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Chapter 1. Introduction

Problem 1.1. The actual postulate made by N. Bohr in his original 1913 paper was not directly
Eq. (1.8) of the lecture notes, but rather the assumption that at quantum leaps between adjacent electron

orbits with n >> 1, the hydrogen atom either emits or absorbs the energy AE = hw, where o is its
classical radiation frequency — according to classical electrodynamics, equal to the angular velocity of
the electron’s rotation.! Prove that this postulate, complemented with the natural requirement that L =0
at n =0, is equivalent to Eq. (1.8).

Solution: Combining the classical Eqs. (1.9) and (1.11) written for the n'™ circular orbit,
2 2 2 2
m, V_ = c 2° E n = eV ?

r, Aneyr, 2 Areyr,

n

with the well-known classical relations @, = v,/r,, L, = mev,r,, we may readily express the energy and
the rotation frequency of the electron via its angular momentum L,, :

2 )2 1 2 )2 1
m
En =—— d _27 a)n = me d _3 (*)
2 \4reg, ) L, dre, ) L,
For large orbits, with for » >> 1 and L, — o, both E, and @, tend to zero, and hence the
difference between the adjacent energy levels (An = 1) may be well approximated as

dE
AE‘nEE'nJrl_E‘nz ”’_
dn

2 \? 1
AEn = me ¢ _3 ALn *
dre, ) L

Comparing this expression with the second of Egs. (*), we get

From here and the first of Egs. (*),

Hence the actual Bohr’s assumption (AE, = hw,) yields AL, = h. Together with the natural
requirement Ly = 0, this result is equivalent to Eq. (1.8).

Problem 1.2. Generalize Bohr’s theory for a hydrogen-like atom/ion with a nucleus of the
electric charge Q = Ze, to the relativistic case.

Solution: According to classical relativity,? the non-relativistic equation of motion of a charged
particle in an electromagnetic field retains its form even in the relativistic case, provided that the
particle’s mass m is replaced with its relativistic, velocity-dependent value

I'See, e.g., EM Sec. 8.2.
2 See, e.g., EM Sec. 9.6, in particular Eq. (9.144).

Problems with Solutions Page 3



Essential Graduate Physics QM: Quantum Mechanics

m

where m is now the rest mass, and c is the speed of light. With this replacement and the similar change
of the particle’s momentum, p - Mv = ymv, Egs. (1.8) and (1.9) for a circular orbit of an electron in a
hydrogen-like atom/ion become

M=ym= ()

v? Ze?
M vr = hn, M,—= -
ro Ane,r

Solving this simple system of two equations for v and r, for the former variable, we get formally the

same result as in the non-relativistic case:
Ze* | Ane,

hno **)

however, Eq. (1.10) for the orbit’s radius is now rescaled by the Lorentz factor y:

2 1/2
zl: (Za}}
n|l1—-|— s,

n

where a = */4gohe ~ 1/137 is the so-called fine structure constant.3
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Most importantly, this formula gives imaginary values for 7 (indicating that Bohr’s orbits do not
exist) for n < Za = Z/137. The physical reason for this effect becomes clear from Eq. (**) rewritten as v
= (Zaln)c: for n < Za, it gives values of v larger than ¢, i.e. no realistic electron’s speed can sustain
Bohr’s condition of the angular moment quantization. In particular, for

Z>7Z,. =137, (%)

even the ground state (with » = 1) does not exist. Remarkably, exactly the same restriction (**%*) is
given by the Dirac equation, i.e. by the most accurate quantum theory of electrons’ motion in a classical
(non-quantized) electromagnetic field — see Eq. (9.136) and its discussion in Sec. 9.7 of the lecture
notes.

Problem 1.3. A hydrogen atom, initially in the lowest excited state, returns to its ground state by
emitting a photon propagating in a certain direction. Use the same approach as in Sec. 1.1(iv) of the
lecture notes to calculate the photon’s frequency reduction due to atomic recoil.

Solution:* According to Eq. (1.12) of the lecture notes, the ground state of the hydrogen atom
corresponds to n = 1, and its lowest-energy excited state, to n” = 2. So, according to Egs. (1.7) and
(1.12), in the absence of recoil, the emitted phonon’s energy is

E, (1 1 3
ha)o = En, —En :TH(I—Z—z—Zj EgEH.

3 For its discussion, see, e.g., Sec. 6.3 of the lecture notes.
4 This problem is essentially a variant of EM Problem 9.10.
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Now let us calculate the atom’s recoil momentum p, by using the laws of momentum and energy
conservation. In the reference frame in that the atom was at rest before the photon emission, they read

0="%—p,
c

mc® +hw, =ho+ [(}7102)2 +(pc)2]”2,

where o is the photon’s frequency with the account of the atomic recoil, and m is the rest mass of the
atom in its ground state, dominated by that of a proton. Solving this system of two equations for p and
@, we get, in particular:

1+hao, /2mc’ . haw,/2me’
O=0)———— <0, e Av=0,-0=0———
l1+hw,/ mc 1+ Ao, /mc

Due to the very large difference between fian ~ 10.2 ¢V and mc” ~ mp02 ~ 0.938x10° eV, this expression
may be simplified:
ho' © Ao ho,

2 5

Aw ~ o,
2m,c @, 2m.c

- ~5.43x107.

It is curious that the recoil velocity has a human scale:

P _Nole sa6™ o

I’l’lp mp S

~
~

Note, however, that the qualification “propagating in a certain direction” in this problem’s
assignment is very loaded. Indeed, as will be discussed later in this course, forming a photon (i.e. an
electromagnetic wave packet) with virtually definite magnitude and direction of its momentum, resulting
in a similarly definite recoil momentum p, requires the involvement of not one but many sinusoidal
waves with different (if close) frequencies corresponding to different (if close) energies. In the opposite
limit, if one insists the emitted electromagnetic wave to be strictly monochromatic, the wave’s
propagation direction becomes completely uncertain, and the quantum-ensemble average (“‘expectation
value”) of the resulting recoil velocity vector v vanishes.’

Perhaps even more shockingly, which of these two approximations describes the real
experimental situation better, and hence what the “real” recoil of the atom is, depends on the photon’s
detection conditions — even if this detection takes place long after the emission’s moment! Thus, even
this apparently simple situation touches deep issues of quantum mechanics including the rather
counterintuitive local reality problem, which will be only discussed at the very end of this course
(Chapter 10) because this discussion requires the course’s full contents as the background.

Problem 1.4. Use Eq. (1. 53) of the lecture notes to prove that the linear operators of quantum
mechanics are commutative: A +A A +A , and associative: (A +4 )+A A +(A +4 )

Solution: These relations look obvious, but the reader should remember that in the operators, we
face a mathematical entity different from the usual numbers, functions, and geometrical vectors, and

3> Moreover, that strict requirement would also imply that the wave emission time is infinite — see, e.g., Sec. 2.5.
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cannot take for granted any properties that have not been postulated or already proved. For example, for
any two usual functions ¥; and ¥, (which, for given argument values, are just numbers), we may
always write ¥V, = W,V but for similar operator “products”, such commutation is generally invalid —
see, e.g., Eq. (2.14) of the lecture notes. This is why we should be careful.

First, let us use Eq. (1.53), with the index swap 1<>2, to write
(4, +4)e=2v+29.

The left-hand side of this equation, and each of the two terms of its right-hand side, are just functions
(not operators!) and hence obey the rules of the “usual” algebra. In particular, these terms are
commutative, so that side is equal to the right-hand side of the initial form of Eq. (1.53):

(4 +4,)w=4v+a,v.

Hence, the left-hand sides of these relations (again, each of them is just a function!) have to be equal as
well:

(,312 +2!1)‘P=(211 +22)‘P.

Since this relation is valid for an arbitrary function P, it gives the required proof that the operators are
commutative as well.

Similarly, we may use Eq. (1.53) twice to write
(4, + 2, )+ 2, ] = (4 + 2, )W + A9 = 4w+ 4,9+ 4w
Again, the operands on the right-hand side of this equation are just functions and may be regrouped as
AV+ 4V + ¥ = 49 +(4,9 + 4,%).
Now we may apply Eq. (1.53) twice to the right-hand side of the above relation, to write
A+ (4w + a,w)=[4 + (4, + 4, ).
Comparing the initial and final expressions of our calculation, we get
(4, + 4, )+ 4 Jw=[4, + (4, + 4, ).

This equality is valid for any ¥ and hence the linear operators are indeed associative.

Problem 1.5. Prove that for any time-independent Hamiltonian operator H and two arbitrary
complex functions f{r) and g(r),

[ £l = [ Fr(eleena’s.

Solution: Using the fact (discussed in Sec. 1.5 of the lecture notes) that the set of eigenfunctions
w, of the given Hamiltonian operator (i.e. the set of stationary states of the corresponding quantum
system) is full, we may expand the function g(r) and the complex conjugate of the function f{r) into
series over the set, just as it was done with the function W¥(r, 0) in Eq. (1.67):
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=Zn:gnt//n(r), f*(r)=Zn‘,f,,l//,,(r), sothat f(r)=[ ()] {Enlfnw,,(r)} EZn:f:V/:(r)

where f, and g, are some (generally, complex) coefficients. Plugging these expressions (with one of the
summation indices n denoted as #n’) into each side of the equality to be proved, and taking the constant
coefficients out of the spatial integrals, we may transform them as

[ 7(r)Ag(e)ar = z £l vl )iy, (c)dr
JArw)se)d’r =3 17 g, [ Ay, (e, ()

nn'

Now using Eq. (1.60) with n replaced for n’, H v, =E w, ., in the first expression, and its

complex conjugate, H 1//;k = Enl//: ,0 in the second one, and then employing the orthonormality condition
(1.66), we get

[r®W)hee)’r = 1 g, E, v, () r =Y f,g,E,5,, = an*gnEn :

nn' nn'

[Ar(r)e )d3r—Zf gE, [, (0, W)d’r=3 1 g, E35,, Zf 2.E,,

nn'

so the left-hand sides of these two relations (i.e. both sides of the formula in question) are equal as well.

Problem 1.6. Prove that the Schrodinger equation (1.25) with the Hamiltonian operator given by
Eq. (1.41) is Galilean form-invariant, provided that the wavefunction is transformed as

2
(1) = ‘P(r,t)exp{— i m; LM ’} :

2h

where the prime sign marks the variables observed in the reference frame 0’ that moves, without rotation
and with a constant velocity v, relative to the “lab” frame 0. Give a physical interpretation of this
transformation.

Solution: The non-relativistic (“Galilean”) space/time transform between the two reference
frames is expressed by the following relations:”

r'=r-vt, t'=t. (*)

The Galilean form-invariance means that the wavefunctions ¥ '(r’, ¢#’) and Y(r, ¢), related as specified in
the assignment, should satisfy similar Schrodinger equations in these reference frames:
' 2 2
AL S N VT U'(r',¢')¥’, and Y gy Ulr,t)¥ . (*%)
ot’ 2m ot 2m

6 The eigenenergies E, are real numbers, so they do not change at the complex conjugation, and neither are the
Hamiltonians of the type (1.41).
7 If needed, you may consult, e.g., EM Sec. 9.1, in particular, Fig. 9.1 and Eq. (9.2).
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For proof of this fact, let us note that the functions U’(r’, ¢") and U(r, t) describe the same
potential energy of the particle, i.e. must give the same value at the same space-time point:

U’(r',t’)z U'(r - Vt,t): U(r,t).

(Note also that the wavefunction transform suggested in the assignment gives a similar relation for the
probability density to find the particle at the same space-time point:

w/(r',t) =| (e e)|” =| e —ve, )| =| P, = wlr,),

just as it should.)

Next, considering ¢’, at fixed r’, a function of arguments r(¢) ={r(?), r2(?), r3(¢)} and ¢, we may
use the general rule of differentiation of a function of several variables® and then the first of Egs. (*) in

the formr =r’ + v’ to write®

0 o oo 9
Loy LYy,
o o SHor o or

while at fixed ¢’, Eq. (*) yields V' =V, so V * = V2 Let us also spell out the expression
3 a 3 3 5
(v-V)v-r)= Z:'vj TZ}vj,rj, = Z;vjvj,é'jj, =y,
J= Jj = J=

With these relations, a straightforward differentiation of the suggested transform of the wavefunction,
after it has been plugged into the first of Eqgs. (**), immediately yields the second of these equations, i.e.
proves the form-invariance of the Schrodinger equation.

For the interpretation of the wavefunction’s transform, let us apply it to the simplest case of a
monochromatic plane de Broglie wave given by Eqgs. (1.29) of the lecture notes, describing a free

particle’s state with its momentum p = 7k and (kinetic) energy E = fiw having definite values, i.e. being

c-numbers:
.pr .Et
WYir,t)=aexpii——i— .
(r.2) p{ p h}

The proved transform shows that in the moving reference frame, the wavefunction is a similar plane

wave:
2 ’. 1 !
‘P'(r’,t’)zaexp iu—iﬂ—imv r+ith Eaexp{ip r _iﬂ},
h 2h /]

7] fi
where
2 2

" popeva ™

p'=p-mv, and E'=FE—-p'-v—

However, these are exactly the Galilean transform expressions for the momentum and the kinetic
energy of the particle, given by the non-relativistic classical mechanics. Indeed, expressing the particle’s
momentum via its velocity u (in the lab frame) as p = mu, so E = mu’/2, we get

8 See, e.g., MA Eq. (4.2).
9 This expression is essentially the convective derivative, which was discussed several times in this course series —
see especially CM Sec. 8.3.
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mu’ mv:  mu'’

—mu-v+ = ,

2 2
where u” = u — v is the particle’s velocity as observed from the moving reference frame. So, the
wavefunction’s transform we have proved is just a very natural wave-mechanical expression of the
Galilean invariance.

p' =mu—-mv=mu’, and E'=

Problem 1.7." Prove the so-called Hellmann-Feynman theorem:1°

OE, _ [oH
oL \oa/,’

where A is some c-number parameter, on which the time-independent Hamiltonian H, and hence its
eigenenergies E,, depend.

Solution: By multiplying both parts of the basic Eq. (1.60) of the lecture notes, H v, =Ewy, ,by

w, , and integrating the result over space, we get

v, Wiy, (6)ar = [y, (0)Ep,(r)dr.

On the right-hand side of this relation, we may take the constant £, out of the integral, and then use the
orthonormality condition (1.66) to get the following expression for the eigenenergy:!!

E,=Jvi 0y, (s e

Let us differentiate both parts of this relation over the parameter A, taking into account that not only
H and E, but also the eigenfunctions i, may depend on it:

OF,

[‘//n (r)iy, (r ]d3
A ()
112298y, 000y, )0 0 20 s

oA oA

Next, let us spell out the general equality whose proof was the task of Problem 5, for the particular case
when f{r) = y, (r), while g(r) = 6!//,1(r)/8/1'

[v, (0)f ) d’r=[Hy,(r) ag”ﬂ(r)d%

10 Despite this common name, H. Hellmann (in 1937) and R. Feynman (in 1939) were not the first ones in the
long list of physicists who had (apparently, independently) discovered this equality. Indeed, it has been traced
back to a 1922 paper by W. Pauli and was carefully proved by P. Giittinger in 1931.

I1 Note that per Eq. (1.64) of the lecture notes, Eq. (*) means that the Hamiltonian is nothing else than the
operator corresponding to a very special observable, the system’s energy — the fact which was already mentioned
at its introduction in Sec. 1.2.
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By applying this equality to the last term of Eq. (**), using Eq. (1.60) again in the first term, and then its

complex conjugate, H l//: = Enl//: ,12.in the last term, we get

T fu 0 e |2 0P e

oA

Now let us stop here for a minute, and differentiate over A both sides of the wavefunctions’
orthonormality condition (1.66), written for the particular case n’=n:

0 * 0 %, 10
iviem o= 200

oA

However, per the normalization condition (1.22¢), the left-hand side of this relation is 01/0A = 0, so its
right-hand side has to vanish as well. This means that Eq. (***) reduces to

JoH
J‘ _lf//n )d3 <87>’1’

thus proving the Hellmann-Feynman theorem.

Problem 1.8." Use Egs. (1.73) and (1.74) of the lecture notes to analyze the effect of phase
locking of Josephson oscillations on the dc current flowing through a weak link between two
superconductors (frequently called the Josephson junction), assuming that an external source applies to
the junction a sinusoidal ac voltage with frequency @ and amplitude 4.

Solution: Let us assume that the phase locking has happened, so our dc bias point is already on
the n™ current step (1.76); then for the total voltage across the junction we may write

Vt)= nh—a)+Acosa)t,
2e

and Eq. (1.73) yields the following differential equation for the Josephson phase evolution,

d ) 2e
—(p:n+acosr, with 7=t and a=—4 .

dr ho
This equation may be easily integrated:

p=asint+nt+g,,

where ¢y is some (so far, arbitrary) integration constant. As a result, the Josephson supercurrent (1.74) is
equal to

I =1_sin(asint +nt+¢,)=1_[sin(asinz +nz)cos g, +cos(asinz +nr)sing, |.

Calculating its time average (i.e., the dc component of the current),

12 See the footnote to the model solution of Problem 1.5.
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I=1, [sin(a sinz +n7)cos g, +cos(asinz +nr)sing, ], *)

for example as

7= i]:f(r)dr,

we see that the first term in the square brackets vanishes due to the asymmetry of the function under the
integral, while for the calculation of the second term, we may use the well-known integral representation
of the Bessel functions of the first kind of an integer order m:13

J,,(a) =expli(asinz —mz)}=cos(asint —mr)+isin(asinz —mr).

As we have just discussed, the second of these averages equals zero and we get

J, (a)=cos(asint —mr),

where m is an arbitrary integer number. By taking m = —n, we see from Eq. (*) that the dc current on the

n'™ step is
Jn(2eAj‘ e
ho

Let us assume that the external circuit fixes the dc current through the junction; then the phase
shift ¢y may self-adjust to fit the external current only if it is in the range!*

I =1,sing,, where [, E[an(a)EICJn(;LAJ, so that |In|EIC
@

<I<+I

_In

n .

Hence the full size of the n™ current step is twice the | 7, | given by the last of Egs. (**); a look at the plot
of the Bessel functions!> shows that the size oscillates as a function of the ac voltage amplitude A4,
gradually diminishing at e4 >> nhiew. Exactly this behavior (predicted by B. Josephson in his Nobel-
prize-winning 1962 paper!®) was very soon observed experimentally by S. Shapiro;!7 as a result, one can
frequently meet the term Shapiro (or “Josephson-Shapiro”) steps.

Problem 1.9. Calculate (x), (px), o, and Jp, for the eigenstate {n,, n,, n.} of a particle placed
inside a rectangular hard-wall box described by Eq. (1.77) of the lecture notes and compare the product
oxop, with the Heisenberg’s uncertainty relation.

Solution: Since the spatial factors X, Y, and Z of wavefunctions, given by Eq. (1.84) of the
lecture notes and by similar relations for Y and Z, are already normalized and real, we may use Eq.
(1.23) to write

13 See, e.g., the first of MA Egs. (6.15a).

14 Even without a quantitative analysis of the stability of such phase locking (for its example, see, e.g., CM Sec.
5.4), it is physically clear that one of the two different values of the phase difference ¢y, at which Eq. (*) is
satisfied (¢ = sin '(//,) and ¢’ = 7— @), has to be stable.

I5 See, e.g., EM Fig. 2.16.

16 B, Josephson, Phys. Lett. 1,251 (1962).

I7S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).
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X X X

ax ax (lx 2 (lx
= [ X )X (x0)dx = [ X2 xxabc=i sinﬂn"x xdle l—coszm"x xdx .
(x)= [X ()X (x)dx = [ X7 (x)

0 0 a,. % a a, % a

Integrating the second term in the parentheses of the last expression by parts, we get

2 x:ax ax
<x> = L!a’c -4 J.x d[sin Zﬂnxx]] =% +—1 J.sin—dzﬂnxx X

a |2 2m a

X

x x=0

a, a, os 2m x

— 4+ 2 2C x:aX_Cl_x
2 (2m)) a,

x=0 2

This simple result is hardly surprising because the wavefunctions X(x) are either symmetric or
antisymmetric with respect to the central point a,/2 — see Fig. 1.8 of the lecture notes. Acting absolutely
similarly but repeating the integration by parts twice, we get

a, 2
<x2>=ij sin bt x’dx=a’ l—% )
a, a 3 27m°n;

X X

so, according to Eqs. (1.33)-(1.34),
1/2
1/2 1 1
ox = (<x2> —<x>2) = a{ﬁ _WJ .

Notice that neither (x) nor ox depends on other quantum numbers (n, and n.) and that the
uncertainty of the coordinate is the smallest for n, = 1 (in particular, for the ground state), with Oxmin =
0.181 a,, and increases with n,, approaching the limit Oxpax = a,/N12 ~ 0.289 a, at n, — .

For the particle’s momentum, the corresponding calculations are even simpler:

a a a
X . 2 X . . 2 X .
<Px> - IX*(X)PXX(X) dx=— jsm el (— zhij sin 2N gy = _in 72721x jsm L 05 T gy
0 ax 0 ax ax ax ax 0 ax ax
a
F2 1 2 =a,
=—ih ﬂn; Ism ﬂn"xdx = —ih——cos X NE= 0.
a, % a, 2a, a, |x=0

This result could be also predicted in advance, because, as was discussed in Sec. 1.7 of the
lecture notes, the standing wave X(x) may be represented as a sum of two traveling waves with equal
amplitudes and equal but opposite momenta p, = +hk, = thzm,/a,, so the average momentum vanishes.
This reasoning implies that (p,”) may be calculated from Eq. (1.37), with two possible states having
equal probabilities: W, = W.= Ya:

2
<Pf> =pW, +p*W. :%(pf +p?)= (h;mxj :

X

As a sanity check, this result may be confirmed directly from Egs. (1.33)-(1.34):
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a Ox?

X

1 "o 2 hm_ ) 2
=—h2(7mxj I(l—cos ””xx]dxz( ””j 12 P gin T
a a a a 2a a,

X X 0 X X

ax ax 2 2ax 2
<P5>: ,[X*(x)f?,fX(x)dx=—_|.sin mxx[—hz 0 jsin ﬂnxxdx:ih{mxj I(sin ﬂnxx} dx
0 0 ax 0

Now we can calculate the momentum’s uncertainty,

b, = (<p5>—<px>2)”2 hm,

ﬂ.znz 1 1/2
Sep, =~ ——| .
P ( 12 2]

and the uncertainty product:

This expression shows that for the lowest quantum number, n, = 1, the uncertainty product,
(X Px)min = 0.568 A, 1is just slightly (by about 12%) larger than Heisenberg’s minimum 0.5 7. On the
other hand, at n, — o the product grows as (7[/\/ 12)n,h = 0.907 n,h.

Problem 1.10. Looking at the lowest (red) line in Fig. 1.8 of the lecture notes, it seems plausible
that the lowest-energy eigenfunction (84) of the 1D boundary problem (83) may be well approximated
with an inverted parabola: X(x) ~ Cx(a, — x), where C is a normalization constant. Explore how good this
approximation is.

Solution: A convenient “global” measure of the approximation quality is the proximity of the
expectation value (1.23) of the system's Hamiltonian, given by the guessed approximation!8 ():

<H> trial — IW:ial (r)I:[Wtrial (r)d3r > )

where Wiial (r) is properly normalized,

J"/’:ial ()W (£)d*r =1,

to the genuine ground-state energy E,, which, according to Eq. (1.60), satisfies a similar relation but
with the genuine ground-state wavefunction y, (r):

<H>g = Iw:(r)ﬁwg(r)dSr = j-t//:(r)Egl//g (r)d’r = Egjw:(r)y/g(r)d3r =E,.

In our 1D case with Xyia(x) = Cx(a, — x), the normalization condition is
IX:ial (x)Xtrial (x)dx = |C|2J‘X2 (a - X)2 dx=1,
0 0

where, for the notation simplicity, a = a,. Working out this simple integral, we get

I8 In the variational method, to be discussed in Sec. 2.9 of the lecture notes, it is called the trial function.
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3 4 5 5
a a a

Cl? =[x*(a—x)dx=[(a®x* - 2ax + x* dx:aza——Za—Jr—E—.
€] ! (a-x) ! ( ) 3 4TS T

Now using the fact that inside our simple quantum-well, U(x) = 0, so H= (=h* /2m)d* / dx* in
the whole region where Xy # 0, we get

f A hZ a dZX
<H> trial = jX :ial (x )HX trial (x)dx =— j x"
0

; R
trial _ _ _
dx = _2m|C| _([x(a x)(—2)dx

) E trial dx2
2 a 2 2 3 2
:3—?h—.|.(ax—x2)dx:¥h— a4 =5 L >
a my a’ m 2 3 ma

Comparing this result with the exact ground state energy given by Eq. (1.85) with n, =1 and a, = a,

2 2 2

7- h fi

E,=——5~4935——/,
ma ma

we see that the approximation given by this simple trial function is indeed pretty good, giving a ~1%
accuracy — even in the absence of adjustable parameters that are used in the genuine variational method.

Problem 1.11. A particle placed into a hard-wall rectangular box with sides {ay, a,, a.} is in its
ground state. Calculate the average force it exerts on each face of the box. Can these forces be
characterized by a certain pressure?

Solution: Directing the coordinates axes along the corresponding sides of the box, we may
describe the situation by the boundary problem described by Eq. (1.78b) of the lecture notes, so the
ground state energy E, of the particle is expressed by Eq. (1.86) with the lowest possible values of the
quantum numbers, n, = n, = n. = 1:

o1 1 1
Eg El,l,lz— —2+—+—2 .

2

2m \a; a, a;
Since this energy (while being kinetic by its origin) is a function of the box dimensions only, it may be
considered a contribution to the effective potential energy of the box-particle system. Hence the force
acting on any of the two faces normal to the x-axis may be calculated as

6Eg h?

Fo=——t=2"
Oa, ma;

X

Since the area of this face is 4 = a,a., the force-to-area ratio is

F 7’h?
X
P =—
A, a.a.a,

Since the calculations for two other face pairs may be done absolutely similarly, and give similar
results (with the proper index replacements), this expression shows that generally

PX;«th;t?DZ,
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and hence the exerted forces cannot be characterized by a unique pressure 7, which by definition!®

should be isotropic. Only in the particular case when the box is cubic, with sides a, = a, = a. = a and
volume ¥ = a’, we may speak of a certain pressure:

222 222
Px:Py:Pzzpzﬁhszﬁizm'
ma mV

Note that the resulting “equation of state”, 2V°° = const, differs from that of the ideal classical
gas (PV = const). As will be discussed in Chapter 8, this “quantum equation of state” remains the same

even if the cubic box is filled with an arbitrary number N of non-interacting particles — either bosons or
fermions — though the dependence of the pressure on N is different for these two cases.20

Problem 1.12. A 1D quantum particle was initially in the ground state of a very deep, flat-bottom
potential well of width a:

0, for—a/2<x<+al2,
U(x) =
+o00, otherwise.

At some instant, the well’s width is abruptly increased to a new value a’ > a, leaving the potential
symmetric with respect to the point x = 0, and then is kept constant. Calculate the probability that after
the change, the particle is still in the ground state of the system.

Solution: According to Egs. (1.69) and (1.84) of the lecture notes with the appropriate shift of the
origin, the normalized initial wavefunction of the system (before the well width’s change) is

2\ |eos = for|x|<g
¥(x,0) = (—j x a’ 2’ ()
a 0, otherwise,
with the ground-state energy E, given by Eq. (1.85) with a, =a and n, = 1:
2
T
E, = :
® 2ma’

This initial state serves as the initial condition for the final state of the system,

Y(x,t)= i c, ¥, (x) exp{— i E};l” t},

n=1

where y,(x) are the normalized eigenfunctions of the expanded well. In particular, according to the same
Eq. (1.84) with the proper replacement a — a’, the new ground-state wavefunction is

19 See, e.g., CM Secs. 7.2 and 8.1.
20 As statistical mechanics shows (see, e.g., SM Chapter 3), at sufficiently high temperatures, the pressure
becomes isotropic and classical (with PV = const) — regardless of the shape of the box, the number of the

particles, and their quantum properties.
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1/2 X a'
(2 cos—, for|x|<—,
l/jl(x)_ — X a' 2
a 0, otherwise,

The constant coefficient ¢;, which in particular determines the probability W, = | ¢, |* of the particle to
remain in the ground state, may be found by using the 1D version of Eq. (1.68):

giving

2 +al2 e e 2 +al2 1 1 1 1
= J cos—Cos— dx = ———— f cos | —+— |+cosmx| ——— | ldx
(aa") a a (aa") 0 a a a a

-al2

_ 2 (;Lj‘l Smﬂ(i;}(l_ir Smﬂ(l_ij _4ala o
w(aa)"*|\a a' 2\a a' a a' 2\a a' _ﬂia’z—azi 2a"’

5021

=——-—————CO0S

|2 16 aa” ,
72-2 (aIZ _a2)2 2a’

w, :|Cl

As a sanity check: if the well is virtually unchanged, a’ = a + &€ — a, then cos(ma/2a’) — nel2a,
(a 2 az) — 2a¢g, 0 ¢; — 1, and W, — 1, as it should be. On the other hand, if the final well is much
wider than the initial one, a << a’, then cos(zm/2a’) ~ 1, and W, ~ (16/2")ala’ << 1. This is also
reasonable, because the relatively sharp initial probability distribution gives contributions to many final
eigenfunctions, with a small probability for the particle to be in any particular of them.

(Additional question for the reader: Could a similar problem be rationally formulated for a’ < a,
i.e. for a sudden well’s shrinkage rather than its extension?)

Problem 1.13. At ¢t =0, a 1D particle of mass m is placed into a hard-wall, flat-bottom potential
well
0, for O<x<a,

U(x)z{

+0o0, otherwise,

in a 50/50 linear superposition of the lowest-energy (ground) state and the first excited state. Calculate:

(1) the normalized wavefunction W(x, ¢) for an arbitrary time ¢ > 0, and
(1) the time evolution of the expectation value (x) of the particle’s coordinate.

Solutions:

(1) The described linear superposition is described by the wavefunction

Y(x,0) =y, (x)+ av, (x)>

21 Note that this result would not be affected by adding an arbitrary phase to the wavefunction (*), because this
would just shift the phase of the complex coefficient c;.
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where y; and y» are the two lowest-energy eigenfunctions of this problem, which were by-products of
the 3D calculation in Sec. 1.7 of the lecture notes — see Eqs. (1.84)-(1.85):

1/2 222 2
1//n(x)=(gJ s1nﬂ E = 7 hn , with n=12,....,
a a 2m

and |c; > =| ¢, [*. Due to the last condition, we may take ¢, = ciexp{i(¢ — ¢} = Cexp{ig}, i.c.

¥(x,0) = Cly, () + Py, (x)]

The coefficient C (or rather its modulus) may be readily calculated from the normalization requirement:
w = [ (o (o) = [y () + 2 ()] [ () (e =1
0 0
Since the wavefunctions y » are orthonormal,
_IW:Z (X)WLZ (x)dx =1, I‘//:jz (x)‘//2,1 (x)dx =0,

Eq. (*) yields |C|* = 2, i.e.|C| = 1/N2. So, the initial wavefunction may be represented as

ezargC o 2o
¥(x,0) = sin — +sin =—¢'? |.
a" a a

Per Eq. (1.69) of the lecture notes, the further time evolution of this function may be described merely

by the multiplication of each of these terms by exp{—iw,t/f}, where w, = E,/h, so

E2
h h -

iargC 2 E
Y(x,0)=—5 [sinﬂexp{— ia)lt}+ sin—mexp{— io,t + iqp}}, with o, = 71, W, =
a a a

(i1)) Now we may use this wavefunction and the basic Eq. (1.23) to calculate the expectation
value of the particle’s coordinate:

(x)-

v (x,t)& W (x, 1 )dx

—. s

0
17 . 2mx , , . X , . 2mx , .
—j sm—exp Lot }+sm—exp{la)2t—l(0} X sm—exp{—lwlt}+ sm—exp{—za)zt+z¢>} dx
ary a a a

Elj[sm — +sin 2—+2smﬂsmz—mccos(a)t— )}xdx, withw = 0, - o,.
as a a a

Transforming the product of the two sine functions into the difference of two cosine functions of
combinational arguments,?? and working out the resulting four integrals by parts,?* we finally get

22 See, e.g., MA Eq. (3.2¢).
23 See, e.g., MA Eq. (5.1).
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1 16
<x> = Ea — Py acos(a)t - go). (**)

Evidently, this formula describes sinusoidal oscillations of the particle, with the amplitude (16/97)a ~
0.18a, around the middle of the well (xo = a/2).

At least three comments are due here. First, this problem is a good reminder that the quantum-
mechanical averaging (...) is by no means equivalent to the averaging over time, and its result may still
be a function of time — as Eq. (**) is. Second, recall that (x) does not oscillate if the system is in just one
of the involved two stationary states, so the oscillations (**) are the result of the states’ interference. The
frequency w of the oscillations is proportional to the difference between the energies of the involved
stationary states; in our case

2 2
ha)sh(a)2 —a)l):E2 -E = 4r - = r__3 ,
2ma”  2ma

i.e. to the frequency of the potential radiation at quantum transitions between the corresponding energy
levels — see Eq. (1.7) of the lecture notes. Finally, note that while the argument of the complex
coefficient C, i.e. the common phase of the wavefunction, drops out of all expectation values, the mutual
phase shift ¢ between its components in the linear superposition can affect the expectation values — in
our particular case, of the coordinate.

Problem 1.14. Calculate the potential profiles U(x) for which the following wavefunctions,

(i) ¥ = ¢ exp{—ax’ — ibt}, and
(i) ¥ = c exp{—a| x| — ibt}

(with real coefficients a > 0 and b), satisfy the 1D Schrédinger equation for a particle with mass m. For
each case, calculate (x), {py), ox, and dp,, and compare the product oxdp, with Heisenberg’s uncertainty
relation.

Solutions: Each of these wavefunctions may be represented as the product w;(x)exp{—iE,t/h},
with E, = hb, so per the discussion in Secs. 1.5-1.6 of the lecture notes, we may calculate the
corresponding functions U(x) from the stationary Schrédinger equation (1.65), which may be rewritten
as

1 »* d’y,
w, 2m d’x

Ux)=E, +
(i) In this case, ¥, = cexp{—ax’}, so a direct differentiation yields
hZ
U(x)=E, +—\4a’x*> - 2a).
()=E, + )

Now notice that if we introduce, instead of a, the following constant:

2ha
@) =—, *)

m
the above expression may be rewritten as
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Ul = 2 L
2 2

while the corresponding wavefunction becomes
2
v, = cexp{— axz}z cexp{— mz);lx } .

Since, according to the stationary Schrodinger equation, the origins of E, and U may be shifted
(simultaneously) by an arbitrary constant, in our case, we may select this constant so that

_ ho,
! 2
and U(x) becomes the well-known expression for the potential energy of a harmonic oscillator of
frequency ay and mass m:

E

5

2.2
may x

U(x) =

Hence, “by chance” (actually, not quite so :-), we have found one of the eigenfunctions y, of this
very important 1D system. Later in the course, we will see that this is actually its most important,
lowest-energy (ground) state, usually marked with the quantum number n = 0.

Now, after finding the constant ¢ (or rather its modulus) from the normalization condition2*

1= Il,y:wndx = |c|2zexp{— 2ax’ }dx = [%jﬂc

2
»

we can use Eq. (1.23) of the lecture notes to calculate the following expectation values:2>

() =0, (p.)=0, <x2>=i, (p?) =1,
SO |

= 242"

ox p, =ha'’.

Hence, the product dxdp, equals 7/2 i.e. has the smallest value allowed by the uncertainty relation
(1.35).2¢ In the notation (*), very common for the harmonic oscillator’s description, the above results for
the coordinate and momentum variances read

h h
<x2>=m> (1) =2

Notice that the averages of the kinetic and potential energies of the oscillator are equal to each other:
P\ _[magx’\ _ha,
2m 2 4

24 The last step uses the well-known Gaussian integral MA Eq. (6.9b).
25 The calculation of the two last averages requires one more Gaussian integral, given by MA Eq. (6.9¢).
26 This relation also holds for more general Gaussian wave packets, to be discussed in Sec. 2.2.
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just as they are at the classical oscillations of this system.

}, so a similar calculation of U(x) gives

a\x\ﬁdz —a\x\

2
m dx

(11) In this case, w;, = c exp{—a ‘x
Ux)=hb+e

At x # 0, this expression gives a constant (equal to b + #*a*/2m), but the point x = 0 requires a special
calculation, because here the wavefunction has a “cusp”, and is not analytically differentiable. However,
using the notions of the sign function sgn(x) and Dirac’s delta function &x),2” we can still write
formulas valid for all x:

d - - d> - -

—e @l = —asgn(x)e a‘x‘, —e @l za[a—25(x)]e a‘x‘, (**)

dx dx
so, finally, we get the potential U(x) describing (besides the inconsequential constant Ujp) an ultimately
narrow 1D potential well:

2
U(x) = b + ;’— l0* —2a8(x)|= U, - ws(x),
m
where
2 .2 2
U, =tib+7 % and w=""%59.
2m m

In this notation, the eigenfunction and the eigenenergy of the system become

2 2 wZ
}, E=tb=U,- "%y, "
2m 2h

mw
y/:cexp{—a|x|}zcexp{— ),

In Chapter 2 of the lecture notes, we will see that these results describe the only localized eigenstate of
such a well; they will be broadly used in this course as the basis for discussion of more complex
problems.

Now after the wavefunction’s normalization, giving cc* = a, Eq. (1.23) of the lecture notes, after
a straightforward integration, yields?8
1
x)=0, (x*)= .
< > < > 2a2

Calculating the expectation values of p, and p,”, we should be careful not to lose the functions sgn(x)
and Ax) — see Eq. (**):

2
P = —ihdi(ce_ax) =ica sgn(x)e_a‘x‘, fyfl// =_p? %(ce_ax) = _#2ca [a _ 25(x)]e_a\x\ _
X x

Now the integration (1.23) is easy and yields

(p.)=0, <pf>=h2a2, SO dp, :%,

27 If you need a reminder, see, e.g., MA Sec. 14.
28 For the second integration, we may use the table integral given by MA Eq. (6.7d) for n = 2.
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We see that for this non-Gaussian eigenfunction, the uncertainty product is substantially (by ~
40%) larger than its minimum possible value 7/2.

Problem 1.15. The wavefunction of an excited stationary state of a 1D particle moving in a
potential profile U(x) is related to that of its ground state as we(x) oc x y,(x). Calculate the function U(x).

Solution: Both wavefunctions y.(x) and y,(x) have to satisfy the 1D version of the stationary
Schrodinger equation (1.65), with the corresponding energy values E. and E,:

2
ntdy,

2m dx’

_ndy.
2m dx?

+U(x)y, =Ep., +U()y, = Ep,. (*)

With the given relation ye(x) oc xy,(x), the first of these equations becomes

n d*xy . ow dy, dw,
—%%‘J+U(x)(xt//g)=Ee(xt//g), ie. —%[2 dxg +x dxzé

]+ U(x)xwg =Exy,.

The last form of this equation is close to the second of Egs. (*), with all terms multiplied by x:

n d’y
¥ a’ng +U(x)xy, = Exy,.
Subtracting them, we get a first-order differential equation
n*dy, dy m\E, - E,)
- =\E. -E , le. —2=——""_ % xdx,
m dx ( © )Xl//g 7 /B

g
which may be easily integrated, giving

mE, -E,)

T

2
x +C, SO l//g:Cexp{— e

m(E, - E, )’ }

where C is the integration constant, playing the role of the normalization factor for this ground-state
wavefunction.?? Now we may either plug this result back into the second of Egs. (*) or just use the

solution of the previous problem’s Task (i) with a = m(E, — Eg)/th; the result is
m(Ee -k, )2 x?
2nt '

As was already noted in the model solution of the previous problem, this expression coincides
with the potential energy of a 1D harmonic oscillator of frequency ay:

U(x)=2E,-E, +

2.2
may x

U(x):

Hence our result is valid for such an oscillator if we take

29 Since by the definition of state excitation, E, > E,, the calculated y,(x) converges fast at x — +oo, and its
normalization is uneventful.
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(Ee _Eg )2 2

2E,—E, =0 and o =, .

Solving this simple system of two equations with the condition E.— E, > 0, we get

r =ha)o

g

, E.=E, +ha,.

As will be discussed in Sec. 2.9 of the lecture notes, these are indeed the energies of the ground state
and the first excited state of the oscillator. (From the above solution, we could not determine its
number.)

Problem 1.16. A 1D particle of mass m, moving in a potential well U(x), has the following
stationary eigenfunction: y(x) = C/coshkx, where C is the normalization constant and x is a given real
constant. Calculate the function U(x) and the state’s eigenenergy E.

Solution: After calculating the second derivative of the eigenfunction:

, - -
dx cosh? xx dx?  dx coshxx | cosh? xx

dy _ Cxsinhgx d*y _i[_ CKsinh/ocj_ Ck? 2sinh21<>c_1
cosh’ xx ’

we may plug the result into the 1D version of the stationary Schrodinger equation (1.65):

n dy

- +Ulx)y = Ey ,
s (x)y =Ey
getting
2.2 3 2
U(x)—E= h 'k ZSmh2 loc_l . *)
2m |\ cosh” xx

The function U(x) and the eigenenergy E are defined to an arbitrary constant (essentially the
energy reference level), provided that their difference is definite — as specified by Eq. (*). It is
convenient to select this constant so that U(x) — 0 at x — +oo. Since in these limits, the expression in the
parentheses of Eq. (*) tends to 1, we have to associate the resulting constant level with (—E), so

po Kl
2m
Now plugging this value back into Eq. (*), we get a result that may
be recast into a very simple form: 1
2.2 : 2 2.2 : 2 2.2
U(x)=h K 2s1nh2 L +E=h K 2s1nh2 L Ik
2m \ cosh” kx 2m \ cosh” xx 2m
=_h2K2 2(<:osh2/oc—sinh2 Kx)z_hzl('z 1
- 2m cosh® xx ~m cosh®kx’
A plot of this function is shown with the black line in the
figure on the right, together with the calculated eigenenergy

(dashed horizontal line), both in the units of #°x*/m, and the
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eigenfunction y(x) (red line, in arbitrary units). Due to the simple eigenfunction describing the localized
state of the particle (which may be proved to be its ground state), this potential is one of the convenient
models for the description of “soft” confinement in one dimension.

Problem 1.17. Calculate the density dN/dE of the traveling-wave quantum states inside large
hard-wall rectangular boxes of various dimensions: d = 1, 2, and 3.

Solution: First, let us use the discussion of the 3D box in Sec. 1.7 of the lecture notes to calculate

the number N3 of the states with the kinetic energy #k*/2m below a certain value E. For that, we may
integrate Eq. (1.90) over the k-space region satisfying the requirement

P < Z;an ’
i.e. over a sphere with the so-called Fermi radius kr = (2mE)"?/:
S PRt 4z 2m)”* i

Sz, @) 3T @) 3o
From here, the density of 3D states is

dN, _ ¥V 4z (2m)”73 i
dE. (2z) 3 n’ 2 4r’n’

Note that the density grows with energy.
An absolutely similar calculation for a rectangular 2D box, based on Eq. (1.92), yields

AJ-dZAzAZm

N,=—— =——n—E,
O R A P 7 R P S

so the 2D density of states does not depend on energy:

dN, A 2m m
= > 72'—2 A—2 .
dE  (2z) n 27h

Finally, for 1D particles, Eq. (1.93) yields

1/2
N, =L [ak = Lok, =1 @n) " i,
2 Vs Vs h
| [<k
so the 1D density of states,
dN, =L2(2m)”2 lE—l/Z EZ(zm)l/z e
dE. 2z h 2 27h ’

decreases with energy.
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Problem 1.18." A 1D particle is confined in a potential well of width a, with a flat bottom and
hard, infinitely high walls. Use the finite-difference method with steps a/2 and a/3 to find as many
eigenenergies as possible. Compare the results with each other, and with the exact formula.3?

Solution: The eigenproblem is described by the ordinary differential equation (1.83), which
includes the second derivative of the wavefunction X(x). In the finite-difference method, we are
approximating the derivative with the following finite difference:3!

d’X _ X(x—n)+ X(x+h)-2X(x)
dx? h’

2

where / (not to be confused with either 7 or /2 71) is the selected step along the x-axis.

For h = a/2, the only reasonable choice is to select the point x in the middle of the potential well
(in the notation of Fig. 1.8 of the lecture notes, at x = a/2), so the points (x — 4) and (x + /) are on the
well’s walls, where X = 0. Thus Eq. (1.83) turns into a very simple relation

0+0-2X
hZ
where X = X(a/2) and k = k.. This homogeneous equation cannot be used to calculate X, but assuming
that X # 0 (i.e. that the wavefunction is nonvanishing), it gives simple results for the eigenvalue of the
standing wave’s number k and hence for the eigenenergy E = E, = (h*/2m)k’:
V2 _2J2 283 n’ n’

k=—=—""=~ , E=2 5 4 .
h a a 2mh ma

+k*X =0,

These values should be compared with the exact analytical results (1.84)-(1.85) for the lowest
(ground) eigenstate (n, = 1):

2 2
k1=£ 3.1 /] /]
a

~ E =1’ ~4.93 .
a : 2ma’ ma’

So, this large step (in the numerical-math lingo, “coarse mesh”) makes the calculations very simple but

allows the calculation of only one, ground eigenstate, and with a relatively large error: ~10% for k& and

~20% for the eigenenergy. This could be expected because such mesh corresponds to the approximation

of the genuine sinusoidal solutions (1.84) with a single quadratic parabola.

So it is only natural to explore a slightly finer mesh with 4 = a/3, making a similar
approximation for two interleaved segments of the same length 24 = 2a/3: x € [0, 2a/3] and x € [a/3, a].
Applying the finite-difference version of Eq. (1.83),

X(x—h)+ X(x+h)-2X(x)
h2

+k*’X =0,

to the central points x_ = 4 = a/3 and x; = 2h = 2a/3 of these two segments, we get two equations for the
corresponding wavefunction’s values X_ and X.:

30'You may like to start by reading about the finite difference method — see, e.g., CM Sec. 8.5 or EM Sec. 2.11.
31 See, e.g., CM Egq. (8.65) or EM Egq. (2.220).
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0+X, —2X X +0-2X,

pe —+k’X_=0, P +k*X, =0.
This system of two homogeneous linear equations is consistent if its determinant equals zero:
L — i + k2 2 2
a R 20, e (kz—iJ =(i)
) 1 , le. e 7
-+ k2 i
h’ h’
The resulting quadratic equation for k* has two solutions:
, 2 1 1
giving the following two eigenvalue sets:
2
k_:(18—9)”zlzé, E_=4.5h—2;
a a ma
2
k, :(18+9)”21zﬁ, E, =135 f —.
a a ma

The first of them is just a better approximation for the ground state, with a ~5% accuracy for £
and a ~10% accuracy for energy. The second result is a much cruder description of the next (first
excited) state, whose exact parameters are given by the same Egs. (1.84)-(1.85) with n, = 2:

2 2
=220 g4 T 97T

2 2"
a a 2ma ma

Obviously, even finer meshes with smaller # would allow a more precise description of more
eigenstates, for the price of solving a larger system of homogeneous linear equations.?? For this
particular problem, which has a simple analytical solution, this numerical method makes sense only as a
demonstration, but for eigenstates of particles moving in more complex potential profiles U(x), this is
one of the few possible approaches. (A different, frequently more efficient numerical approach to the
eigenproblems of quantum mechanics will be described in Sec. 6.1 of the lecture notes — see Eq. (6.7)
and its discussion.)

32 All popular public-domain and commercial software packages, including those listed in MA Sec. 16(iv), have
efficient standard routines for such solutions.
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Chapter 2. 1D Wave Mechanics

Problem 2.1. As was stated in Sec. 2.1 of the lecture notes, Eq. (2.1) may be incorrect if the
particle’s potential energy depends on just one spatial coordinate: U = U(x, ¢), and is much more reliable
for particles strongly but uniformly confined in the transverse directions y, z. Explain why.

Solution: Naively, one may think that if the particle’s potential energy depends on just one
spatial coordinate, say U = U(x, ?), then its wavefunction has to be one-dimensional as well: = y(x, f).
However, already the discussion of the particular case U(r) = const (which is just a special case of a 1D
potential) in Sec. 1.7 has shown that this assumption is wrong.33 Indeed, its eigenfunctions, given by Eq.
(1.88), do depend on the other two coordinates. So the solutions W(x, 7) of the 1D Schrodinger equation
(2.1) that follows from Eq. (1.65) by assuming 0'¥/0y = 0'¥/0z = 0, are insufficient to form the general
solution of that equation even in this simplest case.

Let us consider the slightly more general case of a 1D potential: U = U(x), i.e. a potential profile
that is flat in two directions, y and z. Repeating the arguments of Sec. 1.7 for this case, we see that the
eigenfunctions of a particle in such a well have the form

w(r)= X (x)explilk,y +k.z ), (*)
where X(x) is an eigenfunction of the following stationary 1D Schrodinger equation:
n’ d*X
-———+U,(x)X =EX, *x
2m de ef ( ) ( )

where U.i(x) is not the full potential energy of the particle, as it would follow from Eq. (92), but rather
its effective value including the kinetic energy of the lateral motion:

2
U, =U+(E, +Ez):U+;l—m(ky2 +k2).

In plain English, the particle’s partial wavefunction X(x) and its full energy depend on its
transverse momenta, which have a continuous spectrum — see the discussion of Eq. (1.89). This means
that Eq. (2.1) is adequate only if the condition &, = k. = 0 is somehow enforced, and in the case U =
U(x), it is not. For example, if a de Broglie (or any other) plane wave W(x, ) is incident on a potential
step (see, e.g., Fig. 2.4) it is reflected exactly back, i.e. with k, = k. = 0, only if the wall’s surface is
perfectly plane and exactly normal to the axis x. Any imperfection (and there are so many of them in
real physical systems) causes the induction of waves with non-zero values of &, and k., due to the
continuous character of the functions E(k,) and E.(k.).3*

39 Unfortunately, most textbooks on quantum mechanics jump to the formal solution of 1D problems without such
a discussion.

34 This problem is not specific to quantum mechanics. The reflection of plane acoustic and electromagnetic waves
from plane mirrors is also unstable with respect to small imperfections. Even the classical motion of a particle in a
1D potential may be unstable with respect to lateral perturbations. This is why so many 1D problems of classical
mechanics use formulations like “a bead slides along a wire”, etc., assuming rigid lateral confinement.

Problems with Solutions Page 26



Essential Graduate Physics QM: Quantum Mechanics

There is essentially one, perhaps a counter-intuitive way to make the 1D solutions “robust” to
small perturbations: provide the particle’s rigid lateral confinement® in other directions. As the simplest
example, consider a narrow quantum wire (see the left panel of the figure below) described by the
following potential:

U(x), for0O<y<a, and0<z<a,

U(r) ={ (**%)

+ 00, otherwize.

Y
z y z =
A /
..

X X

Performing the standard variable separation (1.79), we see that the corresponding stationary
Schrodinger equation is satisfied if the partial wavefunction X(x) obeys Egs. (*)-(**), but now with a
discrete energy spectrum in the transverse directions:

222 n2 2
U, :U+7Th (—y+nj

€
2m | a® a?

y z
If the lateral confinement is tight: a,, a. — 0, then there is a large energy gap,
232
T h

2
2ma;

AU ~

b

between the ground-state energy of the lateral motion (with n, = n. = 1) and that of its excited states. As
a result, if the particle is initially placed into the ground lateral state, i.e. its energy E is much smaller
than AU, it would stay in such a state, i.e. may be described by a 1D Schrédinger equation similar to Eq.
(2.1) — even in the time-dependent case, proved that the frequency scale of the potential’s change is
much smaller than AU/A. Absolutely similarly, a strong lateral confinement in just one dimension (say, z
— see the right panel of the figure above) enables systems with a robust 2D evolution of the particle’s
wavefunction.

The tight lateral confinement may ensure the dimensionality reduction even if the potential well
is not rectangular in the lateral direction(s), as described by Eq. (***), but is described by some x- and ¢-
independent profile providing a sufficiently large energy gap AU. For example, many 2D quantum
phenomena, such as the quantum Hall effect,3® have been studied experimentally using electrons
confined at semiconductor heterojunctions (e.g., epitaxial interfaces GaAs/Al,Ga;As), where the
potential well in the direction perpendicular to the interface has a nearly triangular shape and provides
an energy gap AU of the order of 10 eV.37 Such a gap corresponds to kg7 with T ~100 K, so careful
experimentation at liquid helium temperatures (4K and below) may keep the electrons performing a
purely 2D motion within the lowest “subband” (n, = 1).

35 The term “quantum confinement”, sometimes used to describe this phenomenon, is as unfortunate as the
“quantum well” term discussed in Sec. 1.7 of the lecture notes, because of the same reason: the confinement is a
purely classical effect, and as we will repeatedly see in this course, the quantum-mechanical effects reduce rather
than enable it.

36 To be discussed in Sec. 3.2.

37 See, e.g., P. Harrison, Quantum Wells, Wires, and Dots, 3" ed., Wiley, 2010.
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Problem 2.2. Prove that the final form of Eq. (2.23) of the lecture notes is correct even though x’
has an (x-independent) imaginary part.

Hint: This is a good exercise in using the Cauchy theorem.38

Solution: On the complex plane «, the integral in the first form of Eq. (2.23) is along the
horizontal line with

Ima = 2K *)

while the standard form3° of the Gaussian integral, used in the second form of that formula, is for real x,
i.e. for the integration along a different horizontal line, with

Ima =0 (%)

see the figure on the right. However, since the function under the integral is analytic, per the Cauchy
theorem, its integral over any closed contour Ima
on the a-plane, in particular the rectangular

contour of the type shown with the dashed line e ,
in the figure on the right, has to equal zero. Let i Iz ( 5x)2 p i

us tend the horizontal size of this contour to
infinity. Since the function under the integral _ ¢ ____ Y _________|_ ________________!

tends to zero at Rex =x— foo, the 0 Rea =
contributions to the contour integral from the
integration along the two vertical sides vanish.
Hence the integrals over the two horizontal sides of the contour (taken in the same direction of x), i.e.
the integrals along the lines (*) and (**), have to be equal.

By the way, this is a good reminder of the fact that due to the complex character of the
wavefunction, many integrals met in wave mechanics are actually over the complex planes.

Problem 2.3. The initial wave packet of a free 1D particle is described by Eq. (2.20) of the
lecture notes:

¥(x,0)= J.akeikxdk .

(1) Obtain a compact expression for the expectation value (p) of the particle's momentum at an
arbitrary moment ¢ > 0.
(ii) Calculate (p) for the case when the function | a;|* is symmetric with respect to some value k.

Solutions:

(1) Per the basic relation (1.23) and the explicit expression (1.26b) for the momentum operator,
we may write

X

(0)0)= "o -0 2 o

38 See, e.g., MA Eq. (15.1).
39 See, e.g., MA Eq. (6.9b).
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According to Eq. (2.27), we may represent the wavefunction of a free particle, with the initial state
given in the assignment, as
272
W(x,1)= [a, explifloc—alk¥]dk,  where nolk)= E(k)= ”"2" , (%)
m
and the integral is in infinite limits. Plugging this expression and its complex conjugate (with the
replacement k — k') into Eq. (*), we may transform it as follows:

(p)r)= de [ ak'[ dk ay, expt=ilicx — (k)] (— in ai} a, explilke— (k)]

X

_ f dx[ dk'[ dk a}, exp{~ ilk'x — (k¥ ]}k )a, explilke— (k)]

= [dk'[dk a ;a, (nk)explilo(k’)- olk)]t} [ dxexpli(k - k')x}.
The last integral is just the delta function (times 27),*0 so we may continue as
(p)e) = [ dk’[ dic(nk)a pa, explilo(k)- ok )]t} 275(k - k')

(***)
* 2
=27 (#k)a a,dk = 27 [ (nk)|a|" dk.
So, the average momentum of a free particle is time-independent (just as it is in classical
mechanics) and, besides a numerical normalization factor, is expressed via the momentum envelope
function ay just as the average of a function f{(x) is expressed via the wavefunction itself:

(F0)= [retenas.

As will be discussed in Sec. 4.7 of the lecture notes, the reason for this similarity is that the amplitude ay
(or rather a function @(p) = @(fik) proportional to a;) plays the role of the wavefunction in the so-called
momentum representation — an alternative to the coordinate representation used in the wave-mechanics
approach we are studying now.

(ii) If | ax|* is an even function of the difference (k — ko), we may recast the last form of Eq. (***)
as follows:

(p)=27[ (k)| a,| dk =27 [ (hk, + k= 1k, )| a,|" die= 270k, | |a, | dic+27h[ (k—k,)|a,|"dk.

Since the last integral has infinite limits, we may always represent the integration segment as a limit of
[ko — K, ko+ K] at Kk — oo, 1.e. the integral as

+K

fim, ., [ (k~k, ).l —k, ) =1im, .

Tl;|ak|2dl;, where l?zk—ko.

—-K

40 See, e.g., MA Eq. (14.4).
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Since |ay* is an even function of k , the whole function under the integral is odd, and the integral
vanishes. So our result is reduced to

<p>=hk02ﬂj|ak|2 dk . (FHH)

In order to evaluate this integral, let us require the wavefunction to be normalized:

T‘I’*(x,t){’(x,t)dx =1.

Plugging in the expansions (**), and transforming the integral exactly as this was done in Task (1), we
get

27| |a,|" dk =1.

So, Eq. (****) is reduced to the very simple and natural form (p) = ik, which corresponds to the
physics discussed in Secs. 1.1 and 1.7 of the lecture notes — see, e.g., Egs. (1.14) and the text before Eq.
(1.88).

Problem 2.4. Calculate the function a; defined by Eq. (2.20) of the lecture notes, for the wave
packet with a rectangular spatial envelope:

Cexplik,x}, for—a/2<x<+a/2,
Y(x,0)=

0, otherwise.
Analyze the result in the limit kya — oo.
Solution: Using the Fourier transform reciprocal to Eq. (2.20), we get
+00 +al2 . +al2 _
a, = 1 I‘I’(x,O)e_lkxdx _ < I &R0 ik gy < I el(ko k)xdx
2z

T 27

-al2 -al2

Csinf(k—k,)a/2] _ Ca . (k -k, )a

2

c 1 [ei(ko—k)a/z ~ e—i(ko—k)a/z:i

" 27 ik, k) x k—k, 27
where sincé = sin($)/& is the well-known |5
function (see the figure on the right), which | 55 sin &
describes, in particular, the Fraunhofer ! sincé =
diffraction on a narrow slit.4! S

0.75

The result shows that, in contrast to = 05

the delta-functional amplitude a; of a . (25
sinusoidal ~ (“monochromatic”)  wave- e AN LN e
function, in our current case, ay is a smooth

-025
function of k. (Physically this means that the .
monochromatic wavefunction restricted in -5 -4 -3 -2 -1 0 2 3 4 5
space is not truly monochromatic but is a Elm

coherent superposition of an infinite number

41 See, e.g., EM Sec. 8.4.
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of de Broglie waves with different £.) It has a peak at k£ = ko, with a finite height of Ca/2 7 and a width Ak
~ 1/a. At kpa — o, this width becomes much smaller than ko, while the peak's height grows, so a; tends
to the delta function of &, which we had for the space-unrestricted sinusoidal wavefunction.

Problem 2.5. Prove Eq. (2.49) of the lecture notes for the 1D propagator of a free quantum
particle, by starting from Eq. (2.48).

Solution: Following the Gaussian integration routine discussed in Sec. 2.2 of the lecture notes,
let us complement the contents of the square brackets in Eq. (2.48) to a full square of (k + const):

2 g ~\ 2 ~2 i ~2
PO ;:_h_f( m_j SR B
2m 2m ht 2ht 2m 2ht

where the following natural notation is used:

~

~ ~ ~ mx
X=x-x,, t=t—t,, andksk—h—N. (*)
t

(2] ek iet)as

00

With this replacement, Eq. (2.48) may be rewritten as

1 mx’ ht ~, 1
G=——exp|io il =
o eXp{’ 217 }j P { om } 2z P { 217

siexp{ - }[imchos(f g - i jsm( }

Each of the full Fresnel integrals*? in the last square brackets is equal to (7/2)

Tcos(é:z )ae - iTsin(fz )ag = (z/2)"*(1-i)= [ij,

l

1/2,
- hence we may write

—00 —0

G_Le fz 2_m 1/2 z 1/2 - m 1/2 o _mzz
22V (a7 ) 2ant) S\ nr [

Taking into account the notation (*), this is exactly Eq. (2.49).

so, finally:

Problem 2.6. Express the 1D propagator defined by Eq. (2.44) of the lecture notes via the
eigenfunctions and eigenenergies of a particle moving in an arbitrary stationary potential U(x).

Solution: As its definition shows, the 1D propagator G(x, t; xo, fo) is the solution of the 1D
Schrodinger equation (2.1) with the delta-functional initial condition

Y(x,t)=0(x—-x,). (™)

From Sec. 1.5, we know that if the potential energy U does not depend on time, the general solution of
the equation is given by the 1D version of Eq. (1.69):

42 See, e.g., MA Eq. (6.10).
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(0= cp, () eXp{— i%(f —ly )},

where w;,(x) are the eigenfunctions of the problem, and the coefficients ¢, are given by the 1D version of
Eq. (1.68):
¢y = [, (X)W (x,t)dx.

(Here, the initial moment of time is denoted as 7, rather than 0.) Plugging into the last equality the initial
condition (*), and integrating over x, we get ¢, = y,*(xo), so, finally,

G(x,1%0,10) = D0, (X)W, (xo)exp{_ j E}; (t—1, )}.

This result shows that in the general case, the propagator’s dependences on x and xyp may be
different from each other, and only if U(x) = const, it is a function of only the difference (x — xo) — see,
for example, Eqgs. (2.48)-(2.49) — due to the space-translational invariance of the problem.

Problem 2.7. Calculate the change of a 1D particle’s wavefunction, resulting from a short pulse
of an external classical force that may be well approximated by a delta function: F(¢) = PX¢).

Solution: According to the well-known relation F = -V U, a space-independent classical force

F(#) may be described by the additional potential energy term Ux(r, ) = —F(¢)-r, in the 1D case reduced
to Up(x, t) = —F(¢)x. As aresult, the full Hamiltonian of the particle is

2 2

H=H,+U,(x,t)=H,-F(t)x=H, - Px5(t),  where H, = —?—8‘9 -

m Ox

+U(x,t),

so the Schrédinger equation (2.1) takes the form
2 2
" o _ n oY

! 2

T — +U(x,1)¥ — PxS(t)¥ .

If the background potential energy U(x, ¢) is finite at ¢ = 0 for all x and the initial form of the
wavefunction is smooth (so its second derivative over the coordinate is also finite for all x), then during
the short interval of the force pulse (which may be symbolically represented as —0 < ¢ < +0),*3 the first
two terms on the right-hand side of the Schrodinger equation are much smaller than the last (diverging)
one, and may be neglected:

or O, e S oifs

ih—=—-Px6 Le.
ot b4 h

Integrating both sides of this equation over this infinitesimal time interval, we get

(¢)et, for —0<7<+0.

ln%zi%, so P(x,t=+0)="¥(x,t =—0)exp{i%}. (*)

43 If the reader is uneasy with this shorthand notation, they may consider a small time interval —~A#/2 <t < +A#/2,
and then pursue the limit Az — 0.
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This is the requested change of the wavefunction. Its physical sense becomes more clear if we
represent the initial wavefunction by its Fourier expansion (2.20):

Y(x,t=-0)= Iakeikxdk;
then Eq. (*) yields

P(x,t =+0)= exp{i%} [ace™dk = [a,e™ dk,  where k'=k+ S, ic. hk'=hk+P.

This result has a simple physical sense: the force pulse changes the effective momentum p = 7k
of each monochromatic component of the particle’s wave packet by the same constant, equal to the
force’s impulse P. This result is in full accordance with the correspondence principle, because in
classical mechanics, the force pulse results in a similar change of the particle’s momentum, from p to p’
= p + P. (In higher dimensions, this relation is generalized as p’ = p + P, both in classical and quantum
mechanics.)

Later in the course (in Sec. 5.5), we will see that the force-induced multiplier in Eq. (*) is just a
particular (coordinate) representation of the general momentum shift operator

< . Px
78 =exp{z7}.

(Please do not panic looking at this expression: in Sec. 4.6 we will discuss what is meant by the
exponential function of an operator argument.)

Problem 2.8. Calculate the transparency & of the rectangular potential barrier (2.68):

0, forx<—-d/2,
U(x)=qU,, for-d/2<x<+d/2,
0, ford/2<x,
for a 1D particle with energy £ > U, Analyze and interpret the result, taking into account that Uy may

be either positive or negative. (In the latter case, we are speaking about the particle’s passage over a
rectangular potential well of a finite depth | Up|.)

Solution: Just as has been done for the potential step, we can use the final result of the tunneling
problem analysis in Sec. 2.3 of the lecture notes, in particular, Eqgs. (2.71), by replacing x with (-ik’),
with &k’ defined by Eq. (2.65):

k? = 2m(E_UO)
==
The result, valid for both Uy <0 < E (a well) and 0 < U, < E (a barrier), becomes
.2 2 = 2 -l
S = Cosk'd—i K+ k sink'd| = 1+U—OSil’12 k'd| . *)
2 / 4E(E-U,)

The figure below shows typical results given by this formula.
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WAVAVAYAYAYA
0.8 Us <0
0.9 | (well) 7
0.6]
g Upy<0 Up>0 g
0474 (well) (barrier) 7 o5 |
0.2 . Uo>0
(barrier)
1 0.7 | 1 1 1
0 2 3 "0 2 4 6 8 10
E/|U,| d/s

The transparency & as a function of (a) the particle’s energy (for a fixed ratio d/6= 5, where ¢ is defined
by Eq. (2.59) of the lecture notes, with Uy —| U, |), and (b) the barrier/well width d (for E = 1.5|U, ).

A common feature of these plots is transparency oscillations whose period is clear from the term
sin’k’d in the last form of Eq. (*): A(k’d) = 7. The origin of these oscillations is the (partial) reflection of
the de Broglie waves at the particle’s passage over a sharp potential cliff, which was been discussed in
Sec. 2.3 of the lecture notes — in particular, see Eq. (2.71b) and Fig. 2.7a. The reflected wave travels
back, is reflected from the opposite cliff, etc., thus forming a standing wave. The constructive
interference condition is achieved when the barrier/well width d corresponds to an integer number of
standing half-waves, i.e., at k’d = nxz, withn=0, 1, 2,...4

The remarkable fact that for any parameters, & = 1 at all constructive-interference points, was
discussed, for a different particular case, in Sec. 2.5.

Problem 2.9. Prove Eq. (2.117) of the lecture notes, for the case Ywkp << 1, by using the
connection formulas (2.105).

Solution: Let us apply the mnemonic rule (i) formulated in Sec. 2.4 of the lecture notes just after
Eq. (2.106), to a relatively thick potential barrier,* with the transparency & << 1. In this case, the partial
wave proportional to the coefficient d in Eq. (2.116) is negligibly small at both classical turning points,
x. and x.’ (see Fig. 2.11), and we may rewrite these formulas as

44 An additional task for the reader: explain why in our current problem, in contrast to the resonances inside a
potential well described by Eq. (1.77), n = 0 is a meaningful value.
45 Of course, it also has to be smooth, i.e. satisfy the WKB approximation conditions (2.96) and (2.107).
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X
b
————expyi | k(x")dx'y + ———expy—i | k(x")dx', forx<x,,
kl/Z( ) {){ k1/2( ) J::
c X c c, X
=< ————expy— |k(x)dx'; = expy— | k(x")dx'rexpy— | kK(x")dx';, forx, <x<x_/,
Vs =) i g P xf ()’ = s exp J (x")dx’ pexp xj (x")
f _ ’ ' ’
W x )exp jK(x )dx'rexpsi J-k(x )dx' + const forx'<x,
xC xC

where for our current purposes, the second term in the top line and the constant phase shift in the last
line are unimportant. According to the mnemonic rule applied to the classical turning points x. and x.’,

|c|exp{ IK(x')dx} = |f|

’
c

|al=]b[=

Now calculating the probability currents (2.95) corresponding to the de Broglie waves
propagating to the right, in both classically allowed regions, we get

1

h c
’ x>x = |f| =;|a|2 exp —ZIK(x')dx' ,

xC

so the barrier transparency is indeed described by Eq. (2.117):

I X
Sk = il =expy—2 jK(x )dx'
Ix<x X

C

Problem 2.10. Spell out the stationary wavefunctions of a harmonic oscillator in the WKB
approximation, and use them to calculate (x*) and (x* for an eigenstate number n >> 1.

Solution: In the WKB approximation, the stationary wavefunctions y; are given by Eq. (2.94) of
the lecture notes. Taking the lower limit of both WKB integrals at x = 0, i.e. at the central point of the
harmonic oscillator’s potential (2.111),

2.2
mayx
0
Ulx)= :
2
we have to take a = b for symmetric wavefunctions, i.e. for even n, and a = —b for antisymmetric

wavefunctions, i.e. for odd  — see, e.g., Fig. 2.35. For the n™ stationary state, this gives

cos |k ( )dx, for n=0,2,4,...,

(*)

" sin

k, (x)dx, for n=13,5,...,

<
=
|
~
N
—~
=
~—
X
O ey o O ey ¢

with k,(x) given by Eq. (2.82):
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0= (2mlE, <0G =L nleE, - mapa?)]
According to Eq. (2.262), which coincides with the WKB result (2.114) with the replacement n” — n,

2E, = ho,(2n+1),

SO

1/2
kn(x)=%{171[7*1(()0(211+1)—ma)§x2]}l/2 = m;" (xj —xz)m E%,

where xo = (h/max)"? is the length scale of the harmonic oscillator’s wavefunctions (see Eq. (2.276) of

the lecture notes) and *x, are the classical turning points defined by the equality E, = U(x,); for our

potential,
n(2n+1)]"
X, = {—} = x0(2n + 1)“2.
mao,

The constant C, (or rather its modulus) participating in Eq. (*) should be calculated from the
normalization condition

J.|1//n(x)|2dx:l. **)

In the WKB approximation, strictly valid only for n >> 1, the effective depth of the particle’s
penetration into the classically forbidden regions is much smaller than the distance, xg — x1, between
these two classical turning points. So, the integration limits in this equation may be limited to the
classically allowed interval [-x,, +x,]. Also, the squares of the rapidly oscillating sine and cosine
functions in Eq. (*) may be replaced with their average value, ’2. As a result, Eq. (**) becomes

|Cn2+x" dx 1 , |C,,|2x§ i dx e Tt " 1_1 dé
2 _'!;n k,(x) M _J).Cn (xj_xz)l/z =|C [ xI=1  wi =;[W’

where &= x/x,. The last integral may be readily worked out, for example, by the substitution &£ = sing,
giving d& = cosgdg and (1 — &)"? = cosg, so I = /2. Thus, the normalization constant turns out to be
independent of the state’s number:

Now, by the definition of the expectation values of the observables x*” (where, for our tasks, m
equals either 1 or 2), in the n™ stationary state

<x2’"> = T| v, (x)|2x2’"dx.

Using the same approximations as have been used to calculate C,, we get

m C, 2 x> dx 1 e x*"dx B 2xf’" _ 1 EMdE
<x2 >WKB - 2 _,)[n kn(x) _;__!;n (Xj _x2)1/2 = n Im, where Im :-([W'

Problems with Solutions Page 36



Essential Graduate Physics QM: Quantum Mechanics

These integrals, for m = 1 and m = 2, may be worked out using the same substitution &= sing, giving

/2 71'/21_0052 P
I, = J.sinz pdo = I —¢d¢:_

b

0 2 4
/2 71'/2 2 /2 2
1-cos2 1-2cos2@+cos” 2
J. sin* gpdo = Ism 1) a’qp J.(—(pj do = .[ 4 (pd(p
0 2 0 4
17 1 37
=— ——2co0s2¢p+—cosdp |dp =—
4 -([( ¢ 2 (/)) ¢ 16°

so, finally,

2 2
<x2> _ 2x; I = x;(2n+1) Exg(n+lj,
WKB T 2 2
3

4 4 2
<x4>WKB _2x, I :3x0(2n+1) _ xg[n2+n+lj.
T 8 2 4

As will be shown by operator methods in Chapter 5,46 the exact expression for the first of these
expectation values is exactly the same, while the second one differs by just a constant:

() =3[ e

so the WKB approximation gives a result that is asymptotically correct result in the limit n — oo, as it
should.

Problem 2.11. Use the WKB approximation to express the expectation value of the kinetic

energy of a 1D particle confined in a soft potential well, in its n™ stationary state, via the derivative
dE,/dn, for n >> 1.

Solution: We need to calculate

2 +4x

(1), = < > fl//n 13— w,( =——It//n V/” )dx- (*)

As was discussed in Sec. 2.4 of the lecture notes and also in the solution of the previous problem, for
higher stationary states with n >> 1, we may limit the integration in Eq. (*) to the classically allowed
interval [xr, xr]. On this interval, we may use Eq. (2.94) with |a| = | b|, which may be rewritten as

2m[E, —U(x)]
h2

v, (x)= k'/c;(x)sm Ik Ndx'+¢@ |, with k>(x) ; (**)

for our current purposes, the value of the constant phase shift ¢ is not important. Since the WKB
approximation is valid only if the sine function in this expression changes much faster than the pre-
exponential factor, we may limit the double differentiation in Eq. (*) to this function, getting

46 A brute-force calculation of the exact values, starting from Egs. (2.276) and (2.284) and then using recurrence
relations between the Hermite polynomials, is also possible, but much more cumbersome.
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< s1n {jk dx +(p}dx

Just as in the solution of the previous problem, at each period of the rapidly oscillating sine function, its
square may be replaced with its average value, equal to '2, so we get

But as we know from Eq. (2.109) of the lecture notes, in the limit » >> 1, this integral equals 7n, so we
get a very simple expression:

What remains is to calculate | C, |2 from the normalization condition; with Eq. (**), it is

ifl//: (x)w, (x)dx = ( '[k )dx + (p}dx =1.

With the similar approximation of the rapidly changing sin’(...) by ', we get

2 lxR dx h
‘ ‘[zc{m]

x

xL

n

In order to calculate this integral, we may spell out Eq. (2.109), in the limit n >> 1, as

J.k dx——)mxj}[E ~U(x)]"*dx = m,

XL

and differentiate both parts of the last equality over n — the operation legitimate at n >> 1 when the
energy spectrum is quasi-continuous. In the same limit, the changes of x| and xg with n are negligible,
and (at the last step, using the expression for &,(x) again) we get

1/2 X 1/2 R
Ol g,y =P ) e
i h  dn dE, %,
(m)?dE, 1"} dx m dE, ¥ dx
= Py 1/2 E_z_J. =7,
hoodn2;[E,-UK)]"? 7 dn g k,(x)

Combining the above relations, we finally get a very simple result:
ndE,
< >n :EE
For example, for the harmonic oscillator of frequency an, E, = han(n + '), so dE,/dn = hiay, and
our WKB result yields (7,) = hawn/2. As will be shown in Sec. 5.4 of the lecture notes, the exact

expression is given by Eq. (5.97): (T,,) = E,/2 = hiag(n + '2)/2; in the limit n >> 1, the relative difference
between these two results tends to zero.
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Problem 2.12. Use the WKB approximation to calculate the transparency & of the following
triangular potential barrier: UG

U
U,-Fx, forx>0, 0 U, - Fx

0, for x <0,
U(x) =
with F, Uy > 0, as a function of the incident particle’s energy E. E
Hint: Be careful treating the sharp potential step at x = 0.

X
Solution: With the classical turning points for this specific 0 /E] _E
potential (see the figure on the right), Eq. (2.117) of the lecture t(E) =2

notes yields

tE

) 1
T = exp{—% [l2m, - Fx- E)]mdx} _ eXp{—%@mF)”z[t(E)]m jgwdg},

0

where &= 1—x/t(E), while «(E) = (Up — E)/F is the potential barrier’s thickness for a particle of energy
E — see the figure above. The elementary integral in the last expression is equal to 2/3, so we get

o = op{-2onr O 2 ol - EM L

This is an approximate version of a formula derived by H. Fowler and L. Nordheim at the very
dawn of quantum mechanics, in 1928. In this form, it is used in solid-state physics and engineering (with
F =—eé, where ¢ is the applied electric field) so often that it even gave its name, the Fowler-Nordheim
tunneling, to the very effect of electron transfer through a potential barrier of the triangular (or a nearly-
triangular) shape formed by the field.#

Note, however, that at the sharp (step-like) left border of the barrier, the second condition
(2.107) of the WKB approximation validity is not satisfied even in the low-field limit

F<<%(2mU§)l/2, (**)

when x#(E) >> 1 and hence its first condition (2.96) is satisfied for most energies of the interval 0 < E <
Up. As a result, Eq. (*) is never quantitatively correct. To rectify this deficiency, let us write explicit
expressions for the wavefunction of a particle with energy E, in all three relevant spatial regions. If the
condition (**) is satisfied, the barrier’s transparency, by the order of magnitude given by Eq. (*), is very
small, so inside the barrier, i.e. at 0 < x < #(E) = (Uy — E)/F, we may not only use the WKB form of the
wavefunction given by the second line of Eq. (2.116) of the lecture notes but also neglect the second
term on its right-hand side (proportional to the coefficient d) because the ratio d/c scales as & << 1:

47 In particular, this is exactly the effect used for writing and erasing bits of information (encoded by the amount
of electric charge trapped in a nearly-insulated conducting electrode called the floating gate) in the now-
ubiquitous flash memories, in particular in the so-called solid-state drives (SSD). In the case of electron tunneling
into vacuum, the same effect is usually called the field emission of electrons.
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Aexp{ikx}+ Bexp{—ikx}, with &k = %, forx <0,
l//(x) = 1/2( ) exp{ IK(x')dx } with K(x) = {Zm[U(xF?— E]} s for0<x< t(E),
p /{(x) exp{ i_I k (x’)dx'}, with k(x) = {Zm[E —hU(x)]} , for t(E ) <x

Writing the usual boundary conditions of continuity of the wavefunction and its first derivative
at the sharp border x = 0, we get a system of two equations for the coefficients A4, B, and c:*8

C
A+B=——— k(4—-B)=-cx'"?(0
+ Kl/z(o)’ ! ( ) cK ( ),
which yield, in particular,
¢ 2 |’ «(0) 4E 2
A 2(0)+ix 2 (0)/k T O hUO[ Uy~ )]

On the other hand, at the border x = #(£), where the WKB condition (2.107) is satisfied, we may
use the connection formulas similar to Egs. (2.106) of the lecture notes, in particular, giving

(£)
‘f‘ = exp{ K(x )dx } = Ty SO L LA

A c
Now, calculating the probability currents corresponding to the incident and passed de Broglie waves, we
find the barrier’s transparency*’

g = I.' _ (h/m)|f|2 — 4[E(Uo _E)]l/2 (%KB = 4[E(U0 _E)]l/z exp{_i(zm)m (Uo _E)3/2 } (***)
U, 3 F

2 2 2

c

4E
y —

2 U E 1/2
- o, - )7

o
Lo (n/m) 4| k Uy

For typical energies £ ~ Uy/2, the pre-exponential factor in this expression is of the order of 2,
i.e. is quite noticeable. However, for typical applications, its effect on the result is much smaller than the
transparency’s uncertainty due to those of parameters U, and m.3% () This is why using the simpler Eq.
(*) may be justified for some applications.

Note also that in some textbooks discussing the Fowler-Nordheim tunneling of electrons from
metals or degenerate semiconductors, the above potential profile is modified as

0, for x <0,

_ 2
U(x) = UO—Fx—e—, for x > 0,
l67xe,x

48 Note that taking the first derivative of the wavefunction under the barrier, we may skip differentiating the pre-
exponential factor because due to the condition (2.96), the exponential factor changes much faster.

49 In their original work, H. Fowler and L. Nordheim derived this formula, in the low-field limit (**), in a
different way — using the Airy functions (which were discussed in Sec. 2.4 of the lecture notes).

30 In solid-state systems, m in Eq. (***) should be replaced with the effective mass m.¢ of the charge carriers in the
barrier’s material — see the discussion in Sec. 2.8 of the lecture notes.
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where x is the dielectric constant of the barrier’s material, with the corresponding modification
(increase) of &, to account for the potential barrier’s suppression by the image charge effect.>! However,
this modification is quantitatively valid only if the so-called traversal time 7 of tunneling through the
barrier (which will be discussed in Sec. 5.3 of the lecture notes) is much longer than the reciprocal
plasma frequency @, of the conductor,’?> because a)pfl gives the time scale of the transients (surface
plasmon propagation®3) leading, in particular, to the image charge field formation.

Problem 2.13. Prove that Eq. (2.67) of the lecture notes is valid even if the potential U(x)
changes, sufficiently slowly, on both sides of the potential step, provided that U(x) < E everywhere.

Solution: 1If the potential changes slowly, the characteristic length a of its variation is large. If it
is so large that the first condition, Eq. (2.96), of the WKB approximation validity is satisfied, we may
use for the wavefunction, both before and after the step, expressions similar to Eq. (2.94):

K72 (x )exp{ '[k(x’)dx }"‘ A b( )eXp{—l'[k(x’)dx} for x <0,

0

Wwks (X) =
LT )exp{ [ le(x)dx } for x >0,

0

with the local wave number 4(x) defined by Eq. (2.82):

2m|E -U(E
k2 (x) [ - ( )] )
Here the lower integration limits are chosen, for the convenience of what follows, at the step location
point x = 0, and the back-propagating wave at x > 0 is set to zero due to the reasons that were discussed
in detail in Sec. 2.3 of the lecture notes. (Note again that they are valid only if U(x) < E in the whole
region of the particle’s propagation.)

The second condition of WKB approximation, Eq. (2.207), is not satisfied at x = 0, so instead,
the relation between the coefficients a, b, and ¢ should be found by writing explicit boundary conditions
(of the continuity of the wavefunction and its first derivative) at this point. The former condition is
straightforward,

2mE
hZ

a b c

~ 2m(E-U,)
k1/2 + k1/2 - k1/2 ’

h2

b

where k> =k*(-0)= , kX=k(+0)=

N
while writing the second one, we should take into account that within the WKB approximation’s validity
domain, the pre-exponential factor changes much slower than the exponential function. As a result, at
the calculation of the first derivatives, we may differentiate only the exponent. This approximation, used
also in the solutions of the two previous problems, yields the boundary condition

31 See, e.g., EM Sec. 2.9, in particular Eq. (2.193), with the replacement & — x& (see EM Sec. 3.4).
32 See, e.g., EM Sec. 7.2, in particular Eq. (7.37).
33 See, e.g., the model solution of EM Problem 7.18.
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: a b ) c
lk_|: ki/z _kiT:| =lk+kiT.

But these equations for normalized coefficients alk"?, bk, and c/k."? are exactly the same as were
obtained for coefficients 4, B, and C in Sec. 2.3, and their solution is also the same, giving, in particular,

b_b/k"” k -k _E”-(E-U,)"

+

a alk” k +k E”+(E-U,)"

Now calculating the WKB probability currents (2.95) carried by the incident and reflected de Broglie
waves at an arbitrary point x < 0, for the reflection coefficient, we get

bz_{El/z_(E_UO)l/z}2 -

a

|

a

L
(7’Ll/m)|a|2

| E"”+(E-U,)"

Since according to Eq. (2.6), in any stationary state, the probability current has to be independent
of x, the reflection and transmission coefficients have to satisfy the relation
T+R=1.

Using this relation together with Eq. (*) to calculate the transmission coefficient,

172 172 7? 1/2 12
'7:1_%k4_{E ~(E-U,) } _ 4E(E-U,)

El/2+(E—U0)”2 Z[E1/2+(E—U0)”2]2,

we see that it indeed coincides with Eq. (2.67) of the lecture notes. U
X
In particular, this result gives ¥ =1 at U = 0, i.e. shows that in

the WKB approximation, a “cusp” in an otherwise slowly changing
potential U(x) < E (see an example in the figure on the right) does not

reflect the incident particle. 0 X

Problem 2.14.* Prove that the symmetry of the 1D scattering matrix S describing an arbitrary
time-independent scatterer allows its representation in the form (2.127) of the lecture notes.

Solution: First of all, if the scattering potential does not depend on time, the probability density
distribution (for an infinitely wide wave packet) should be also constant in time. In this case, according
to Eq. (2.6) of the lecture notes, the values of the probability current 7 at the points x; and x; outside the
scatterer (see Fig. 2.12 of the notes) should be equal, for any combination of the amplitudes 4, B; of the
incident waves. Let us consider two particular cases shown in the figure below.

Ux) (a)
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In case (a), a unit-amplitude wave is incident from the left (4, = 1, B, = 0), while in case (b), the
situation is opposite (4; = 0, B, = 1). According to Egs. (2.123)-(2.124), we may express the amplitudes
of the transmitted and reflected waves in these cases via the scattering matrix elements as shown by the
labels in the figure above. Now using Eq. (2.5) to calculate the total probability currents: /(x;) = L4 + Ip;
= (hkim) (| A, " = | B\ "), and I(x;) = L, + I, = (hkim) (| A2 | — | B2 "), and requiring them to be equal to
each other in both situations (a) and (b), we get two relations:

@: 1-|S,| =|S,[" -0,

2 2 *)
(b): 0—|S,| =[S, -1.
One more set of relations between the matrix elements may be obtained from the fact that all
observable results of any Hamiltonian mechanics (including the wave mechanics) of a particle moving
in a time-independent potential profile U(r) should be invariant with respect to the time reversal.
According to Eq. (1.23) and (1.69), this invariance requires that at the reversal, the spatial components
of 1D wavefunctions change as y(x) — w*(x). At this complex conjugation, a 1D monochromatic
traveling wave Cexp{ikx} turns into the wave C*exp{—ikx} propagating in the opposite direction. This
means that the two particular cases considered above are now modified as shown in the figure below.

(a) (b)
U(x) U(x)
e 52 e S
> s > -+
Sy | Sip ! 1
X, X, X X, X, X

Comparing these cases with the general situation shown in Fig. 2.12 of the lecture notes, we see that
they may be described by taking:

case(a): A1=S1*1, B =1, 4,=0, BZ=S;,
case(b): A4, =S, B =0, A, =1, B, =5,,

Now applying the general Eq. (2.123) to these cases, we get four more relations:

* % * *
lensn +S12S21= O:S11S12 +Slezza

(@): . X (b): . . (**)
02521S11 +522521a 1:S21$12 +Szzszz-

Not all of the eight relations of the sets (*) and (**) are independent. Indeed, comparing the first
equations of each set, we see that | S, |* = 851521 has to equal S1255; , s0
S, =58y,
i.e. the off-diagonal elements of the scattering matrix have to be equal to each other. Denoting this

single complex number as ¢ exp{i@} (with real ¢ and 6), and plugging it into the four inhomogeneous
relations of the sets (*)-(**), we see that they give only two independent relations. The first of them,
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2
s

|Sn

|2

= |Szz

allows the replacement of the two complex parameters Si; and S»; (i.e. of four real parameters) with just
three real parameters 7, ¢, and ¢,: S;1 = r exp{i(0+ @)}, S = —r exp{i(6+ ¢)}. With this notation,>*
the second independent relation may be indeed represented in the form of Eq. (2.127b):

rr+tt =1,

evidently expressing the probability current conservation: £ + & = 1.

Now plugging these results into the two homogeneous equations of the set (**), we see that they

give just one more new relation:

i —i
N =2,

Besides the trivial cases when either £ = 0 or » = 0 (when either the transmitted wave or the reflected
wave vanishes, and hence its phase is undetermined), the last relation shows that, apart from a possible
but inconsequential shift 27m, the phases ¢, and ¢, are equal and opposite, and may be denoted as ¢, =
@ and ¢ = —@. (This fact may be also expressed as Sj; = ~S»".) Plugging these results into Eq. (2.124),
we get Eq. (2.127a) proved as well.

Problem 2.15. Prove the universal relations between the elements of the 1D transfer matrix T of
a stationary (but otherwise arbitrary) scatterer, mentioned in Sec. 2.5 of the lecture notes.

Solution: First of all, let us use the same argument as in the model solution of the previous
problem: the total probability current should be the same at the external points x; and x;, for any
combination of the amplitudes 4; and B, on the right-hand side of the transfer matrix definition — see
Eq. (2.125) of the lecture notes. Taking, first, 4; =0, B; = 1, we get

|T22|2 _|T12|2 =1,
while the second alternative, 4, =1, B; = 0, gives
|T11|2 _|T21|2 =1.

Two more relations may be obtained from the time-inversion arguments spelled out in the
solution of the previous problem. They imply, in particular, that Eqgs. (2.125) should be valid if we
complex-conjugate all wave amplitudes 4 and B, and simultaneously swap them at each spatial point (to
reflect the change of the sign of the wave number £):

* * *
B, =T,,B, +leAl >
* * *
A, =T, B, +T,,4, .

Taking the complex conjugate of these equations, and changing the order of lines and columns, we get

34 This notation is motivated by Egs. (2.121)-(2.122) of the lecture notes, which allow one to interpret the off-
diagonal elements of the scattering matrix as transmission amplitudes, and their diagonal elements, as reflection
amplitudes, for two possible directions of the incident wave. (The amplitudes t and r should not be confused with
the corresponding real transparency 7= t* and reflectivity R = r*.)
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* *
Az = T22A1 +71,8B,

* *
B, = TIZAI +1,B,.

Comparing this system with Egs. (2.125), we see that the matrix elements should satisfy the conditions

Ty =T, T1,=T,.

An alternative way to obtain all these relations is to plug Egs. (2.127) of the lecture notes (whose
proof was the task of the previous problem) into Egs. (2.126). The results may be merged into the
following matrix form:

1 [ ey

T=- ) —if

, with r* +¢% =1;
! e

i
—re

one can readily check that all the above relations between the matrix elements are indeed satisfied.

Problem 2.16." A k-narrow wave packet is incident on a finite-length 1D scatterer. Obtain a
general expression for the time of its delay caused by the scatterer, and evaluate the time for the case of
a very short but high potential barrier.

Solution: The initial packet may be represented by Eq. (2.20) of the lecture notes,
¥(x.0) = [a,e™dk, *)

Then, generalizing Eq. (2.28) by applying Eq. (2.121) to each frequency component, we may use the
linear superposition principle to represent the packet after its scattering as a sum of the transmitted and
reflected parts:

¥t = [a,8, (k) O dkc+ [a,8,, (k)" Tk,

where S is the scattering matrix (2.124).>> In our case of a narrow wave packet, the magnitude of the
Fourier amplitude a; rapidly decreases with its argument’s deviation from some central point ko. This is
why let us rewrite the first term, representing the transmitted component of the packet, as

W, (6.0) = [ 0,0, (ky + | explilk, + 8 e — ol + 5 )1+ ol + )]k

where @ = argS), is the phase of this matrix element, and consider the Taylor expansion of the factors in
this integral in relatively small k = k—k, — exactly as it was done in Eq. (2.29) but neglecting the
quadratic term. (As was discussed in Sec. 2.2, that term describes the eventual broadening of the wave
packet, and does not affect the time delay we are calculating.) For a small variation of %, the resulting
variation of | Sj» | (responsible for the change of the wave packet’s shape) is also relatively small and for
our purposes, may be neglected. However, as we will see in a minute, such variations of @ and ¢,

35 Generally, the off-diagonal element Sy, of the scattering matrix S includes the factor exp{—ika} resulting from
the distance a = x, — x; between the reference points x; and x, — see Eq. (2.120) and its discussion. For our current
purposes, it is convenient to take a = 0.
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d ~ d ~
@ k, p—@, zd—;?‘kzkok, where o, = o(k,) and ¢, = p(k, ),

W, = E k=k,

describe contributions to the transmitted wave packet’s delay, and hence have to be kept for its analysis:

) .~ do do
W ians (5,1) = exp{z(kox — Wyl + @, )}|S21 (ko )|J.ak exp{ l k(x _%‘k:ko t +% k=k, j} dk . (%)

Indeed, comparing this expression with Eq. (*) rewritten as
Y(x,0)= exp{ikox}jak exp{il;x }dk,

we see that besides changing its general phase shift and size, as described by the pre-integral factors,
during the time interval [0, 7], the packet moves forward by

_do do _ 1 do
A==k, g | k=, —Vg{f o dk k:kOJ’

where vy, is the group velocity of the particle in the absence of the scatterer— see the first of Eqs. (2.33a).

This means the scatterer-induced additional time delay is
1 do
At =—— . ok
Vg dk k=k, (**)

This is the result we were seeking for. For a particular case of a very short but high potential
barrier that may be represented with Eq. (2.74), we may use the second of Egs. (2.133) to write

1 1 i mw
= e
l+ia 1+a’ h’k

S, = , with ¢ = —tan"'ar, where o =

b

so using the first of Eqs. (2.33b) for v, we get

m d o, mwW m mw/h? h a
At =———| —tan TR = > = — >
hk, dk Wk )y hk, (mw/hz) +k2 2E l+a

where the last expression also has to be evaluated at & = k. Interestingly, at ¢ = 1, i.e. at moderate

transparency of the barrier, the delay reaches the largest fraction (a quarter) of the value #/E that would
follow from a naive application of the energy-time uncertainty relation (2.155). The delay is even much

smaller at both @ << 1 and & >>1, i.e. at any strong relation between the particle’s energy E = ii*ko*/2m
and its natural scale for this potential, Ey = m# */2h* — see Eq. (2.79).

Note also that one should resist the temptation to interpret this wave packet’s delay by a
potential barrier as “the time of tunneling” of the particle through the barrier. (Such interpretation is
sound only in the limit of very long and low scattering profiles.) Generally, no single time of tunneling
may rationally explain the results of all experiments that may be performed with the barrier.3¢

36 See, e.g., the review paper by R. Landauer and Th. Martin, Rev. Mod. Phys. 66, 217 (1994). See also the related
brief discussion at the very end of Sec. 5.3 of the lecture notes
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Problem 2.17. A 1D particle had been localized in a very narrow and deep potential well, with
the “weight” [U(x)dx equal to —%, where %> 0. Then (say, at ¢ = 0) the well’s bottom is suddenly lifted
up, so the particle becomes completely free. Calculate the probability density to find the particle in a
state with a certain wave number £ at # > 0 and the total final energy of the system.

Solution: As was discussed at the beginning of Sec. 2.6 of the lecture notes, such a well, located
at x = 0, may be described by the delta-functional potential

U (x) =—wWo(x)
and the (only) localized state of a particle in the well is described by Egs. (2.159), (2.161), and (2.162):
hk’ mw?

E._. mw
Wix,t<0)= Adexps—k|x|—i—"t¢, with x = and £, =- =— .(*
( ) p{ a h } n’ 2m 2h° ®)

For this state, the normalization condition is

oo w 2
“‘I’(x,t < Oxza’x = |A|22Je_2’“dx = ﬁ =1, giving |A| =K',
—0 0 K

After the well bottom’s lifting, the particle becomes free to move, so, as was discussed in Sec.
2.2, its wavefunction may be expanded into a sum over either traveling de Broglie waves (as given by
Eq. (2.27) of the lecture notes) or, equivalently, standing waves:

E 272
¥(x,t>0)= Z(ckCcoskarskSsinkx)exp —i—t1y, with £, = s .
T /] 2m
For our purposes, the latter form (spelled out above) is more convenient. If the coefficients C and S are

selected so that each of the component wavefunctions, Ccoskx and S sinkx, are normalized (see below),
then the amplitudes ¢ and s; may be calculated from the 1D version of Eq. (1.68):

¢, = choskx ¥(x,0)dx =|4|C fcoskx e"f\x\dx, S, = szinkx P(x,0)dx =|4|C fSinloc oK g

The second integral (of an odd function of x, in symmetric limits) equals zero, while the first one may be
readily calculated
Tk 0-1 K K> s
¢, =|4] C 2Re [ ™ e dx=2] 4| C Re 0A|C———=20—5—5. (*
0 k*+x k*+x

ik—k

What remains is to calculate the normalization coefficient C. The most transparent way>’ to do
this is to introduce (as was already discussed in Chapter 1 of the lecture notes) an artificial, very large
segment —//2 < x <+ [/2, with xl >> 1, requiring the wavefunction to equal zero everywhere outside it,
and hence on its boundaries, i.e. at x = £//2. For our eigenfunctions, Ccoskx, this gives the following
spectrum of possible values, k,, of the wave number:

57 Another way is to recognize that, in a spatially unlimited system, this sum over k is actually an integral, and use
the so-called delta-normalization of . This approach, to be discussed in Sec. 4.7 of the lecture notes, would give
identical final results.
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k1 .kl

cost =0, qe == m with n=0,1,2,....
2 2

If [ is selected to be large enough, then for all essential wave numbers &, ~ x>> 1/, i.e. n >> 1, the first
term in the last expression is negligible, so the spectrum may be well approximated as>®

27
k, = _l n, )
and the normalization condition becomes

+1/2
“Ccosk,’x

=1/2

s =|C|21_ o _[gjlﬂ
dx_—2 =1, g1v1ng|C|— ; .

With this, Eq. (**) yields the following probability of finding the particle in the state with a wave
number £:
2 8 K’
W, =lc| ==—7—-
‘ | k| Z(k2+1c2)2

Now we may calculate the requested probability density w(k) as the ratio of the sum of all probabilities
Wi within an elementary interval dk << k, to the width dk of this interval. Due to the small distance
between the adjacent numbers k,, the sum may be calculated just as Wydn, where dn is the number of
these modes in the interval dk. According to Eq. (***), dk = (27/l)dn, so

W)= dn 8 kL4 K
Y dk zik2+/<2i27r_;z(k2+,(2)2'

Note the cancellation, in this final expression, of the length / of the artificial bounding segment;
this is the necessary condition for the correctness of this normalization procedure. Another useful sanity
check is the calculation of the total probability to find the released particle in the state with some k > 0:

7 _ 47 Kdk 47 dé
e

where &= k/k. This is a table integral,>® equal to 774, so (fortunately :-) W =1, as it should be. Our result
for w(k) shows that the probability density is finite but nonvanishing at £ — 0, and rapidly decreases as
soon as k is increased beyond the reciprocal spatial extension, «, of the initial wavefunction.

(****)

Now we may use Eq. (***%*) to calculate the total energy® of the particle at ¢ > 0.
Th2k2 4 K AN &g
o 2m 7Z(k2+K2)2 T 2m 0(52 +1)2

Eihzkzﬁ dE ‘T & }
r 2m |9 Er+1 (§2+1)2’

Ey, = [ Eow(k)dk =
0

0 0

38 This approximation corresponds to the general 1D mode counting rule — see Eq. (1.100) of the lecture notes.
39 See, e.g., MA Eq. (6.5b) with n = 2.
60 Since, per the problem’s assignment, U = 0 at ¢ > 0, this energy has only the kinetic component: E; = #°k*/2m.

Problems with Solutions Page 48



Essential Graduate Physics QM: Quantum Mechanics

where & = k/k again. The second integral is the same as the one above (and is equal to 774), while the
first one is another well-known integral,®! equal to 772. As a result, we get an extremely simple formula:

B hZK_Z

= =-F
" om

ini *

ini

E|E

It means, in particular, that the total work done on the system by the force lifting the potential
well’s bottom is
Eﬁn _E'ni = 2|E

1

i.e. twice larger than that (just | Ein; |) necessary to do this process very slowly — with a duration A much
larger than the characteristic time constant 7 ~ #/| Ei,;|. This two-fold increase is the price for the high
speed of the process: at a slow (“adiabatic”) well’s bottom lift, the total energy of the resulting de
Broglie waves with Ej > 0 is vanishingly small.

Problem 2.18. Calculate the lifetime of the metastable localized state of a 1D particle in the
potential
U(x)=-ws(x)-Fx, with #>0,

in the WKB approximation. Formulate the condition of validity of the result.

Solution: According to Egs. (2.159), (2.161), and (2.162) of the lecture notes, and the
normalization carried out at the beginning of the previous problem’s solution, if /' = 0, the normalized
wavefunction of the (in this case, stable) localized state is

} mw

)’ where x, =——,
h

Vo =Ko exp{— K0|x

2

and the corresponding energy is

2.2 1{/2
E:—h Ky __m o *)
2m 2h
At F # 0,52 the potential’s profile is tilted — see the figure on the \U(x) t=|E|/F
right. As a result, the localized particle may escape into the classically .
allowed region x > ¢, where U=-Fx | *
|E| _ mwz s :
F  20°F’ :
by tunneling through the classically forbidden region 0 < x < ¢. If the
force is sufficiently weak,
2 3
m-w
F << rean (%)

the barrier is relatively thick, xpt >>1, the barrier’s transparency is low, and we may carry out the
lifetime calculation by using the WKB approximation.

61 See, e.g. MA Eq. (6.5a).
62 Physically, F is just an additional constant force applied to the particle.
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According to Eq. (2.98) of the lecture notes, in this approximation, the wavefunction under the
barrier is proportional to

#MGXP{_}K(X')GIX}, with 1K)

0

mw?

h2

Ulx)-E=-Fx—E= — Fx.

For the metastable state with the energy given by Eq. (*), this wavefunction virtually coincides with
at | x| ~ 1/xp << ¢, so the weak force does not change either the wavefunction’s normalization factor or
the energy E substantially. As a result, for the potential-barrier region, 0 < x < ¢, we may write

w(x)= %exp{_ﬁ(x')dx}s Kljjo(x)exp{_ jK(x)dx} exp{_ jx(xf)dx}.

0 0 t

Now using the first mnemonic rule of the WKB connection, we may write the outgoing de
Broglie wave in the classically allowed region (¢ < x) as

w(x)= Lexp{— Ik(x)dx} exp{i U Je(x")elx! + const}, with Rk () Fx+E.

k" (x) 2m

The probability current (2.95) corresponding to this wave is

t 2 t
I= Ei{é exp{— 2 _[ /c(x)dx} _m¥ exp{— 2'[ K(x)dx} :
m 0 0

h3

so according to Eq. (2.6) (with the localized wavefunction normalized to 1), the metastable state’s
lifetime is just 1/1:63

R ! R’ 2 mw i 7 2mPw?
T = exps 2| xlx)dx r = exps — 2m - Fx dx = ex .
mw? p{! () } mw? p{h[_Ji [2712 ﬂ mw? T 3t

P>

Note that we could also calculate the lifetime simpler, but more crudely, using the WKB formula
(2.117) for the barrier’s transparency,

t 2 3
Fyxp = exp{— 2'[ K(x)dx} = exp{— 2m W } ,
0

3'F

and then Eq. (2.153) with the attempt time is #, estimated as 277/ w,, with i, = | E |. This approach yields

the following result,
S b2 2m*w? | Az’ o 2m* W’
g |E| PUon'F |~ mw? 3n'F |’

“WKB

with exactly the same tunneling exponent, but a numerically different pre-exponential numerical factor.
This is natural, because the left side of the potential barrier (at x = 0) is sharp, so the WKB validity
conditions are not satisfied for it. On the other hand, the first approach used above treats this sharpness

63 This is the same integral as in Problem 2.10, with the replacement U, — E — —E = |E|, and E given by Eq. (*).
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explicitly, and hence yields the correct pre-exponential factor, though (as was discussed in Sec. 2.4 of
the lecture notes) for most practical applications, this factor is of minor importance.

Problem 2.19. Calculate the energy levels and the corresponding v
eigenfunctions of a 1D particle placed into a flat-bottom potential well of
width 2a, with infinitely high hard walls and a narrow potential barrier in the wo(x)
middle — see the figure on the right. Discuss the particle’s dynamics in the
limit when % is very large but still finite.
-a 0 +a X

Solution: With the origin of x in the middle of the well, its potential
may be described as

+ 00, for |x| > a, )
U(x)= with 2/ > 0.
wS(x), for|x|<a,

From Sec. 1.7 of the lecture notes, we know that the standing-wave eigenfunctions y; of the
Schrodinger equation in the regions with U(x) = 0 (in our case, the segments —a <x <0 and 0 <x <+a)
may be always represented as linear superpositions of the fundamental solutions sinkx and coskx. To

immediately satisfy the boundary conditions = 0 at x = £a, we may take these solutions in the form
C_sink(x+a), for—a<x<0,
C,sink(x—a), forO<x<+a.

v, (x)= {

What remains is to satisfy the boundary conditions at x = 0. Plugging the above solution into
Egs. (2.75) and (2.76) of the lecture notes, we get two equations for the coefficients Ci:

w
k(C, —C_)coska = 2’;:2 C_sinka, (*)
C_sinka =-C, sinka.
The sF:cond eqpation has two .typ'es of solgtions, Fonesponding U(x)
to antisymmetric and symmetric eigenfunctions (with the lowest-
energy functions sketched in the figure on the right): wWo(x)
(1) Antisymmetric solutions (index A), with p }\
. . A \/
(C+)A:(C_)A, re. v, =C,sink,x, W,
and the eigenvalues independent of % E
sink,a=0, 1e k,a=ka=m, n=1,2,.
-a 0 +a Xx

Note that these values of k, and hence the eigenenergies E =
R*I2/2m of these antisymmetric states,

h2k2 72'27’12

2m 2ma*

9

coincide with those of a single sub-well of width a — see Fig. 1.8 and its discussion.
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(i1) Symmetric solutions (index S):
(C. )S =—(C. )S, Le. yg =Csinkg (|x| - a),

together with Eq. (*) giving the following characteristic equation for the eigenvalue £s:
tan kqa :—l, (%)
a
where the parameter « is given by Eq. (2.78) of the lecture notes, with k = ks:

_mw 4

o= .
1k

The figure on the right shows the 1
graphical solution of Eq. (**) for three ——

representative values of this parameter, ie. ¢

of the sub-well coupling strength.®4 It 0 < a=30

shows that the equation has an infinite set —a=1.0

of solutions that may be also indexed with

integer numbers n = 1, 2,...; for the n™ of

them, ksa is within the interval t «—a=03
%0 1 2

ﬂn—§<ksa<7m, kalrx
so the values of k (and hence of the energy E = /i°k*/2m) for the antisymmetric and symmetric states
alternate, with the difference kp — ks, for each pair of adjacent states, being positive but smaller than
2a, for any .

In the limit &« — 0 (i.e. # — 0, meaning virtually no partition between the two sub-wells), ks —

a(n — '2)/a, 1.e. the symmetric eigenfunctions and eigenenergies approach those of the symmetric states
of the full potential well of width 2a. In the opposite limit of weak sub-well coupling, & — o, we have
ksa — 7m. In the vicinity of each such point, we may approximate tanksa with the difference (ksa — 7m)
— see the dashed line in the figure above, drawn for n = 1. As a result, the characteristic equation (**), in

this limit, is reduced to
kga = m — l,
a
so the splitting between the wave numbers and eigenenergies of the adjacent symmetric and
antisymmetric states is small:
1 E ] 2F
ko kg~ <<k, 28 =E,—E ~E @k, k)= L 25
oa dk ma aa ma

n*

The dynamics of the particle placed into such a split well, even in the weak coupling limit % —
o, i.e. @ — oo, depends on its initial state. In the simplest case when the state corresponds to just one

64 For the eigenvalue classification using this plot, the fact that & depends on kis not essential. (For example, one
may view the argument ka as a normalized well’s width 2a, which does not affect a.)
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(say, the n'™) couple of the adjacent symmetric and antisymmetric eigenstates, with close values of the
wave number: kj = ks = k, and energy: Ex = Es = E,, the above expressions for the eigenfunctions may
be approximated just as in Eq. (2.169) of the lecture notes (obtained in Sec. 2.6 for a different system —
see Fig. 2.19):

V() ~ %[WR W@l v )= %[wk ) -y, (0]

where yg 1 are the normalized ground states of the completely insulated wells:

Ve ()= (3

a sink,

2 (0, for—a<x<0, x|, for—a<x<0,
X
X

7\ |[sink,
WL(X):(_j X
, for0<x<+a, a 0, for 0 < x < +a.

As a result, repeating all the arguments of Sec. 2.6, we arrive at the same picture of sinusoidal
quantum oscillations of the particle between the two sub-wells (i.e. of the probability of finding on
either side of the partition) with the frequency @, = 29,/h. Note that just as in the example analyzed in
Sec. 2.6, the time period of these oscillations,

2 _ah o’
" w, O, nh

is a factor of /27 >> 1 shorter than the lifetime 7 (2.152) of the metastable state of the particle in a
potential well limited by two delta-functional walls (see Fig. 2.15) with the same parameter .

However, in contrast to the system analyzed in the lecture notes (see Fig. 2.19), which has just
one pair of localized symmetric-antisymmetric states, our current system may have many such pairs. As
a result, for an arbitrary initial state of the particle, the system may exhibit many simultaneous quantum
oscillations, with incommensurate frequencies @,.

Problem 2.20." Consider a symmetric system of two U(x)
potential wells of the type shown in Fig. 2.21 of the lecture notes, T

but now with U(0) = U(fo0) = 0 — see the figure on the right. Derive 0
a general expression for the well interaction force due to their *
sharing a quantum particle of mass m, and determine its sign for the

cases when the particle is in:

(1) a symmetric localized eigenstate, with ys(—x) = ws(x), and
(i1) an antisymmetric localized eigenstate, with wa(—x) = —pa(x).

Use a different approach to verify your conclusions for the particular case of delta-functional wells.

Solution: In classical mechanics, a potential field described by a 1D potential U(x) exerts the
force F, = —dU/dx on the particle moving in this field. According to the 3" Newton law, the force F
exerted by the particle on the potential well (physically, on the source of the field) is equal and opposite:
F=-F, = aulx)
dx
Due to the correspondence principle, in quantum mechanics, this force is described by the
corresponding operator, in the coordinate representation equal to dU/dx, whose expectation value (F)
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may be calculated using the general Eq. (2.4) of the lecture notes. However, if we want to calculate the
force exerted just on just one potential well (say, the right one, with x > 0 — see the figure above), we
need to limit the integration by the corresponding semi-axis:

o) * d
= _[‘I’ (x,t)—U‘P(x,t)dx .
0 dx
In the n™ stationary state, with its simple time dependence (1.62), this force is time-independent:

T ox,dU sz
(F) !%(X)Ewn x)dx = Ilt//n )|~ dx.

Since in a localized stationary state of a 1D system, the probability current (2.5) has to vanish for
all x,% i.e. the wavefunction’s phase ¢ has to be constant, for the notation simplicity, we may always set
the phase (which, according to Eq. (2.4), does not affect the expectation value of any physical
observable, including F) to zero, and write

()= w02 = Jui (v

Integrating the last expression by parts, we get
(Fy=y(xJU(x)= —IU (w?).

The first term of the last expression vanishes due to the condition imposed in this problem on the
function U(x). Plugging into its second term the expression for U(x) following from the stationary
Schrodinger equation (2.53) for the n™ eigenstate we are considering,

ndy, 1

U(x):E +

n

2m d’x y,’
we get

2m d°x y,

x=0

—T{En+£d2;//n L}d(x//j)z_Enxrd(,/,j)_ﬁw%%dx.
0

In the second term of the last expression, we may write

2 2
d 2” dy, ;. _d(dy,\dy, , _dy, fdy,)_1 /(dy, ’
d x dx dx\ dx dx dx dx 2 dx

so for the average force, we get

65 Otherwise, according to Eq. (2.6), with say x = x;, and x, — oo, the probability W to find the particle to the right
of point x would change with time. Note that (as we already know from a discussion in Sec. 2.2), this statement is
not necessarily true for infinite 1D systems, such as a fully free particle, because the probability there may “flow
from —oo to +o0” without accumulation at any finite x. Later in the course, we will also see that even in finite
systems of higher dimensions, the probability current density may not vanish in a stationary state, because the
probability may “flow in circles”.
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(=5, Tl )2 ol |-y - 2o 20

Since we are discussing localized eigenfunctions w;(x), which vanish at x — oo together with
their derivatives, only the second substitutions (at x = 0) in the above expression may be different from

zero, and we finally get
h”|(dy, *
2m{[ dxj}o' ©)

This general formula enables us to answer the problem’s questions.

X=00
x=0

<F> = EnWj x=0

(1) For any symmetric eigenfunction, the derivative dy,/dx vanishes at x = 0, so the second term
in Eq. (*) equals zero, while the first one is negative because for any localized state, E, < U(fo) = 0
Hence for such an eigenstate, (F) < 0. Since the above calculation was for the force exerted on the right
well, we may conclude that sharing a particle in a symmetric eigenstate produces an attractive force
between the wells.

(i1) On the other hand, for any antisymmetric eigenstate, the wavefunction y;, itself has to vanish
at x = 0, so (F) > 0, meaning that in this case, the wells’ interaction is repulsive.

Now note that an alternative way to calculate the wells’ interaction force is to write

oF
F)= n Hk
(F)=-— (**)
where a is the distance between the wells, with the partial derivative meaning that the shape of each well
is kept constant at the distance variation. This requirement limits the strict applicability of Eq. (**) to
the potential profiles with nonvanishing intervals with U(x) = const between the wells. In particular, it
may be applied to the system of two delta-functional potential wells considered in Sec. 2.6 of the lecture

notes (see Fig. 2.19):
Ux)= —W{é’[x—%j+5(x+%ﬂ, with % > 0.

As a reminder, in the limit of distant wells (xpa >> 1, where xy = 2m#//i?), that analysis gave, for the

only pair of localized eigenstates (one antisymmetric and the other one, symmetric), the following

expressions:
2

2mw
E, =E,+0, E.=E -9, where 0 = m2 exp{-x,a}>0,
and E, does not depend on a. Since J grows (and hence E5 grows as well, while Es decreases) as a is
reduced, the wells sharing a quantum particle in the antisymmetric state repulse each other, while if the
particle is in an antisymmetric state, the wells attract each other — in full agreement with the conclusions
following from Eq. (*).6¢

66 As may be readily shown from Egs. (2.166) and (2.172) (and their graphical solution shown in Fig. 2.20) of the
lecture notes, this qualitative conclusion is valid for amy distance between the wells — besides that the
antisymmetric localized state does not exist at all if @ is lower than the critical value a,;, given by Eq. (2.167).
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Problem 2.21. Derive and analyze the characteristic equation for U(x)
localized eigenstates of a 1D particle in a rectangular potential well of a —a/2 val2
finite depth (see the figure on the right): 0 I

-U,, f <a/2, . _
Ux)y=1 " or || VS Gith U, > 0, Uy
0, otherwise,

In particular, calculate the number of the localized states as a function of the well’s width a and explore
the limit Uy << #*/2ma’.

Solution: This problem is conceptually similar to the two-well problems analyzed in Sec. 2.6 of
the lecture notes, as well as to Problems 19-20 above, though the quantitative results are different.

(1) The antisymmetric eigenfunctions satisfying the requirement of the wavefunction’s continuity
at x = +a/2 have the form

sin kx, for|x|£§,
sgn(x) sink?a exp{— K(|x| — %)}, for |x| > %,

where the real parameters k and x are defined as in, respectively, Egs. (2.65) and (2.162):

‘/’A:CAX

2712 2.2
MR _p v=£+u,>0, MK - s,
2m 2m
s0, in particular,
5 5 5 ,  2mU,
k»+x’>=K?, where K* =——+>0. )
h

From here, by using the second pair of boundary conditions (of the continuity of the derivative
dyldx at x = ta/2), we get the following characteristic equation:

n@:—ﬁ, 1e. tan@:—k—a<0, (**)

K 2 Ka

ta

whose graphical solution is shown on the left panel of the figure below, for several representative values
of the dimensionless parameter xa.

10 10
| xu=3
— ku=0.3
0 0 ———
ka
tan—
2
xa=0.3
100 ) 105 0.5 1 L5 2
ka/2x
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As the plots show, the solutions k of Eq. (**), besides the physically unacceptable solution £ =0
(which gives vanishing ), may be numbered by integer numbers n =1, 2, 3,..., with

1 ka
n——<-—"-<n.
2 2r

The lower end of this interval, i.e. k,a/27 — n — Y4, corresponds to k¥ — 0. This means that the n't
eigenfunction becomes delocalized, with &, = K, at the following value a, of the well’s width:

27 1
a=a,=—|n——|,
K 2

so the number of antisymmetric states in the well is

N, =floor Ka 1 ,
2r 2

where floor(¢) is the floor function (frequently denoted as | & |), defined as the largest integer not greater
than the function’s argument £ — whose values may be continuous. In particular, at a < @y, where

T 7h
a. =a =—=

min K W ?

the well does not have any antisymmetric localized states at all.

(i1) The symmetric eigenfunctions,

cos kx, for |x|£%,

ys =Csx ka a a
COS—eXpy — K |x|—— , for |x|2—,

2 2 2

lead, in an absolutely similar way, to a different characteristic equation:

an 9 KK (+%%)
2 k  ka
whose graphical solution is shown on the right panel of the figure above. As the plots show, Eq. (***)
has one solution £, in each of the complementary intervals:
k,a 1

n—-1< <n——.
2 2

Each of these solutions, besides k; (i.e. for n = 2, 3,...), gives k¥ — 0 and hence %, = K (i.c.
becomes non-localized) at k,a = 27(n — 1). Hence, such a solution is impossible at

2m’
a<a' =——, where n'=n-1=1, 2,...,
K

so the number of remaining symmetric states

Ny = ﬂoor(ﬁj .
2r
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Notice that since Uy > 0, i.e. K > 0, this result shows that Ng > 0 for any a > 0. This means that

the lowest localized symmetric eigenfunction (with k& = k) exists in any potential well of nonvanishing
width and depth. According to the first of Eqs. (*), for very shallow wells with Uy << #*/2ma’, i.e. Ka
<< 1, both ka and xa have to be much less than 1, and for n = 1, the characteristic equation (***) is
reduced to
ka « . kla
—=—<<1, 1.e. K =
1

<<k,

giving the following equation for the only remaining energy level:

2 2 2 \? 2 (2722 2
|E1|Eh—K2_h—(klaj Ema [h li =24 (U0_|E1|)2.

om 2ml 2 2\ 2m ) T 2n?

In this limit, ¥ << k£ < K, and hence |E;| << Uy, so we may neglect | £ | on the right-hand side of the last
expression, thus arriving at the following approximate (but asymptotically correct) result:

m ., 5 h’
|E1|:FUOG , for UO << 2ma2 .

Note that for the (only) localized state of the particle in a delta-functional, i.e. very deep and narrow
well, this formula coincides with Eq. (2.162):

E]=

(****)

m 2
2n?
Indeed, for the rectangular potential well, the “weight” 7/ of the delta function is just the product Uya.

The task of the next problem is to generalize Eq. (****) to the case of an arbitrary (but very
shallow) potential well.

Problem 2.22. Calculate the energy of a 1D particle localized in a potential well of an arbitrary
shape U(x), provided that its width a is finite, and the average depth is very small:

22

‘17‘ << 2:; where Usé IU(x)a’x.

Solution: Let us select the origin of x in the middle of the well, and integrate both sides of the
stationary Schrodinger equation, rewritten as

d*v  2m
ot Ulx)-Ely,
over an interval [—xo, + xo] with xo > a/2. The result is
+X
dy dy 2m
— | v— — | y—— = — fo —lf x:dx. *
v, | xe, = I[ (x) - Ely(x) *)

As we already know from Secs. 2.3-2.6 of the lecture notes, near the points x = %xy, i.e. outside
the potential well, the wavefunction changes as exp{—«| x|}, where x is defined by the relation
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1/2
E|E|=—E, i.e.:c=%,

ik’
2m

so we may rewrite Eq. (*) as

ColE) ]2 flote)- Bl ¢

—X,

_K[‘//(+xo)+V/(_xo)]E_

So far, this is an exact result, valid for any xy > a/2. Now let us suppose that if | U]| satisfies the
condition specified in the assignment, then | £| is even much smaller. (This assumption, implied by Eq.
(****) of the previous problem’s solution, will be confirmed by our final result.) This means that 1/x is
much larger than a, so if we select xo somewhere within the following wide range,

a<<x,<<l/k,

then within the interval [—x(, +x¢], the wavefunction is virtually constant. Hence we may cancel it on
both sides of Eq. (**), getting simply

1/2 +x, +a/?2
(2 |E|) 2_2_’:1 I[U(x)—E]dXE_z_m I|U |dx+2 2x0|E|
h o n_an n

Moreover, since at our choice, xo << 1/x = h/(2m|E|)"?, the last term on the right-hand side of this

relation is negligible in comparison with its left-hand side, and the formula may be reduced to just

ol BNV o+
o] m|h|) 2=—h—T [lU(e))dx.
—al2

giving us the final resultt’

£l ] [t |de, =

well

confirming our assumption that | £| is much smaller than the average value of | U|.

Just one warning: this scaling of the localized state’s energy (as the square of the average
confinement potential) is only valid for 1D systems. As we will see in Chapter 3, in a similar 2D
problem, | E£| is exponentially low, while the 3D localization has a threshold: the confining potential | U|
has to reach a certain non-zero value before it can house a localized state.

Problem 2.23. A particle of mass m is moving in a field with the following potential:
U(x) = Uo(x)-i- W&(x),

where Upy(x) is a smooth symmetric function with Uy(0) = 0, growing monotonically at x — Foo. Use the
WKB approximation to:

67 In the particular case of a rectangular well, this formula is immediately reduced to Eq. (****) of the previous
problem’s solution (obtained in the same limit).
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(1) derive the characteristic equation for the particle’s energy spectrum, and
(11) semi-quantitatively describe the spectrum’s evolution at the increase of | 2|, for both signs of
this parameter.

Spell out both results for the quadratic-parabolic potential (2.111): Up(x) = man’x*/2.
Solutions:

(1) As was demonstrated in Sec. 2.4 of the lecture notes, the "soft" potential Uy(x) alone may be
handled with the WKB approximation very successfully,%® but this approximation is not directly
applicable to such "hard" potentials as the delta-functional peak — please have one more look at the
condition expressed by Eq. (2.96). However, we may solve this problem by combining the WKB
approach with the delta-functional potential treatment discussed in Sec. 2.3, based on the boundary
conditions (2.75)-(2.76). For the delta-functional potential located at x = 0, they read

v.0)=y 0=y (0)-Y=(0)= 22wy o), )

where y4(x) are the wavefunctions at x > 0 and x < 0, respectively.

Due to the symmetry of our current potential U(x), the eigenfunctions of our problem have to be
either symmetric: y(—x) = y(x), or antisymmetric: y(—x) = —y(x). According to the latter of Egs. (*), the
antisymmetric eigenfunctions are not affected by the delta-functional potential peak at all, because, for
them, y(0) has to vanish. Hence for these eigenstates, corresponding to even values of the integer n in
Eq. (2.109), we still may use the general Wilson-Sommerfeld result (2.110) for an arbitrary smooth
potential Uy(x), and the specific result (2.114) for the quadratic potential (2.111):

En:ha)o(n'—i-%} for n'=n-1=1,3,5,....

On the other hand, for symmetric eigenfunctions, for which the first of Egs. (*) is satisfied
automatically, and dw /dx = —dy./dx at x = 0, the second of the boundary conditions may be rewritten as

dy m
—2(0)=—wy_(0). *k
- (0)=-5%y.(0) (**)
For x > 0, where U(x) = Uy(x), we may use the connection formulas (2.105), obtained for exactly this
situation: the total reflection of a monochromatic de Broglie wave from the classical turning point x. of a
soft potential well — in our current case, of Uy(x). With these formulas, Eq. (2.94) takes the form

xC

—ip(x) _ eigo(x) +im/2 ], with @(X) = Ik(xr)dxr > 0’ k2 (X) = ;—T[E - UO (X)] .

a

Now calculating the wavefunction's derivative,

v, (x)

X

dy . a .do —i¢(x)_ei¢<x)+m/2]_l a dk —i(p(x)_eiq)(x)+i7r/2]

de k70G) b S 26 () dx

68 As a reminder, this approximation gives the exact result (2.114) for the energy spectrum of the harmonic
oscillator.
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we should note that since d@/dx = —k, and | dk/dx | ~ k/a, where a is the potential’s change length scale,
the first term on the right-hand side is by the factor ~ka larger than the second one. However, the WKB
approximation is strictly valid only at ka >> 1, so the second term is negligible unless the first one
vanishes.® As a result, after the cancellation of a/k"*(0), Eq. (**) yields

ik [e_i(p + ei((p + 7[/2)i| _ hﬂzw{e_w _ ei((p + 7[/2)}

b

where

= _lxc :lxc _ 172 = :l 1/2 * 3k k
¢>=¢>(o)_h£ pdx_h£{2m[E Ux)])'?dx >0, and k= k(0) h(sz) . ()

because £(0) should be understood as a limit of k&(x > 0) at x — 0, i.e. calculated taking into account only
the "soft" part Uy(x) — which, in our case, vanishes at x = 0.

The system of the last three relations defines the eigenenergies £ of the symmetric modes. Since

_€_i¢+€i(¢+ﬂ/2> 'e—i(¢+7z/4)+ei(go+7r/4) ( ”]
= —cotan| ¢+ — |,

le—igp _ei((/)+7z/2) Ele—i((p+7r/4)_ei((p+7r/4) N

the first of them may be rewritten in a more compact form,

T mw
cotan| o+ — |=— . Ak
(go 4J n’k ( )

Together with Eqs. (**%*), this is the required characteristic equation — for symmetric eigenfunctions.

(i1) Since, according to Egs. (***), both ¢ and k are functions of E, the characteristic equation
(****) does not allow an analytical solution for an arbitrary potential Uy(x). For its semi-quantitative
analysis, we may notice that since in the region ¢ > 0, the function cotan(¢ + 7/4) turns to 0 at points ¢
=+ 1/4)z,with [ =0, 1, 2,..., then if /= 0 (no delta function at origin), Eq. (***%*) is satisfied at

4o = %§p(x)dx =(4l+1)r = 27{;1 —%j with n=2/+1=1,3,5,...,
C

thus returning us to the odd-n subset of the Wilson-Sommerfeld series (2.110). In the particular case of
the quadratic potential, we may rewrite Eq. (2.113) of the lecture notes as

1 +xc E
T

= — d = — ,

Y= om Jcp ok =3 ha,

so for the energy, we get the following eigenvalues:
2 2 1 1
E =ho,—¢, =ho,—|l+— |t =ho,| 2] +— |,
V3 /4 4 2

1.e. the subset of the spectrum (2.114), withevenn'=n—-1=2/=0,2,4,...

69 Besides that, in our current problem, the derivatives dUy/dx, and hence dk/dx, vanish at the point of our interest,
x =0, so the second contribution to dy./dx vanishes exactly.
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The situations with %/ = 0 may be
analyzed graphically, by plotting both sides LHS
of Eq. (****) as functions of ¢. Each
continuous branch of the function cotan(¢ +
74) i.s descending with the growth .of o, }RHS for <0
spanning the values from +1 to —o in the | = -
interval 0 < ¢ < 7— /4, and from +o0 to —o }RHS for#/ >0
within intervals (/ — 1/4)r < p < (I + 3/4)x, ’—\
with / = 1, 2,... — see the black lines in the
figure on the right. The red and blue lines in E,/haw, =1;0.1;0.01
this figure show the right-hand side of Eq. \

(****) for the particular case of the quadratic "o 1 2 3
potential, for the positive and negative %, ol

P

respectively, and for several values of the dimensionless parameter Ey/fiay, where Ey = mwP/2h* is the
energy scale imposed by the delta-functional potential — see Egs. (2.79) and (2.162) of the lecture notes.
Semi-quantitatively, these plots are also valid for any smooth symmetric potential Upy(x), monotonically
growing at x — oo.

As the plots show, an increase of the positive “weight” 7/ leads to the shift of each eigenvalue
toward larger ¢ and hence larger E, and vice versa, while for #/ < 0 (corresponding to a narrow
potential well at x = 0), each eigenvalue is shifted down as |7/ | is increased. In the former case (% > 0),
this trend is unlimited but saturated: at 2/ — +oo we get

¢—)(Z+%Jﬂ', for /=0,1,2,....
For the particular case of the quadratic potential, this formula yields
E, =hco0£(p, —>7f‘za)02 l+E 7 =ho, 21+é =ho, n’+1+l ,
T T 4 2 2

with even values of n' = 2/ = 0, 2,.... This means that due to the barrier, the even-numbered energy
levels approach (from below) the odd-numbered levels, with higher »’, of the system without the central
barrier. (In the figure above, these values correspond to the vertical black lines.)

In the opposite limit of a very deep potential well (% — —o0), there is a similar saturation of the
phase shifts ¢, and hence of the eigenenergies:

—)(l—ljﬂ"
¢ 4

E, —>ha)oz(l—l];zEha)o(Zl—lJEha)o[n’—lJrlj, for /=1,2,3,....
7 4 2 2

so for the quadratic potential,

This expression shows that the even-numbered energy levels approach the odd-numbered levels, now
with lower n', of the system without the central well. Note that this trend is not valid for the ground state
— the symmetric state with / = 0. As the figure above shows, the corresponding solution of Eq. (***%*)
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exists only for relatively small values of | %/| — for the quadratic potential, only for the ratio Ey/fiax

smaller than ~0.058). However, this particular prediction of the WKB approximation is unreliable,
because, as was discussed in Sec. 2.4, its validity condition (2.96) is strictly fulfilled only for n' >> 1.

Physically, it is evident that as —#/ grows, the ground-state energy should become negative at Ey/hany ~

1, and at Ey/hayy >> 1 (i.e. when the potential Uy(x) has a negligible effect on this state) should approach
the value (2.162):

Problem 2.24. Prove Eq. (2.189) of the lecture notes.

Solution: According to Egs. (2.94), (2.98), and (2.105) of the lecture notes, within the WKB
approximation, the localized wavefunction inside one of the wells, say y1(x), may be represented as

[k(i;]l/z s1n( _[k(x’)dx +Z} forx < x_,
xC

y (x) = *)

[ G )]1/2 { JK‘(X )dx} forx, <x<x/,

where x. and x.’ are the classical turning points at the state’s energy E — see Fig. 2.21.70 As we know
from the derivation of the WKB formulas, the derivative dy4/dx is dominated, in this approximation, by
the exponential function — see, e.g., Eq. (2.90). (See also the solution of the previous problem.) As the
result, in the under-barrier region (where the symmetry point x = 0 resides), we may write

x,<x<0 = K(x)[ ( )]1/2 eXp{_ JK(X')dx},

C

dy,
dx

As a result, the last form of Eq. (2.188) yields

hz 0 hz xC,
S=—c’exp —2IK(x’)dx' = —c’expi— jK(x')dx' ,
m X m X

C C

where the last step uses the barrier’s symmetry.

The coefficient ¢? in this relation should be found from the normalization condition,

I|WL|2dx:1.
left well

Since the WKB approximation is strictly valid only when the well houses many (n >> 1) de Broglie
wavelengths A, at this calculation, we can neglect the wavefunction’s penetration into the classically
forbidden regions (by distances of the order of 1) and thus limit the integration to the classically
accessible segment, where the first of Egs. (*) is applicable:

70 For a stationary state with no probability current, the coefficient ¢ may be always taken to be real.
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X
1=4c® | Lsin{ k(x')dx'+£]dx'.

k2 ()0 £ () X, 4
Since k(x’) changes little on each de Broglie wavelength, the sine squared in this integral may be
replaced with the average of sin*kx” over one wavelength, i.e. with the factor 4. We may also use Eq.
(2.33b) for the group velocity to write k(x") = (m/h)vg(x’). As a result, the normalization condition
becomes

2c’h dx' 2c’h dx’

B dx,/dt), o

1 =
K2(x")>0 (

kZ ()C)>O vgr (x’) m
But the last integral is just the time of the classical motion of the wave packet’s center xo (i.e. of the
classical position of the particle) from one wall limiting the well to the opposite one, i.e. the half of its
oscillation period at the energy E, i.e. of the tunneling attempt time #,. As a result, the normalization
condition yields ¢* = m/hit,, and for the energy splitting, we get Eq. (2.189):

’

X

5=Eexp - I/((x’)dx' .
t X

a
C

Problem 2.25. For the problem discussed at the beginning of Sec. 2.7 of the lecture notes, i.e. the
1D particle’s motion in an infinite Dirac comb potential (Fig. 2.24), write explicit expressions for the
eigenfunctions at the very bottom and at the very top of the lowest energy band. Sketch both functions.

Solution: According to Eq. (2.193b) of the lecture notes, at the bottom of the lowest energy band
(i.e. in the ground state of the particle), where €'/ = 1, the wavefunction is purely periodic:

plx+a)=y(x).

Moreover, due to the mirror symmetry of the potential profile U(x) with respect to any point (ja + a/2),
where j is the comb period’s number, the wavefunction also must have the same symmetry, in particular

w(x)=yla—x).

Finally, at each segment ja < x < (j +1) a, where U(x) = 0, the fundamental solutions of the stationary
Schrédinger equation are sinkx and coskx. Hence we may make an educated guess that at such a
segment, the eigenfunction has the following simple form:

a %
<Ea ()

t//(x)=t//j(x)=Ccosk(x—ja—% , for

(see the figure on the right), so on this segment,

x—ja-<
!

cosga =1
v (x) w;(x)
dy, V) = j

dx

= —Cksin k[x —ja —%j (*%)

In order to confirm this solution, we may
calculate the wave number & following from Eq. ( j- 1) a ja | (j + l)a X
(*) and the boundary condition (2.75) at any
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point x = ja.”! Plugging into that relation the expressions following from Egs. (*) and (**),

dWJr(

_dy,
o ja)=

L\ k_a dy_ . :de—l C Y k_(l
n (]a)—Cksmz, (ja)= n (ja)= Cksm2,

ka
ia)=Ccos—,
y/(]a) cos 5 n

and dividing both parts of the resulting equation by 2Ck, we get
ka mw  ka ka f ka

sin— =——cos—, l.e. sin— =-—cos—, (*¥**)
2 nk 2 2 ka 2
where s the (only) dimensionless parameter of the problem, given by Eq. (2.197) of the lecture notes:
_ mWa
="

Multiplying both parts of Eq. (***) by 2sin(ka/2), and then using the trigonometric identities’?
2sin’é= 1 — cos2& and 2sinécos& = sin2 &, we may rewrite it in the form

B

1—coska ="—sinka.
ka

But this is exactly the result given by the general characteristic equation (2.198) of the system,

B

cosqa:coska+k—sinka, (FH*F)
a

for our particular set of quasimomentum values, with cosga = 1.

Next, according to the same Eq. (2.193b), the wavefunction corresponding to the top of the
lowest energy band, i.e. to €'“ = —1, changes its sign each lattice period:

w(x+a)=-y(x).

Besides that, as the dispersion relation (****) shows (see its plot, for a fixed «, in Fig. 2.25 of the
lecture notes), at the top points of the lowest band, cosqa = —1 regardless of the parameter f. This is
only possible if the wavefunction does not interact with delta-functional potential peaks, i.e. y(ja) = 0.
The only linear combination of sinka and coska satisfying these conditions is a pure sine function with
its nodes at points x = ja:

1//(x) = C'sin kx, with ka =m, for n=1,2,....

At the lowest energy band, n =1, i.e. ka = 7. Ulx) cosga =—1

This function, shown in the figure on the right, y/(x) p>0
has y(ja) = 0 and

dy, .\ dy_ ..
Yo (ja) = L= (ja), ' | |
dx dx (~1a ja U +1a
so it satisfies both boundary conditions (2.75)
and (2.76), for any value of %.

71 Eq. (*) automatically satisfies the boundary condition given by Eq. (2.76).
72 See, e.g., MA Egs. (3.3d).
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Problem 2.26. A 1D particle of mass m moves in an infinite periodic system of very narrow and
deep potential wells that may be described by delta functions:

Ul)=w Y 5(x-ja).  with #<0.

J:—OO
(1) Sketch the energy band structure of the system for very small and very large values of the
potential well’s “weight” | % |, and
(i1) calculate explicitly the ground-state energy of the system in these two limits.

Solutions:

(1) This system is similar to the Dirac comb potential analyzed at the beginning of Sec. 2.7 of the
lecture notes (see Fig. 2.24 and its discussion), but with the negative sign of %/, and hence of the

parameter 8 = ma®/h* — see Eq. (2.197). As a result, its characteristic equation has the same form

(2.198), .
cosqa =coska+ [ sin ka , (*)
ka

but now should be analyzed for the case #< 0. For a comparison of these two cases, the left panel of the
first figure below shows the plots of the right-hand side of Eq. (*) for two representative values of | 5|,
each for two opposite signs of this parameter.

B=+3 RHS Eq. (*) RHS Eq. (**%*)

2 3 4
kalrm xal

For > 0, i.e. for the Dirac comb, these plots (which are similar to those shown in Fig. 2.25 of
the lecture notes, but now with the parameter S rather than « = f/(ka) considered fixed) give the picture
of the energy bands (with —1 < cosga < +1) and gaps, that was discussed in detail in Sec. 2.7, with all
energies E,(q) > 0 — see the first and the third top panels of the second figure below.”> However, for our

73 Just to save space, these plots are limited to one-half of the first Brillouin zone. In these plots, as in Fig. 2.26(b)
of the lecture notes, Ey = */2ma* — the natural energy scale of this problem.
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current case £ < 0, only the higher energy bands are (qualitatively) similar — see the second and the
fourth top panels in that figure, while the lowest energy band is either completely absent (for < -2), or
hits the horizontal axis (£ = 0) at a certain value of the quasimomentum gq.

The explanation of this behavior is straightforward. In contrast with the case %/ > 0, when U(x) >
0 at any x, so the total (potential plus kinetic) energy cannot be negative, in the case # < 0, the potential

energy U(x) < 0 at all points, so E,(q) can be negative for some f, n, and g. According to the definition
of the parameter k (see Eq. (2.54) of the lecture notes),
2mE
2 _
k™= PERE
in order to calculate the dispersion curve branches with £,(q) < 0, we have to take k = tix;, with

2 2mE _ 2m|E|

TR T )
With this substitution, Eq. (*) takes the form
cosga = coshka + [ sinh . ()

Ka

The right-hand side of this equation is plotted, as a function of xa, on the right panel of the figure above,
for several values of f. The plots show that for any positive £, this function is always larger than +1, so
the equation does not have any real solutions for the quasimomentum ¢. Hence, in agreement with the
above argument, the dispersion curves cannot spill into the negative energy region. However, for each S
<0, there is a (single!) range of the argument ka where the right-hand side is in the range from —1 to +1,
giving either (for # < -2) the whole lowest branch of the dispersion relation, or (for -2 < # < 0) just its
part — see the plots in the lower two subpanels of the figure below, which have been calculated
numerically from Egs. (**) and (**%*).

(i1) The lowest point £(0) of the lowest band, i.e. the ground state energy of the system, may be
found from Eqgs. (**) and (***) with g equal to any multiple of 2774, i.e. with cosqa = 1:
2.2
E, EE1(0)=—h2:; , with coshxu +

sinhxa

1, for B<0. (kY

Since sinhxa > xa, and coshkxa > 1 for any xa > 0, the (only) solution of this characteristic equation is
real, and hence E, <0, for any f# <O0. In particular, if # — 0, i.e. #— 0, then xka — 0, and we may use

the Taylor expansions sinhxu ~ xa and coshxa ~ 1 + (ka )*/2 to find:

2
w
@z_ﬁ, E,~2fE, =——.
a

Note that this E, is just the spatial-average potential energy, U = —%//a , of the system. As Eq. (*) with
k = 0 shows, in this limit, the lowest energy band spills into the negative-energy region only at very
small values of the quasimomentum, ga < (2|8)"* << 1.

On the other hand, in the opposite limit f — —oo, both hyperbolic functions of xaz may be well
approximated with exp{xa/2}/2 >> 1, and the unity on the right-hand side of the characteristic equation
(****) is negligible. This approximation yields
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W m

20
This is exactly the energy of the (only) localized eigenstate of a single well — see Eq. (2.162) of the
lecture notes. This is natural because the limit f — —oo corresponds to a system of very deep and hence

virtually uncoupled potential wells. (As Eq. (***) shows, in this limit, the lowest allowed energy band is
exponentially narrow.)

50 IIBI:_IFQ,I\ 50 Iﬁlz_;l_ll 50 |IB|=_1| \50 |IB=|_3|\
(8>0) (8>0) (-2<p<0) (8<-2)

40 40 40 40

ka=—pf, E, ~-pB’E, =

g

30 30 30 30

20, 20 20, 20,

/

10 10 10 10
ey JI e e e o el B e
0 0102 03 04 0 0102 03 04 T702 03 04 0 0.1 02 03 04
qal2r qal2m ]
- 5F 1 -5F 7
qal2r qal2rx

10 L1 L1 10 L1 L1
0 0102 03 04 0 0.1 02 03 04

Problem 2.27. For the system discussed in the previous problem, write explicit expressions for
the eigenfunctions of the system, corresponding to:

(1) the bottom of the lowest energy band,
(i1) the top of that band, and
(ii1) the bottom of each higher energy band.

Sketch these functions.

Solutions:
(1) As the solution of the previous problem has shown, the wave number & corresponding to the
ground state energy of the system is imaginary, k = tix, for any % < 0, and hence the wavefunction at

any segment ja < x < (j + 1)a has to be a linear combination of sinhxa and coshxa. Next, according to
the Bloch theorem (2.193), at the bottom points of the lowest energy band (i.e. in the ground state of the
system), where ¢'“ = 1, the wavefunction has to be periodic:

plx+a)=y(x).
Moreover, due to the mirror symmetry of the potential profile U(x) with respect to any point (ja + a/2),
the wavefunction also should have the same symmetry, in particular
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w(x)=yl(a—x).
Hence we may conjecture that the eigenfunction has the following form:
y/(x):y/j(x):Ccoshk(x—ja—%), atja<x<(j+1)a, (*)

(see the figure on the right), so

dl//j a
=Cksinhk| x— ja—— |,
RN

dy, . _ dy ., . _ . Ka
dx (]a)— 7(]61)— CK'Slnh?,

l//(ja):Ccosh%. U(x)

x=(}'+%)a

Plugging these expressions into the only remaining’4 boundary condition (2.75),
d v, dl// j-1 2m
=Wy, at x = ja,
o dx n /

we get, after the division of both parts by 2Ck; the following characteristic equation:

w
mz coshg, ie. —sinh X = ﬁcoshﬂ, (**)
htk 2 2  ku

. . Ka
—sinh— =

where fis the system’s dimensionless parameter defined by Eq. (2.197) of the lecture notes:

Now multiplying both parts of Eq. (**) by 2sinh(xa/2), and then using the identities?s 2sinh®& = cosh2&
— 1 and 2sinh&cosh& = sinh2 &, we may rewrite this characteristic equation in the form

B

1 =cosh ku + —sinh xu .
Ka

But this is exactly the result given by the general characteristic equation of the system, obtained in the
solution of the previous problem,

COSqa:coshKa+kﬁsinhKa, for <0, E<O, (%)
a

for our particular case cosqa = +1. This agreement confirms our conjecture (*).
(i) At the top points of the lowest energy band, exp{iga} = —1, so, according to the Bloch
theorem, the eigenfunctions at each period of the system are similar, but with alternating signs:
w(x+a)=—y(x).

Also, the eigenfunctions should be, at all points x # ja, the solutions of the Schrodinger equation with
U(x) =0, 1.e. be linear superpositions of either sinkx and coskx (for £ > 0) or sinhxx and coshxx (for at £

74 Indeed, our solution (*), by construction, satisfies the boundary condition (2.76): y.1(x) — wj(x) = 0 at x = ja.
75 They may be readily proved using either the definition of hyperbolic functions or MA Egs. (3.3d) and (3.5).
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< 0). (As was discussed in the previous problem, at the top of this band (i.e. at cosqa = —1), the sign of
the eigenenergy £ depends on whether the parameter fis larger or smaller than —2.)

Moreover, as the general characteristic equations for £ < 0 and £ > 0 show (see the plots of their
right-hand sides in the solution of the previous problem), for £ < 0, at the top points of the lowest band,
ka is not equal to ga (as it is at for > 0), so the states do “interact” with the delta-functional potential
wells located at x = ja, i.e. their wavefunctions cannot be equal to zero at these points. As a result, we
may conjecture that the wavefunction has one of the following forms (see sketches in the figure below):

sin k(x — ja —EJ, for g > -2,

wlx) =y (1) = (1) O

sinh K[x - ja —%), for f<-2,

x=0+%h
so

kcosk(x—ja —%), for > -2,

W)= (1) e

at ja<x<(j+1)a.
dx

k cosh K(x - ja —%j, for f<-2.

We may readily verify this picture by using the same boundary condition as in Task (1),

d‘//; dl///—l 2m
— LTI " wy at x = ja,
o a2 v J

with an arbitrary integer j. For our wavefunctions (****) this condition yields, respectively,

(-1 Ck cosl%a —(-1y"ck cosl%a = —i—TW/(— 1) CSink—za, for > -2,

(_ 1)/' C/(cosh% - (— 1)’;1 CKCOSh% = —E—T”M/(— l)j Csinh%, for g <-2.

After the division of all terms by 2(-1YCk, and using the definition of the parameter £, these equations
are reduced to

cosk—a:—ﬁsink—a, for > -2,
ka 2

cosh 2 = —ﬁsinhﬂ, for p<-2.
Ka 2
Multiplying these characteristic equations, respectively, by 2cos(ka/2) and 2cosh(xa/2), and

using the well-known identities
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2c08” & =1+cos2&, 2sinécosé =sin2&; 2cosh’ & =1+cosh2&, 2sinh &cosh & =sinh2&,

we may recast them in the form

—1=coska+,Bsmka, for > -2,
ka
—1=cosh1ca+ﬁsmm, for g <-2.
Ka

But these are exactly the general characteristic equations derived in Sec. 2.7 of the lecture notes and in
the solution of the previous problem, taken for our current case: cosqga = —1. Hence Eqs. (****) indeed
give the required eigenfunctions.

(ii1) A bit counter-intuitively, the wavefunctions corresponding to the bottom points of the higher
energy bands (with n > 1) differ substantially from those given by both Eq. (*) and Eqgs. (****), valid for
n =1 only. Indeed, as was discussed in the model solution

of the previous problem, at those points £ > 0, so we have B=+3
to look at the dispersion relation (2.198) derived in Sec. 2.7
of the lecture notes for this case: 3
- p=+1
cosqa =coska+ﬂsmka, -

ka
but with £<0. 1

As the blue-line plots of the right-hand side of this
characteristic equation in the figure on the right’® show, the S =-1
allowed energy minima for n > 1 correspond to sinka = 0
(but ka # 0) independently of the parameter £. This is only
possible if the eigenstate does not interact with delta-
functional potential peaks, i.e. if y(ja) = 0. The only linear f=-3 1 2 3 4
combination of sinka and coska satisfying this condition is kalr
a pure sine function, with its nodes at points x = ja: 7’

t//(x) = Csin kx; with ka = 7Z(I’l — 1), for n=2,3,...

(For exaplple, at the‘ lowes't of 'such energy ( j—l)a ja ( j +1)a
bands, with n = 2, this relation yields ka = 7,
giving the wavefunction sketched in the figure
on the right.) Ulx
Such functions, with y(ja) = 0 and w(x) ka=r

d‘//Jr ; dl//+ /

—\(ja)=——"ja),

- la)=="—=(ja)

automatically satisfy both boundary conditions (2.75) and (2.176), for any value of f.

76 These plots were already discussed in the model solution of the previous problem, and are reproduced here just
for the reader’s convenience.

77 As the red lines in the figure above show (and as was discussed in the solution of Problem 25), in a similar
system, but with > 0, such simple solutions, with ka = nz, are implemented at the top rather than bottom points
of each energy band.
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Problem 2.28." The 1D “crystal” analyzed in the last two problems, now extends only to x > 0,
with a sharp potential step to a flat potential plateau at x < 0:

Wi&(x—ja), with % <0, for x >0,
Ux)=1 7

U, >0, for x <0.

Prove that the system has a set of the so-called Tamm states localized near the “surface” x = 0, and
calculate their energies in the limit when Uj is very large but finite. (Quantify this condition.) 78

Solution: Let us start with a semi-qualitative E
observation. A localized wavefunction should be E( )
unable to propagate to either x — —oo0 or x — oo, Up —— \ :
This means that the corresponding eigenenergy E —_—TTT T !
should be, first, lower than U, and also inside one surface /7 ' }
of the energy gaps of an infinite “crystal” with the eners;et:fs:
same parameters as our semi-infinite one — see the
figure on the right.” }
states, let us notice that in the limit Uy = oo, the
simple bottom-of-the-band states discussed in Task x<0 x>0
(1i1) of the previous problem (see the dashed line in the figure below, drawn here for the particular case
of the second energy band) are not affected by the crystal termination at x = 0. Indeed, their
wavefunctions vanish at x = 0, and hence their parts located at x > 0 are exactly the same as in a similar
but infinite crystal. Now, if Uy is large but finite, then, as we know from Sec. 2.3 of the lecture notes

(see in particular Eq. (2.58) and Fig. 2.4), the wavefunction penetrates the classically forbidden region x
< 0 by a small distance ~« ' — see the solid line in the figure below:

energy
gaps

For a quantitative analysis of the Tamm

qa

2.2
w(x<0)=y_(x)= 4™, dW’:AKe"x, where ~—~— =U, - E,
dx 2m
U,
Uy=
S /Uo <o

78 In applications to electrons in solid-state crystals, such delta-potential potential wells model the attractive
potentials of the atomic nuclei, while U, represents the workfunction, i.e. the energy necessary for the extraction
of an electron from the crystal to the free space — see, e.g., lecture notes QM Sec. 1.1(ii), and also EM Sec. 2.6
and SM Sec. 6.3.

79 This figure uses a somewhat strange but very common (and hopefully, self-explanatory) format, displaying the
system’s energy not only as a function of the quasimomentum ¢ (for the bulk states), but also (very crudely) as a
function of the wavefunction’s location in space.
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SO

v (=4,  Y=(0)=ax. *)
dx

Since the function and its first derivative have to be continuous at x = 0, this shift to the left
“pulls” the wavefunction in the allowed regions x > 0 to the left by a comparable distance 6 ~ 1/x. This
shift leads to some interaction of the wavefunction, now not vanishing at x = ja, with the delta-
functional potential wells at these points, creating, according to Eq. (2.75) of the lecture notes, “cusps”
(derivative jumps) of the initially smooth wavefunction. These cusps, in turn, result in the decrease of
the sinusoidal wavefunction’s amplitude, by some factor 0 < A <1 (see the solid-line sketch in the figure
above), eventually resulting in its full decay at x — oo, i.e. to the state’s localization near the “surface”.

These arguments allow us to guess that the wavefunction at x > 0 has the following form:

l//(x)=1//j(x)= C(—l)'//lj sink(x—ja+5), for ja <x<(j+1)a ,

SO
v,(ja)=C(-1) ¥sinks, v, (ja)=C(-1)" 2" sink(a+5)
dy . o
; I (x)= C(-1) Pk cosk(x - ja +5),
X
dy . o dy . o
Yi(ja)= 1Y Mkeosks, X (ja)=C(=1Y" ¥k cosk(a+5),
dx dx
This wavefunction, with the wave number & simply related to the state’s energy E:
272
kT E.

2m

is an exact solution of the Schrodinger equation between the delta-functional wells, so we need only to
satisfy all boundary conditions at the special points x = ja with j > 0. With the account of Egs. (*), the
boundary conditions at x = 0:

vo0)-v =0, LL2(0)-=(0)-0,

yield, after the exclusion of the (/4 ratio, one equation for three so-far unknown parameters o, A, and k:
kcosko = ksinko . (**)

Two other equations for these parameters may be found from the boundary conditions (2.75)-
(2.76) written for any point x = ja with j > 0:

dv . dwv .
Vi (ja)- 1 (ja) = 2

dx dx h? Vi (ja).

V/j (ja)_ V/j—l (]a) = 0’
After the substitution of the assumed form of y; and the cancellation of the common factors C(-1y X,
these two equalities become
w
2MY 4 sinks.

h2

Asinks +sink(a+35)=0,  Akcoskd +kcosk(a+5)=

From these two relations, A may be readily eliminated, reducing them to just one equation,
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sin ka = i—ﬁsin k(a+5)sinks )
a
where fis the dimensionless parameter of the “crystal”, defined by Eq. (2.197) of the lecture notes:
_ mWa

(In our current problem, 7/ < 0, and hence £ < 0, though the Tamm states may also exist at /> (.) The

fact that our wavefunction assumption has led to two j-independent characteristic equations (**) and
(***) for two unknown parameters 0 and k (assuming that x is known?) proves that this guess was
indeed correct — for arbitrary Uy and for any energy band number 7.

Proceeding to the analysis of these equations, let us notice that Eq. (**), rewritten as

1/2
tanké‘:kz E , (ko)
x \U,—E

shows that for any energy within the range of our

interest, 0 < E < U, the product ko is a monotonic 7
function of E, and is confined to the interval [0, +7/2]. kS
The figure on the right shows the plots of the left-hand /2 0.9
and right-hand sides of Eq. (***) as functions of the =0.6
product ka, for several values of k6 from that interval, =03
and a modest negative value of £. (The variation of this 0
parameter does not change the topological properties of

the equation’s solutions.) The plots show that the
equation has just one solution for ka somewhat below ¢35
each value 7m(n — 1) corresponding to the bottom of the

n"™ energy band — see the solution of the previous
problem. This means that the system has just one Tamm -1 | ) 3
state inside each energy gap — see the energy scheme at kalr

the very beginning of this solution.

LHS (**%)

N

The plots also indicate the way to solve this equation analytically when Uy >> E, so k6 — 0, and

as a result, the product ka is only slightly below z(n — 1), i.e. the Tamm state’s energy is right below the

n™ energy band’s bottom, 8!

72'2712 2
E ) = n—1)".
( n )mm 2ma2 ( )
Indeed, in this limit, we may take ka = z{(n — 1) — 7], and expand both parts of Eq. (***) in the Taylor
series in small parameters (kJ)” and 7, dropping all the terms but the leading ones. Such expansion, after
the cancellation of the common multiplier cosz(n — 1), reduces Eq. (***) to

80 An explicit relation between k = (2mE)"*/h and k= [2m(U, — E)]"*/h enables finding the state’s energy E, and
hence all other characteristics of the system.
81 In the similar limit, but at %> 0, the Tamm state’s energy, inside the same bandgap, is close to the fop of the

previous, (n —1)™ energy band.
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~—— 2P sy
(i ﬂz(n—l)(kﬁ)'

Now by using Eq. (****), which in this limit Uy >> E is reduced to k6~ (E/Up)"*, we may continue as

28 (E,)y _(1-1)#|
7(n-1) U,  aU,

n~-

so the distance between the Tamm level and the bottom of the n™ energy band is

2 2 w
A8, =(5,) B =5 o )P o =28, T

 2ma’ aU,
Note also that in this limit, the wavefunction decay parameter A is very close to 1:

__sink(a+5) —7z77+k551_ﬁz1_ 2|,3| kS ~1— 2|ﬂ| (ijm’

T sinks | ko ks aln-1) -1\ U,

so the scale Ax =’s a/(1 — A) of the Tamm state’s extension into the “crystal” is much larger than a.

These results are quantitatively valid if the dimensionless parameters ko and 77 are much smaller
than 1, i.e. when
(n— 1)W|

a

> (En )min .

In conclusion, note that these states, named after I. Tamm (who was the first to predict them in
1932), are just one species of a general class of surface states. (Another important member of this class
is the so-called Shockley states, described by a different theoretical model. )82

U, >>

Problem 2.29. Calculate the transfer matrix of the rectangular potential barrier specified by Eq.
(2.68) of the lecture notes, for particle energies both below and above U.

Solution: By either acting exactly as in Sec. 2.3 but with the account of an additional wave
incident from the right or, even easier, using Eq. (2.71a) together with the universal relations mentioned
in Sec. 2.5 (and derived in the model solution of Problem 15), we get the following transfer matrices

cosh xd + i(ﬁ - Ej sinh xd - L[E + Ej sinh xd
T, = l, szf k 2 "l ]’{‘ . , for0<E<U,,
—(—+—] sinh xd cosh xd ——(———j sinh xd
2\k k 2\x k
cosk'd +—[—+—'jsink'd —i[é—ﬁjsm k'd
(S 2]‘; k) , for0,U, <E.
5(— — —j sink'd cosk'd — —(— + —j sink'd

82 For more on this topic, see, e.g., S. Davison and M. Ste$licka, Basic Theory of Surface States, Clarendon, 1992.
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(If you use the second approach, the algebraic identity

1(/( k’)z 1(/{ k'jz
—|—+—|| == —=—— =1,
20k &k 2Kk

is very handy for doing the calculations.)

As useful sanity checks, the top left elements (77,) of these expressions agree with Eq. (2.71b) of
the lecture notes for & =| 714 % and the matrices are reduced to Eq. (2.135) for the particular case of a

very thin and high barrier (kd << xd <<1).

U(x)

Problem 2.30. Use the results of the previous &
problem to calculate the transfer matrix of one period of the Uyt~
periodic Kronig-Penney potential shown in Fig. 2.31b of the a
lecture notes (reproduced on the right).
Solution: According to Eq. (2.132) of the lecture 0 X

notes, in order to calculate the transfer matrix T of one
potential’s period starting from the potential barrier, it is sufficient to multiply the matrix T, calculated
in the previous problem by the transfer matrix (2.138) of the free-motion interval of the length (a — d),

eik(a—d) 0
T, = 0 o ik(a=d) |

The result, for £ < Uy, 1s

cosh xd +— k_x sinh dd |¢*(@4) ~L £+£ sinh xd ¢ (@~
T = 2\k k 2\ k.  k
L £+£ sinh xd eik(a_d) cosh xd _L ﬁ_f sinh xd e—ik(a—d)
2\x &k 2\x &k

for E > U, it is sufficient to make the usual replacement (2.65): k¥ > —ik’.

At the alternative choice of the starting and ending points of the period (the free-motion interval
first and the barrier next), the exponents in 77, and 7>; would be complex-conjugated, with no effect on
any observable result.

Problem 2.31. Using the results of the previous problem, derive the characteristic equations for a
particle’s motion in the periodic Kronig-Penney potential, for both £ < Uy and E > U. Try to bring the
equations to a form similar to that obtained in Sec. 2.7 of the lecture notes for the delta-functional
barriers — see Eq. (2.198). Use the equations to formulate the conditions of applicability of the tight-
binding and weak-potential approximations, in terms of the system’s parameters and the particle’s
energy E.

Solution: Requiring the difference between the matrix T calculated in the previous problem for
the case E < U, and the diagonal Bloch matrix
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eiqa 0
0 eiqa >

to have zero determinant, we get the following characteristic equation

cosga = coshxd cosk(a—d)+ %(% —kj sinh xd sink(a —d). (*)
K

Following the analysis of the periodic system of delta-functional barriers (see Fig. 2.25 and its
discussion), we may notice that the right-hand side of this equation is a sinusoidal function of ka, and
rewrite Eq. (*) in the following equivalent form:

cosqa = Acoslk(a—d)+ ¢,

where ¢ is independent of @ (and unimportant for our current purposes), while

2 2
A% = cosh? xd + 1@—% sinh? xd = 1+ 1(5+5jsinhxd : (*%)
2\k k 2\k k
so the characteristic diagram is topologically similar to that cos ga gap gap

shown in Fig. 2.25 of the lecture notes — see the figure on the
right.

The tight-binding approximation is applicable when an
allowed energy band (with —1 < cosga < +1) is much narrower
than the adjacent energy gaps. As the figure on the right
shows, this condition may be represented as 4 >>1, giving

1

—(k+£j sinh kd >> 1, (**F)
2\x k

or, in dimensional units,

U, . 2mU, -E)]'"*d
m >
2[EU, - B)]"? h

>1,

where E is close to one of the eigenvalues E” of isolated potential wells — see Eq. (1.85):
E~E"™ = inz.
2m(a—d)’

For analysis of the opposite case Uy < E, we may use Eq. (**) with the replacement (2.65): k¥ —

—ik’, getting
2 r 2
A* =cos’ k'd + l £+£ sin® k'd =1+ l ﬁ—ﬁ sink'd | ,
2\k" k i
so instead of Eq. (***), we have to require

e ® |sink'd
2k k

1/2
>> 1, ie. Y — sin[zm(E_UO)] d
2[E(E-U,)] h
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Let us analyze these conditions. If E < Uy (k is real), virtually the only way to satisfy Eq. (**%*) is
to have sufficiently thick barriers, xkd >> 1. (The only other option is to have a very low E << U, which
requires an extremely large a —d >>d.) In the opposite case, Uy < E, since |sin k’d| cannot exceed 1,
the tight-binding approximation is only possible when E, is almost exactly equal to U.

The weak-potential approximation requires, on the opposite, the parameter 4 to be very close to
1 — see the last figure above again. This requirement may be rewritten as (4% — 1)"* << 1, and if E < Uj,
it reads
K K ) inhad <<1, ie
2\x k

1/2
U, b [2mU, - E)]"*d

2[EU, -B)]" h

<<1,

where now F is close to the branch anticrossing point — see Figs. 2.28 and its discussion in Sec. 2.7:

Eepn = 2R 2
2ma’®
This condition may be only satisfied for very thin barriers, xd << 1.
In the opposite case, Uy < E, the weak-potential condition becomes
' U 2m(E-U,)|"*d
l(ﬁ—ﬁ)sin k'd €. T sin|[ m( )l <
AE(E-U)]"? | h

<<1, 1 <1,

2\k' k
and, if £ >> U, is satisfied even for thick barriers because the magnitude of sink’d can never be larger
than one.

To summarize these conditions, if the relative thickness of the barrier is appreciable (d ~ a), the
tight-binding approximation typically works well at £ < Uy, while at U, << E, the weakly-potential limit
is typically applicable. Semi-quantitatively, this is exactly the behavior visible at the characteristic
curves of the Mathieu equation — see Fig. 2.32 in the lecture notes.

Problem 2.32. For the Kronig-Penney potential, use the tight-binding approximation to calculate
the widths of the allowed energy bands. Compare the results with those of the previous problem (in the
corresponding limit).

Solution: According to Eq. (2.206) of the lecture notes, in the tight-binding limit, the allowed
energy band’s width AE, equals 4 |0, |, where &, is given by Eq. (2.204):
I/ du,
5}1 :_un(XO)_(a_‘xo)’ (*)
m dx
where u, are the localized wavefunctions of an isolated potential well. For the Kronig-Penney potential,
the wells are rectangular and their eigenfunctions were calculated in the solution of Problem 21. In that
solution, the well’s width was denoted as a, and should be replaced with (a — d) in our current notation —
see Fig. 2.31b. With this replacement (but still keeping the origin of x in the well’s middle), the solution
takes the following form:

(1) Antisymmetric eigenfunctions, implemented at oddn =1, 3, ...:
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sin kx, f0r|x|£a_d
u, =Cx
" . k(a—-d) a—d a—d
sgn(x)sin———=exps — k| |x|—-—— |;, for <|x|,
EnsinTy e { U 2 )} > |
with the following relation between k and «:
an—k(a —d) = —ﬁ, giving sin—k(a —d) = —i, k(a ) ﬁ, (**)
2 K 2 K 2 K
where K> = K + & = 2mUy/It".
(i1) Symmetric eigenfunctions, corresponding to even n =0, 2, 4,...:
cos kx, for|x|£a_
=Cx 2
Un = k(a—d) a—d a—d
COS————eXpy— K |x -— |, for S|x,
2 2 2
with a different relation between & and «;
k(a-d) _«x
2 k’
which may be rewritten as

2 (Kz n kZ)”Z K 2 K

From here, we can readily spell out the 9, given by Eq. (*) with the points x, and hence (a — xo)
somewhere under the barrier, i.e. with (a — d)/2 < xy < [a — (a — d)/2] = (a + d)/2, because the result is
independent of the choice:?3

L k(a—d)
2 sin-———~=, forn=1,3,..., 272
R R T =1y P,
m cos’—~——~ forn=0,2,.., mK

so our task is reduced to the calculation of the normalization coefficients C.

For the symmetric modes, the normalization condition, with an account of Egs. (**%*), gives

T )| 7 2k(a—d) 7 ~
1= junundx:2|C| Jcos kxdx + cos TJ‘exp{—moc}df

0

—00

=2|C|z{(a:1d)+sinké(lclz€—d) 2k(a d) 1} c |{(a d) , K}

a similar calculation for the antisymmetric modes, with an account of Egs. (**), gives exactly the same
result (though we should not forget that the values of k£ and x are specific for each »), so, finally, we get

83 Note that the alternation of the &,’s sign confirms the results of the general discussion of Eq. (2.204) in Sec. 2.7.
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AE, =4

S,

272 2 -1

_ 4h°k 2K K(a—d) +1 e_Kd, (H5%)
mK 2

i.e., as we could expect, the allowed energy band is exponentially narrow.

Let us compare this result with that following from the exact characteristic equation derived in
the previous problem (for the most natural case E < Up):

2
cosqa = Acoslk(a—d) +¢],  with 4% = 1+{%(£+%)sinhm’} .
K

To solve this transcendental equation in the tight-binding limit, in which 4 >> 1, we may linearize its
right-hand side within the narrow interval of k in which the right-hand side ranges cosqa
from —1 to +1:

cosqa = % {A cos[k(a —-d)+ (0]},;=0 k , i i

~ +1 -oom A
where £ is the deviation of £ from the point where the cosine function equals zero 4
— see the figure on the right. For the distance Ak between the edges of this interval Vi 3
(on which cos ga = 1), this gives the expression B A
d - :ﬁ:
Ak = 2| o {4coslk(a—d) + o]} . gapi gap

Generally, the required differentiation is a bit tedious because 4 and ¢ are also functions of %,
but in the most interesting case when x(a — d) >> 1 (meaning that the penetration of the wavefunction
under the potential barrier is small), the derivative over k is dominated by the explicit dependence of
cosine function of this parameter, and is simple:

-1

max A(a _d)

ol _ L2 _
Ak = 2‘ o {4cos[k(a—d) + o]} y ‘ o {coslk(a —d) + ]}

max

where in our limit 4 >> 1,

2 1/2 5 5
A=D1 Y E 8 Vsinh ~ L E L inhad = X sinhad ~ Ko
28k k 2\ k k 2k Ak

where the last approximate equality is valid at the same condition, xd >> 1, which was used in our
calculation of AE, from the tight-binding limit formula.

What remains is to recalculate this (small) difference of the wave vector’s values into the
difference of the energies. We can do that by differentiating the relation E = (A°k*/2m + const) over k:

2 2 272
dE| Wk 20k 8’k il

AE = = =
dk m mA(a—d) sz(a—a’)e

n

This is the same result as given by Eq. (***%*) in the same limit x(a — d) >> 1.
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Problem 2.33. For the same Kronig-Penney potential, use the weak-potential limit formulas to
calculate the energy gap widths. Again, compare the results with those of Problem 31, in the
corresponding limit.

Solution: In this limit, we may use Eq. (2.224) of the lecture notes to write

where U, is the n™ Fourier coefficient of the function U(x) defined by the Fourier expansion (2.207).
The coefficient may be calculated using the reciprocal Fourier transform:

U, = lJ.U(x)exp{i2—7Z)Cla}dx,
a a

Where the integral is over one period of the function U(x). For the Kronig-Penney potential, with the
origin of the x-axis aligned with the middle of the potential barrier,8 this integration gives

+d/2 +d /2
2
U, =ﬂ J. exp{izmx}dx: U(f {exp{izmxH zﬂsinm—d, Le. A = Yy
n m

a a 27i a mn a !
—d/2 —d/2

in—‘ (*)

Besides the monotonic decrease of the gap with the growth of number n, this expression
describes an interesting commensurate effect of the gap suppression at nd ~ ma, where m is another
integer. At such a relation of the parameters a and d, the gap location, zm/a, on the wave-vector axis
coincides with value £k’ = k,, = zm/d corresponding to one of the over-barrier resonances (see the
solution of Problem 8), which enhances the traveling wave transmission and hence suppresses its
interaction with the lattice — which, as was discussed in Sec. 2.7 of the lecture notes, is responsible for
the energy gap formation.

Now let us write the general characteristic equation of the system for the relevant case Uy < E. It
may be either derived exactly as this was done in the solution of Problem 31 for the opposite case or just
obtained from Eq. (*) of that solution with the usual replacement x — —ik’. The result?s is

cosqa = cosk'd cosk(a—d)- %(% + Ej sink'd sink(a —d). (**)
K

In the weak-potential limit Uy << E, we may approximate the front factor in the last term with two
leading terms in its Taylor expansion in the small parameter Uy/E:

1(k KY_1| E” (E-U,)"” 1(U, Y
TR Y T 172 SR el I
K k) 2/(E-U,) E 8\ E

2

(g)z sin k'd sink(a—d)

so Eq. (**) reduces to

cosqa = cosk'd cosk(a— d)— sin k'd sink(a—d)-

(***)
= cos|k'd —k(a—d)

'd sink(a—d).

84 The origin’s choice affects the phase of the complex coefficient U, but not its magnitude (the only parameter
defining the energy gap’s width), so for our purposes, we may select it in any way we like.
85 In the model solution of Problem 31, only the resulting formula for A* was given.
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The difference Ak corresponding to the energy gap A, may be
calculated as the distance between two close roots of the equation |cosga |

= 1 — see the figure on the right. To find it, we need to expand the right- =l R
i e o ~ +1 /é-%\
hand side of Eq. (***) into the Taylor series in the small parameter k = & Ak

— ky, where k, is the value of k corresponding to the n™ maximum of the
magnitude of the right-hand side of Eq. (**%*). Since in our limit Uy << E,
the last term on that side and the difference between & and &’ are small, the

|cosqa|

main contribution to this expansion is given by the first term: 0 k
2 2 2
cos[k'd — k(a— a’)]—l Yol sinh kd sin k(a—d)|~1 —l(A—kaj A |sinh k'd sink(a—d)|.
8\ E 20 2 8\ E

From here, at the n™ gap position (k' = k = k, = 7m/a, with sinka = 0), we get

. md

sin—
a

9

ak] = Yo
E

so that the recalculation of this result to the energy gap at E ~ E™ = I*k,*/2m = #n*h*/2ma’*:

7h’n U, 20U,
ma E"

. md
sin

md
~ mn

n

Ak

5

2
ma

i)
dk k=m/a

a m a

brings us back to Eq. (*).

Problem 2.34. 1D periodic chains of atoms may exhibit what is called the Peierls instability,8¢
leading to the Peierls transition to a phase in which the atoms are slightly displaced, from the exact
periodicity, by equal but sign-alternating shifts Ax; = (-1YAx, with Ax << a, where j is the atom’s number
in the chain, and a is its initial period. These displacements lead to an alternation of the coupling
amplitudes &, (see Eq. (2.204) of the lecture notes) between close values &, and ¢, . Use the tight-
binding approximation to calculate the resulting change of the n™ energy band, and discuss the result.

Solution: In order to describe the band structure, we may use an equation similar to Eq. (2.203)
of the lecture notes, but with alternating coupling constants:

P Y T x
iha, =-6,a,,-0,a iha,, =-o0,a,-9,a,,. (*)

n v j+lo
The Bloch solution of the type (2.205) now has to accommodate alternating complex amplitudes a:

a, for jodd, ) .E,
a(t)=4 _ _ X expyigx,; —i—=-t+const .
' a , for jeven, fi

(Another way to express the same fact is to say that since the potential profile U(x) is now 2a-periodic,
the Bloch theorem is only valid for this larger period.) Plugging the last expression into Eq. (*), we get a
system of two linear equations for two complex amplitudes a*:

86 Named after Rudolf Peierls (1907-1995), a theorist most famous for the introduction of the notion of holes in
semiconductors (and also as one of the main initiators of the Manhattan Project).
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g,a = —(5n’e_lqa +5 " )a’, g.a = —(éje_lqa +5 e )a*.

n n

The condition of consistency of this homogeneous system of linear equations,

g, S-e M L 5T 0

. . - s
+ _—iqa - iqa

o e +0, e g,

solved for the energy’s deviation &, from the uncoupled-limit value E,, gives the following dispersion
relation:

1/2

g, = i[(@f )2 + (5; )2 +28706, cos2qa
A more revealing form of the same result may be obtained by using the trigonometric identity
cos2qga = cos’qa — sin’qa, and then noticing that the terms under the square root form two full squares:

This equality shows that if the coupling alternation is negligible (J,” — & — 0), the energy band tends
to the sinusoidal form (2.206) with the “usual” period Aq = 27/a. However, even a small but
nonvanishing alternation of ¢, results in the formation of an additional energy gap (see the numerical
plots of Eq. (**), for two alternation amplitudes, in the figure below), so the quasimomentum period
decreases to (Aq) "= m/a. (Again, this is very natural from the point of spatial period’s doubling: a’ = 2a,
leading to the quasimomentum’s period (Aq)’ = 27/a’ = n/a.)¥” The gap’s minimum (reached at ga = /2
+ mm, with m integer) is
Ae, =2(57 -5;). (**%)

(("n
+ - -
5;1 + 5;1 0.5
oF
- 0.5
-1 !
0 0.5

qalrw

This effect may take place in highly anisotropic (quasi-1D) crystals (such as organic compounds
TTF-TCNQ) of atoms with an odd number of electrons in incomplete energy shells (see, e.g., Sec. 3.7
of the lecture notes), and has rather dramatic consequences for their transport properties. Indeed, due to

87 Note that such a gap opening is not an exclusively quantum phenomenon, but takes place at the propagation of
waves of any nature in nearly-periodic systems — see, e.g., CM Problem 6.12.
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the Fermi statistics of electrons, their states fill exactly the lower half of the usual conduction energy
band. Such an “open” Fermi surface enables ready activation of electrons above the surface by even
weak applied electric field, and hence their high electric conductivity.®® However, the Peirce transition
separates the lower half-band, completely filled with electrons, from the completely depleted upper half-
band with the energy gap (***), suppressing the electron activation, and hence the crystal’s
conductivity. As a result, the conductor turns into what is called the Peierls dielectric.

It is curious that the conductivity electrons are not only affected by the Peierls instability but also
may cause it. Indeed, as the figure above shows, the Peierls transition leads to the reduction of electron
energies in the lower (filled) half-band and hence can make the transition energy-favorable. Note that
such self-supporting instabilities of the initial symmetry are very common in physics — another
prominent example is the Cooper pairing of electrons in superconductors.

Problem 2.35." Use Egs. (1.73)-(1.74) of the lecture notes to derive Eq. (2.252), and discuss the
relation between these Bloch oscillations and the Josephson oscillations of frequency (1.75).

Solution: First, let us combine Eqgs. (1.73) and (1.74) to calculate the work of an external voltage
source at the Josephson phase’s change between some arbitrary initial (¢i,i) and final (¢n,) values, as the
integral of its power IV over the time interval Af of the change:

B TG W AR V) ol
Work = Jthdt = ;[(IC sin (0)(2_e;j dt = > q){lism pdp = —2—e(c0s @r, —COSQ, . )

We see that the work depends only on the initial and final values of ¢ (but not on the law of the phase
evolution in time), and hence may be represented as the difference U(@rn) — U(@ini), where the function
i,

U(p)=—E, cosp+const, with E, = 20’ *)
e

may be interpreted as the potential energy of the junction — if we consider the Josephson phase as a
generalized coordinate.

Besides this energy, the Josephson junction, as a system of two close, nearly isolated
(super)conductors, has a certain mutual capacitance C and the associated electrostatic energy Ec =
CV*/2. Using Eq. (1.73) again, we may represent it as

2 2
Eczgyzzg E @ )
2 2\ 2e dt

This expression means that considering the phase ¢ the generalized coordinate of our system, E¢ should
be taken for its kinetic energy, whose dependence on the generalized velocity d¢/dt is similar to that of a
1D mechanical particle, with an effective mass?®

h 2
mJ = C(z—j .
e
88 See, e.g., SM Sec. 6.3.

89 Since the dimensionality of the generalized coordinate ¢ is different from [m], that of m; is different from [kg].
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Hence the total energy of the junction, Ec + U(¢), is formally similar to that of a 1D non-relativistic
particle of the mass mj, moving along the ¢-axis in the sinusoidal potential (*) with the period a; =27

However, before using the results of the 1D band theory discussed in Secs. 2.6-2.7 of the lecture
notes, to this system, we have to resolve one paradox — which, in the mid-1980s, was the subject of a
lively scientific discussion. In Sec. 2.6, we (or rather Dr. F. Bloch :-) implied that the particle’s
translation by the potential’s period a is in principle measurable, i.e. the particle’s positions x and (x + a)
are distinguishable — otherwise Eq. (2.193) with ¢ # 0 would not have much sense. For the Josephson
phase ¢, a similar assumption is less plausible. Indeed, for example, if we change ¢ by a; = 27 via
changing the phase of one of the superconductors, say ¢; (see Fig. 1.7 of the lecture notes) by 27, then
its wavefunction becomes | 1//| expli(p +2n)} = | l//| exp{i@i}, and it is not immediately clear whether
these two states may be distinguished.

In order to resolve this contradiction, it is sufficient to have a look at Eq. (1.73). It shows that if
@ changes in time by 27, the voltage V across the junction exhibits a pulse with the following “area”:

hoode, N h 7h
'[ ® 28'[ dt 2e i 2e e
Such single-flux-quantum (SFQ) pulses® have been not only observed experimentally but even used to

demonstrate fast signaling and ultrafast (sub-THz) computation.®!

~2x10™"° V-5, (**)

Hence, the 2 7-shifts of phase ¢ are measurable, and in the absence of dissipation, the Josephson
junction dynamics is indeed similar to that of a 1D particle in a periodic (sinusoidal) potential (*). As
this formula implies, the energy spectrum of this system forms the energy bands and gaps described by
the Mathieu equation — see Fig. 2.31a and Eqgs. (2.227)-(2.229) of the lecture notes. Experimentally, the
easiest way to verify this picture is to measure the corresponding Bloch oscillations induced by an
external current /(7). To find the frequency of these oscillations, it is sufficient to replace Eq. (2.237),

which expresses the 2" Newton law for the quasimomentum g, with the charge balance equation

dQ _ skksk

= 1.00), (*5%)
for the corresponding variable Q, called the quasicharge. This relation tells us that the quasicharge QO
has the simple physical sense of the external electric charge being inserted into the junction by the
external current /. — just like the physical sense of the quasimomentum %g of a mechanical particle,
according to Eq. (2.237), is the contribution into the average particle’s momentum, due to the external
force F. (Notice that at such quantum-mechanical averaging of the electric charge, the supercurrent
(1.74) drops out from the equation, affecting the phenomena “only” via its contribution to the energy
band structure.)

Since the Josephson-junction analog of the usual wave number k = (m/#h)(dx/df) of a particle is

90 This term has originated from the fact that the right-hand side of Eq. (**) equals the single quantum unit (®,) of
the magnetic flux in superconductors — see Sec. 3.1 of the lecture notes (and/or EM Sec. 6.4-6.5).

91 To the best of my knowledge, this technology (dubbed RSFQ) still holds the absolute records for the highest
speed and smallest energy consumption at an elementary computation — see, e.g., P. Bunyk et al., Int. J. on High
Speed Electronics and Systems 11, 257 (2001) and references therein.
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k=M de _m2e, CV
hodt h oh 2e

and CV is the genuine charge on the capacitor, the analog of ¢ (the quasimomentum divided by 7) may
be obtained just by the replacement of that product with the quasicharge Q:

Y
q, 20
Comparing this expression with Eq. (***), we see that g; obeys the following equation of motion:
dq, _1,(1)
dt 2e

so the role of the mechanical force F is now played by Fy = fil.,/2e. Hence if Ix(f) = const =1 , we can
use Eq. (2.244) with that replacement and also with @ — a; = 27, to get Eq. (2.252) of the lecture notes:

_ws _ 1 Fa, _

fB:27r_27r noo

I
2e

This very simple result has the following physical sense.”? In the quantum operation mode, the
junction is recharged by the external current, following Eq. (**%*), until its electric charge reaches e (i.e.
until the normalized quasimomentum gja; = (Q/2e)2x reaches 7 — see Fig. 2.33a of the lecture notes);
then one Cooper pair passes through the junction changing its charge to e — (2¢) = —e, with the same
charging energy O%/2C — the process corresponding to crossing the border of the 1% Brillouin zone; then
the process repeats again and again.”? It is paradoxical that Eq. (2.252), describing the frequency of such
a quantum property of the Josephson phase ¢ as its Bloch oscillations, does not include the Planck’s
constant, while Eq. (1.75), describing the classical motion of ¢, does.?*

In this context, one may wonder which of these two types of oscillations would a dc-biased
Josephson junction generate. For the dissipation-free (OK, virtually dissipation-free :-) junction, the
answer is: the Bloch oscillations (2.252) with the frequency proportional to the dc current. However,
any practical junction has some energy losses that may be approximately described by a certain Ohmic
conductance G connected in parallel to the junction. Very luckily for Dr. Josephson and his Nobel Prize,
it turns up much easier to fabricate and test junctions with G >> 1/Rp, where Ry is the so-called
quantum unit of resistance

R, = ~645kQ,

0 262

92D. Averin et al., Sov. Phys. — JETP 61, 407 (1985).

93 Note that the qualitatively similar effect of the single-electron-tunneling (SET) oscillations, with twice higher
frequency fsgr = I/e, takes place, at sufficiently low temperatures, in small “normal” (non-superconducting) tunnel
junctions — see, e.g., EM Sec. 2.9 and references therein. However, the quantitative descriptions of these effects
are rather different, because, in contrast to the Cooper pairs, the electrons in “normal” conductors do not form a
coherent Bose-Einstein condensate.

94 The phase locking of the Bloch oscillations, as well as that of the SET oscillations, by an external signal of a
well-characterized frequency, may enable fundamental standards of dc current. The experimentally achieved
relative accuracy of such standards is close to 10, just a few times worse than that of a less direct way toward
such standards — by using a Josephson voltage standard combined with a resistance standard based on the
quantum Hall effect.
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the fundamental constant that comes up at analyses of several other effects as well — see, e.g., Sec. 3.2
below. As will be discussed in Chapter 7, the dissipation so high provides what is called dephasing — the
suppression of the quantum coherence between different quantum states of the system (in our current
case, between the wavefunctions u(¢ — 27j) localized at different minima of the potential energy U), and
thus make the dynamics of the Josephson phase ¢ virtually classical, obeying equations (1.73) and
(1.74). As was discussed in Sec. 1.6 of the lecture notes, dc biasing of such a junction leads to Josephson
oscillations with the frequency (1.75), which is proportional to the applied dc voltage, rather than the
current.

Problem 2.36." A 1D particle of mass m is placed into the following triangular potential well:

+00, for x<0,
Ulx)= with F >0.
Fx, for x>0,

(1) Calculate its energy spectrum using the WKB approximation.

(i) Estimate the ground state energy using the variational method, with two different trial
functions.

(iii) Calculate the three lowest energy levels, and also the 10™ level, with an accuracy better than
0.1%, from the exact solution of the problem.

(iv) Compare and discuss the results.

Hint: The values of the first few zeros of the Airy function, necessary for Task (iii), may be
found in many math handbooks, for example, in Table 9.9.1 of the open-access online version of the
collection edited by Abramowitz and Stegun.®s

Solutions:

(1) Acting just as in Sec. 2.4 of the lecture notes (see, in U(x)
particular, Fig. 2.10 and its discussion), let us calculate the total
roundtrip phase shift of a traveling de Broglie wave of energy E,. The
quasiclassical motion from the left classical turning point x;, = 0 to the E,
right point xg = E,/F (see the figure on the right) yields the shift

E,/F

2 E3/2
g, = frin= G Tom(e, PO a=Som) B G

The total phase change of the wave’s roundtrip (including also the way back from xi. and xg)
consists of twice that shift, plus two shifts due to the wave reflection from the classical turning points.
One of these reflections (at x = xg) may be treated quasiclassically, giving the additional shift (in
comparison with the “hard”, vertical wall) equal to Ap = /2. The reflection from the left, vertical
potential wall at x = 0 does not give such an additional shift.”® As a result, the total phase change on the
roundtrip is

T 4(2m)1/2 Ej/z T
hE 2

A¢t0tal = 2A¢—) +3 = g

95 See https://dImf.nist.gov/9.9.
96 Note that by this direct (non-WKB) treatment of the potential wall, we avoid violation of the condition (2.107).
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Requiring this change to equal 27m, with n =1, 2, ..., we get the WKB spectrum

2/3 1/3
RY/4 1 h'F?
=E£|—|n—— , with E, = )
WKB 0|: 2 (l’l 4j:| 0 ( 2m ]

(i) Looking at the potential profile of the problem (see the figure above), it is clear that the
following simple trial function:

(x)=1 for x<0, ih 250
x)= ,
Vi Cxe ™™ , for x>0,

Eﬂ

may give a reasonable approximation for the ground state of the system. (In particular, it yields the
exact, zero values of the wavefunction for x < 0 and x = +o0, and also ensures the function’s continuity at
all points.) Its normalization condition is

J.|l//1|2dx = |C|2J.xze_2/1xdx =1.
0 0
Using the table integral MA (6.7d) with n = 2, we readily get

2 T, - | B 1
CI7 =[x Paxv=—[E%ebde=——.
The expectation value of the Hamiltonian in this trial state is

+o0 . +00 hz d2 © B hz d2 _
<H>1 E:[OI/ITHWI dxz_«[j/i_ﬂﬁ_uj(x)}% dxs'([C*xe M(_EE_FFXJCM A dx

2 o0 0 0
= |C |2 {— h—{/lz J‘xze_z’bcdx - 2/1Ixe_2’1xdx} + F x3e_2ﬂ“xdx}
2m 0 0 0

All these integrals are of the same type MA (6.7d), with n = 2, 1, and 3, respectively. Using the above
expression for the normalization constant, we finally get

2192
() =143
o 2m 24
This expectation value is positive for all 4> 0 and diverges both at A — 0 and 4 — o, so it certainly has
a minimum at some optimum value Aop, for which

(1),

=, =0.

opt

Performing the simple differentiation, we get

1/3 7292 5/3/ 22 -2\/3
()’ o= (3] (2] i,

opt

2k 2m 22 2 m

opt

Now let us try a somewhat different trial function:
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( ) 0, for x <0,
xX)=
v Cxe_ﬂ‘xz/z, for x>0,

also having the proper (zero) boundary values at x < 0 and x = +oo. (Since the factor 2 in the exponent
may be always absorbed into the fitting parameter A, it is not necessary but convenient for calculations.)
For this function, the normalization condition is

00

2 2 2 _qxz 2 ,_3/2 _52
5 = = =1,
J‘|l//|dx |C| Ixe dx |C|/1 .ée dx =1
0 0 0

where &= A"?x. The last dimensionless integral®’ equals 7'%/4, so

|C|2 _ 42,3/2

With this normalization, the expectation value of the Hamiltonian in the trial state is

<H>z = Tl//:[:]‘//mdx - |C|2.Txe_ﬂx2/2[_§l_zj_22+ ij xe P12 gy
- 0 m ax

o0

32 2 o o
= i —h—(— 3ﬂ,J.x2e_/q“x2 dx + ﬂ,zj.xz‘e_lxz dx) + FJ.x3e_lx2 dX}
0 0

| 2m 0
432 i B2 ® o o o o o

= - —3[“2j§ e d§+;f”2j§ e dE +Fﬂ:2j§3e dé |,
7| 2m 0 0 0

where the same substitution as above, &= A"%x, was used. The first dimensionless integral is the same as
above (equal to 7''*/4), and the remaining two are of the same type,’ equal, respectively, to (3/8)7"* and

1/2, so
372 2 1/2 1/2 )
<H>2 _ 44 {_h_(_3]f”2 7T4 R 37T8 J+Fi_2 %} _ 3h°A N 2F

7[1/2 2m 4m 7[1/2&1/2

This expectation value is also positive and diverges both at A — 0 and 4 — oo, so it certainly has
a minimum at some optimum value Aop, for which

0

87<H>2 0.

/"L:/"Lopt -

Performing the differentiation, we get

2 12 1/3 3h2/1 1/3
:(16’"—“7] B, =, 2F =(ﬂj E, ~2345E,.

opt

97h* 4m 222 \2rx

opt

The fact that Eyar2 < Evar 1 shows that the second trial function provides a better approximation,
though the difference is not that large (below 6%).

97 See, e.g., MA Eq. (6.9¢).
98 See, e.g., MA Eq. (6.9d) and Eq. (6.9¢) forn= 1.
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(ii1) In order to obtain the exact solution to the problem, we can solve the stationary Schrodinger

equation
B dy
2m dx’

+Fxy =Ey, (*)

at x > 0, with the boundary conditions y(0) = y(+o) = 0. By normalizing, just as it was done in Sec. 2.4
of the lecture notes, the coordinate x to the constant

h2 1/3 h2 1/3
(2m dU/de - (2ij ’

we can reduce Eq. (*) to the canonical form (2.101) of the Airy equation, with the general solution

y(g)=C,Ai(G) +C,Bi(S),

where {'= (x — xr)/xo. One of the boundary conditions (at x — o0) may be satistied only by taking Cz =0,

so the second one (at x = 0, i.e. at = —xr/xo) is reduced to the requirement Ai (—xr/xo) = 0,% i.e.

h’F?
2m

X9

_x_RE_i:é"

X, Fx,

1/3
i.e. E}’l = _Fxoé/n = _( j éln = _Eoé,ﬂ 2

where ¢, is the n™ root of the Airy function Ai(¢). Using the values of ¢, from any math handbook (see
the Hint), we get the results shown in the rightmost column of the table below.

" E,/Eo | wks Evari/Eo Evan/Eo EwEo | exact
= [3A2)(n—Ya)? | =ming(H) | =miny(H), =,
1 2.320 2.476 2.345 2.338
2 4.081 - - 4.088
5.517 - - 5.520
10 12.8281 - - 12.8287

(iv) The table shows that the variational method results for the ground state depend much on the
trial function. Indeed, our second attempt gave an error of just ~0.3% — pretty good for virtually any
practical application. Looking at the asymptotic behavior of the Airy functions (see, e.g., the first line of
Eq. (2.102) of the lecture notes), we may guess that an even better trial function could be

1/3
2 X—X h*
L =Cxexpi——¢7"% ), with ¢ = <X ,
l//trlal p{ 3 é/ } é/ )CO 0 (2ij

with the classical turning point x treated as an adjustable parameter. The reader is invited to explore this
option (running into less common integrals) as an additional exercise.

On the other hand, even for the ground level (n = 1), which is always the hardest task for the
WKB approximation, for this particular problem, it works surprisingly well, with a relative error of

99 Note that the above WKB result could be also obtained by using this equation with the asymptotic form given
by the second of Egs. (2.106).

Problems with Solutions Page 90



Essential Graduate Physics QM: Quantum Mechanics

~1%; the error decreases fast as we go up the energy level ladder, dropping below 107 for n = 10.
Please remember, however, that while with the variational method, we may be always sure that the
genuine ground state energy is below the estimated value, this is not true for the WKB method.

Problem 2.37. Use the variational method to estimate the ground state energy E, of a 1D particle
in the potential well

U(x):—UOexp{—axz}, with & >0, and U, > 0.
Spell out the results in the limits of small and large U, and give their interpretation.

Solution: Since any smooth, symmetric potential well U(x) may be Taylor-approximated, near its
bottom, with a quadratic parabola, the calculation at the beginning of Sec. 2.9 of the lecture notes
indicates that a Gaussian function similar to that given by Eq. (2.270),100

2

W (x) = Cexp{— ’1’2‘ } with >0,

is a reasonable choice for the trial function for our potential. The calculation of the expectation value of
the corresponding Hamiltonian,

2 2
p--1"4d
2m dx?

is almost similar to that in Sec. 2.9 and in Task (ii) of the previous problem:
~+00 « . ) ~+00 /bCz h2 d2 , /,sz
<H>trial = J;l//trialHl//trialdx = |C| J;exp{_ T}[_ %E — UO exp{— ax } exp — 2 dx

- (ijm _;;2,1 Texp{— ﬂxz}dx -U, Texp{— (1 + a)xz}dx - h22/12 sz exp{— ﬂxz}dx}
r m 2 m

-U, exp{—oaxz},

1 1/2:712/7, 7[1/2 72_1/2 hz/zz 7[1/2 hzﬂ, 1 1/2
== Y -U, 12 32 | T —U, :
x) | 2m A (A+a)?  2m 22 4m Ata
The last expression is negative at A — 0, with a negative derivative (H)uia/0A at 1 = 0, while it

is positive and diverges at A — co. Hence, (H)uia as a function of 4> 0 has a minimum, corresponding to
a localized ("bound") ground state of the system. For an arbitrary Uy, the condition of this minimum,

a<I—1>trial

oA

—00

h? a
="y -0,

opt

gives a rather unpleasant 4™-degree-polynomial equation for the dimensionless variable &= Aopt/ O

2

EE+1) = [%] . where T, = ha *)

0 2m

with an extremely bulky general solution.!0!

100 Just as in the previous problem, the factor % is unnecessary but makes calculations a bit less bulky.
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However, we may readily spell out the result in the limits when the depth Uj of the potential well
is much smaller or much larger than the scale Tj of the kinetic energy of the particle in it. In the former
case, we should have &£ << 1, so the left-hand side of Eq. (*) may be approximated with & and this
equation yields

2 2
(Y e ag=al D __U
g _(To j , Le. Ay —O{T J <<a, SO <H>mirl o ie. KH}mm <<

0

U,.

This result has a simple physical meaning: if the well is shallow, its particle-localization effect is weak,
so the localized wavefunctions are spread far beyond the effective well’s width 1/¢'*. On the scale of
this spread, the potential well potential may be well approximated with the delta function,

U(x) ~ —Wé'(x) ,

whose "weight” % may be calculated from the delta function's definition:
+00 1 400 1 +o0 U - 1/2 P 1/2
:[O§(x)dx = —;__[OU(x)dx = —%:[O[— U, exp{— ox’ }]dx = j(;) =1, giving% = (;j U,.

If we now plug this value into Eq. (2.165) of the lecture notes, for the ground-state energy in such a
delta-functional potential, £, = —mWF 21, we get
xmU; Y ; U;

gm0 s 07850
2 n*a 4T, T,

So, in this limit, the variational method captures the correct functional dependence of the ground-state
energy but is ~60% off the exact result.102

In the opposite limit of a very deep potential well, Uy >> Ty, the left-hand side of Eq. (*) may be
well approximated with £* and this equation yields

1 1/2
E= opt _ (ﬂj >> 1, giving <H>mm =-U, + (UoTo )1/2 .
[04

In order to interpret this result, let us use the fact that in this limit the wavefunction’s spread is much
smaller than the well’s width scale 1/a'2, so it "feels" only the very bottom of the well, where the
confining potential may be approximated with just two leading terms of its Taylor expansion:

U(x)=-U, exp{—oaxz}z -U, +U,ax’.

But this is exactly the potential of a harmonic oscillator (offset by —Uj):

101 Mercifully, since in the physically acceptable range & > 0, the left-hand side of Eq. (*) is a monotonically
growing function of &, starting from 0 at &= 0, this particular equation has just one root of our interest, for any
ratio Uy/Ty.

102 The reason for this difference is clear from the comparison of our Gaussian trial function with the exact ground
state wavefunction (2.159): y, oc exp{-x| x|}.
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2
U(x)=-U, +ma)0 ¥, with 20— oU,, e @, =(
2 2

20U, 1/2
m b
whose exact ground state energy is

71 :Z (], 1/2
E, —U+§) = U, + Z(”}‘n‘)j - U, +(U,T,)".

Thus, as might be expected, in this limit, the Gaussian trial function yields the exact ground-state
energy.

Problem 2.38. For a 1D particle of mass m, in a potential well with the following profile,
U(x)=ax*, with a>0 and s >0,

(1) calculate its energy spectrum using the WKB approximation, and
(i1) estimate the ground-state energy using the variational method.

Compare the ground-state energy results.
Solutions:

(1) Let us use the Wilson-Sommerfeld quantization rule (2.110),
xR
§p(x)dx =2 Ip(x)dx = 2727‘1(71 —%), with n=1,2,...5 (*)
XL

where in our current case

pl)=ml, ~UWN"* = Pl - ax ] = mE, ) *[1- (5, )]

Here x, = xg = —xr 1s the distance of the classical turning points from x = 0, related to the energy E = E,
by the condition

E, =U(x

n

1/2s
) _ 2s L _ En
=ax, , giving x, = p .

Introducing the dimensionless variable &= x/x,, so dx = x,d&, and using the potential’s symmetry with
respect to the origin, we get

1 1/2s 1

Ip )edx = 2jp )dx = 2(2mE, ) usz‘ 1/2 (8mEn)”2(ﬂj I(l—.fzs)l/zdf.

a
X 0 0

This is a table integral!%3 equal to (77/45)T(1/25)/T(3/2 + 1/25), s0 Eq. (*) yields the following energy
spectrum:

E, =Ey,@n—-1"""  for n=1,2,.., (**)

n

where Ewgp = E) is the WKB result for ground-state energy:

103 See, e.g., MA Eq. (6.6b).
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n Y r(3/2+1/2s)|" e
E — A 1/2 + N . skskok
W {(m] a[” " T(1/2s) )

As Eq. (**) shows, for the quadratic-parabolic potential, i.e. for s = 1, 2s/(s + 1) = 1, the energy
levels are equidistant:

E =E(@2n-1), ie E,, —E, =2E, =const,

as they should be for a harmonic oscillator — see, e.g., Eq. (2.114). However, as the parameter s grows,
i.e. as the particle confinement becomes more rigid, the ratio 2s/(s + 1) tends to 2, i.e. the dependence of
E, on n gradually approaches the quadratic one, E, oc n”, pertinent to the hard-wall well discussed in
Sec. 1.7 — see Eq. (1.85).

(i1) Since the potential is symmetric with respect to point x = 0 and continuous at this (and all
other) points, the simplest natural selection of the ground-state trial function is a Gaussian, for example

/12 2
l//trial (x) = C exp{_ : } >

with some real A. The normalization coefficient C may be immediately found either from the standard
Gaussian integration of |wia(x)]* over all x, or just from the comparison of this expression with Eq.
(2.16) of the lecture notes, in which A= 1/dx, 1.e. ox = 1/4, giving

1 A

cl’ = - .
| | (272_)1/2 5x (272_)1/2

Now the expectation value of the particle’s Hamiltonian,

A2 2 2
H:p—+U(x):—h—d—2+axzs,
2m 2m dx

in the trial state, may be calculated as

2

e wd . g 22w od> 2x
<H>trial :__[Ol//trial{_%dXZ +ax ]l//trialdxz__[oc exp{_ 4 _dez + ax CeXp — 4 dx

/1 hZAZ 21/2 © 2 h /14 23/2 © _ 2s+1/2 © . 2
ZZ(ZE)I/Z( 4m A I 9&_ J.fz d do+a—z J.gz e a’f).
0

All these three integrals are of the same well-known type,!%4 yielding

2 {hz;tz 21/2 7[1/2 h2/14 23/2 7[1/2 2s+1/2 1 [ lj}

H) =2 _ Tt
< >trial (272_)1/2 4m /I 2 8m 2/3 4 +a 22s+l 2 5 2
h’ 2° 1 s
E%ﬂz+aﬂl/2 F(S'sz (ﬂ/z) .

104 See, e.g., MA Eq. (6.9).
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Since for s > 0 this expression is positive for any A* and diverges at both 4> — 0 (due to the
second term) and A? — o (due to the first term), it always has a minimum at some A*= ﬂzopt, which may
be found from the requirement

8<I{>trial
8‘22 )
1

1 o
. [8m 2°s 1]+ (R s N[,
/IOpt _{h_zaﬂl/z r S+E ’ E o <H>trial A=A E aﬂ_l/Zzs r S+E 1+? :

For the quadratic potential, with s = 1, and hence I'(s + 1/2) = I'(3/2) = 7#'"%/2,195 both the last
expression and Eq. (***) yield the same (and exact!) result

4 Vg
Eg = h(—j = 0. (xR

a=a,, =0

opt

|
S

K’ 2° 1 o1
=—- [ls+—|s\A
/lz/lopt Sm 7[1/2 ( 2} ( )

giving

2m 2

where ay = (2a/m)1/ ? is the classical frequency of this harmonic oscillator. However, with the growth of

parameter s, the variational method starts to give higher ground-state energy than the WKB result. This
is only natural because, for harder-wall potential wells with higher values of s, the Gaussian becomes an
increasingly inadequate choice for the trial function. However, we should remember that the WKB
approximation does not give accurate ground-state results either. (As was noted in Sec. 2.4 of the lecture
notes, the validity of Eq. (****) in this approximation is occasional.) Moreover, plugging the above
WKB results for x, and E, into Eq. (2.107) spelled out for our potential, we see that it is fulfilled only if

so that at s >> 1, this approximation gives accurate results only for very high energy levels.

Problem 2.39. Use the variational method to estimate the 1% excited state of the 1D harmonic
oscillator.

Solution: As was mentioned in Sec. 2.9 of the lecture notes, this may be done by requiring the
new trial function to be orthogonal to the previously calculated ground state’s eigenfunction, in our
current case given by Eq. (2.275):

1 P h 1/2
X .
Ve = WGXP{— E} with x, = [mwoj : (*)

This wavefunction is symmetric, and has no zeros; hence, in the light of the Sturm oscillation theorem
mentioned in Sec. 2.9, it is very natural to look for the first excited state’s wavefunction in the form

W = Cx exp{— ax? }, with 1>0,

105 See, e.g., MA Eq. (6.7¢).
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because it is antisymmetric (and hence automatically orthogonal to y4), and has just one zero. The
normalization requirement,

+00 +00 C 2 +o0
J.V/:ial l//trial dx = |C |2 J-xz exp{— Z/b(fz }dx = (2|ﬂ,)|3/2 2152 eXp{— 52 }dé: = 1 2
—0 —o0 0
with &= (24)"2x, includes a well-known table integral!%6 equal to 7''*/4, and hence yields
2(2/1)3/2
clP =221
o =222

With this normalization, the Hamiltonian’s expectation value is

0 h: 42 2.2
<H >mal = JV/:ial( + mw—ox) V i AX

2mad® 2
= |C|2 Txexp{— ixz}(—;—zjzz + ma;(fxz Jxexp{— /”sz}dx
_w m dx

1/2 2m (22)3/2 2m 2 (22

V4
with the same notation & = (2/1)1/2x. The former of these two dimensionless integrals is the same as
above, and the latter one is of the same type,!07 equal to 37%/8. As a result, we get

2 2
(H) =3 ih—+imw0 .
w2 Tom 41 2

The (only) minimum of this function of 4 is achieved, not quite surprisingly, at the same value

3/2 2 ) 2 2 £
EM{M/’_ ! Q_J'gde‘fz d§+(— g2 1 mas j 1)5/2 2_[5%“922 a’f},
0 0

_ ma, 1

on o 2xl’

as for the ground-state wavefunction (*), so the resulting 1 excited state’s wavefunction is proportional
to the same exponent:

( ) Hl/2 ¥2
W, =W )i=a = 75357 XeXpy— -
1 trial J A /10 7[1/4x3/2 2

t
P 0 2x,

Comparing this expression with Eq. (2.284) of the lecture notes for » = 1, and taking into
account Eq. (2.282) for H,, we see that for the harmonic oscillator, the variational method yields the
exact expression for yi(x), and hence for the corresponding eigenenergy:

_ 3hw,
ﬂ':ﬂ‘opt 2 :

El = <Htrial>

Note, however, that the further development of this success would require a rapidly increasing volume
of calculations. Indeed, as Eqgs. (2.282) and (2.284) show, the next exact eigenfunction, w»(x), is

106 See, e.g., MA Eq. (6.9¢).
107 See, e.g., MA Eq. (6.94).
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proportional to the Hermite polynomial H,(x/xo) = (4x*/xo* — 2) rather than just to some power of x as
w1(x) 1s, so finding it by using the variational approach would require at least two adjustable parameters,
for example, Wi o (x> + A1)exp{—Ax}.

Problem 2.40. Assuming the quantum effects to be small, calculate the
lower part of the energy spectrum of the following system: a small bead of mass m,
free to move without friction along a ring of radius R, which is rotated about its
vertical diameter with a constant angular velocity @ — see the figure on the right.
Formulate a quantitative condition of validity of your results.

Hint: This system was used as the “testbed problem” in the CM part of this
series, and the reader is welcome to use any relations derived there.

Solution: As was discussed in the CM part of this series, the classical Hamiltonian function of
the system has the form!08

2
14
H= 27’]’1;2 +Uvef (0)’
with
2

U, (0)=-mgR cost9—%Rza)2 sin® 0 = —mgR (cos0+ 222 sin” 6’) ,

where pg is the generalized momentum corresponding to the generalized coordinate & (the angle of the
bead’s deviation from the lowest point of the ring — see the
figure above), and Q = (g/R)"? is the frequency of small
oscillations of the bead near that point in the case =0 (no
ring rotation).

The transition to quantum mechanics may be
achieved, as was discussed in Chapter 1, by using the
corresponding Hamiltonian operator,

~ 2
g Po 1A ., O
H=—"—+U_\0), with =—ih—. *
2mR2 cf( ) pe 86 ( )
Since the function U« 6) is not quite trivial (see the figure ~05  -02s 0 025 05
on the right), in the general case, the eigenvalues of this 0/ x

108 This result may be readily obtained by using either the Lagrangian formalism in an inertial (“lab”) reference
frame or the effective 2™ Newton law with the additional centrifugal “inertial force” F, = —ma, = -mwx(mxr) in
the rotating (non-inertial) reference frame rotating with the ring — see, e.g., CM Secs. 2.2 and 4.6, respectively. At
the latter approach, the second term in the above expression for U is just the additional potential energy of the
bead in the field of this “force”. Note also that is H the effective energy E.r of the bead in the rotating reference
frame rather than its “genuine” mechanical energy in an inertial reference frame. (The latter energy is not an
integral of motion because of the bead’s strong interaction with the ring, and its minima do not correspond to
stationary values of . The reader to whom this point is not clear is strongly advised to review a discussion of this
issue in classical mechanics — see, for example, the cited sections of the CM part of this series, in particular, CM
Eq. (4.103) and the accompanying discussion.)
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Hamiltonian cannot be calculated analytically. However, if the quantum-mechanical contributions to the
system’s lowest energies are small, it is sufficient for our task to consider only small vicinities of the
minima of this effective potential.

If the ring’s rotation is slow, @ < QF = g/R, the function U(6) has only one minimum, at the
lower point of the ring: & = 0.19 On the other hand, if the rotation velocity @ exceeds the threshold
value equal to €, there are two similar minima of Us«(6) at two symmetric points &, = +sin™(Q%/ @) > 0,
corresponding to the bead’s rotation at the opposite sides of the ring. Taylor-expanding the effective
potential energy near these points, and keeping only two first leading terms of the series, we get

U,(0)-U

i 2 (a)z—Qz)>0, for Q° <®*, where 559—91.
In this approximation, the Hamiltonian (*) is reduced to that of a harmonic oscillator with a

frequency equal to either Qy = (Q — )" (if & < Q?), or Q) = (& — Q)" (if O* < &?). Hence the
lower part of the effective energy’s spectrum is well described, in both cases, by Eq. (2.262) of the

lecture notes:
1 nQ,, for w®> <Q?,
(Eef)n :Umin tlnt+— X (***)
2 hQ,, for Q° < w’.

These expressions are only correct when this energy is within the range where the expansion
(**) is valid, i.e. only if (Eef)y — Umin << Umax — Unin, giving the following validity condition:
2
n<<n = mh maX[Q,a)].

If the nmax so defined is less than or even of the order of 1, quantum effects are strong for all n, and the
harmonic-oscillator approximation is not valid at all. Note, however, that in the opposite limit of very
strong quantum effects, when npy.x << 1, i.e. when W ImR* >> Upax — Umin, the system’s properties
become very simple again. (The planar rotor model valid in this limit will be discussed in Sec. 3.5.)

Problem 2.41. A 1D harmonic oscillator with mass m and frequency ay was in its ground state.
At t = 0, an additional force F' is suddenly exerted on it and then that is kept constant. Calculate the
probability of the oscillator staying in its ground state.

Solution: The ground-state wavefunction of the initial oscillator is given by Eq. (2.275) of the
lecture notes, which may be recast as

Wi (X) = 1 eXp—x2
n1 72'1/4)(?1/2 ?

2
0 2x,

where xo = (W/may)"?. Since the wavefunction does not have time to change during the abrupt
application of the force, wi(x) plays the role of the initial condition, ‘Y(x,0), for the final system,
described by the modified Hamiltonian

109 For our current task, all the bead’s positions that differ by a multiple of 27 may be considered identical, and it
is sufficient to consider just one of them.
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2 2 2 2 2 2
s h” d i ma, /) : maj (x_X)z + const, with X = F2 )
2m dx 2 2m dx 2 ma;

The last expression shows that the modified Hamiltonian differs from the initial one only by the
shift X of the argument — which of course is just the classically-calculated static extension F/x of the
oscillator’s spring, with the elastic constant x = max’, by the applied force F. Hence the ground-state
wavefunction of the final system differs from the initial one only by this shift:

1 (x—X)
Wi (X) = W CXP{— T} .

Now we can calculate the requested probability as Wy = | ¢, I/, where the coefficient ¢y is given
by the 1D version of Eq. (1.68):

* 17 (- XY 1 1
o Zjl//ﬁn(x)l//ini(x)d‘xz 72 IeXp{—T dx = P jexp KR _55)2( .,

0 - -0

where & = x/xo and &y = X/x = (F/ma)oz)/(h/ma)o)l/z. This is a Gaussian integral, which may be readily
worked out by the same completion to the full square as was repeatedly used in Chapter 2:

_ 1 +o0 ~ _l 2_l , e _i
CO_ﬂ_l/Z J.exp{ (5 2§Xj 4§X}d‘§_ep{ 4}-

—00

& S F’
W =X —— /> =€X — = eX — .
’ p{ 2 P 2x2 P 2hmao;

The probability is very small if the force is larger than the so-called standard quantum limit

so, finally,

F, = (hma)g )1/2 = KX, ;

this constant serves as a natural scale for the force effect’s masking by quantum uncertainty.

Problem 2.42. A 1D particle of mass m was placed into a quadratic potential well (2.111),

U(x) = ’"“’2’“ :

and allowed to relax into the ground state. At ¢ = 0, the well is fast accelerated to move with velocity v,
without changing its profile, so at # > 0 the above formula for U is valid with the replacement x — x’=x
—vt. Calculate the probability for the system to still be in the ground state at # > 0.

Solution: Due to the invariance of the Schrodinger equation with respect to the Galilean
transform (whose proof was the task of Problem 1.6), in the reference frame moving together with the
potential profile, U is the function of the relative coordinate x” = x — v¢ only, but not of time. As was
discussed in Sec. 1.5 of the lecture notes, in such time-independent potentials, the stationary state
probabilities, in particular that of the ground state (W), cannot change. Hence the system’s exit from its
ground state can arise only at the moment of its abrupt acceleration, ¢ = 0.
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For this short transient process, the ground state that existed at ¢ < 0, with the wavefunction
given by Eq. (2.275) of the lecture notes,

1/2
1 x? h
¥(x,0)=yw,(x)= Wexp{— oo }, where x, = (ma)o ] , *)

0 X0

serves as the initial condition, so to calculate the requested probability W,, we may apply Eq. (1.68)
written in the moving reference frame:

w, :|Co

Y with ¢, = Iy/:(x')‘l”(x',O)dx’.

Here yy(x’) is given by the same Eq. (*), with the replacement x — x’, because in the moving reference
frame the potential U(x’), and hence the ground state wavefunction, are exactly the same as they are in
the lab frame at ¢ < 0. However, the initial wavefunction ¥ ’(x’, 0) has to be recalculated from ¥(x, 0)
using the wavefunction transform whose proof was the subject of the same Problem 1.6; for the 1D case

mvx . mv't
Yix,t')="¥ —i—+i .
(x,t) (x,t)exp{ 1 P +1 o }

For t =0, when x’ = x, this transform is reduced to

¥'(x',0)= ‘P(x,O)exp{— l%} =y, (x’)exp{— i m;;x'}

SO

+0 ] 1] . 1 +00 2 . , '
" —IW:(XI)WO(x,)exp{_l m;'l}x }dx - in Iexp{_);_z" m;x }dx .

T Xy 2y 0

This is a standard Gaussian integral, with a structure similar to that, for example, of Eq. (2.21) of the
lecture notes, which was worked out in detail in Sec. 2.2. An absolutely similar calculation yields

v? V2 ho 1/2
2
Co = GXP{— m}, so W, = |co| = exp{— F}’ where v, = o, x, :( 0) :

0 0 m

This result shows that if the motion’s velocity v is much lower than the natural quantum-
mechanical scale vy of the particle’s velocity in its ground state,!10 then Wy, — 1, 1.e. the oscillator
remains in its ground state with an almost 100% probability. If, on the contrary, v >> vy, then W, — 0,
meaning that the abrupt acceleration of the potential well almost certainly (with the probability 1 — W
— 1) “shakes up” the oscillator into a linear superposition of its excited states.

Problem 2.43. Initially, a 1D harmonic oscillator was in its ground state. At a certain moment of
time, its spring constant « is abruptly increased so that its frequency ay = (x/m)"? is increased by a
factor of ¢, and then is kept constant at the new value. Calculate the probability that after the change,
the oscillator is still in its ground state.

110 For example, it is easy (and hence left for the reader :-) to use Eq. (*) to prove that the expectation value of the
observable (p/m)’, i.e., of the square of the particle’s velocity, in the ground state equals vy*/2.
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Solution: According to Eq. (2.275) of the lecture notes, the ground state’s wavefunction of the

initial system is
ma, \ mao,x*
. (x) = — 0 exXpy — 0 .
Wi () ( s ) p{ T }

Since this wavefunction does not have time to change during the abrupt parameter’s change, it plays the
role of the initial condition, W(x,0), for the new system (the oscillator with the new spring constant).
Hence we can use the 1D version of Eq. (1.68) to calculate the overlap integral ¢y of this function with
the similar ground state eigenfunction of the finite system (in which we have to make the replacement

@ —> aw):

+oo oo 1/4 2 1/4 2
* mao, maw,x moao, maow,x
Co = _[ W g (O (x)dx = J'( ﬂhoj exp{— 2;1 } ( 7 Oj exp{— 2—;}6196

—00

1/2 40 2 1/4 +00 2 1/2 _1/4
mo ma,x o 2a
(Zlm(—oj Jexp —(1+0() 0 dxzﬁjexp —§— dé::—uz

ah 2h 7 (1+a) 2 (1+a)

—0 —0

From this result, the probability that the oscillator remains in its 1
ground state is: \
|2 2 al/ 2

WO=|CO Cl+a’ W,

This function is plotted in the figure on the right, in the
most revealing log-log scale. As a sanity check, at « =1 (i.e. no
parameter change at all), W, = 1, just as it should be. If the
spring constant /as been changed, then W, < 1 both for > 1 (as
in the problem’s assignment), and for a < 1, i.e. for the spring
constant’s reduction. %301 0.1

—_

10 100

Problem 2.44. A 1D particle is in the following potential well:

+ 00, for x <0,
Ux)= )
mawyx~/2, forx=0.

(1) Find its eigenfunctions and eigenenergies.

(i1) The particle was allowed to relax into its ground state, and then the infinite potential wall at x
< 0 1s rapidly removed so that the system is instantly turned into the usual harmonic oscillator (with the
same m and ay). Find the probability for the particle to remain in the ground state.

Solutions:

(1) The stationary Schrodinger equation of the initial system at x > 0 coincides with that of the
usual harmonic oscillator and is hence satisfied by any of its eigenfunctions — see Eq. (2.284) of the
lecture notes. However, the infinite potential at x < 0 imposes the boundary condition ,(0) = 0, which
is satisfied only by the antisymmetric eigenfunctions with odd quantum numbers n = 2m +1 (with m =0,
1, 2,...). Taking into account that the wavefunctions should be now normalized on the segment 0 < x <
400 rather than —oo < x < +oo, we may write
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0, for x <0,

W (X) = ! = exp _x_22 H,, ., X , forx>0,
22" @m+ 1)) 245 2x; X,

where xj is given by Eq. (2.276), and the Hermite polynomials H,(&) may be defined by Eq. (2.281).

(i1) Taking into account that, according to Eq. (2.282), H (&) = 2&, for the ground state of the
initial system, with m = 0, the above result is reduced to

0, for x <0,
_ 2
Vo(x) = 1 Eexp{— ol }, for x > 0.

1/4 1/2 2
P/ S 2x;

After the fast removal of the wall, this function plays the role of the initial condition Y(x, 0) for the
resulting harmonic oscillator, so we may calculate the requested probability as W, = |cg| 2, with the
coefficient ¢, calculated by using the 1D version of Eq. (1.68):

¢, = [V, Dy (),

where ,(0) is the ground-state wavefunction of the usual harmonic oscillator, given by Eq. (2.275):

B 1 x?
l//g(x)_ 7[1/4x(1)/2 X _2x§ )

As a result, we get

so, finally, W, = 1/7~= 0.318.

Problem 2.45. Prove the following formula for the propagator of the 1D harmonic oscillator:

mao, v imo, 2 2 B B
G(x,t;xy,t,) = (271171 sinle, ((—1, )]j exp{ Shsin[oy(t—1,)] [(x + X, )cos[a)o (t—1,)]—2xx, ]}

Discuss the relation between this formula and the propagator of a free 1D particle.

Solution: According to its definition given by Eq. (2.44) of the lecture notes (see also Egs.
(2.45)-(2.46) and their discussion), the propagator G(x,t; xo, o) of a 1D quantum system has to satisfy
two conditions:

(1) if considered as a function of x and ¢ only, it should obey the Schrédinger equation of the
system, and
(i1) it has to approach &x — xo) at t — .

For our case, condition (i) may be checked by direct differentiation of G over x (twice) and ¢, and
plugging the results into the Schrodinger equation (2.261):
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2 2 2.2
il —pG = 0G M g
ot 2m Ox 2

In order to check condition (i), we may notice that in the limit (¢ — #p) << 1/ay, the propagator coincides
with that of the free particle, given by Eq. (2.49) of the lecture notes, for which the condition (ii) is
satisfied by construction — see Sec. 2.2.

Problem 2.46. In the context of the Sturm oscillation theorem mentioned in Sec. 2.9 of the
lecture notes, prove that the number of eigenfunction’s zeros of a particle confined in an arbitrary but
finite potential well always increases with the corresponding eigenenergy.

Hint: You may like to use the suitably modified Eq. (2.186).

Solution: Repeating the simple calculation that has led to Eq. (2.186), but now for two stationary
states with such numbers n and »’ that £, > E, and for the x-segment limited by two adjacent zeros x,,
and x,,+1 of the stationary wavefunction y;,(x) corresponding to the lower energy, we get

X

m+1 h2 dl// xm+1
(En’ _En) jWnl//n’dx = 2_|:d_nlI”n’j| > Where l//n (xm): Wn (xm+1)2 0 . (*)
X m * K

Since, by construction, the zero points x,, and x,,+; are adjacent,
the function y,(x) does not change its sign between them. Since the
wavefunctions are defined to an arbitrary complex multiplier exp{i¢}
with a real and constant phase ¢,'!! let us select this constant so that
wiu(x) is real and positive on the interval x,, < x < x,,+1. Then dy,/dx has
to be positive (or equal zero) at x = x,, and negative (or equal zero) atx /X, ENN
= Xn+1— see the figure on the right. / N

Let us assume for a minute that the function y;,(x) corresponding to the larger energy E, > E,
also does not have a zero on this interval; in this case, we may also make this function real and positive
on the whole interval [x,,, x,,+1] by the appropriate choice of its phase. Then the left-hand side of Eq. (*)
is positive, while its right-hand side is either negative or equal to zero. Hence our assumption has been
wrong, i.e., the function i, (x) has at least one zero on the interval x,, < x < x,,,+1. (It may be useful for
the reader to revisit Figs. 1.8 and 2.35 of the lecture notes to see how spectacularly this general result
works for the particular cases of hard and soft confinement.)

Now let us apply this result to each inter-zero interval of the function y;,(x), noticing that it is
also valid for infinite intervals, with x,— —o0 and/or x,:; — +o. (In these cases, the product
(dw/dx)y, in Eq. (*) equals zero at the corresponding end of the interval; note that the zero(s) of the
function ¥, at such an interval still have to be finite.) If the function y,(x) has M finite zeros x,, there
are (M + 1) of such intervals, and hence the function w;,(x) has at least (M + 1) finite zeros. So the
statement in the assignment is indeed correct. 12

11 According to Eq. (2.5) of the lecture notes, the phase ¢ of a stationary wavefunction of a confined 1D state,
with the probability current / = 0, cannot depend on x.

112 Other facts necessary for the full proof of the Sturm oscillation theorem, namely that M grows exactly by 1 at
each step of the energy spectrum ladder and equals zero for the ground state, require more refined arguments.
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Problem 2.47." Use the WKB approximation to calculate the lifetime of the metastable ground
state of a 1D particle of mass m in the “pocket” of the potential profile

2
mo;
0 ¥ —ax’.

U(x) =
Contemplate the significance of this problem.

Solution: This potential profile, sketched in the figure on the right for the case a > 0,13 forms a
soft potential well at x ~ 0, from which the particle may tunnel
into the unrestricted half-space x > xo. As a result, even the
ground state of the particle in the well is metastable.

As was discussed in Sec. 2.5 of the lecture notes, the
very notion of lifetime 7 of such a state is valid only if the
potential barrier’s transparency & calculated at the state’s
energy £ 1s much less than 1. For a smooth potential like ours,
we may estimate the transparency by using the WKB-
approximation-based Eq. (2.117), as

0~ 2 {2m[U,,. - B},

where x; is the point where U(x) = 0. Calculating x; and Uy,ax for our potential,
2 2 2\
X, :ma)o , X, :ma)O ngl’ SO (JmaX EU(xm)zwgima)gxlzj
2a 3aa 3 Sd4a 27

and plugging these results into the above estimate, we see that the condition & << 1 requires that

E<<U,,-
(In this limit, we may use Eq. (2.274) to write
e ha,
2 2

because for the small distances from the potential well’s bottom where the ground-state wavefunction is
localized, the cubic term of the potential is negligible.) Due to this condition, the WKB expression,

1/2 2 1/2
g = 2(2m) ma o - ho, dx | *)
/] (10 2 2

which follows from the general Eq. (2.117) for our potential profile, may be simplified.

In the crudest approximation, in which the ground-state energy E =hmy/2 is neglected
completely in comparison with U(x), the integral is simple:

However, they are virtually evident from the WKB-based Wilson-Sommerfeld quantization rule (2.110). Indeed,
each new half-wave of the wavefunction corresponds to the increase of A¢.,, defined by Eq. (2.108), by 7, and
hence of Ap. = Ag_, also by 7, i.e. to the increase of the total wave change (2.109) by 27, i.e. to the increase of
the quantum number # by 1.

13 This choice of sign makes the notation simpler. (All final results for negative «, i.e. for the potential U(x) =
mayx*/2 + a’x’, with &’ =—a > 0, are evidently similar, with the coordinate inversion x — —x.)
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27U

-Iny) =

2(2m)"? xl(ma)é

1/2
xt -’ dx =

where &= x/x;. The last integral may be readily worked out (for example, using the new substitution o =
1 — &) and is equal to 4/15, so we get
U U
-In =ﬁﬂ, ie. 4 =exp 30U ,
5 ho, 5 ho,
proving that, indeed, ¥y << 1 only if Ziaxy << Umax. Now, using Eq. (2.153) of the lecture notes, we can
estimate the metastable lifetime 7 as t/%,, where ¢, is the period between the classical particle’s

“attempts” to pass through the potential barrier.!'# In our case, #, is the period 277ax of the classical
oscillations at the bottom of the potential well, so

= zexp{ﬁ@} . (**)

T, =
@, 5 ho,

o% |WN

This expression is satisfactory for most practical applications because, as will be shown below, it
gives the correct exponent — which, in our case iy << Upnax, dominates the value (**).!15 To make a

more exact calculation, we need to take into account the small ground-state energy £ = fian/2 << Upax,
at least in the first nonvanishing approximation. Looking at the figure above, it is clear the effect of non-
zero E on the WKB integral (*) is strongest at x ~ 0 where the function U(x) grows most slowly. In this
region, xo < x < Xin, Where X 1s the left classical turning point defined by the condition

. how, moix; n )"’
E=U(x,), ie. —=—2"0 SO X, = ,
2 2 mao,

and xj, 1S some intermediate point (see the figure above again) satisfying two strong conditions:

ha, mag X, 3
Xy << Xy << X, so that 5 << 5 < ax;,,
we may ignore the potential’s anharmonic term ax’. On the other hand, in the complementary region Xiy
< x < X, the anharmonic term has to be treated exactly but the effects of non-zero energy E = fiax/2 may
be described in the linear approximation. As a result, the leading correction to our baseline result (**)
may be calculated as

(***)

114 One may wonder whether this expression (which, for the lifetime problem considered in Sec. 2.5 of the lecture
notes, was proved rather than conjectured, and is very intuitive for any nearly-classical motion) is quantitatively
correct for the essentially quantum motion of the particle in the ground state of our current problem. However, its
use is justified by the fact that, as was shown in Sec. 2.4, the WKB approximation gives the exact result of the
ground-state energy of the harmonic oscillator and hence provides a perfect “stitching” of its exact wavefunction
(2.275) with the WKB expression for it at x >> x,. (As the calculation below shows, for our current system with
hay << Umax, this stitching may be performed within the broad range x, << x << x,,, and is hence unaffected by the
potential’s anharmonicity at x ~ x;,.)

115 Note the proximity of the numerical coefficient under the exponent, 36/5=7.20 for this cubic-parabolic
barrier, to that for the quadratic-parabolic barrier, 27 = 6.28 — see Eq. (2.119) of the lecture notes, which is
correctly described by the WKB approximation at (Up.x — E) >> hay.
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int mo ha) 1/2 int mao 1/2
j( 2°x2— 20] dx—j( Oxzj dx
_202m)"? | % %
h X; 1/2
+ J‘li may x*—ox’—E hay dx
2 OEl 2 2
int E=0

Performing the differentiation inside the last integral, and using the notation introduced above to bring
the integrals to dimensionless forms, we get
X/ Xg>>1 X/ Xo>>1 1 dé
1/2
A-ma)x2 [ (2 -1)"ac- Jag|- [ s
1 1 x et $(1-¢)
where ¢ = x/x, and & = x/xin. The second of these integrals is elementary, while the other two may be

also readily worked out: the first one, by using the substitution {'= coshe, and the last one, by using the
substitution f= (1 — &)". The result,

1/2
2x, 4 8 864U
A(—lng)z—lnﬂ_ niz—lnig_ n[[ max] ],
xO x() hwo

xint
is independent of the exact choice of the auxiliary parameter x;y (as it has to be for the correctness of our
“stitching” procedure), and we get the corrected WKB expression

o 864ljmax " 36 Umax
S =|—| expy———"",
ha, 5 hw,

so the corrected lifetime of the metastable state is

1/2

h U

T =2—7[F]‘1 _27|_ho, exp 36 Uiy , forhwm, <<U
, w, \ 864U .. 5 hw,

max *

We see that the lifetime correction due to the ground-state energy leads not to just a different
numerical factor in the pre-exponential coefficient; it makes this factor dependent on the system’s
parameters.

Finally, let us discuss why this problem is very important. Let a 1D particle be confined at a
minimum of an arbitrary but smooth potential Uy(x). Let us gradually deform this potential, for example
by application of an additional force F, which “tilts” its profile as

Ux)=U,(x)-Fx,

so at some critical value F; of the force, the minimum finally disappears. At F below but very close to
this critical value, the “pocket” of energies Umin < E < Unax 1s very shallow, and the spatial extension of
the pocket is very small, so the potential U(x) in its vicinity may be expanded into the Taylor series at its
minimum, with only a few leading terms being essential. The linear term of the expansion, by definition,
disappears at the minimum of the potential energy (say, x = 0), so the leading term is quadratic and may
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be always represented as maxy°x’/2, as in the potential of the solved problem. However, this term cannot
describe the potential barrier — and hence the finite lifetime of the metastable state. For the minimal
description of this effect, we need to keep the next, cubic term in the Taylor series, thus arriving at the
model analyzed above.

Hence, our result for 7z is valid for the metastable ground state in virtually any sufficiently
smooth potential U(x), near the critical point of the potential well’s disappearance. (The exception
would be a very special function U(x) whose third derivative vanishes exactly at the point where the first
one does.)
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Chapter 3. Higher Dimensionality Effects

Problem 3.1. A particle of energy E is incident (in the figure on the Y
right, within the plane of the drawing) on a sharp potential step:

0, for x<0,

U(r)=
* {UO, for 0 <x.

Calculate the particle reflection probability 4 as a function of the incidence
angle 6, and discuss this function for various magnitudes and signs of U.

Solution: As was discussed in Chapter 1, in wave mechanics, a particle with a definite energy,
propagating in a definite direction (as implied by the assignment), is described by a monochromatic
plane de Broglie wave (1.88) with a c-number wave vector k. In our current case of the planar boundary
(x = 0) between two internally uniform regions, the vectors k of the incident, reflected, and transmitted
waves may have only two (x- and y-) components. In order to satisfy the boundary conditions at all
points along the boundary’s plane, the y-dependence of the waves at x < 0 and 0 < x should be the same.
Thus the appropriate plane-wave solutions of the Schrodinger equation in these two regions are!!®

(Aexp{ik x}+ Bexp{- ikxx})exp{ikyy}, for x <0,
Vi Cexp{ikx’x}exp{ikyy}, for 0 < x,

where the wave vector components are related by a natural generalization of Egs. (2.54) and (2.57):

(k2 +k? (k> +k’
kirk) g MO o -
2m 2m
These expressions are valid even if E is so low that &> < 0 (for U, > E, this is the case for any angle 6);
in this case, we may take k’y = ik, with real k¥ > 0, so toward the bulk of the region with 0 < x, the
wavefunction decays as exp{—xx}.

Thus the problem is reduced to the similar 1D problem that was solved in Sec. 2.3 of the lecture
notes (see Fig. 2.4 and its discussion), and we can use the first of Egs. (2.63), which, in our current
notation, reads

2
k, —k, ; Pk, —k)
5_K =, so =B —|F A (**)
A k +k' A k. +k'
However, due to Egs. (*), and the evident geometric relation (see the figure above)
—~ =tané, (**)

X

116 In classical mechanics, the fact that &, is the same at x < 0 and x > 0, corresponds to the conservation of the y-
component of the particle’s momentum, due to the absence of a force in this direction: F, = -0U(r)/0y = 0.
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we may see that if &, # 0 (i.e. 8# 0), the energy dependence of the x-component of the wave number is
now different from the 1D case. Indeed, from Eqgs. (*) and (***), we can readily get

1/2

hk, =(2mE)"* cos#, hk ' = [2m(E cos’ @ — Uo)] ,
so Eq. (**) yields

172 |?
R = COS@_(COSZQ_UO/E) ,  for ﬂ<coszt9. (***%)
c059+(c0529—U0/E)”2 E

The figure on the right shows this reflection U,
probability as a function of the incidence angle 6, for f:/ +0.95 +0.5 +O'1/l}1
several values of the Uy/E ratio. If U, is negative, then Eq. 0.8 /
(****) is valid for any angle and describes a gradual / /I
increase of the reflection from such a potential “step- 06 / / |
down” with the growth of @ — see the dashed lines. (Note 2 ' / |
that the reflection always becomes almost total at @ — /2, / /
i.e. at the “grazing-angle” incidence.) Another visible 04 /
trend is that the reflection is generally lower for smaller /
steps, and vanishes at Uy — 0. 02 / /

As the solid lines show, both these trends are also . -—0.1
valid for the potential “step-up”, i.e. if U is positive but 0 0.8

still less than the particle’s energy E. Here Eq. (***%*) also
describes a reflection probability’s growth with the
incidence angle, but now the increase is faster, and the reflection becomes total at a final “critical” value
6, = arccos (UO/E)” 2. At larger angles (and also at any angle for Uy > E), k.’ is purely imaginary, and Eq.
(**) yields

R=1, for cos20<%,

describing the so-called total internal reflection, completely similar to that of electromagnetic waves.!17

Moreover, Eq. (****) is an analog of the well-known Fresnel formulas. However, due to the
scalar nature of the de Broglie waves, there is only one such formula in wave mechanics, rather than two
in electrodynamics — for two possible electromagnetic wave polarizations. 118

Problem 3.2. For a charged particle moving in a magnetic field &, calculate the commutation

relations between Cartesian components of the kinetic (“mv-") momentum operator defined by Eq.
(3.20). Can the result be represented in a vector form?

Solution: The operator form of Eq. (3.20), with the canonical momentum operator given by Eq.
(3.25), is!19
p=—ihV—gA, *)

117 See, e.g., EM Sec. 7.4.
118 See, e.g., EM Egs. (7.91) and (7.95).
119 Implicitly, this expression was already used in Eq. (3.26) of the lecture notes.
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where ¢ is the particle’s electric charge, so the j™ Cartesian component of the operator is

A 5 0
P =_lh7_quJ
j

where the index j may take any value of the set {1, 2, 3}. Let us calculate the commutator of two such
components, with j’ # j:

A A e, ., O
[pj,pj,]:\‘(—Zha—rj—QAjJ,(—lhaTj'—qu.JJ
=—h’ i,i +q2[A<,AA,]+ihq i,Aq + A,i .
or, or, Y or, ' "o,

The first of the four commutators in the last expression equals zero because of the well-known
rule of double partial differentiation of any function:

oy (a o 0 aJ { Rk Gk ]
= , 0 | ——————|y= - w=0.
6rj8rj. 6rj,8rj Grj 8rj, 8rj, Grj 8rj6rj. Gr]@rj,

**)

The second of the commutators in Eq. (**) also vanishes because all Cartesian components of the vector
operator A are functions of r (and maybe time), and hence, in the coordinate representation we are
studying now, act upon any function just like the operator r (see the first of Egs. (1.26) of the lecture
notes), i.e. just as simple multipliers, which may be swapped:

A Ay =44y,  so [Aj’Aj’ ]‘/’ = (AjA./’ — 4,4, )'// =0.

However, the last two commutators in Eq. (**) do not vanish. Indeed, we may consider their
action upon a function just as it was done with the operators of x and p, in Eq. (2.14):

5 d oy (o4, ow) oy o4,
_’AA, E—AA, —AA,—: _ 7 +A’— —A,—E—j
[6}’ / }// 61”‘( "W) ” or, (Gr_/ v or Tor,  or, v

J J J J

Since this equality is valid for any i, we may represent it as the following operator identity:

o A, |= o4, .
81{],’ ' or,

The last commutator in Eq. (**) differs from this one only by the operand order (i.e. by the sign) and the
index swap. As a result, Eq. (**) yields

[5..5.]=ing oA, oA (***)
7 or, or, )

However according to vector algebra,!20 if the indices j and j’ run in any “correct” order: 1 — 2
— 3 — 1 — 2..., the expression in the parentheses is just the ()™ component of the vector VxA, where

120 See, e.g., MA Eq. (8.5).
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the index j”’ is complementary to j and j . On the other hand, classical electrodynamics!?! tells us that the
vector VxA is just the magnetic field &, so we get a very simple result:

[ﬁi’ﬁj’]: ihq A, .

In the opposite case when the indices j and j’ run in an “incorrect” order, this equality is still valid but
with the opposite sign. Finally, if j =, the right-hand side of Eq. (***) vanishes. All these facts may be
represented by using the Levi-Civita symbol:122

3
b, b, 1=iha> B, ()
j"=1

where the choice of the indices j, j’, and j " is now arbitrary. In particular, since this symbol may be used
to rewrite the well-known relation!2> between the Cartesian components of the vector product and its

operands as
3

ab, —b,a, =3 (axb).e,..
"=l
the set of Eqs. (****) for all Cartesian components may be represented in the following compact vector
form:124
pxXp=ihg3AB .

Note that according to this formula, the vector product of the kinetic momentum operator by
itself vanishes only in the absence of a magnetic field, while for the corresponding c-number vector of
classical mechanics, this is always the case.

Problem 3.3. In the classical mechanics version of the Landau-level problem discussed in Sec.
3.2 of the lecture notes, the geometric center of the particle’s orbit is an integral of motion, determined
by initial conditions. Calculate the commutation relation between the quantum-mechanical operators
corresponding to the Cartesian coordinates of the center.

Solution: The Landau problem is that of a non-relativistic 2D particle of mass m, with electric
charge ¢, moving in a uniform magnetic field # = #n, normal to the particle’s confinement plane [x, y].
Its solution in classical mechanics is simple and well-known:!25 since the magnetic Lorentz force F =
q[vxA] exerted on the particle is perpendicular to the vector of its velocity v, it causes the particle’s
rotation within the confinement plane, with the radius » that may be readily calculated from 2" Newton
law for the circular motion:

121 Just as a reminder, in this course until Chapter 9, we consider quantum properties of particles moving in the
fields described classically.

122 See, e.g., MA Eq. (13.2). Note that in some texts, the sum on the right-hand side of this (and other similar
relations) is dropped. This is only correct if this omission is compensated by adding the conditionj” #, j’.

123 See, e.g., MA Eq. (7.3).

124 A direct derivation of this formula from Eq. (*) is a useful additional exercise, highly recommended to the
reader.

125 If necessary, see, e.g., EM Sec. 9.6 — which also discusses the relativistic version of the problem.
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2

v v
m-—= | qvh
r

qh

, giving r =m

In contrast, according to the same equation, the “cyclotron” frequency @, = dg@/dt of the particle’s
rotation does not depend on its speed v, i.e. on the initial conditions: 126

qh

C

m

However, the coordinates {X, Y} of the rotation center, participating in the circular motion’s description,
x=X+rcoso, y=Y+rsing, where ¢ =awt+¢,,

(as well as the orbit’s radius » and the initial angle ¢y), are constants determined by initial conditions.
Since the Cartesian components of the particle’s velocity are

dx . dy
v, EE:—a)crsm(p, v, E—t:a)crcosgo,

these constants may be expressed as time-independent combinations of the coordinate and velocity

components: . .
sz——vy, Y=y+—v, . (*)
[0) (0]

C c

Now in quantum mechanics, as was discussed in Sec. 3.1 of the lecture notes,!27 in the presence
of a magnetic field, the operator of the particle’s velocity is

g=2_2oad ()
m m

where P is the canonical momentum whose operator may be expressed by Eq. (3.25) of the lecture
notes, so it commutes in the standard way (2.14) with the Cartesian components of the radius vector:

(2.8 )=, [5.8]=in.  [2.B]=0. [5.8]=0, [B.B]=0.  (**x)

Let us select, for the sake of simplicity, the Landau gauge (3.44) of the magnetic potential with
xo =0, so 4, = 0 and 4, = #x. (It is straightforward, though more bulky, to show that the final result for

the commutator is the same in any gauge.) Then Eq. (**) is reduced to

A P ~ ﬁ)y - Q'J/?)% PV A

vo=—", vV, =———=—+0.X,
m ’ m m

so the operators corresponding to the variable combinations (*) are

126 In contrast to Eq. (3.48) of the lecture notes, giving the cyclotron frequency’s magnitude, this expression may
have any sign, and describes the correct direction of the particle’s rotation in the [x, y] plane: say, clockwise (@, <
0)if g> 0.

127 See also the solution of the previous problem.
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v zﬁ—L(ﬁy+mwc)€)E—LIS, Y=7+ 1

A

1 1. . 5
— g —v =y+——F~FP.
[0 mao, mao, , mao,

Now it is straightforward to use Eqgs. (**%*) to calculate the commutator of these operators:

[f(,?]:[— A P+ P } Ly

mao, mo, | mao,

where 7. 1s the Landau radius (see Eq. (3.51) of the lecture notes), while the sign is determined by that
of the product ¢g#. This result shows that in the Landau problem, the observables X and Y are not

independent and that 7, gives the spatial scale of their uncertainty.

Problem 3.4." Analyze how are the Landau levels (3.50) modified by an additional uniform
electric field & directed along the plane of the particle’s motion. Contemplate the physical meaning of

your result and its implications for the quantum

Hall effect in a gate-defined Hall bar. (The area gat% <0 l‘% Ve <$ate
Ixw of such a bar is defined by metallic “gate” w

electrodes parallel to the 2D electron gas plane — 2D electroL

see the figure on the right. The negative voltage ~ &as plane
V. applied to the gates squeezes the 2D gas from
the area under them into the complementary, Hall-bar part of the plane.)

semiconductor

Solution: The constant electric field directed along a certain coordinate axis (say, x) creates the
additional potential
AU =—qéx.

Reviewing the calculations carried out at the beginning of Sec. 3.2 of the lecture notes with the account
of this additional potential, we see that Eq. (3.47) is now modified as follows:

K o4l (]2 ,
a2 ' Q —
—%FX/C'FE(/} (X—XO)Xk—q(gXXk—EXk,
where, as in Sec. 3.2,
X, =x,+ ik
o 0 q(ﬂ .

This equation may be rewritten in a form similar to the initial one:

2 2 2
——;7 —j _X, +—g BFX, = EX,,
m ax m

but with an additional shift of the reference point:

X

n n — ! ol
x—x,", where x," =x,' + &,

g%’

and, more importantly, with a different constant on the right-hand side:
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~ mé?
E=FE+qgéx," - .
q 0 2’%2

This means that Eq. (3.50) of the lecture notes is now valid for the parameterE rather than for the
eigenenergy E, and the genuine energy spectrum now depends on xp”, i.e. on the position of the
wavefunction’s center:

1 :
E = ha)CLn + EJ —q¢x," + const .

The physical interpretation of this result is straightforward: the whole set of Landau levels moves
up or down together with the electrostatic potential energy the particle would have if it was classically
localized at the center {x,”, o} of its wavefunction:

E, :ha’c(n"'%)""(](xo”’yo)a )

where, in our particular case, U(x, y) = —q¢x + const. It is virtually evident that Eq. (*) is valid for any
external potential U(x, y) if it changes in space smoothly enough. Indeed, it may be shown that Eq. (*) is
asymptotically correct if the potential’s curvature is sufficiently small; for example, for U = U(x) and
relatively low Landau levels, n ~ 1, the potential has to satisfy the following condition: 128

| _ 1]ov
Ox? Oox

1

o

; **)

where ¢ is the Landau radius (3.51): 7. = (#/| ¢ |)"*. For the usual quantum Hall experiments, with | g |
~e~1.6x10"°C and # of a few teslas, the Landau radius is of the order of 10 nm, while the walls of the

potential well U(x) in the gate-defined Hall bar are smeared by a distance of the order of the gate
electrode’s distance d from the 2D electron gas

plane — typically of the order of a few hundred gate Ve <0 gate
nm. Hence the condition (**) is reasonably ra
v

well fulfilled; as a result, one may analyze the 2D electron ! ]
. semiconductor E

quantum Hall effect in such a bar using the gas plane™
picture of space-dependent Landau levels

E,(x, y) repeating the potential well’s profile —

see the figure on the right.

As was discussed in Sec. 3.2 of the E

lecture notes, at sufficiently low temperatures,
the electron states corresponding to the regions
where these levels are submerged below the
Fermi energy Er are fully occupied, while those
above it are empty. As I hope the reader knows = 77 TT-----oo
from undergraduate physics (and as will be
discussed in detail in SM Chapter 6), the 0
electric-field-driven electron transport may take place only at the Fermi surface, because it requires

128 If this condition is not met, the electric field may also affect the distance between the Landau levels — see, e.g.,
the next problem.
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repeated pick-ups of small portions of energy from the driving field and their consequent drain to
electron scattering centers. Hence, at the quantum Hall effect, the transport is only possible in quasi-1D
edge channels (of a small width ~ r) formed by each Landau-level surface E,(x, y) crossing the Fermi
energy plane £ = Er = const.

Detailed analyses (for whose description I do not have time/space this series) show that electrons
traveling along these channels cannot be back-scattered by (unavoidable) small inhomogeneities of the
sample. This fact is exactly the origin of the unprecedented accuracy of the Hall resistance Ry (3.56),
which is so unusual for solid-state physics.

Problem 3.5. Analyze how are the Landau levels (3.50) modified if a 2D particle is confined in
an additional 1D potential well U(x) = man'x*/2.

Solution: With this additional potential, the Schrodinger equation (3.41) becomes
2 2
—h—(n 9 in i—igAj 1//+%a)§x2w =Ey.

With the same choice of the vector-potential as in Eq. (3.44), and the Fourier expansion (3.45), instead
of Eq. (3.47) we now get

2 2 2
_h d2 X, + q—ﬂ32§2+ﬁa)§x2 X, =EX,, with X =x—-x,, x,/=x,+ hk :
2m dx 2m 2 qh

The two terms inside the square brackets (both quadratic-parabolic functions of x) may be merged:

2
2~ m m ~ m =
4325 + 22y =—(a)fx2 +a)§x2)z—a)ffx2 + const,
2m 2 2 2

where s 1s the effective frequency defined by the following relation:

i qh
a)ezf = a)cz + Cl)g, with ., = 7, (*)

and X =x— x;is the coordinate x referred to a certain point x;, which depends on our arbitrary choice
of xo, and hence is itself arbitrary. As a result, besides an arbitrary (and inconsequential) choice of the
energy and coordinate offsets, the Schrodinger equation is again reduced to that of a 1D harmonic
oscillator, and hence has a similar energy spectrum,

E = ha)ef(n +lj,
2

but now with the modified (increased) frequency defined by Eq. (*). Hence the “soft” confinement
increases the distance between the Landau levels.

Problem 3.6. Find the stationary states of a spinless, charged 3D particle moving in “crossed”
(mutually perpendicular) uniform electric and magnetic fields, with ¢ << c¢%. For such states, calculate
the expectation values of the particle’s velocity in the direction normal to both fields and compare the
result with the solution of the corresponding classical problem.
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Hint: You may like to generalize Landau’s solution for 2D particles, discussed in Sec. 3.2 of the
lecture notes, to the 3D case.

Solution: Just as was done in Sec. 3.2, let us direct the z-axis along the magnetic field and the x-
axis along the electric field; then we may use the same choice (3.44) of the vector-potential:

4,=0, A, =B(x-x,), A4, =0,
and write the electrostatic potential in the form
#(r) = —¢éx, so U(r)=qg(r)=—qéx.
With these choices, the Schrodinger equation (3.27) takes the form
o [o g g
-t | —FBx—x +—ry—qéxy =Ey.
2m{8x2 {Gy 2 0)} o2 [V ATV EEY

It is evidently satistied by the following eigenfunction (which is a natural generalization of the function
used in Eq. (3.45) of the lecture notes):12?

Vi :Xk(x)exp{iky(y_y0)+ikz(z_zo)}v (*)

where the function Xj(x) obeys the following 1D equation:

n | d’ q ?
2 0,
b —[ky —;ﬁ(x—xo)} KX, —qfxX, =E X, .

This equation may be rewritten in the form of Eq. (3.47):

LA TS ) (%)
2mdx? " 2m K K
where X = x —x,"” is the coordinate x offset by the value (now depending on both applied fields):
o3 hik o
X =X+ —5=x,+—+ m(: , (%)
qs q#$ q&

and E . 1s the eigenenergy Ej, offset by a constant.!39 As was discussed in Sec. 3.2, Eq. (**) is satisfied

by eigenfunctions of a 1D harmonic oscillator with the frequency @. equal to the cyclotron frequency of
the particle’s motion in the applied magnetic field — see Eq. (3.48) of the lecture notes.

Now we may combine Eqgs. (3.20) and (3.25) of the lecture notes to calculate the operator of the
particle’s velocity along the y-axis normal to both applied fields:

v, = l[— ihi—quj = i{— ihi—qﬂ?(x—xo )}

m oy m oy

129 Here the index k symbolizes the set of c-number parameters £, k., xo, yo, and zo.
130 Egs. (**) and (***) are a natural 3D generalization of the corresponding formulas derived in the model
solution of Problem 4.
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By using Eq. (**%*), this result may be represented as

hk o 9 4
v, :l[—ihi—q%(%+ L+ mé j:lsl(—ihi—hkyj—qﬂf—(c .

m oy qB  qR’ m oy m B

For the properly normalized eigenfunction (*), the expectation value of the operator 0/0y is ik,,
so the expectation value of the expression in the last parentheses vanishes. Also, due to the symmetry of
the confining potential of a harmonic oscillator and the resulting symmetry of its eigenfunctions,!3!

X (CR)=£X,E), e | X, () =|x.F)

b

the expectation value of its coordinate equals zero for any eigenstate:
(%)= [ X, (®)Fx, (¥)dx = [|x, ()7 =0,

so we finally get i
()=, for [, ) <<c. (s

(The last strong equality explains the condition ¢ << ¢4 in the assignment; if it is not fulfilled, the
analysis of this problem requires relativistic quantum mechanics.)

Very counter-intuitively, this simple result is valid for any eigenfunction (*) of the system, i.e.
any set of parameters k,, k., xo, o, and zo!!3? This fact becomes (slightly :-) less surprising if we recall
the classical solution of this problem:133 it shows that the trochoid-like trajectory of the particle “drifts”,
in the direction normal to both vectors & and %, exactly with the velocity expressed by Eq. (¥**%*),
independently of initial conditions.!3* Of course, the instant velocity v of a classical particle, besides the
average drift component (****)  generally has other components oscillating with the cyclotron
frequency, whose amplitude and phase do depend on the initial conditions. But the same may be true for
the expectation value (v) in quantum mechanics if the initial state of the particle is a superposition of
two or more eigenstates (*) rather than just one of them, as was implied at the calculation of Eq. (****).

Problem 3.7. Use the Born approximation to calculate the angular dependence and the total
cross-section of scattering of an incident plane wave propagating along the x-axis, by the following pair
of similar point inhomogeneities:

U(r)=W{5(r—nzﬁj+5(r+nz£ﬂ.
2 2

131 See Egs. (2.281) and (2.284) and/or Fig. 2.35 of the lecture notes.

132 In particular, it gives the average velocity of the particle’s motion along the edge channels that were discussed
in the solution of Problem 2.

133 See, e.g., EM Sec. 9.6 (iii), and in particular Eq. (9.168) and Fig. 9.12.

134 Even the reader unfamiliar with this general classical result should readily recognize its following particular,
simple case: a linear, uniform motion of the particle along axis y is possible only with such velocity v, that the
electric and magnetic components of the Lorentz force cancel each other, so the total force vanishes: F = g(& +
vx#B) = q(én, + vynyxn,) = ng(¢€ + v, %8) = 0, giving the result identical to Eq. (***).
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Analyze the results in detail. Derive the condition of the Born approximation’s validity for such delta-
functional scatterers.

Solution: Plugging the given U(r) into the general Born integral given by Eq. (3.86) of the
lecture notes, we get the following scattering function:

mw . a . a
SkK;)=— o (exp{—lq-nz 5}+ eXp{ iq-n, 5})

Since in this problem (see the figure on the right)

q-n, E(k—ki)-nz =k-n_ =kcosO,

where © is the angle between the direction of the vector k (toward the observer)
and the z-axis,!35 our result may be rewritten as

mw ka
k.k.)=- cos| —cos® |,
=T )
s0, according to Eq. (3.84), the differential cross-section of scattering is

Z—gz|f(k,ki)|2 =(m¢{/] cosz(k—acos®jzl(mwj [1+ cos (kacos ®)] (*)

7h? 2 2\ 7zh?

Now we can calculate the total cross-section, by using spherical coordinates with the z-axis taken
for the polar one:

tdo ' sin ka
=27 | —sinBOdO = 1 kaé)|dé =20, 1
o ﬂv([ 0 sin 0'1“ +cos( aé‘)] & 61( + 2 J,

-1

where oy is the energy-independent total cross-section of each point scatterer:

oo L(mwY
1_72' h? '

This situation is of course just a variety of the Young-type experiment (cf. Fig. 3.1 of the lecture
notes), and Eq. (*) is a particular embodiment of Eq. (3.11) with |a,| =l a,| and the alternative path
lengths difference I, — /; = Al = a cos® — see the figure above. For this particular geometry, the scattered
wave is symmetric about the z-axis. This is natural, because in the Born approximation, the role of the
incident wave, in our case propagating along the x-axis, is reduced to the excitation of spherical
secondary waves i from all (in our case, just two) partial scatterers. As a result of the interference of
these two spherical waves, the scattered wave’s intensity oscillates with the angle ®, reaching its

maxima at
2 A

cos®, =—n=—n, with n=0,1,2,...,
ka a
i.e. at the angles at which the path difference A/ between the two waves is a multiple of the de Broglie

wavelength A= 27/k.

135 Note that @ is different from what is usually called the scattering angle 6 (between the vectors k and k;).
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However, at low particle energies (ka << 1, i.e. a << A), this “constructive interference”
condition may be satisfied only for n = 0, and the scattering is spherically-symmetric and energy-
independent: o = 40, the factor of 4 arising from the coherent addition of the two waves in all
scattering directions. On the other hand, at high energies (ka >> 1) the intensity of the scattered wave
oscillates rapidly with the angle ©, so the total cross-sections of the scatterers add up as if they were
incoherent: o= 20;.

In order to estimate the Born approximation’s validity condition, let us replace the delta-
functional scatterer with one of a finite (though very small) size R << a, k', and a potential of such a
magnitude ~Uj that % ~ UyR’. According to Eq. (3.77) of the lecture notes, to have |y | << |y | inside

the scatterer, we should have

2
U, <<——, ie o0, ~
mR

<< R.

27 hZ

For a fixed #% (and hence o), this condition is never fulfilled at R — 0. This means that we cannot take

the above expression for gy too literally (unless it is indeed much less than R%, where R is the physical
size of the “point” scatterer).

However, the calculated interference pattern as such, i.e. the functional dependence of the
