates of different component operators. 

xL̂

zL̂

yL̂
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be defined more explicitly in a minute.) To analyze this set, it is instrumental to introduce the so-called 
ladder (also called, respectively, “raising” and “lowering”) operators45 

       yx LiLL ˆˆˆ  .     (5.153) 

It is simple (and hence left for the reader’s exercise) to use this definition and the last of Eqs. (149) to 
calculate the following commutators: 

               LLLLLL zz
ˆˆ,ˆ  and,ˆ2ˆ,ˆ  ,      (5.154) 

and also to use Eqs. (149)-(150) to prove two other important operator relations: 

            zzzz LLLLLLLLLL ˆˆˆˆˆ,ˆˆˆˆˆ 2222    .   (5.155) 

 Now let us rewrite the last of Eqs. (154) as 

              LLLLL zz
ˆˆˆˆˆ  ,     (5.156) 

and act by both its sides upon the ket-vector l, m of an arbitrary common eigenstate:           

       .,ˆ,ˆˆ,ˆˆ mlLmlLLmlLL zz        (5.157) 

Since the eigenvalues of the operator zL̂  are equal to m, in the first term of the right-hand side of Eq. 
(157) we may write 

             .,,ˆ mlmmlLz       (5.158) 

With that, Eq. (157) may be recast as 

                  mlLmmlLLz ,ˆ1,ˆˆ
   .    (5.159) 

In a spectacular similarity with Eqs. (78)-(79) for the harmonic oscillator, Eq. (159) means that 

the states mlL ,ˆ
  are also eigenstates of the operator zL̂ , corresponding to eigenvalues (m  1). Thus 

the ladder operators work exactly as the creation and annihilation operators of a harmonic oscillator, 
moving the system up or down a ladder of eigenstates  – see Fig. 11.  

 

 

 

 

 

 

 

 

45 Note a substantial similarity between this definition and Eqs. (65) for the creation/annihilation operators. 

Fig. 5.11. The ladder diagram of the common 

eigenstates of the operators 2L̂ and zL̂ . 
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The most significant difference is that now the state ladder must end in both directions, because 
an infinite increase of m, with whichever sign of m, would cause the expectation values of the operator 

               2222 ˆˆˆˆ
zyx LLLL  ,     (5.160) 

which corresponds to a non-negative observable, becoming negative. Hence there have to be two states 
at both ends of the ladder, with such ket-vectors l, mmax and l, mmin that 

         .0,ˆ,0,ˆ
minmax   mlLmlL     (5.161) 

Due to the symmetry of the whole problem with respect to the replacement m  –m, we should have 
mmin = – mmax. This mmax is exactly the quantum number traditionally called l, i.e. 

     .lml        (5.162) 

This relation of the quantum numbers m and l is semi-quantitatively compatible with the 
classical image of the angular momentum vector L, of the same length L, pointing in various directions, 
thus affecting the value of its component Lz. In this classical picture, however, L2 would be equal to the 
square of (Lz)max, i.e. to (l)2; however, in quantum mechanics, this is not so. Indeed, applying both parts 
of the second of the operator equalities (155) to the top state’s vector l, mmax  l, l, we get 

                      
  .,1

0,,,ˆˆ,ˆ,ˆ,ˆ

2

22222

llll

llllllllLLllLllLllL zz



 




  (5.163) 

Since by our initial assumption, all eigenvectors l, m correspond to the same eigenvalue of 2L̂ , this 
result means that all these eigenvalues are equal to 2l(l + 1). Just as in the case of the spin-½ vector 
operators discussed in Sec. 4.5, the deviation of this result from 2l2 may be interpreted as a result of 
unavoidable uncertainties (“fluctuations”) of the x- and y-components of the angular momentum, which 
give non-zero positive contributions to Lx

2 and Ly
2, and hence to L2, even if the angular momentum 

vector is aligned with the z-axis in the best possible way.46 

 (For applications, one more relation, in one of its two equivalent forms, may be convenient: 

                       1,11,11,ˆ 2/12/1  mlmlmlmlmmllmlL  . (5.164) 

This equality, valid to the multiplier ei with an arbitrary real phase , may be readily proved from the 
above relations in the same way as the parallel Eqs. (89) for the harmonic-oscillator operators (65) were 
proved in Sec. 4; due to this similarity, the proof is also left for the reader’s exercise.47)  

46 Curiously, a similar formula L2 = 2l(l + 1) may be also obtained by assuming that all (2l + 1) values Lz = m 
of a system with fixed l have equal probability. (Let me leave the proof for the reader’s exercise.) 
47 The reader is also challenged to use the commutation relations discussed above to prove one more important 

property of the common eigenstates of  the operators zL̂  and 2L̂ : 

   mmm'andll'm'l'rml j or   1either     1 unless,0,ˆ,  . 

This property gives the selection rule for the orbital electric-dipole quantum transitions, to be discussed later in 
the course, especially in Sec. 9.3. (The final selection rules at these transitions may be affected by the particle’s 
spin – see the next section.) 

Relation 
between 
m and l 
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 Note that the formulas discussed in this section, with the sole exception of Eq. (146), are not 
conditioned by a particular Hamiltonian of the system under analysis. However, they (as well as those 
discussed in the next section) are especially important for particles moving in spherically-symmetric 
potentials, which were discussed in Sec. 3.6. It is easy (and hence is also left for the reader’s exercise) to 
prove that in this case, the particle’s Hamiltonian operator commutes with that of the angular 
momentum, so according to Eq. (4.199), in the Heisenberg picture of quantum dynamics, the Cartesian 

components jL̂ as well as 2L̂ do not depend on time, and hence their expectation values are integrals of 

motion. 

By using the expression of Cartesian coordinates via the spherical ones exactly as this was done 
in Eq. (152), we get the following expressions for the ladder operators (153) in the coordinate 
representation: 

        














 
 




 cotanˆ ieL i .    (5.165) 

Now plugging this relation, together with Eq. (152), into any of Eqs. (155), we get 



























2

2

2
22

sin

1
sin

sin

1ˆ





L .   (5.166) 

But this is exactly the operator (besides its division by the constant parameter 2mR2) that stands on the 
left-hand side of Eq. (3.156). Hence that equation, which was explored by the “brute-force” (wave-

mechanical) approach in Sec. 3.6, may be understood as the eigenproblem for the operator 2L̂  in the 
coordinate representation, with the eigenfunctions Yl

m(,) corresponding to the eigenkets l, m, and the 
eigenvalues L2 = 2mR2E. As a reminder, the main result of that, rather involved analysis was expressed 
by Eq. (3.163), which now may be rewritten as 

  )1(2 222  llERL ll m ,     (5.167) 

in full agreement with Eq. (163), which was obtained by much more efficient means based on the bra-
ket formalism. In particular, it is fascinating to see how easy it is to operate with the eigenvectors l, m, 
while the coordinate representations of these vectors, the spherical harmonics Yl

m(,), may be only 
expressed by rather complicated functions – please have one more look at Eq. (3.171) and Fig. 3.20. 

 

5.7. Spin and total angular momentum 

The theory described in the last section is useful for much more than orbital motion analysis. In 
particular, it helps to generalize the spin-½ results discussed in Chapter 4 to other values of spin s – the 
parameter still to be quantitatively defined. For that, let us notice that the commutation relations (4.155) 
for spin-½, which were derived from the Pauli matrix properties, may be rewritten in exactly the same 
form as Eqs. (149) and (151) for the orbital momentum: 

    0ˆ,ˆ,ˆˆ,ˆ 2
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It had been postulated (and then confirmed by numerous experiments) that these relations hold 
for quantum particles with any spin. Now notice that all the calculations of the last section have been 
based almost exclusively on such relations – the only exception will be discussed imminently. Hence, 
we may repeat them for the spin operators, and get the relations similar to Eqs. (158) and (163): 

smssmsssmsSmsmmsS ssssssz  ,0,,)1(,ˆ,,,ˆ 22  , (5.169) 

where ms is a quantum number parallel to the orbital magnetic number m, and the non-negative constant 
s is defined as the maximum value of  ms . The c-number s is exactly what is called the particle’s spin.  

Now let us return to the only part of our orbital moment calculations that has not been derived 
from the commutation relations. This was the fact, based on the solution (146) of the orbital motion 
problems, that the quantum number m (the analog of ms) may be only an integer. For spin, we do not 
have such a solution, so the spectrum of numbers ms (and hence its limits s) should be found from the 
more loose requirement that the eigenstate ladder, extending from –s to +s, has an integer number of 
steps. Hence, 2s has to be an integer, i.e. the spin s of a quantum particle may be either integer (as it is, 
for example, for photons, gluons, and massive bosons W and Z0), or half-integer (e.g., for all quarks 
and leptons, notably including electrons).48 For s = ½, this picture yields all the properties of the spin-½ 

that were derived in Chapter 4 from Eqs. (4.115)-(4.117). In particular, the operators 2Ŝ  and zŜ  have 

two common eigenstates ( and ), with Sz = ms = /2, both with  S2= s(s +1)2 = (3/4)2.  

Note that this analogy with the angular momentum sheds new light on the symmetry properties 
of spin-½. Indeed, the fact that m in Eq. (146) is an integer was derived in Sec. 3.5 from the requirement 
that making a full circle around the z-axis, we should find a similar final value of the wavefunction m, 
which may differ from the initial one only by an inconsequential factor exp{2im} = +1. With the 
replacement m  ms = ½, such an operation would multiply the wavefunction by exp{i} = –1, i.e. 
reverse its sign. Of course, spin properties cannot be described by a usual wavefunction, but this odd 
parity of electrons, shared by all other spin-½ particles, is clearly revealed in properties of multiparticle 
systems (see Chapter 8 below), and as a result, in their statistics (see, e.g., SM Chapter 2). 

Now we are sufficiently equipped to analyze the situations in which a particle has both the 
orbital momentum and the spin – as an electron inside an atom. In classical mechanics, such an object, 
with the spin S interpreted as the angular moment of its internal rotation, would be characterized by the 
total angular momentum vector J = L + S. Following the correspondence principle, we may assume that 
quantum-mechanical properties of this observable may be described by the similarly defined vector 
operator: 

         SLJ ˆˆˆ  ,      (5.170) 
with Cartesian components 

               etc.,ˆˆˆ
zzz SLJ  ,     (5.171) 

and the magnitude squared equal to 

              .ˆˆˆˆ 2222
zyx JJJJ       (5.172) 

48 As a reminder, in the Standard Model of particle physics, such hadrons as mesons and baryons (notably 
including protons and neutrons) are essentially composite particles. However, at non-relativistic energies, protons 
and neutrons may be considered fundamental particles with s = ½. 
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 Let us examine the key properties of this vector operator. Since its two components (170) 
describe different degrees of freedom of the particle, i.e. belong to different Hilbert spaces, they have to 
be completely commuting: 

                  .0ˆ,ˆ,0ˆ,ˆ,0ˆ,ˆ,0ˆ,ˆ 2222  jjj'j SLSLSLSL   (5.173) 

The above formulas are sufficient to derive the commutation relations for the operator Ĵ , and 
unsurprisingly, they turn out to be absolutely similar to those of its orbital and spin components: 

                      0ˆ,ˆ,ˆˆ,ˆ 2
3

1

 


j
j"

jj'j"j"j'j JJJiJJ  .    (5.174) 

Now by repeating all the arguments of the last section, we may derive the following expressions for the 

common eigenstates of the operators  2Ĵ  and zĴ :

,,0,,)1(,ˆ,,, 22 jmjjmjjjmjJmjmmjJ jjjjjjz   (5.175)

where j and mj are new quantum numbers.49 Repeating the arguments just made for s and ms, we may 
conclude that j and mj may be either integers or half-integers. 

 Before we proceed, one remark on notation: it is very convenient to use the same letter m for 
numbering eigenstates of all momentum components participating in Eq. (171), with corresponding 
indices (j, l, and s), in particular, to replace what we called m with ml. With this replacement, the main 
results of the last section may be summarized in a form similar to Eqs. (168), (169), (174), and (175): 

    0ˆ,ˆ,ˆˆ,ˆ 2
3

1

 


jjj'j"j"
j"

j'j LLLiLL  , (5.176) 

.,0,,)1(,ˆ,,,ˆ 22 lmllmlllmlLmlmmlL llllllz   (5.177) 

 In order to understand which eigenstates participating in Eqs. (169), (175), and (177) are 
compatible with each other, it is straightforward to use Eq. (172), together with Eqs. (168), (173), (174), 
and (176) to get the following relations:  

            ,0ˆ,ˆ,0ˆ,ˆ 2222  SJLJ      (5.178) 

            .0ˆ,ˆ,0ˆ,ˆ 22  zz SJLJ      (5.179) 

This result is represented schematically on the Venn diagram shown in Fig. 12, in which the 
crossed arrows indicate the only non-commuting pairs of operators. The color lines in this figure 
encircle two operator groups that commute with each other and hence may share their eigenstates. The 

first group (encircled red), consists of all operators but 2Ĵ ; their shared eigenstates correspond to 
definite values of the corresponding quantum numbers: l, ml, s, ms, and mj. Actually, only four of these 
numbers are independent, because due to Eq. (171) for these compatible operators, for each eigenstate of 
this group, their “magnetic” quantum numbers m have to satisfy the following relation: 

49 Let me hope that the difference between the quantum number j, and the indices j, j’, j” numbering the Cartesian 
components in relations like Eqs. (168) or (174), is absolutely clear from the context. 
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       .slj mmm       (5.180) 

Hence the common eigenstates of the operators of this group are fully defined by just four quantum 
numbers, for example, l, ml, s, and ms. For some calculations, especially those for the systems whose 
Hamiltonians include only the operators of this group, it is convenient to use this set of eigenstates as 
the basis; frequently this approach is called the uncoupled representation. The most important example 
of such a situation is a non-relativistic particle moving in a spherically-symmetric potential (3.155), 
whose Hamiltonian does not depend on its spin. As we have seen in the previous section, its stationary 
states correspond to definite l and ml. 

 

 

    

 

  

 
 

However, in some situations, interactions between the orbital and spin degrees of freedom (in the 
common jargon, the spin-orbit coupling) cannot be ignored; this interaction leads in particular to 
splitting (called the fine structure) of the atomic energy levels even in the absence of external magnetic 
field. I will discuss these effects in detail in the next chapter and now will only note that they may be 

described by a term proportional to the product SL ˆˆ   in the particle’s Hamiltonian. If this term is 
substantial, the uncoupled representation becomes inconvenient. Indeed, writing 

                  2222222 ˆˆˆˆˆ2 that  so,ˆˆ2ˆˆ)ˆˆ(ˆ SLJSLJ  SLSLSL ,  (5.181) 

and looking at Fig. 12 again, we see that the operator SL ˆˆ   describing the spin-orbit coupling does not 

commute with operators zL̂  and zŜ . This means that stationary states of the system with such a term in 
the Hamiltonian do not belong to the uncoupled representation’s basis. On the other hand, Eq. (181) 

shows that the operator SL ˆˆ   does commute with all four operators of another group, encircled blue in 
Fig. 12. According to Eqs. (178), (179), and (181), all operators of that group also commute with each 
other, so they have a group of common eigenstates, described by the quantum numbers l, s, j, and mj. 
This group is the basis for the so-called coupled representation of particle states.  

 Excluding, for the notation briefness, the quantum numbers l and s that are common for both 
groups, it is convenient to denote the common ket-vectors of each group as, respectively, 

                     
basis. stion'representa coupled for the  ,,

basis, stion'representa uncolpled for the,,

j

sl

mj

mm
   (5.182) 

As we will see in the next chapter, for the solution of some important problems (e.g., the fine structure 
of atomic spectra and the Zeeman effect), we will need the relation between the kets j, mj and the kets 
ml, ms. This relation may be represented as the usual linear superposition, 
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          jsl

sl

slj mjmmmmmj
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,
 .    (5.183) 

The short brackets in this relation, essentially the elements of the unitary matrix of the transformation 
between two eigenstate bases (182), are called the Clebsch-Gordan coefficients. 

The best (though imperfect) classical interpretation of Eq. (183) I can offer is as follows. If the 
lengths of the vectors L and S (in quantum mechanics associated with the numbers l and s, respectively), 
and also their scalar product LS, are all fixed, then so is the length of the vector J = L + S – whose 
length in quantum mechanics is described by the number j. Hence, the classical image of a specific 
eigenket j, mj, in which l, s, j, and mj are all fixed, is a state in which L2, S2, J2, and Jz are fixed. 
However, this fixation still allows for an arbitrary rotation of the pair of vectors L and S (with a fixed 
angle between them, and hence fixed LS and J2) about the direction of the vector J – see Fig. 13.  

 

 

 

 

 

 
 
 
 
Hence the components Lz and Sz in these conditions are not fixed, and in classical mechanics 

may take a continuum of values, two of which (with the largest and the smallest possible values of Sz) 
are shown in Fig. 13. In quantum mechanics, these components are quantized, with their states 
represented by eigenkets ml, ms, so a linear combination of such kets is necessary to represent every ket 
j, mj. This is exactly what Eq. (183) does.  

Some properties of the Clebsch-Gordan coefficients ml, ms j, mj may be readily established. 
For example, the coefficients do not vanish only if the involved magnetic quantum numbers satisfy Eq. 
(180). In our current case, this relation is not an elementary corollary of Eq. (171), because the Clebsch-
Gordan coefficients, with the quantum numbers ml, ms in one state vector, and mj in the other state 
vector, characterize the relationship between different groups of the basis states, so we need to prove 
this fact; let us do that. All matrix elements of the null-operator  

               0̂)ˆˆ(ˆ  zzz SLJ      (5.184) 

should equal zero in any basis; in particular  

             .0,)ˆˆ(ˆ,  slzzzj mmSLJmj     (5.185) 

Acting by the operator zĴ  upon the bra-vector, and by the sum )ˆˆ( zz SL   upon the ket-vector, we get 

              ,0,,)(  sljslj mmmjmmm     (5.186) 

thus proving that  

Clebsch- 
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coefficients: 
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L Fig. 5.13. A classical image of two 
different quantum states with the 
same quantum numbers l, s, j, and 
mj, but different ml and ms. 0
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    sljslsssl mmmmmmjmjmm    if,0,,,,
*

.   (5.187) 

As we will see in a minute, this property will enable us, in particular, to establish the range of possible 
values of the quantum number j, at fixed l and s. 

For the most important case of spin-½ particles (with s = ½, and hence ms = ½), whose 
uncoupled representation basis includes 2(2l + 1) states, the restriction (187) enables the representation 
of all non-zero Clebsch-Gordan coefficients on the simple “rectangular” diagram shown in Fig. 14. 
Indeed, each coupled-representation eigenket j, mj, with mj = ml + ms = ml   ½, may be related by non-
zero Clebsch-Gordan coefficients to at most two uncoupled-representation eigenstates  ml, ms. Since ml 
may only take integer values from –l to +l, mj may only take semi-integer values on the interval [–l – ½, 
l + ½]. Hence, by the definition of j as (mj)max, its maximum value has to be l + ½,  and for mj = l + ½, 
this is the only possible value with this j. This means that the uncoupled state with ml = l and ms = ½ 
should be identical to the coupled-representation state with j = l + ½ and mj = l + ½: 

                               ½,½½,½  sjlj mmmlmlj .   (5.188) 

In Fig. 14, these two identical states are represented by the top-rightmost point (the uncoupled 
representation) and the sloped line passing through it (the coupled representation). 

 

 

 

 

 

 

 

 

 

However, already the next value of this quantum number, mj = l – ½, is compatible with two 
values of j, so each ml, ms ket has to be related to two j, mj kets by two Clebsch-Gordan coefficients. 
Since j changes in unit steps, these values of j have to be l  ½. This choice, 

         ½ lj ,      (5.189) 

where the alternating sign is independent of the sign of ms, evidently satisfies all lower values of mj as well – 
see Fig. 14.50 (Again, only one value, j = l + ½, is necessary to represent the state with the lowest mj = – 
l – ½ – see the bottom-leftmost point of that diagram.)  

50 Eq. (189) may be readily generalized to the case of arbitrary spin s: j may only take values that differ by 1, 
within the interval [ l - s , l + s]. This important result (whose proof is left for the reader’s exercise) allows a 
semi-quantitative classical interpretation in terms of the vector diagrams shown in Fig. 13: in them, the largest 
value of j corresponds to the parallel alignment of the vectors L and S, while its smallest value, to their 
antiparallel alignment. 

Fig. 5.14. A graphical representation of possible basis states of a spin-½ particle with a fixed l. Each dot 
corresponds to an uncoupled-representation ket-vector ml, ms, while each sloped line corresponds to one 
coupled-representation ket-vector j, mj, related by Eq. (183) to the kets ml, ms whose dots it connects. 
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 Note that the total number of the coupled-representation states is 1 + 22l + 1  2(2l + 1), i.e. is 
the same as those in the uncoupled representation. So, for spin-½ systems, each sum (183), for fixed j 
and mj (plus the fixed common parameter l, plus the common s = ½), has at most two terms, i.e. involves 
at most two Clebsch-Gordan coefficients.  

 These coefficients may be calculated in a few steps, all but the last one rather simple even for 

arbitrary spin s. First, the similarity of the vector operators SJ ˆ and ˆ  to the operator L̂ , expressed by 

Eqs. (169), (175), and (177), may be used to argue that the matrix elements of the operators  JS ˆ  and ˆ , 

defined similarly to L̂ , have the matrix elements similar to those given by Eq. (164). Next, acting by 

the operator   SLJ ˆ ˆ ˆ upon both parts of Eq. (183), and then inner-multiplying the result by the bra 

vector ml, ms and using the above matrix elements, we may get recurrence relations for the Clebsch-
Gordan coefficients with adjacent values of ml, ms, and mj. Finally, these relations may be sequentially 
applied to the adjacent states in both representations, starting from any of the two states common for 
them – for example, from the state with the ket-vector (188), corresponding to the top-rightmost point in 
Fig. 14.  

 Let me leave these straightforward but a bit tedious calculations for the reader’s exercise, and 
just quote the final result of this procedure for s = ½:51              
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                     (5.190) 

 As a simple example, let an electron be in the p-state (l = 1) with definite j = ½ and mj = ½, and 
we want to know the probability of its spin being directed down (ms = –½). Since in this case, j = l – ½, 
the above formulas should be used with the upper signs, giving 
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  (5.191) 

so the general Eq. (183) takes the form 

   ½,1
3

2
½,0

3

1
½,½

2/12/1














 slslj mmmmmj ,  (5.192) 

and the probability of the spin-down state with ms = –½  is W = 2/3. 

 In this course, Eqs. (190) will be used mostly in Sec. 6.4 for an analysis of the anomalous 
Zeeman effect. Also, the angular momentum addition rules described above are also valid for the 
addition of angular momenta of multiparticle system components, so we will revisit them in Chapter 8. 

51 For arbitrary spin s, the calculations and even the final expressions for the Clebsch-Gordan coefficients are 
rather bulky. They may be found, typically in a table form, mostly in special monographs – see, e.g., A.  
Edmonds, Angular Momentum in Quantum Mechanics, Princeton U. Press, 1957.  

Clebsch – 
Gordan 

coefficients 
for s = ½ 
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 To conclude this section, I have to note that the Clebsch-Gordan coefficients (for arbitrary s) 
participate also in the so-called Wigner-Eckart theorem that expresses the matrix elements of spherical 
tensor operators, in the coupled-representation basis j, mj, via a reduced set of matrix elements. This 
theorem may be useful, for example, for the calculation of the rate of quantum transitions to/from high-n 
states in spherically symmetric potentials. Unfortunately, a discussion of this theorem and its 
applications would require a higher mathematical background than I can expect from my readers and 
more time/space than I can afford.52 

 

5.8. Exercise problems 

5.1. Use the discussion in Sec. 1 to find an alternative solution of Problem 4.18. 

 5.2. A spin-½ with a gyromagnetic ratio  is placed into an external magnetic field, with a time-
independent orientation, its magnitude B(t) being an arbitrary function of time. Find explicit expressions 
for the Heisenberg operators and the expectation values of all three Cartesian components of the spin as 
functions of time, in a coordinate system of your choice. 

 
 5.3. A two-level system is in the quantum state  described by the ket-vector  =  + , 
with given (generally, complex) c-number coefficients . Prove that we can always select such a 
geometric c-number vector c = {cx, cy, cz} that   would be an eigenstate of σc ˆ , where σ̂ is the Pauli 
vector operator. Find all possible values of c satisfying this condition, and the second eigenstate 
(orthogonal to ) of the operator σc ˆ . Give a Bloch-sphere interpretation of your result. 

5.4. Rewrite the key formulas of the solutions of Problems 4.27-4.29 in terms of the Bloch 
sphere angles, and verify at least one of them using the general relations of Sec. 5.1 of the lecture notes. 
 

5.5. A spin-½ with a gyromagnetic ratio  > 0 was placed into a time-independent magnetic field 
B0 = B0nz and let relax into the lowest-energy state. At t = 0, an additional field B1(t) is turned on; its 
vector has a constant magnitude but rotates within the [x, y]-plane with an angular velocity . Calculate 
the expectation values of all Cartesian components of the spin at t  0, and discuss thе representation of 
its dynamics on the Bloch sphere. 

 5.6.* Analyze statistics of the spacing S  E+ – E– between energy levels of a two-level system, 
assuming that all elements Hjj’ of its Hamiltonian matrix (2) are independent random numbers, with 
equal and constant probability densities within the energy interval of interest. Compare the result with 
that for a purely diagonal Hamiltonian matrix, with a similar probability distribution of its random 
diagonal elements. 
 
 5.7. For a periodic motion of a single particle in a confining potential U(r), the virial theorem of 
non-relativistic classical mechanics53 is reduced to the following equality: 

52 For the interested reader, I can recommend either Sec. 17.7 in E. Merzbacher, Quantum Mechanics, 3rd ed., 
Wiley, 1998, or Sec. 3.10 in J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, 1994. 
53 See, e.g., CM Problem 1.12. 
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UT  r
2

1
, 

where T is the particle’s kinetic energy, and the top bar means averaging over the time period of motion. 
Prove the following quantum-mechanical version of the theorem for an arbitrary stationary state, in the 
absence of spin effects: 

UT  r
2

1
, 

where the angular brackets denote (as usual in this course) the expectation values of the observables. 

 Hint: Mimicking the proof of the classical virial theorem, consider the time evolution of the 

following operator: pr ˆˆˆ G .  
 

 5.8. A non-relativistic 1D particle moves in the spherically symmetric potential U(r) = Cln(r/R). 
Prove that for: 

 (i) v2 is the same in each eigenstate, and 
 (ii) the spacing between the energy levels is independent of the particle’s mass. 
 
 5.9. Calculate, in the WKB approximation, the transparency T of the following saddle-shaped 
potential barrier: 

,1),(
20 





 

a

xy
UyxU  

where U0  > 0 and a are real constants, for tunneling of a 2D particle with energy E < U0. 
 
 5.10. In the WKB approximation, calculate the so-called Gamow factor54 for the alpha decay of 
atomic nuclei, i.e. the exponential factor in the transparency of the potential barrier resulting from the 
following simple model for the alpha-particle’s potential energy as a function of its distance from the 
nuclear center: 

 











,for  ,
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,for      0,

0

2
0
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r

ZZ'e
RrU

rU


 

where Ze = 2e > 0 is the charge of the particle, Z’e > 0 is that of the nucleus after the decay, and R is the 
nucleus’ radius. 
 
 5.11. Use the WKB approximation to calculate the average time of ionization of a hydrogen 
atom, initially in its ground state, made metastable by the application of an additional weak, uniform, 
time-independent electric field E. Formulate the conditions of validity of your result. 
 
 5.12. For a 1D harmonic oscillator with mass m and frequency 0, calculate: 
  (i) all matrix elements n'xn 3ˆ , and 

  (ii) the diagonal matrix elements nxn 4ˆ , 

where n and n’ are arbitrary Fock states.  

54 Named after G. Gamow, who made this calculation as early as in 1928. 
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 5.13. Calculate the sum (over all n > 0) of the so-called oscillator strengths, 

         2

02
0ˆ

2
xnEE

m
f nn 


, 

 (i) for a 1D harmonic oscillator, and  
 (ii) for a 1D particle confined in an arbitrary stationary potential.55 
 
 5.14.  Prove the so-called Bethe sum rule, 

 
m

k
n'enEE xik

n'
nn' 2

222ˆ 
  

(where k is any c-number constant), valid for a 1D particle moving in an arbitrary time-independent 
potential U(x), and discuss its relation with the Thomas-Reiche-Kuhn sum rule whose derivation was the 
subject of the previous problem. 

 Hint: Calculate the expectation value, in a stationary state n, of the double commutator 

  xikxik eeHD ˆˆ ,,ˆˆ   

in two ways: first, just by spelling out both commutators, and, second, by using the commutation 

relations between operators xp̂  and xike ˆ , and compare the results. 

5.15. Spell out the commutator   †ˆexp,ˆ aa  , where †â and â  are the creation-annihilation 

operators (5.65), and  is a c-number. 
 
5.16. Given Eq. (116), prove Eq. (117) by using the hint given in the accompanying note. 

 
 5.17. Use Eqs. (116)-(117) to simplify the following operators: 

  (i)    xiapxia x ˆexpˆˆexp  , and 

  (ii)    xx piaxpia ˆexpˆˆexp  , 

where a is a c-number. 
 
 5.18.* Derive the commutation relation between the number operator (5.73) and a reasonably 
defined quantum-mechanical operator describing the harmonic oscillator’s phase . Obtain the 
uncertainty relation for the corresponding observables, and explore its limit at N >> 1. 
 

 5.19. At t = 0, a 1D harmonic oscillator was in a state described by the ket-vector 

 3231
2

1
 , 

where n are the ket-vectors of the stationary (Fock) states of the oscillator. Calculate: 

 (i) the expectation value of the oscillator’s energy, and  

55 This Thomas-Reiche-Kuhn sum rule is important for applications because the coefficients fn describe, in 
particular,  the intensity of dipole quantum transitions between the nth energy level and the ground state – see, e.g., 
Sec. 9.2 and also EM Sec. 7.2. 



Essential Graduate Physics                QM: Quantum Mechanics 

    
Chapter 5             Page 45 of 48 

 (ii) the time evolution of the expectation values of its coordinate and momentum. 
 
 5.20.* Re-derive the London dispersion force’s potential of the interaction of two isotropic 3D 
harmonic oscillators (already calculated in Problem 3.20), using the language of mutually-induced 
polarization. 
 

5.21. An external force pulse F(t), of a finite time duration T, is exerted on a 1D harmonic 
oscillator, initially in its ground state. Use the Heisenberg-picture equations of motion to calculate: 

 (i) the expectation values of the oscillator’s coordinate and momentum and their uncertainties, at 
an arbitrary moment, 
 (ii) its total energy after the end of the pulse.  
 
 5.22. Use Eqs. (144)-(145) to calculate the uncertainties x and p for a harmonic oscillator in its 
squeezed ground state, and in particular, to prove Eqs. (143) for the case  = 0. 

 5.23. Calculate the energy of a harmonic oscillator in the squeezed ground state . 
 
 5.24.* Prove that the squeezed ground state described by Eqs. (142) and (144)-(145) may be 
sustained by a sinusoidal modulation of a harmonic oscillator’s parameter, and calculate the squeezing 
factor r as a function of the parameter modulation depth, assuming that the depth is small and the 
oscillator’s damping is negligible. 
 

 5.25. Use Eqs. (148) to prove that at negligible spin effects, the operators jL̂  and 2L̂ commute 

with the Hamiltonian of a particle placed in any central potential field. 
 
 5.26. Use Eqs. (149)-(150) and (153) to prove Eqs. (155). 
 
 5.27. Derive Eq. (164) by using any of the prior formulas.  

 
 5.28. Derive the expression L2 = 2l(l + 1) from basic statistics, by assuming that all (2l + 1) 
values Lz = m of a system with a fixed integer number l have equal probability, and that the system is 
isotropic. Explain why this statistical picture cannot be used for proof of Eq. (5.163). 

 5.29. In the basis of common eigenstates of the operators zL̂  and 2L̂ , described by kets l, m: 

 (i) calculate the matrix elements 21 ,ˆ, mlLml x  and 2
2

1 ,ˆ, mlLml x , 

 (ii) spell out your results for diagonal matrix elements (with m1 = m2) and their y-axis 
counterparts, and 

 (iii) calculate the diagonal matrix elements mlLLml yx ,ˆˆ,  and mlLLml xy ,ˆˆ, . 

 5.30. For the state described by the common eigenket l, m of the operators zL̂  and 2L̂  in a 

reference frame {x, y, z}, calculate the expectation values Lz’ and  Lz’
2 in the reference frame whose 

z’-axis forms angle   with the z-axis. 
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5.31. Write down the matrices of the following angular momentum operators: 

LLLL zyx
ˆ  and ,ˆ,ˆ,ˆ , in the z-basis of the {l, m} states with l = 1. 

5.32. Calculate the angular factor of the orbital wavefunction of a particle with a definite value 
of L2, equal to 62, and the largest possible value of Lx. What is this value?  
 
 5.33. For the state with the wavefunction  = Cxye–r,  with a real positive , calculate: 

 (i) the expectation values of the observables Lx, Ly, Lz, and L2, and  
  (ii) the normalization constant C. 
 

5.34. An angular state of a spinless particle is described by the following ket-vector: 

 1,30,3
2

1
 mlml . 

Calculate the expectation values of the x- and y-components of its angular momentum. Is the result 
sensitive to a possible phase shift between the component eigenkets? 
 

5.35. A particle is in a quantum state   with the orbital wavefunction proportional to the 
spherical harmonic ).,(1

1 Y  Find the angular dependence of the wavefunctions corresponding to the 
following ket-vectors: 

   (i) xL̂ , (ii) yL̂ , (iii) zL̂ ,    (iv) LL ˆˆ ,  and  (v) 2L̂ . 

 
 5.36. A charged, spinless 2D particle of mass m is trapped in the potential well U(x, y) = m0

2(x2 
+y2)/2. Calculate its energy spectrum in the presence of a uniform magnetic field B normal to the [x, y]-
plane of the particle’s motion. 
 
 5.37. Solve the previous problem for a spinless 3D particle, placed (in addition to a uniform 
magnetic field B) into a spherically-symmetric potential well U(r) = m0

2r2/2. 
 
 5.38. Calculate the spectrum of rotational energies of an axially symmetric rigid macroscopic 
body. 

 5.39. Simplify the double commutator   j'j rLr ˆ,ˆ,ˆ 2 . 

 
 5.40. Prove the following commutation relation:  

    jjj rLLrrLL ˆˆˆˆ2ˆ,ˆ,ˆ 22222   .

5.41. Use the commutation relation proved in the previous problem and Eq. (148) to prove the 
orbital electric-dipole transition selection rules mentioned in Sec. 6. 

 5.42. Express the commutators listed in Eq. (179),  zLJ ˆ,ˆ 2  and  zSJ ˆ,ˆ 2 , via jL̂  and jŜ . 
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5.43. Find the operator T̂  describing a quantum state’s rotation by angle  about a certain axis, 

by using the similarity of this operation with the shift of a Cartesian coordinate, discussed in Sec. 5. 
Then use this operator to calculate the probabilities of measurements of spin-½ components of particles 
with z-polarized spin, by a Stern-Gerlach instrument turned by angle   within the [z, x] plane, where y 
is the axis of particle propagation – see Fig. 4.1.56 
  

 5.44. The rotation operator T̂  analyzed in the previous problem and the linear translation 

operator XT̂  discussed in Sec. 5 have a similar structure: 

 /ˆexpˆ  CiT , 

where  is a real c-number scaling the shift and Ĉ  is a Hermitian operator that does not explicitly 
depend on time. 

 (i) Prove that such operators are unitary. 

 (ii) Prove that if the shift by , induced by the operator T̂ , leaves the Hamiltonian of some 

system unchanged for any , then C is a constant of motion for any initial state of the system. 

 (iii) Discuss what the last conclusion means for the particular operators XT̂  and T̂ . 

  
 5.45. A particle with spin s is in a state with definite quantum numbers l and j. Prove that the 
observable LS also has a definite value and calculate it. 
 
 5.46. For a spin-½ particle in a state with definite quantum numbers l, ml, and ms, calculate the 
expectation value of the observable J2 and the probabilities of all its possible values. Interpret your 
results in terms of the Clebsch-Gordan coefficients (190). 
 
 5.47. Derive general recurrence relations for the Clebsch-Gordan coefficients for a particle with 
spin s. 

 Hint: By using the similarity of the commutation relations discussed in Sec. 7, write the relations 
similar to Eqs. (164) for other components of the angular momentum, and then apply them to Eq. (170). 
  
 5.48. Use the recurrence relations derived in the previous problem to prove Eqs. (190) for the 
spin-½ Clebsch-Gordan coefficients. 
 
 5.49. A spin-½ particle is in a state with definite values of L2, J2, and Jz. Find all possible values 
of the observables S2, Sz, and Lz, the probability of each listed value, and the expectation value for each 
of these observables. 

 
 5.50. Re-solve the Landau-level problem discussed in Sec. 3.2, now for a spin-½ particle. 
Discuss the result for the particular case of an electron. 
 

56 Note that the last task is just a particular case of Problem 4.18 (see also Problem 1). 
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 5.51. In the Heisenberg picture of quantum dynamics, find an explicit relation between the 
operators of velocity dtd /ˆˆ rv   and acceleration dtd /ˆˆ va   of a nonrelativistic particle with an electric 
charge q, moving in an arbitrary external electromagnetic field. Compare the result with the 
corresponding classical expression. 

 Hint: For the orbital motion’s description, you may use Eq. (3.26). 
 
 5.52. One byproduct of the solution of Problem 47 was the following relation for the spin 
operators (valid for any spin s): 

    2/11ˆ1 ssss msmsmSm    . 

Use this result to spell out the matrices Sx, Sy, Sz, and S2 of a particle with s = 1, in the z-basis – defined 
as the basis in which the matrix Sz is diagonal. 
 
 5.53.* For a particle with an arbitrary spin s, find the ranges of the quantum numbers mj and  j 
that are necessary to describe, in the coupled-representation basis: 

 (i) all states with a definite quantum number l, and 
 (ii) a state with definite values of not only l but also ml and ms. 

Give an interpretation of your results in terms of the classical vector diagram – see, e.g., Fig. 13. 
 
 5.54. For a particle with spin s, find the range of the quantum numbers j necessary to describe, in 
the coupled-representation basis, all states with definite quantum numbers l and ml.  
 
 5.55. A particle of mass m, with electric charge q and spin s, free to move along a planar circle of 
a radius R, is placed into a constant uniform magnetic field B directed normally to the circle’s plane. 
Calculate the energy spectrum of the system. Explore and interpret the particular form the result takes 
when the particle is an electron with the g-factor ge  2.


