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Chapter 1. Introduction 

 Problem 1.1. The actual postulate made by N. Bohr in his original 1913 paper was not directly 
Eq. (1.8) of the lecture notes, but rather the assumption that at quantum leaps between adjacent electron 
orbits with n >> 1, the hydrogen atom either emits or absorbs the energy E = , where  is its 
classical radiation frequency – according to classical electrodynamics, equal to the angular velocity of 
the electron’s rotation.1  Prove that this postulate, complemented with the natural requirement that L = 0 
at n = 0, is equivalent to Eq. (1.8). 

 Solution: Combining the classical Eqs. (1.9) and (1.11) written for the nth circular orbit, 
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with the well-known classical relations n = vn/rn, Ln = mevnrn,  we may readily express the energy and 
the rotation frequency of the electron via its angular momentum Ln : 
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 For large orbits, with for n >> 1 and Ln  , both En and n tend to zero, and hence the 
difference between the adjacent energy levels (n = 1) may be well approximated as 
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From here and the first of Eqs. (*), 
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Comparing this expression with the second of Eqs. (*), we get 
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 Hence the actual Bohr’s assumption (En = n) yields Ln = . Together with the natural 
requirement L0 = 0, this result is equivalent to Eq. (1.8). 

 

 Problem 1.2. Generalize Bohr’s theory for a hydrogen-like atom/ion with a nucleus of the 
electric charge Q = Ze, to the relativistic case.  

 Solution: According to classical relativity,2 the non-relativistic equation of motion of a charged 
particle in an electromagnetic field retains its form even in the relativistic case, provided that the 
particle’s mass m is replaced with its relativistic, velocity-dependent value  

1 See, e.g., EM Sec. 8.2. 
2 See, e.g., EM Sec. 9.6, in particular Eq. (9.144). 
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where m is now the rest mass, and c is the speed of light. With this replacement and the similar change 
of the particle’s momentum, p  Mv  mv, Eqs. (1.8) and (1.9) for a circular orbit of an electron in a 
hydrogen-like atom/ion become 
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Solving this simple system of two equations for v and r, for the former variable, we get formally the 
same result as in the non-relativistic case: 
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however, Eq. (1.10) for the orbit’s radius is now rescaled by the Lorentz factor : 
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where   e2/40c  1/137 is the so-called fine structure constant.3  

 Most importantly, this formula gives imaginary values for r (indicating that Bohr’s orbits do not 
exist) for n < Z  Z/137. The physical reason for this effect becomes clear from Eq. (**) rewritten as v 
= (Z/n)c:  for n < Z, it gives values of v larger than c, i.e. no realistic electron’s speed can sustain 
Bohr’s condition of the angular moment quantization. In particular, for 

      137max  ZZ ,     (***) 

even the ground state (with n = 1) does not exist. Remarkably, exactly the same restriction (***) is 
given by the Dirac equation, i.e. by the most accurate quantum theory of electrons’ motion in a classical 
(non-quantized) electromagnetic field – see Eq. (9.136) and its discussion in Sec. 9.7 of the lecture 
notes. 

 Problem 1.3. A hydrogen atom, initially in the lowest excited state, returns to its ground state by 
emitting a photon propagating in a certain direction. Use the same approach as in Sec. 1.1(iv) of the 
lecture notes to calculate the photon’s frequency reduction due to atomic recoil.   

 Solution:4 According to Eq. (1.12) of the lecture notes, the ground state of the hydrogen atom 
corresponds to n = 1, and its lowest-energy excited state, to n’ = 2. So, according to Eqs. (1.7) and 
(1.12), in the absence of recoil, the emitted phonon’s energy is 
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3 For its discussion, see, e.g., Sec. 6.3 of the lecture notes. 
4 This problem is essentially a variant of EM Problem 9.10. 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 5 

Now let us calculate the atom’s recoil momentum p, by using the laws of momentum and energy 
conservation. In the reference frame in that the atom was at rest before the photon emission, they read 

     ,
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where  is the photon’s frequency with the account of the atomic recoil, and m is the rest mass of the 
atom in its ground state, dominated by that of a proton. Solving this system of two equations for p and 
, we get, in particular: 
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Due to the very large difference between 0  10.2 eV and mc2  mpc
2  0.938109 eV, this expression 

may be simplified: 
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It is curious that the recoil velocity has a human scale: 
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Note, however, that the qualification “propagating in a certain direction” in this problem’s 
assignment is very loaded. Indeed, as will be discussed later in this course, forming a photon (i.e. an 
electromagnetic wave packet) with virtually definite magnitude and direction of its momentum, resulting 
in a similarly definite recoil momentum p, requires the involvement of not one but many sinusoidal 
waves with different (if close) frequencies corresponding to different (if close) energies. In the opposite 
limit, if one insists the emitted electromagnetic wave to be strictly monochromatic, the wave’s 
propagation direction becomes completely uncertain, and the quantum-ensemble average (“expectation 
value”) of the resulting recoil velocity vector v vanishes.5  

 Perhaps even more shockingly, which of these two approximations describes the real 
experimental situation better, and hence what the “real” recoil of the atom is, depends on the photon’s 
detection conditions – even if this detection takes place long after the emission’s moment! Thus, even 
this apparently simple situation touches deep issues of quantum mechanics including the rather 
counterintuitive local reality problem, which will be only discussed at the very end of this course 
(Chapter 10) because this discussion requires the course’s full contents as the background. 

 

Problem 1.4. Use Eq. (1.53) of the lecture notes to prove that the linear operators of quantum 
mechanics are commutative: 2112

ˆˆˆˆ AAAA  , and associative:    321321
ˆˆˆˆˆˆ AAAAAA  . 

 Solution: These relations look obvious, but the reader should remember that in the operators, we 
face a mathematical entity different from the usual numbers, functions, and geometrical vectors, and 

5 Moreover, that strict requirement would also imply that the wave emission time is infinite – see, e.g., Sec. 2.5. 
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cannot take for granted any properties that have not been postulated or already proved. For example, for 
any two usual functions 1 and 2 (which, for given argument values, are just numbers), we may 
always write 12 = 21, but for similar operator “products”, such commutation is generally invalid – 
see, e.g., Eq. (2.14) of the lecture notes. This is why we should be careful. 

First, let us use Eq. (1.53), with the index swap 12, to write 

   1212
ˆˆˆˆ AAAA . 

The left-hand side of this equation, and each of the two terms of its right-hand side, are just functions 
(not operators!) and hence obey the rules of the “usual” algebra. In particular, these terms are 
commutative, so that side is equal to the right-hand side of the initial form of Eq. (1.53): 

   2121
ˆˆˆˆ AAAA . 

Hence, the left-hand sides of these relations (again, each of them is just a function!) have to be equal as 
well: 

    2112
ˆˆˆˆ AAAA . 

Since this relation is valid for an arbitrary function , it gives the required proof that the operators are 
commutative as well. 

 Similarly, we may use Eq. (1.53) twice to write 

      321321321
ˆˆˆˆˆˆˆˆˆ AAAAAAAAA . 

Again, the operands on the right-hand side of this equation are just functions and may be regrouped as 

  321321
ˆˆˆˆˆˆ AAAAAA . 

Now we may apply Eq. (1.53) twice to the right-hand side of the above relation, to write 

     321321
ˆˆˆˆˆˆ AAAAAA . 

Comparing the initial and final expressions of our calculation, we get 

      321321
ˆˆˆˆˆˆ AAAAAA . 

This equality is valid for any  and hence the linear operators are indeed associative. 

 

 Problem 1.5. Prove that for any time-independent Hamiltonian operator Ĥ and two arbitrary 
complex functions f(r) and g(r), 

        rdgfHrdgHf 33 ˆˆ rrrr   . 

 Solution: Using the fact (discussed in Sec. 1.5 of the lecture notes) that the set of eigenfunctions 
n of the given Hamiltonian operator (i.e. the set of stationary states of the corresponding quantum 
system) is full, we may expand the function g(r) and the complex conjugate of the function f(r) into 
series over the set, just as it was done with the function (r, 0) in Eq. (1.67): 
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where fn and gn are some (generally, complex) coefficients. Plugging these expressions (with one of the 
summation indices n denoted as n’) into each side of the equality to be proved, and taking the constant 
coefficients out of the spatial integrals, we may transform them as 
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 Now using Eq. (1.60) with n replaced for n’, n'n'n' ψEH ˆ , in the first expression, and its 

complex conjugate, **ˆ
nnn EH   ,6 in the second one, and then employing the orthonormality condition 

(1.66), we get 
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so the left-hand sides of these two relations (i.e. both sides of the formula in question) are equal as well. 

 

 Problem 1.6. Prove that the Schrödinger equation (1.25) with the Hamiltonian operator given by 
Eq. (1.41) is Galilean form-invariant, provided that the wavefunction is transformed as 
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where the prime sign marks the variables observed in the reference frame 0’ that moves, without rotation 
and with a constant velocity v, relative to the “lab” frame 0. Give a physical interpretation of this 
transformation. 

 Solution: The non-relativistic (“Galilean”) space/time transform between the two reference 
frames is expressed by the following relations:7  

            tt't'  ,vrr .     (*) 

The Galilean form-invariance means that the wavefunctions ’(r’, t’) and (r, t), related as specified in 
the assignment, should satisfy similar Schrödinger equations in these reference frames:  
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6 The eigenenergies En are real numbers, so they do not change at the complex conjugation, and neither are the 
Hamiltonians of the type (1.41).  
7 If needed, you may consult, e.g., EM Sec. 9.1, in particular, Fig. 9.1 and Eq. (9.2). 
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 For proof of this fact, let us note that the functions U’(r’, t’) and U(r, t) describe the same 
potential energy of the particle, i.e. must give the same value at the same space-time point: 

     tUttU't''U' ,,, rvrr  . 

(Note also that the wavefunction transform suggested in the assignment gives a similar relation for the 
probability density to find the particle at the same space-time point: 
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just as it should.) 

 Next, considering t’, at fixed r’, a function of arguments r(t) {r1(t), r2(t), r3(t)} and t, we may 
use the general rule of differentiation of a function of several variables8 and then the first of Eqs. (*) in 
the form r = r’ + vt’  to write9 
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while at fixed t’, Eq. (*) yields ’ = , so ’2 = 2. Let us also spell out the expression 
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With these relations, a straightforward differentiation of the suggested transform of the wavefunction, 
after it has been plugged into the first of Eqs. (**), immediately yields the second of these equations, i.e. 
proves the form-invariance of the  Schrödinger equation.  

 For the interpretation of the wavefunction’s transform, let us apply it to the simplest case of a 
monochromatic plane de Broglie wave given by Eqs. (1.29) of the lecture notes, describing a free 
particle’s state with its momentum p = k and (kinetic) energy E =  having definite values, i.e. being 
c-numbers: 
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The proved transform shows that in the moving reference frame, the wavefunction is a similar plane 
wave: 
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 However, these are exactly the Galilean transform expressions for the momentum and the kinetic 
energy of the particle, given by the non-relativistic classical mechanics. Indeed, expressing the particle’s 
momentum via its velocity u (in the lab frame) as p = mu, so E = mu2/2, we get 

8 See, e.g., MA Eq. (4.2). 
9 This expression is essentially the convective derivative, which was discussed several times in this course series – 
see especially CM Sec. 8.3. 
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222
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where u’ = u – v is the particle’s velocity as observed from the moving reference frame. So, the 
wavefunction’s transform we have proved is just a very natural wave-mechanical expression of the 
Galilean invariance. 

 

 Problem 1.7.* Prove the so-called Hellmann-Feynman theorem:10 
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, 

where  is some c-number parameter, on which the time-independent Hamiltonian ,Ĥ  and hence its 
eigenenergies En, depend.  

 Solution: By multiplying both parts of the basic Eq. (1.60) of the lecture notes, nnn ψEH ˆ , by 

n
*, and integrating the result over space, we get 
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33 ** ˆ   rrrr  . 

On the right-hand side of this relation, we may take the constant En out of the integral, and then use the 
orthonormality condition (1.66) to get the following expression for the eigenenergy:11 
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3ˆ* rr  .     (*) 

Let us differentiate both parts of this relation over the parameter , taking into account that not only 

Ĥ and En but also the eigenfunctions n may depend on it: 
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Next, let us spell out the general equality whose proof was the task of Problem 5, for the particular case 
when f(r) = n

*(r), while g(r) = n(r)/: 
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10 Despite this common name, H. Hellmann (in 1937) and R. Feynman (in 1939) were not the first ones in the 
long list of physicists who had (apparently, independently) discovered this equality. Indeed, it has been traced 
back to a 1922 paper by W. Pauli and was carefully proved by P. Güttinger in 1931. 
11 Note that per Eq. (1.64) of the lecture notes, Eq. (*) means that the Hamiltonian is nothing else than the 
operator corresponding to a very special observable, the system’s energy – the fact which was already mentioned 
at its introduction in Sec. 1.2. 
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By applying this equality to the last term of Eq. (**), using Eq. (1.60) again in the first term, and then its 

complex conjugate, **ˆ
nnn EH   ,12 in the last term, we get 

                






























rdErd
HE n

nn
n

nnn
n 33 *

*
* ˆ














r

rr
r

rr .  (***) 

 Now let us stop here for a minute, and differentiate over  both sides of the wavefunctions’ 
orthonormality condition (1.66), written for the particular case n’ = n:  

           


























rdrd n
nn

n
nn

33 *
*

*











r

rr
r

rr . 

However, per the normalization condition (1.22c), the left-hand side of this relation is 1/ = 0, so its 
right-hand side has to vanish as well. This means that Eq. (***) reduces to 

    ,
ˆ

3*

n
nn

n H
rd

HE







 










 rr  

thus proving the Hellmann-Feynman theorem. 

 

Problem 1.8.* Use Eqs. (1.73) and (1.74) of the lecture notes to analyze the effect of phase 
locking of Josephson oscillations on the dc current flowing through a weak link between two 
superconductors (frequently called the Josephson junction), assuming that an external source applies to 
the junction a sinusoidal ac voltage with frequency  and amplitude A. 

 Solution: Let us assume that the phase locking has happened, so our dc bias point is already on 
the nth current step (1.76); then for the total voltage across the junction we may write 

tA
e

ntV 
cos

2
)( 


, 

and Eq. (1.73) yields the following differential equation for the Josephson phase evolution, 

A
e

atan
d

d









2
  and  with  ,cos  . 

 This equation may be easily integrated: 

0 sin   na , 

where 0 is some (so far, arbitrary) integration constant. As a result, the Josephson supercurrent (1.74) is 
equal to 

      00c0c sinsincoscossinsinsinsin  nanaInaII  . 

Calculating its time average (i.e., the dc component of the current), 

12 See the footnote to the model solution of Problem 1.5. 
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          00c sinsincoscossinsin  nanaII  ,   (*) 

for example as 








dff 




 )(
2

1
, 

we see that the first term in the square brackets vanishes due to the asymmetry of the function under the 
integral, while for the calculation of the second term, we may use the well-known integral representation 
of the Bessel functions of the first kind of an integer order m:13  

       maimamaiaJ m  sinsinsincossinexp)( . 

As we have just discussed, the second of these averages equals zero and we get 

)sincos()(  maaJ m  , 

where m is an arbitrary integer number. By taking m = –n, we see from Eq. (*) that the dc current on the 
nth step is 

        












  




eA
JII

eA
JIaJIIII nnnnnn

2
 that  so,

2
  where,sin ccc0 . (**) 

 Let us assume that the external circuit fixes the dc current through the junction; then the phase 
shift 0 may self-adjust to fit the external current only if it is in the range14 

nn III  . 

Hence the full size of the nth current step is twice the In given by the last of Eqs. (**); a look at the plot 
of the Bessel functions15 shows that the size oscillates as a function of the ac voltage amplitude A, 
gradually diminishing at eA >> n.  Exactly this behavior (predicted by B. Josephson in his Nobel-
prize-winning 1962 paper16) was very soon observed experimentally by S. Shapiro;17 as a result, one can 
frequently meet the term Shapiro (or “Josephson-Shapiro”) steps. 

 

Problem 1.9. Calculate x, px, x, and px for the eigenstate {nx, ny, nz} of a particle placed 
inside a rectangular hard-wall box described by Eq. (1.77) of the lecture notes and compare the product 
xpx with the Heisenberg’s uncertainty relation. 

 Solution:  Since the spatial factors X, Y, and Z of wavefunctions, given by Eq. (1.84) of the 
lecture notes and by similar relations for Y and Z, are already normalized and real, we may use Eq. 
(1.23) to write 

13 See, e.g., the first of MA Eqs. (6.15a). 
14 Even without a quantitative analysis of the stability of such phase locking (for its example, see, e.g., CM Sec. 
5.4), it is physically clear that one of the two different values of the phase difference 0, at which Eq. (*) is 
satisfied (0 = sin–1(I/In) and 0’ =  – 0), has to be stable.   
15 See, e.g., EM Fig. 2.16. 
16 B. Josephson, Phys. Lett. 1, 251 (1962). 
17 S. Shapiro, Phys. Rev. Lett. 11, 80 (1963). 
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Integrating the second term in the parentheses of the last expression by parts, we get 

dx
a

xn

n

a

a

xn
dx

n
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a
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x
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x

x

x
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             .
2
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
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
 

 This simple result is hardly surprising because the wavefunctions X(x) are either symmetric or 
antisymmetric with respect to the central point ax/2 – see Fig. 1.8 of the lecture notes. Acting absolutely 
similarly but repeating the integration by parts twice, we get 

,
2

1

3

1
sin

2
22

2

0

2

2

2


















 

x
x

x

x

x

x n
adxx

a

xn

a
x

a




 

so, according to Eqs. (1.33)-(1.34), 

 
2/1

22

2/122

2

1

12

1










x
x n

axxx


 . 

 Notice that neither x nor x depends on other quantum numbers (ny and nz) and that the 
uncertainty of the coordinate is the smallest for nx = 1 (in particular, for the ground state), with xmin  
0.181 ax, and increases with nx, approaching the limit xmax = ax/12  0.289 ax at nx  . 

 For the particle’s momentum, the corresponding calculations are even simpler: 

.0
2
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12
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2
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2

)(ˆ)(
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0
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i
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a
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a
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a

n
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a
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x
i

a

xn

a
dxxXpxXp









 

This result could be also predicted in advance, because, as was discussed in Sec. 1.7 of the 
lecture notes, the standing wave X(x) may be represented as a sum of two traveling waves with equal 
amplitudes and equal but opposite momenta px = kx = nx/ax, so the average momentum vanishes. 
This reasoning implies that px

2 may be calculated from Eq. (1.37), with two possible states having 
equal probabilities: W+ = W- = ½:  

 
2

22222

2

1








 

x

x
x a

n
ppWpWpp


. 

As a sanity check, this result may be confirmed directly from Eqs. (1.33)-(1.34): 
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Now we can calculate the momentum’s uncertainty, 

 
x

x
xxx a

n
ppp







2/122 , 

and the uncertainty product: 
2/122

2

1

12 







 x

x

n
px


  . 

This expression shows that for the lowest quantum number, nx = 1, the uncertainty product, 
(xpx)min  0.568 ,  is just slightly (by about 12%) larger than Heisenberg’s minimum 0.5 . On the 
other hand, at nx   the product grows as (/12)nx  0.907 nx. 

 

 Problem 1.10. Looking at the lowest (red) line in Fig. 1.8 of the lecture notes, it seems plausible 
that the lowest-energy eigenfunction (84) of the 1D boundary problem (83) may be well approximated 
with an inverted parabola: X(x)  Cx(ax – x), where C is a normalization constant. Explore how good this 
approximation is. 

 Solution: A convenient “global” measure of the approximation quality is the proximity of the 
expectation value (1.23) of the system's Hamiltonian, given by the guessed approximation18 (): 

         rdHH 3
trialtrialtrial

ˆ* rr  ,    (*) 

where trial  r  is properly normalized,  

    13
trialtrial

*  rdrr  , 

to the genuine ground-state energy Eg, which, according to Eq. (1.60), satisfies a similar relation but 
with the genuine ground-state wavefunction g  r : 

            g
3

ggg
3

ggg
3

ggg

*** ˆ ErdErdErdHH   rrrrrr  . 

 In our 1D case with Xtrial(x) = Cx(ax – x), the normalization condition is 

      1
0

222

0

trial trial
*  

aa

dxxaxCdxxXxX , 

where, for the notation simplicity, a  ax. Working out this simple integral, we get  

18 In the variational method, to be discussed in Sec. 2.9 of the lecture notes, it is called the trial function. 
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 Now using the fact that inside our simple quantum-well, U(x) = 0, so 222 /)2/(ˆ dxdmH   in 

the whole region where Xtrial  0, we get 
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Comparing this result with the exact ground state energy given by Eq. (1.85) with nx = 1 and ax = a, 

2

2

2

22

g 935.4
2 mama

E





, 

we see that the approximation given by this simple trial function is indeed pretty good, giving a ~1% 
accuracy – even in the absence of adjustable parameters that are used in the genuine variational method. 

 

 Problem 1.11. A particle placed into a hard-wall rectangular box with sides {ax, ay, az} is in its 
ground state. Calculate the average force it exerts on each face of the box. Can these forces be 
characterized by a certain pressure? 

 Solution: Directing the coordinates axes along the corresponding sides of the box, we may 
describe the situation by the boundary problem described by Eq. (1.78b) of the lecture notes, so the 
ground state energy Eg of the particle is expressed by Eq. (1.86) with the lowest possible values of the 
quantum numbers, nx = ny = nz = 1: 











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222

22

1,1,1g

111

2 zyx aaam
EE


 . 

Since this energy (while being kinetic by its origin) is a function of the box dimensions only, it may be 
considered a contribution to the effective potential energy of the box-particle system. Hence the force 
acting on any of the two faces normal to the x-axis may be calculated as  

3

22
g

xx
x maa

E
F







 . 

Since the area of this face is Ax = ayaz, the force-to-area ratio is 

zyxx

x
x aaaA

F
3

22
P . 

 Since the calculations for two other face pairs may be done absolutely similarly, and give similar 
results (with the proper index replacements), this expression shows that generally 

zyx PPP  , 
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and hence the exerted forces cannot be characterized by a unique pressure P, which by definition19 

should be isotropic. Only in the particular case when the box is cubic, with sides ax = ay = az  a and 
volume V = a3, we may speak of a certain pressure: 

3/5

22

5

22

mVmazyx

 
 PPPP . 

Note that the resulting “equation of state”, PV5/3 = const, differs from that of the ideal classical 
gas (PV = const). As will be discussed in Chapter 8, this “quantum equation of state” remains the same 
even if the cubic box is filled with an arbitrary number N of non-interacting particles – either bosons or 
fermions – though the dependence of the pressure on N is different for these two cases.20  

 

Problem 1.12. A 1D quantum particle was initially in the ground state of a very deep, flat-bottom  
potential well of width a: 












                     otherwise.   ,

,2/2/for ,0
)(

axa
xU  

At some instant, the well’s width is abruptly increased to a new value a’ > a, leaving the potential 
symmetric with respect to the point x = 0, and then is kept constant. Calculate the probability that after 
the change, the particle is still in the ground state of the system. 

Solution: According to Eqs. (1.69) and (1.84) of the lecture notes with the appropriate shift of the 
origin, the normalized initial wavefunction of the system (before the well width’s change) is  

                 




 
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otherwise,           ,0
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
   (*) 

with the ground-state energy Eg given by Eq. (1.85) with ax = a and nx = 1:  

2

2

g 2ma
E


 . 

 This initial state serves as the initial condition for the final state of the system, 

,exp)(),(
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 
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
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n
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nn t

E
ixctx


  

where n(x) are the normalized eigenfunctions of the expanded well. In particular, according to the same 
Eq. (1.84) with the proper replacement a  a’, the new ground-state wavefunction is 

19 See, e.g., CM Secs. 7.2 and 8.1. 
20 As statistical mechanics shows (see, e.g., SM Chapter 3), at sufficiently high temperatures, the pressure 
becomes isotropic and classical (with PV = const) – regardless of the shape of the box, the number of the 
particles, and their quantum properties.
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The constant coefficient c1, which in particular determines the probability W1 =  c1 2 of the particle to 
remain in the ground state, may be found by using the 1D version of Eq. (1.68): 
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 

 . 

As a sanity check: if the well is virtually unchanged, a’ = a +   a, then cos(a/2a’)  /2a, 
(a’2 – a2)  2a, so c1  1, and W1  1, as it should be. On the other hand, if the final well is much 
wider than the initial one, a << a’, then cos(a/2a’)  1, and W1  (16/2) a/a’ << 1. This is also 
reasonable, because the relatively sharp initial probability distribution gives contributions to many final 
eigenfunctions, with a small probability for the particle to be in any particular of them. 

 (Additional question for the reader: Could a similar problem be rationally formulated for a’ < a, 
i.e. for a sudden well’s shrinkage rather than its extension?) 

 

 Problem 1.13. At t = 0, a 1D particle of mass m is placed into a hard-wall, flat-bottom potential 
well 









            otherwise,,

   ,0for  ,0
)(

ax
xU  

in a 50/50 linear superposition of the lowest-energy (ground) state and the first excited state. Calculate: 

 (i) the normalized wavefunction (x, t) for an arbitrary time t  0, and 
 (ii) the time evolution of the expectation value x of the particle’s coordinate. 

 Solutions:  

 (i) The described linear superposition is described by the wavefunction 

   ,)0,( 2211 xcxcx    

21 Note that this result would not be affected by adding an arbitrary phase to the wavefunction (*), because this 
would just shift the phase of the complex coefficient c1. 
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where 1 and 2 are the two lowest-energy eigenfunctions of this problem, which were by-products of 
the 3D calculation in Sec. 1.7 of the lecture notes – see Eqs. (1.84)-(1.85): 

  ,...2,1with  ,
2

,sin
2 2222/1







 n

m

n
E

a

nx

a
x nn

 ., 

and c12 = c22. Due to the last condition, we may take c2 = c1expi(2 – 1}  Cexpi}, i.e. 

    .)0,( 21 xexCx i    

The coefficient C (or rather its modulus) may be readily calculated from the normalization requirement: 

                         10,0,
0

2121

2

0

**   dxxexxexCdxxxW
aa

ii   . (*) 

Since the wavefunctions 1,2 are orthonormal,  

        ,0,1
0

1,22,1
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2,12,1
**   dxxxdxxx
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  

Eq. (*) yields C2 =  2, i.e. C = 1/2. So, the initial wavefunction may be represented as 

     .
2

sinsin)0,(
2/1
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

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e
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Per Eq. (1.69) of the lecture notes, the further time evolution of this function may be described merely 
by the multiplication of each of these terms by exp{–int/}, where n = En/, so 
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. 

 (ii) Now we may use this wavefunction and the basic Eq. (1.23) to calculate the expectation 
value of the particle’s coordinate: 
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Transforming the product of the two sine functions into the difference of two cosine functions of 
combinational arguments,22 and working out the resulting four integrals by parts,23 we finally get  

22 See, e.g., MA Eq. (3.2c). 
23 See, e.g., MA Eq. (5.1). 
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                            


 taax cos
9

16

2

1
2

.    (**) 

Evidently, this formula describes sinusoidal oscillations of the particle, with the amplitude (16/92)a  
0.18a, around the middle of the well (x0 = a/2). 

 At least three comments are due here. First, this problem is a good reminder that the quantum-
mechanical averaging … is by no means equivalent to the averaging over time, and its result may still 
be a function of time – as Eq. (**) is. Second, recall that x does not oscillate if the system is in just one 
of the involved two stationary states, so the oscillations (**) are the result of the states’ interference. The 
frequency  of the oscillations is proportional to the difference between the energies of the involved 
stationary states; in our case 

 
2

2

2

2

2

2

1212 2

3

22

4

mamama
EE

   , 

i.e. to the frequency of the potential radiation at quantum transitions between the corresponding energy 
levels – see Eq. (1.7) of the lecture notes. Finally, note that while the argument of the complex 
coefficient C, i.e. the common phase of the wavefunction, drops out of all expectation values, the mutual 
phase shift  between its components in the linear superposition can affect the expectation values – in 
our particular case, of the coordinate.  

 

Problem 1.14. Calculate the potential profiles U(x) for which the following wavefunctions, 

 (i)  = c exp{–ax2 – ibt}, and 
 (ii)  = c exp{–a  x  – ibt} 

(with real coefficients a > 0 and b), satisfy the 1D Schrödinger equation for a particle with mass m. For 
each case, calculate x, px, x, and px, and compare the product xpx with Heisenberg’s uncertainty 
relation. 

Solutions: Each of these wavefunctions may be represented as the product n(x)exp{–iEnt/}, 
with En = b, so per the discussion in Secs. 1.5-1.6 of the lecture notes, we may calculate the 
corresponding functions U(x) from the stationary Schrödinger equation (1.65), which may be rewritten 
as 

xd

d

m
ExU n

n
n 2

22

2

1
)(





 . 

 (i) In this case, n = cexp{–ax2}, so a direct differentiation yields 

 axa
m

ExU n 24
2

)( 22
2




. 

Now notice that if we introduce, instead of a, the following constant:  

         
m

a2
0  ,      (*) 

the above expression may be rewritten as   
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
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while the corresponding wavefunction becomes 

 


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


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2
expexp

2
02 xm

caxcn


 . 

Since, according to the stationary Schrödinger equation, the origins of En and U may be shifted 
(simultaneously) by an arbitrary constant, in our case, we may select this constant so that  

2
0

nE , 

and U(x) becomes the well-known expression for the potential energy of a harmonic oscillator of 
frequency 0 and mass m: 

2
)(

22
0 xm

xU


 . 

 Hence, “by chance” (actually, not quite so :-), we have found one of the eigenfunctions n of this 
very important 1D system. Later in the course, we will see that this is actually its most important, 
lowest-energy (ground) state, usually marked with the quantum number n = 0. 

 Now, after finding the constant c (or rather its modulus) from the normalization condition24 

  2
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2
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a
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 , 

we can use Eq. (1.23) of the lecture notes to calculate the following expectation values:25 
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1
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a
xpx xx   

so  
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x x    

Hence, the product xpx equals /2 i.e. has the smallest value allowed by the uncertainty relation 
(1.35).26 In the notation (*), very common for the harmonic oscillator’s description, the above results for 
the coordinate and momentum variances read 

.
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,
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2 


m
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x x


  

Notice that the averages of the kinetic and potential energies of the oscillator are equal to each other: 

422
0

22
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2  


xm

m

px , 

24 The last step uses the well-known Gaussian integral MA Eq. (6.9b). 
25 The calculation of the two last averages requires one more Gaussian integral, given by MA Eq. (6.9c).   
26 This relation also holds for more general Gaussian wave packets, to be discussed in Sec. 2.2. 
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just as they are at the classical oscillations of this system. 

 (ii) In this case, n = c exp{–ax}, so a similar calculation of U(x) gives 

     .
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2
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



  

At x  0, this expression gives a constant (equal to b + 2a2/2m), but the point x = 0 requires a special 
calculation, because here the wavefunction has a “cusp”, and is not analytically differentiable. However, 
using the notions of the sign function sgn(x) and Dirac’s delta function (x),27 we can still write 
formulas valid for all x:  

    ,, )(2)sgn(
2

2
xaxaxaxa
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dx
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d 
    (**) 

so, finally, we get the potential U(x) describing (besides the inconsequential constant U0) an ultimately 
narrow 1D potential well: 
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In this notation, the eigenfunction and the eigenenergy of the system become  
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In Chapter 2 of the lecture notes, we will see that these results describe the only localized eigenstate of 
such a well; they will be broadly used in this course as the basis for discussion of more complex 
problems. 

Now after the wavefunction’s normalization, giving cc* = a, Eq. (1.23) of the lecture notes, after 
a straightforward integration, yields28 

.
2

1
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2
2

a
xx   

Calculating the expectation values of px and px
2, we should be careful not to lose the functions sgn(x) 

and (x) – see Eq. (**): 
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Now the integration (1.23) is easy and yields 

2
  so,,0 222 

  xxx pxapp  . 

27 If you need a reminder, see, e.g., MA Sec. 14. 
28 For the second integration, we may use the table integral given by MA Eq. (6.7d) for n = 2. 
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We see that for this non-Gaussian eigenfunction, the uncertainty product is substantially (by ~ 
40%) larger than its minimum possible value /2. 

 

Problem 1.15. The wavefunction of an excited stationary state of a 1D particle moving in a 
potential profile U(x) is related to that of its ground state as e(x)  xg(x). Calculate the function U(x). 

Solution: Both wavefunctions e(x) and g(x) have to satisfy the 1D version of the stationary 
Schrödinger equation (1.65), with the corresponding energy values Ee and Eg: 
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With the given relation e(x)  xg(x), the first of these equations becomes 
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 The last form of this equation is close to the second of Eqs. (*), with all terms multiplied by x: 
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Subtracting them, we get a first-order differential equation 
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which may be easily integrated, giving 
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where C is the integration constant, playing the role of the normalization factor for this ground-state 
wavefunction.29 Now we may either plug this result back into the second of Eqs. (*) or just use the 
solution of the previous problem’s Task (i) with a = m(Ee – Eg)/2

2; the result is 
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 As was already noted in the model solution of the previous problem, this expression coincides 
with the potential energy of a 1D harmonic oscillator of frequency 0: 

 
2

22
0 xm

xU


 . 

Hence our result is valid for such an oscillator if we take 

29 Since by the definition of state excitation, Ee > Eg, the calculated g(x) converges fast at x  , and its 
normalization is uneventful. 
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Solving this simple system of two equations with the condition Ee – Eg > 0, we get  
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0
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 EEE  

As will be discussed in Sec. 2.9 of the lecture notes, these are indeed the energies of the ground state 
and the first excited state of the oscillator. (From the above solution, we could not determine its 
number.) 

 
 Problem 1.16. A 1D particle of mass m, moving in a potential well U(x), has the following 
stationary eigenfunction: (x) = C/coshx, where C is the normalization constant and  is a given real 
constant. Calculate the function U(x) and the state’s eigenenergy E. 

 Solution: After calculating the second derivative of the eigenfunction: 
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 , 

we may plug the result into the 1D version of the stationary Schrödinger equation (1.65): 
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 The function U(x) and the eigenenergy E are defined to an arbitrary constant (essentially the 
energy reference level), provided that their difference is definite – as specified by Eq. (*). It is 
convenient to select this constant so that U(x)  0 at x  . Since in these limits, the expression in the 
parentheses of Eq. (*) tends to 1, we have to associate the resulting constant level with (–E), so 
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Now plugging this value back into Eq. (*), we get a result that may 
be recast into a very simple form: 
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 A plot of this function is shown with the black line in the 
figure on the right, together with the calculated eigenenergy 
(dashed horizontal line), both in the units of 22/m, and the 3 0 3
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eigenfunction (x) (red line, in arbitrary units). Due to the simple eigenfunction describing the localized 
state of the particle (which may be proved to be its ground state), this potential is one of the convenient 
models for the description of “soft” confinement in one dimension. 

 

 Problem 1.17. Calculate the density dN/dE of the traveling-wave quantum states inside large 
hard-wall rectangular boxes of various dimensions: d = 1, 2, and 3. 

 Solution: First, let us use the discussion of the 3D box in Sec. 1.7 of the lecture notes to calculate 
the number N3 of the states with the kinetic energy 2k2/2m below a certain value E. For that, we may 
integrate Eq. (1.90) over the k-space region satisfying the requirement 
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i.e. over a sphere with the so-called Fermi radius kF  (2mE)1/2/: 
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From here, the density of 3D states is 
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Note that the density grows with energy.  

 An absolutely similar calculation for a rectangular 2D box, based on Eq. (1.92), yields 
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so the 2D density of states does not depend on energy: 
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 Finally, for 1D particles, Eq. (1.93) yields 
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so the 1D density of states, 
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 decreases with energy. 
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 Problem 1.18.* A 1D particle is confined in a potential well of width a, with a flat bottom and 
hard, infinitely high walls. Use the finite-difference method with steps a/2 and a/3 to find as many 
eigenenergies as possible. Compare the results with each other, and with the exact formula.30 

 Solution: The eigenproblem is described by the ordinary differential equation (1.83), which 
includes the second derivative of the wavefunction X(x). In the finite-difference method, we are 
approximating the derivative with the following finite difference:31 

     
22

2 2

h

xXhxXhxX

dx

Xd 
 , 

where h (not to be confused with either  or /2!) is the selected step along the x-axis. 

 For h = a/2, the only reasonable choice is to select the point x in the middle of the potential well 
(in the notation of Fig. 1.8 of the lecture notes, at x = a/2), so the points (x – h) and (x + h) are on the 
well’s walls, where X = 0. Thus Eq. (1.83) turns into a very simple relation 

,0
200 2

2



Xk

h

X
 

where X  X(a/2) and k  kx. This homogeneous equation cannot be used to calculate X, but assuming 
that X  0 (i.e. that the wavefunction is nonvanishing), it gives simple results for the eigenvalue of the 
standing wave’s number k and hence for the eigenenergy E  Ex  (2/2m)k2: 

2

2

2

2

4
2

2,
83.2222

mamh
E

aah
k


 . 

 These values should be compared with the exact analytical results (1.84)-(1.85) for the lowest 
(ground) eigenstate (nx = 1): 
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. 

So, this large step (in the numerical-math lingo, “coarse mesh”) makes the calculations very simple but 
allows the calculation of only one, ground eigenstate, and with a relatively large error: ~10% for k and 
~20% for the eigenenergy. This could be expected because such mesh corresponds to the approximation 
of the genuine sinusoidal solutions (1.84) with a single quadratic parabola.  

 So it is only natural to explore a slightly finer mesh with h = a/3, making a similar 
approximation for two interleaved segments of the same length 2h = 2a/3: x  [0, 2a/3] and x  [a/3, a]. 
Applying the finite-difference version of Eq. (1.83),  

     
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2 2
2
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

Xk
h

xXhxXhxX
, 

to the central points x–  h = a/3 and x+  2h = 2a/3 of these two segments, we get two equations for the 
corresponding wavefunction’s values X– and X+: 

30 You may like to start by reading about the finite difference method – see, e.g., CM Sec. 8.5 or EM Sec. 2.11. 
31 See, e.g., CM Eq. (8.65) or EM Eq. (2.220). 
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This system of two homogeneous linear equations is consistent if its determinant equals zero: 
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The resulting quadratic equation for k2 has two solutions:  
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giving the following two eigenvalue sets: 
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The first of them is just a better approximation for the ground state, with a ~5% accuracy for k 
and a ~10% accuracy for energy. The second result is a much cruder description of the next (first 
excited) state, whose exact parameters are given by the same Eqs. (1.84)-(1.85) with nx = 2: 
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. 

 Obviously, even finer meshes with smaller h would allow a more precise description of more 
eigenstates, for the price of solving a larger system of homogeneous linear equations.32 For this 
particular problem, which has a simple analytical solution, this numerical method makes sense only as a 
demonstration, but for eigenstates of particles moving in more complex potential profiles U(x), this is 
one of the few possible approaches. (A different, frequently more efficient numerical approach to the 
eigenproblems of quantum mechanics will be described in Sec. 6.1 of the lecture notes – see Eq. (6.7) 
and its discussion.) 

32 All popular public-domain and commercial software packages, including those listed in MA Sec. 16(iv), have 
efficient standard routines for such solutions. 
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Chapter 2. 1D Wave Mechanics 

Problem 2.1. As was stated in Sec. 2.1 of the lecture notes, Eq. (2.1) may be incorrect if the 
particle’s potential energy depends on just one spatial coordinate: U = U(x, t), and is much more reliable 
for particles strongly but uniformly confined in the transverse directions y, z. Explain why. 

 Solution: Naively, one may think that if the particle’s potential energy depends on just one 
spatial coordinate, say U = U(x, t), then its wavefunction has to be one-dimensional as well:  = (x, t). 
However, already the discussion of the particular case U(r) = const (which is just a special case of a 1D 
potential) in Sec. 1.7 has shown that this assumption is wrong.33 Indeed, its eigenfunctions, given by Eq. 
(1.88), do depend on the other two coordinates. So the solutions (x, t) of the 1D Schrödinger equation 
(2.1) that follows from Eq. (1.65) by assuming /y = /z = 0, are insufficient to form the general 
solution of that equation even in this simplest case.  

 Let us consider the slightly more general case of a 1D potential: U = U(x), i.e. a potential profile 
that is flat in two directions, y and z. Repeating the arguments of Sec. 1.7 for this case, we see that the 
eigenfunctions of a particle in such a well have the form 

             zkykixX zy  exp)(r ,    (*) 

where X(x) is an eigenfunction of the following stationary 1D Schrödinger equation:  

                EXXxU
dx

Xd

m
 )(

2 ef2

22
,     (**) 

where Uef(x) is not the full potential energy of the particle, as it would follow from Eq. (92), but rather 
its effective value including the kinetic energy of the lateral motion: 

            22
2

ef 2 zyzy kk
m

UEEUU 


.     

 In plain English, the particle’s partial wavefunction X(x) and its full energy depend on its 
transverse momenta, which have a continuous spectrum – see the discussion of Eq. (1.89). This means 
that Eq. (2.1) is adequate only if the condition ky = kz = 0 is somehow enforced, and in the case U = 
U(x),  it is not. For example, if a de Broglie (or any other) plane wave (x, t) is incident on a potential 
step (see, e.g., Fig. 2.4) it is reflected exactly back, i.e. with ky = kz = 0, only if the wall’s surface is 
perfectly plane and exactly normal to the axis x. Any imperfection (and there are so many of them in 
real physical systems) causes the induction of waves with non-zero values of ky and kz, due to the 
continuous character of the functions Ey(ky) and Ez(kz).34  

Unfortunately, most textbooks on quantum mechanics jump to the formal solution of 1D problems without such 
a discussion. 
34 This problem is not specific to quantum mechanics. The reflection of plane acoustic and electromagnetic waves 
from plane mirrors is also unstable with respect to small imperfections. Even the classical motion of a particle in a 
1D potential may be unstable with respect to lateral perturbations. This is why so many 1D problems of classical 
mechanics use formulations like “a bead slides along a wire”, etc., assuming rigid lateral confinement. 
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 There is essentially one, perhaps a counter-intuitive way to make the 1D solutions “robust” to 
small perturbations: provide the particle’s rigid lateral confinement35 in other directions. As the simplest 
example, consider a narrow quantum wire (see the left panel of the figure below) described by the 
following potential:  


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
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
                                otherwize.        ,

,0  and,0for     ),(
)( zy azayxU

U r    (***) 

 

 

 

 
 Performing the standard variable separation (1.79), we see that the corresponding stationary 
Schrödinger equation is satisfied if the partial wavefunction X(x) obeys Eqs. (*)-(**), but now with a 
discrete energy spectrum in the transverse directions: 
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If the lateral confinement is tight: ay, az  0, then there is a large energy gap, 

                 
2

,

22

2
~

zyma
U


 ,      

between the ground-state energy of the lateral motion (with ny = nz = 1) and that of its excited states. As 
a result, if the particle is initially placed into the ground lateral state, i.e. its energy E is much smaller 
than U, it would stay in such a state, i.e. may be described by a 1D Schrödinger equation similar to Eq. 
(2.1) – even in the time-dependent case, proved that the frequency scale of the potential’s change is 
much smaller than U/. Absolutely similarly, a strong lateral confinement in just one dimension (say, z 
– see the right panel of the figure above) enables systems with a robust 2D evolution of the particle’s 
wavefunction. 

 The tight lateral confinement may ensure the dimensionality reduction even if the potential well 
is not rectangular in the lateral direction(s), as described by Eq. (***), but is described by some x- and t-
independent profile providing a sufficiently large energy gap U. For example, many 2D quantum 
phenomena, such as the quantum Hall effect,36 have been studied experimentally using electrons 
confined at semiconductor heterojunctions (e.g., epitaxial interfaces GaAs/AlxGa1-xAs), where the 
potential well in the direction perpendicular to the interface has a nearly triangular shape and provides 
an energy gap U of the order of 10–2 eV.37 Such a gap corresponds to kBT with T ~100 K, so careful 
experimentation at liquid helium temperatures (4K and below) may keep the electrons performing a 
purely 2D motion within the lowest “subband” (nz = 1). 

35 The term “quantum confinement”, sometimes used to describe this phenomenon, is as unfortunate as the 
“quantum well” term discussed in Sec. 1.7 of the lecture notes, because of the same reason: the confinement is a 
purely classical effect, and as we will repeatedly see in this course, the quantum-mechanical effects reduce rather 
than enable it. 
36 To be discussed in Sec. 3.2. 
37 See, e.g., P. Harrison, Quantum Wells, Wires, and Dots, 3rd ed., Wiley, 2010. 
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Problem 2.2. Prove that the final form of Eq. (2.23) of the lecture notes is correct even though x’ 
has an (x-independent) imaginary part. 

 Hint: This is a good exercise in using the Cauchy theorem.38 

 Solution: On the complex plane x, the integral in the first form of Eq. (2.23) is along the 
horizontal line with 
        kx

~
2Im 2x ,     (*) 

while the standard form39 of the Gaussian integral, used in the second form of that formula, is for real x, 
i.e. for the integration along a different horizontal line, with  

           0Im x       (**) 

see the figure on the right. However, since the function under the integral is analytic, per the Cauchy 
theorem, its integral over any closed contour 
on the x-plane, in particular the rectangular 
contour of the type shown with the dashed line 
in the figure on the right, has to equal zero. Let 
us tend the horizontal size of this contour to 
infinity. Since the function under the integral 
tends to zero at Rex   x  , the 
contributions to the contour integral from the 
integration along the two vertical sides vanish. 
Hence the integrals over the two horizontal sides of the contour (taken in the same direction of x), i.e. 
the integrals along the lines (*) and (**), have to be equal. 

 By the way, this is a good reminder of the fact that due to the complex character of the 
wavefunction, many integrals met in wave mechanics are actually over the complex planes. 

 

Problem 2.3. The initial wave packet of a free 1D particle is described by Eq. (2.20) of the 
lecture notes: 

   dkeax ikx
k0, . 

(i) Obtain a compact expression for the expectation value p of the particle's momentum at an 
arbitrary moment t > 0.  

(ii) Calculate p for the case when the function  ak 2 is symmetric with respect to some value k0.  

 Solutions:  

 (i) Per the basic relation (1.23) and the explicit expression (1.26b) for the momentum operator, 
we may write 

              dxtx
x

itxtp ,,* 










 




 .    (*) 

38 See, e.g., MA Eq. (15.1). 
39 See, e.g., MA Eq. (6.9b).
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According to Eq. (2.27), we may represent the wavefunction of a free particle, with the initial state 
given in the assignment, as 

                 
m

k
kEkdktkkxiatx k 2

   where,exp,
22

    ,  (**) 

and the integral is in infinite limits. Plugging this expression and its complex conjugate (with the 
replacement k  k') into Eq. (*), we may transform it as follows: 
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The last integral is just the delta function (times 2),40 so we may continue as 
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 So, the average momentum of a free particle is time-independent (just as it is in classical 
mechanics) and, besides a numerical normalization factor, is expressed via the momentum envelope 
function ak just as the average of a function f(x) is expressed via the wavefunction itself: 

        dxtxxftxf 




 2
, . 

As will be discussed in Sec. 4.7 of the lecture notes, the reason for this similarity is that the amplitude ak 
(or rather a function (p)  (k) proportional to ak) plays the role of the wavefunction in the so-called 
momentum representation – an alternative to the coordinate representation used in the wave-mechanics 
approach we are studying now. 

 (ii) If  ak 2 is an even function of the difference (k – k0), we may recast the last form of Eq. (***) 
as follows: 

              dkakkdkakdkakkkdkakp kkkk   2

0

2

0

2

00

2
2222   . 

Since the last integral has infinite limits, we may always represent the integration segment as a limit of 
[k0 – , k0 + ] at   , i.e. the integral as 
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40 See, e.g., MA Eq. (14.4). 
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Since ak2 is an even function of k
~

, the whole function under the integral is odd, and the integral 
vanishes. So our result is reduced to  

          dkakp k 2

0 2 .     (****) 

In order to evaluate this integral, let us require the wavefunction to be normalized: 

    1,,* 




dxtxtx . 

Plugging in the expansions (**), and transforming the integral exactly as this was done in Task (i), we 
get 

12
2  dkak . 

 So, Eq. (****) is reduced to the very simple and natural form p = k0, which corresponds to the 
physics discussed in Secs. 1.1 and 1.7 of the lecture notes – see, e.g., Eqs. (1.14) and the text before Eq. 
(1.88). 

 

Problem 2.4. Calculate the function ak defined by Eq. (2.20) of the lecture notes, for the wave 
packet with a rectangular spatial envelope: 
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Analyze the result in the limit k0a  . 

Solution: Using the Fourier transform reciprocal to Eq. (2.20), we get 
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where sinc  sin()/ is the well-known 
function (see the figure on the right), which 
describes, in particular, the Fraunhofer 
diffraction on a narrow slit.41  

 The result shows that, in contrast to 
the delta-functional amplitude ak of a 
sinusoidal (“monochromatic”) wave-
function, in our current case, ak is a smooth 
function of k. (Physically this means that the 
monochromatic wavefunction restricted in 
space is not truly monochromatic but is a 
coherent superposition of an infinite number 

41 See, e.g., EM Sec. 8.4.  
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of de Broglie waves with different k.) It has a peak at k = k0, with a finite height of Ca/2 and a width k 
~ 1/a. At k0a   , this width becomes much smaller than k0, while the peak's height grows, so ak tends 
to the delta function of k, which we had for the space-unrestricted sinusoidal wavefunction. 

 

Problem 2.5. Prove Eq. (2.49) of the lecture notes for the 1D propagator of a free quantum 
particle, by starting from Eq. (2.48). 

Solution: Following the Gaussian integration routine discussed in Sec. 2.2 of the lecture notes, 
let us complement the contents of the square brackets in Eq. (2.48) to a full square of (k + const): 
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where the following natural notation is used: 
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With this replacement, Eq. (2.48) may be rewritten as 
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Each of the full Fresnel integrals42 in the last square brackets is equal to (/2)1/2; hence we may write 
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so, finally: 
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Taking into account the notation (*), this is exactly Eq. (2.49). 

 

Problem 2.6. Express the 1D propagator defined by Eq. (2.44) of the lecture notes via the 
eigenfunctions and eigenenergies of a particle moving in an arbitrary stationary potential U(x).  

Solution: As its definition shows, the 1D propagator G(x, t; x0, t0) is the solution of the 1D 
Schrödinger equation (2.1) with the delta-functional initial condition 

         )(),( 00 xxtx   .     (*) 

From Sec. 1.5, we know that if the potential energy U does not depend on time, the general solution of 
the equation is given by the 1D version of Eq. (1.69): 

42 See, e.g., MA Eq. (6.10).  
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
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n
nn tt

E
ixctx 0exp)(),(


 , 

where n(x) are the eigenfunctions of the problem, and the coefficients cn are given by the 1D version of 
Eq. (1.68): 

  dxtxxc nn ),( 0
*   . 

(Here, the initial moment of time is denoted as t0 rather than 0.) Plugging into the last equality the initial 
condition (*), and integrating over x, we get cn = n*(x0), so, finally, 
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This result shows that in the general case, the propagator’s dependences on x and x0 may be 
different from each other, and only if U(x) = const, it is a function of only the difference (x – x0) – see, 
for example,  Eqs. (2.48)-(2.49) – due to the space-translational invariance of the problem.  

 

 Problem 2.7. Calculate the change of a 1D particle’s wavefunction, resulting from a short pulse 
of an external classical force that may be well approximated by a delta function: F(t) = P(t). 

 Solution: According to the well-known relation F = –U, a space-independent classical force 
F(t) may be described by the additional potential energy term UF(r, t) = –F(t)r, in the 1D case reduced 
to UF(x, t) = –F(t)x. As a result,  the full Hamiltonian of the particle is 

       txU
xm

HtPxHxtFHtxUHH F ,
2

ˆ  where,ˆˆ,ˆˆ
2

22

0000 




 , 

so the Schrödinger equation (2.1) takes the form 

   
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2 2

22
 . 

 If the background potential energy U(x, t) is finite at t = 0 for all x and the initial form of the 
wavefunction is smooth (so its second derivative over the coordinate is also finite for all x), then during 
the short interval of the force pulse (which may be symbolically represented as –0  t  +0),43 the first 
two terms on the right-hand side of the Schrödinger equation are much smaller than the last (diverging) 
one, and may be neglected:  
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 . 

Integrating both sides of this equation over this infinitesimal time interval, we get 
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0,

0,
ln .  (*) 

43 If the reader is uneasy with this shorthand notation, they may consider a small time interval –t/2  t  +t/2, 
and then pursue the limit t  0.  
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 This is the requested change of the wavefunction. Its physical sense becomes more clear if we 
represent the initial wavefunction by its Fourier expansion (2.20): 

   dkeatx ikx
k0, ; 

then Eq. (*) yields 

  Pkk'
P
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
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

  


  i.e.,  where,exp0, . 

 This result has a simple physical sense: the force pulse changes the effective momentum p = k 
of each monochromatic component of the particle’s wave packet by the same constant, equal to the 
force’s impulse P. This result is in full accordance with the correspondence principle, because in 
classical mechanics, the force pulse results in a similar change of the particle’s momentum, from p to p’ 
= p + P. (In higher dimensions, this relation is generalized as p’ = p + P, both in classical and quantum 
mechanics.) 

 Later in the course (in Sec. 5.5), we will see that the force-induced multiplier in Eq. (*) is just a 
particular (coordinate) representation of the general momentum shift operator  











xP
iP

ˆ
expT̂ . 

(Please do not panic looking at this expression: in Sec. 4.6 we will discuss what is meant by the 
exponential function of an operator argument.) 

 

Problem 2.8. Calculate the transparency T of the rectangular potential barrier (2.68): 






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

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,2/2/for ,

  ,2/for        ,0

)( 0

xd

dxdU
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xU  

for a 1D particle with energy E > U0. Analyze and interpret the result, taking into account that U0 may 
be either positive or negative. (In the latter case, we are speaking about the particle’s passage over a 
rectangular potential well of a finite depth  U0 .) 

Solution: Just as has been done for the potential step, we can use the final result of the tunneling 
problem analysis in Sec. 2.3 of the lecture notes, in particular, Eqs. (2.71), by replacing   with (-ik’), 
with k’ defined by Eq. (2.65): 

 
2

02 2


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
 . 

The result, valid for both U0 < 0 < E (a well) and  0 < U0 < E (a barrier), becomes 
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The figure below shows typical results given by this formula.  
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A common feature of these plots is transparency oscillations whose period is clear from the term 

sin2k’d in the last form of Eq. (*): (k’d) = . The origin of these oscillations is the (partial) reflection of 
the de Broglie waves at the particle’s passage over a sharp potential cliff, which was been discussed in 
Sec. 2.3 of the lecture notes – in particular, see Eq. (2.71b) and Fig. 2.7a. The reflected wave travels 
back, is reflected from the opposite cliff, etc., thus forming a standing wave. The constructive 
interference condition is achieved when the barrier/well width d corresponds to an integer number of 
standing half-waves, i.e., at k’d = n, with n = 0, 1, 2,…44  

 The remarkable fact that for any parameters, T = 1 at all constructive-interference points, was 
discussed, for a different particular case, in Sec. 2.5. 

 

 Problem 2.9. Prove Eq. (2.117) of the lecture notes, for the case TWKB << 1, by using the 
connection formulas (2.105). 

 Solution: Let us apply the mnemonic rule (i) formulated in Sec. 2.4 of the lecture notes just after 
Eq. (2.106), to a relatively thick potential barrier,45 with the transparency T << 1. In this case, the partial 
wave proportional to the coefficient d in Eq. (2.116) is negligibly small at both classical turning points, 
xc and xc’ (see Fig. 2.11), and we may rewrite these formulas as 

44 An additional task for the reader: explain why in our current problem, in contrast to the resonances inside a 
potential well described by Eq. (1.77), n = 0 is a meaningful value. 
45 Of course, it also has to be smooth, i.e. satisfy the WKB approximation conditions (2.96) and (2.107). 

The transparency T as a function of (a) the particle’s energy (for a fixed ratio d/ = 5, where   is defined 
by Eq. (2.59) of the lecture notes, with U0  U0 ), and (b) the barrier/well width d (for E  = 1.5U0 ).
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where for our current purposes, the second term in the top line and the constant phase shift in the last 
line are unimportant. According to the mnemonic rule applied to the classical turning points xc and xc’, 
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 Now calculating the probability currents (2.95) corresponding to the de Broglie waves 
propagating to the right, in both classically allowed regions, we get 
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so the barrier transparency is indeed described by Eq. (2.117): 
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 Problem 2.10. Spell out the stationary wavefunctions of a harmonic oscillator in the WKB 
approximation, and use them to calculate x2 and x4 for an eigenstate number n >> 1. 

 Solution: In the WKB approximation, the stationary wavefunctions n are given by Eq. (2.94) of 
the lecture notes. Taking the lower limit of both WKB integrals at x = 0, i.e. at the central point of the 
harmonic oscillator’s potential (2.111),  

 
2

22
0 xm

xU


 , 

we have to take a = b for symmetric wavefunctions, i.e. for even n, and a = –b for antisymmetric 
wavefunctions, i.e. for odd n – see, e.g., Fig. 2.35. For the nth stationary state, this gives 
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with kn(x) given by Eq. (2.82): 
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According to Eq. (2.262), which coincides with the WKB result (2.114) with the replacement n’  n, 
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so 
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where x0  (/m0)
1/2 is the length scale of the harmonic oscillator’s wavefunctions (see Eq. (2.276) of 

the lecture notes) and xn are the classical turning points defined by the equality En = U(xn); for our 
potential, 
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The constant Cn (or rather its modulus) participating in Eq. (*) should be calculated from the 
normalization condition 
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In the WKB approximation, strictly valid only for n >> 1, the effective depth of the particle’s 
penetration into the classically forbidden regions is much smaller than the distance, xR – xL, between 
these two classical turning points. So, the integration limits in this equation may be limited to the 
classically allowed interval [-xn, +xn]. Also, the squares of the rapidly oscillating sine and cosine 
functions in Eq. (*) may be replaced with their average value, ½. As a result, Eq. (**) becomes 
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where   x/xn. The last integral may be readily worked out, for example, by the substitution   sin, 
giving d = cosd and (1 – 2)1/2 = cos, so I = /2. Thus, the normalization constant turns out to be 
independent of the state’s number: 

2
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x
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 . 

 Now, by the definition of the expectation values of the observables x2m (where, for our tasks, m 
equals either 1 or 2), in the nth stationary state 
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Using the same approximations as have been used to calculate Cn, we get 
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These integrals, for m = 1 and m = 2, may be worked out using the same substitution   sin, giving 
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so, finally,  
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   As will be shown by operator methods in Chapter 5,46 the exact expression for the first of these 
expectation values is exactly the same, while the second one differs by just a constant: 
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4 nnxx , 

so the WKB approximation gives a result that is asymptotically correct result in the limit n  , as it 
should. 

 

 Problem 2.11. Use the WKB approximation to express the expectation value of the kinetic 
energy of a 1D particle confined in a soft potential well, in its nth stationary state, via the derivative 
dEn/dn, for n >> 1.  

 Solution:  We need to calculate 
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As was discussed in Sec. 2.4 of the lecture notes and also in the solution of the previous problem, for 
higher stationary states with n >> 1, we may limit the integration in Eq. (*) to the classically allowed 
interval [xL, xR]. On this interval, we may use Eq. (2.94) with  a  =  b , which may be rewritten as 
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for our current purposes, the value of the constant phase shift  is not important. Since the WKB 
approximation is valid only if the sine function in this expression changes much faster than the pre-
exponential factor, we may limit the double differentiation in Eq. (*) to this function, getting 

46 A brute-force calculation of the exact values, starting from Eqs. (2.276) and (2.284) and then using recurrence 
relations between the Hermite polynomials, is also possible, but much more cumbersome. 
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Just as in the solution of the previous problem, at each period of the rapidly oscillating sine function, its 
square may be replaced with its average value, equal to ½, so we get 
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But as we know from Eq. (2.109) of the lecture notes, in the limit n >> 1, this integral equals n, so we 
get a very simple expression: 
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 What remains is to calculate  Cn 2 from the normalization condition; with Eq. (**), it is 
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With the similar approximation of the rapidly changing sin2(…) by ½, we get  
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In order to calculate this integral, we may spell out Eq. (2.109), in the limit n >> 1, as 
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and differentiate both parts of the last equality over n – the operation legitimate at n >> 1 when the 
energy spectrum is quasi-continuous. In the same limit, the changes of xL and xR with n are negligible, 
and (at the last step, using the expression for kn(x) again) we get 
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Combining the above relations, we finally get a very simple result: 

dn

dEn
T n

n 2
 . 

 For example, for the harmonic oscillator of frequency 0, En = 0(n + ½), so dEn/dn = 0, and 
our WKB result yields Tn = 0n/2. As will be shown in Sec. 5.4 of the lecture notes, the exact 
expression is given by Eq. (5.97): Tn = En/2 = 0(n + ½)/2; in the limit n >> 1, the relative difference 
between these two results tends to zero. 
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 Problem 2.12. Use the WKB approximation to calculate the transparency T of the following 
triangular potential barrier: 









,0for ,

,0for        ,0
)(

0 xFxU

x
xU  

with F, U0 > 0, as a function of the incident particle’s energy E. 

 Hint: Be careful treating the sharp potential step at x = 0. 

Solution: With the classical turning points for this specific 
potential (see the figure on the right), Eq. (2.117) of the lecture 
notes yields 
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where   1 – x/t(E), while t(E)  (U0 – E)/F  is the potential barrier’s thickness for a particle of energy 
E – see the figure above. The elementary integral in the last expression is equal to 2/3, so we get 
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 This is an approximate version of a formula derived by H. Fowler and L. Nordheim at the very 
dawn of quantum mechanics, in 1928. In this form, it is used in solid-state physics and engineering (with 
F = –eE, where E is the applied electric field) so often that it even gave its name, the Fowler-Nordheim 
tunneling, to the very effect of electron transfer through a potential barrier of the triangular (or a nearly-
triangular) shape formed by the field.47   

 Note, however, that at the sharp (step-like) left border of the barrier, the second condition 
(2.107) of the WKB approximation validity is not satisfied even in the low-field limit 

        2/13
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1
mUF


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when t(E) >> 1 and hence its first condition (2.96) is satisfied for most energies of the interval 0 < E < 
U0. As a result, Eq. (*) is never quantitatively correct. To rectify this deficiency, let us write explicit 
expressions for the wavefunction of a particle with energy E,  in all three relevant spatial regions. If the 
condition (**) is satisfied, the barrier’s transparency, by the order of magnitude given by Eq. (*), is very 
small, so inside the barrier, i.e. at 0  x  t(E)  (U0 – E)/F, we may not only use the WKB form of the 
wavefunction given by the second line of Eq. (2.116) of the lecture notes but also neglect the second 
term on its right-hand side (proportional to the coefficient d) because the ratio d/c scales as T << 1: 

47 In particular, this is exactly the effect used for writing and erasing bits of information (encoded by the amount 
of electric charge trapped in a nearly-insulated conducting electrode called the floating gate) in the now-
ubiquitous flash memories, in particular in the so-called solid-state drives (SSD). In the case of electron tunneling 
into vacuum, the same effect is usually called the field emission of electrons. 
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 Writing the usual boundary conditions of continuity of the wavefunction and its first derivative 
at the sharp border x = 0, we get a system of two equations for the coefficients A, B, and c:48 
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which yield, in particular, 
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 On the other hand, at the border x = t(E), where the WKB condition (2.107) is satisfied, we may 
use the connection formulas similar to Eqs. (2.106) of the lecture notes, in particular, giving 
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Now, calculating the probability currents corresponding to the incident and passed de Broglie waves, we 
find the barrier’s transparency49 
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 For typical energies E ~ U0/2, the pre-exponential factor in this expression is of the order of 2, 
i.e. is quite noticeable. However, for typical applications, its effect on the result is much smaller than the 
transparency’s uncertainty due to those of parameters U0 and m.50 () This is why using the simpler Eq. 
(*) may be justified for some applications. 

 Note also that in some textbooks discussing the Fowler-Nordheim tunneling of electrons from 
metals or degenerate semiconductors, the above potential profile is modified as  
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48 Note that taking the first derivative of the wavefunction under the barrier, we may skip differentiating the pre-
exponential factor because due to the condition (2.96), the exponential factor changes much faster. 
49 In their original work, H. Fowler and L. Nordheim derived this formula, in the low-field limit (**), in a 
different way – using the Airy functions (which were discussed in Sec. 2.4 of the lecture notes). 
50 In solid-state systems, m in Eq. (***) should be replaced with the effective mass mef of the charge carriers in the 
barrier’s material – see the discussion in Sec. 2.8 of the lecture notes. 
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where  is the dielectric constant of the barrier’s material, with the corresponding modification 
(increase) of T, to account for the potential barrier’s suppression by the image charge effect.51 However, 
this modification is quantitatively valid only if the so-called traversal time t of tunneling through the 
barrier (which will be discussed in Sec. 5.3 of the lecture notes) is much longer than the reciprocal 
plasma frequency p of the conductor,52 because p

–1
 gives the time scale of the transients (surface 

plasmon propagation53) leading, in particular, to the image charge field formation. 

Problem 2.13. Prove that Eq. (2.67) of the lecture notes is valid even if the potential U(x) 
changes, sufficiently slowly, on both sides of the potential step, provided that U(x) < E everywhere. 

 Solution: If the potential changes slowly, the characteristic length a of its variation is large. If it 
is so large that the first condition, Eq. (2.96), of the WKB approximation validity is satisfied, we may 
use for the wavefunction, both before and after the step, expressions similar to Eq. (2.94): 
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with the local wave number k(x) defined by Eq. (2.82): 
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Here the lower integration limits are chosen, for the convenience of what follows, at the step location 
point x = 0, and the back-propagating wave at x > 0 is set to zero due to the reasons that were discussed 
in detail in Sec. 2.3 of the lecture notes. (Note again that they are valid only if U(x) < E in the whole 
region of the particle’s propagation.) 

 The second condition of WKB approximation, Eq. (2.207), is not satisfied at x = 0, so instead, 
the relation between the coefficients a, b, and c should be found by writing explicit boundary conditions 
(of the continuity of the wavefunction and its first derivative) at this point. The former condition is 
straightforward, 
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while writing the second one, we should take into account that within the WKB approximation’s validity 
domain, the pre-exponential factor changes much slower than the exponential function. As a result, at 
the calculation of the first derivatives, we may differentiate only the exponent. This approximation, used 
also in the solutions of the two previous problems, yields the boundary condition 

51 See, e.g., EM Sec. 2.9, in particular Eq. (2.193), with the replacement 0  0 (see EM Sec. 3.4). 
52 See, e.g., EM Sec. 7.2, in particular Eq. (7.37). 
53 See, e.g., the model solution of EM Problem 7.18. 
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But these equations for normalized coefficients a/k-
1/2, b/k-

1/2, and c/k+
1/2 are exactly the same as were 

obtained for coefficients A, B, and C in Sec. 2.3, and their solution is also the same, giving, in particular,  
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Now calculating the WKB probability currents (2.95) carried by the incident and reflected de Broglie 
waves at an arbitrary point x < 0, for the reflection coefficient, we get 
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 Since according to Eq. (2.6), in any stationary state, the probability current has to be independent 
of x, the reflection and transmission coefficients have to satisfy the relation 

1RT . 

Using this relation together with Eq. (*) to calculate the transmission coefficient, 
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we see that it indeed coincides with Eq. (2.67) of the lecture notes.  

 In particular, this result gives T = 1 at U0 = 0, i.e. shows that in 
the WKB approximation, a “cusp” in an otherwise slowly changing 
potential U(x) < E (see an example in the figure on the right) does not 
reflect the incident particle.  

 

Problem 2.14.* Prove that the symmetry of the 1D scattering matrix S describing an arbitrary 
time-independent scatterer allows its representation in the form (2.127) of the lecture notes. 

Solution: First of all, if the scattering potential does not depend on time, the probability density 
distribution (for an infinitely wide wave packet) should be also constant in time. In this case, according 
to Eq. (2.6) of the lecture notes, the values of the probability current I at the points x1 and x2 outside the 
scatterer (see Fig. 2.12 of the notes) should be equal, for any combination of the amplitudes A1, B2 of the 
incident waves. Let us consider two particular cases shown in the figure below. 
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In case (a), a unit-amplitude wave is incident from the left (A1 = 1, B2 = 0), while in case (b), the 
situation is opposite (A1 = 0, B2 = 1). According to Eqs. (2.123)-(2.124), we may express the amplitudes 
of the transmitted and reflected waves in these cases via the scattering matrix elements as shown by the 
labels in the figure above. Now using Eq. (2.5) to calculate the total probability currents: I(x1) = IA1 + IB1 
= (k/m) ( A1 2 –  B1 2), and I(x2) = IA2 + IB2 = (k/m) ( A2 2 –  B2 2), and requiring them to be equal to 
each other in both situations (a) and (b), we get two relations: 
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One more set of relations between the matrix elements may be obtained from the fact that all 
observable results of any Hamiltonian mechanics (including the wave mechanics) of a particle moving 
in a time-independent potential profile U(r) should be invariant with respect to the time reversal. 
According to Eq. (1.23) and (1.69), this invariance requires that at the reversal, the spatial components 
of 1D wavefunctions change as (x)  *(x). At this complex conjugation, a 1D monochromatic 
traveling wave Cexp{ikx} turns into the wave C*exp{–ikx} propagating in the opposite direction. This 
means that the two particular cases considered above are now modified as shown in the figure below. 

 

 

 

 

 

  

Comparing these cases with the general situation shown in Fig. 2.12 of the lecture notes, we see that 
they may be described by taking: 

,,1,0,:(b) case

,,0,1,:(a) case
**

**

22221121

21221111

SBABSA

SBABSA




 

Now applying the general Eq. (2.123) to these cases, we get four more relations: 
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 Not all of the eight relations of the sets (*) and (**) are independent. Indeed, comparing the first 
equations of each set, we see that  S21 2  S21S21

* has to equal S12S21
*, so 

2112 SS  , 

i.e. the off-diagonal elements of the scattering matrix have to be equal to each other. Denoting this 
single complex number as texp{i } (with real t and ), and plugging it into the four inhomogeneous 
relations of the sets (*)-(**), we see that they give only two independent relations. The first of them, 
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2

22

2

11 SS  , 

allows the replacement of the two complex parameters S11 and S22 (i.e. of four real parameters) with just 
three real parameters r, 1, and 2: S11  r exp{i( + 1)}, S22  –r exp{i( + 2)}. With this notation,54 
the second independent relation may be indeed represented in the form of Eq. (2.127b): 

  122  tr , 

evidently expressing the probability current conservation: R + T = 1.  

 Now plugging these results into the two homogeneous equations of the set (**), we see that they 
give just one more new relation: 

21  ii
ee
 . 

Besides the trivial cases when either t = 0 or r = 0 (when either the transmitted wave or the reflected 
wave vanishes, and hence its phase is undetermined), the last relation shows that, apart from a possible 
but inconsequential shift 2n, the phases 1 and 2 are equal and opposite, and may be denoted as 1 = 
 and 2 = –. (This fact may be also expressed as S11 = –S22

*.) Plugging these results into Eq. (2.124), 
we get Eq. (2.127a) proved as well. 

 

Problem 2.15. Prove the universal relations between the elements of the 1D transfer matrix T of 
a stationary (but otherwise arbitrary) scatterer, mentioned in Sec. 2.5 of the lecture notes. 

Solution: First of all, let us use the same argument as in the model solution of the previous 
problem: the total probability current should be the same at the external points x1 and x2, for any 
combination of the amplitudes A1 and B1 on the right-hand side of the transfer matrix definition – see 
Eq. (2.125) of the lecture notes. Taking, first, A1 = 0, B1 = 1, we get 
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while the second alternative, A1 = 1, B1 = 0, gives 
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Two more relations may be obtained from the time-inversion arguments spelled out in the 
solution of the previous problem. They imply, in particular, that Eqs. (2.125) should be valid if we 
complex-conjugate all wave amplitudes A and B, and simultaneously swap them at each spatial point (to 
reflect the change of the sign of the wave number k): 

            
.

,*

***

**

1221212

1121112

ATBTA

ATBTB




 

Taking the complex conjugate of these equations, and changing the order of lines and columns, we get 

54 This notation is motivated by Eqs. (2.121)-(2.122) of the lecture notes, which allow one to interpret the off-
diagonal elements of the scattering matrix as transmission amplitudes, and their diagonal elements, as reflection 
amplitudes, for two possible directions of the incident wave. (The amplitudes t and r should not be confused with 
the corresponding real transparency T  t2 and reflectivity R  r2.) 
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.

,

1111122

1211222

**

**

BTATB

BTATA




 

Comparing this system with Eqs. (2.125), we see that the matrix elements should satisfy the conditions 

             ,1122
* TT     .1221

* TT   

An alternative way to obtain all these relations is to plug Eqs. (2.127) of the lecture notes (whose 
proof was the task of the previous problem) into Eqs. (2.126). The results may be merged into the 
following matrix form: 

1with  ,
1

T 22 











 


tr

ere

ree

t ii

ii




; 

one can readily check that all the above relations between the matrix elements are indeed satisfied.  

 

Problem 2.16.* A k-narrow wave packet is incident on a finite-length 1D scatterer. Obtain a 
general expression for the time of its delay caused by the scatterer, and evaluate the time for the case of 
a very short but high potential barrier.  

 Solution: The initial packet may be represented by Eq. (2.20) of the lecture notes, 

          dkeax ikx
k )0,( ,     (*) 

Then, generalizing Eq. (2.28) by applying Eq. (2.121) to each frequency component, we may use the 
linear superposition principle to represent the packet after its scattering as a sum of the transmitted and 
reflected parts: 

    ,),( )()(
1121 dkekSadkekSatx tkxitkxi

kk      

where S is the scattering matrix (2.124).55 In our case of a narrow wave packet, the magnitude of the 
Fourier amplitude ak rapidly decreases with its argument’s deviation from some central point k0. This is 
why let us rewrite the first term, representing the transmitted component of the packet, as 

           dkkktkkxkkikkSatx k 
~~~

exp
~

),( 000021trans  ,   

where   argS12 is the phase of this matrix element, and consider the Taylor expansion of the factors in 

this integral in relatively small 0

~
kkk   – exactly as it was done in Eq. (2.29) but neglecting the 

quadratic term. (As was discussed in Sec. 2.2, that term describes the eventual broadening of the wave 
packet, and does not affect the time delay we are calculating.) For a small variation of k, the resulting 
variation of  S12  (responsible for the change of the wave packet’s shape) is also relatively small and for 
our purposes, may be neglected. However, as we will see in a minute, such variations of  and , 

55 Generally, the off-diagonal element S12 of the scattering matrix S includes the factor exp{–ika} resulting from 
the distance a  x2 – x1 between the reference points x1 and x2 – see Eq. (2.120) and its discussion. For our current 
purposes, it is convenient to take a = 0. 
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d
kkkk    , 

describe contributions to the transmitted wave packet’s delay, and hence have to be kept for its analysis: 

      dk
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d
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d
xkiakStxkitx kkkkk
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Indeed, comparing this expression with Eq. (*) rewritten as 

   dkxkiaxikx k
~

expexp)0,( 0 , 

we see that besides changing its general phase shift and size, as described by the pre-integral factors, 
during the time interval [0, t], the packet moves forward by  











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 , 

where vgr is the group velocity of the particle in the absence of the scatterer– see the first of Eqs. (2.33a). 
This means the scatterer-induced additional time delay is 

      
0

gr

1
kkdk

d

v
t 


.     (**) 

 This is the result we were seeking for. For a particular case of a very short but high potential 
barrier that may be represented with Eq. (2.74), we may use the second of Eqs. (2.133) to write  

  ,  where,tanwith  ,
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so using the first of Eqs. (2.33b) for vgr, we get 
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where the last expression also has to be evaluated at k = k0. Interestingly, at  = 1, i.e. at moderate 
transparency of the barrier, the delay reaches the largest fraction (a quarter) of the value /E that would 
follow from a naïve application of the energy-time uncertainty relation (2.155). The delay is even much 
smaller at both  << 1 and  >>1, i.e. at any strong relation between the particle’s energy E = 2k0

2/2m 
and its natural scale for this potential, E0  mW 2/22 – see Eq. (2.79). 

 Note also that one should resist the temptation to interpret this wave packet’s delay by a 
potential barrier as “the time of tunneling” of the particle through the barrier. (Such interpretation is 
sound only in the limit of very long and low scattering profiles.) Generally, no single time of tunneling 
may rationally explain the results of all experiments that may be performed with the barrier.56  

 

56 See, e.g., the review paper by R. Landauer and Th. Martin, Rev. Mod. Phys. 66, 217 (1994). See also the related 
brief discussion at the very end of Sec. 5.3 of the lecture notes 
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 Problem 2.17. A 1D particle had been localized in a very narrow and deep potential well, with 
the “weight” U(x)dx equal to –W, where W > 0. Then (say, at t = 0) the well’s bottom is suddenly lifted 
up, so the particle becomes completely free. Calculate the probability density to find the particle in a 
state with a certain wave number k at t > 0 and the total final energy of the system. 

 Solution: As was discussed at the beginning of Sec. 2.6 of the lecture notes, such a well, located 
at x = 0, may be described by the delta-functional potential 

  )(xxU W  

and the (only) localized state of a particle in the well is described by Eqs. (2.159), (2.161), and (2.162):  

  
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For this state, the normalization condition is 
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 After the well bottom’s lifting, the particle becomes free to move, so, as was discussed in Sec. 
2.2,  its wavefunction may be expanded into a sum over either traveling de Broglie waves (as given by 
Eq. (2.27) of the lecture notes) or, equivalently, standing waves: 

     
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E
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22
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  .   

For our purposes, the latter form (spelled out above) is more convenient. If the coefficients C and S are 
selected so that each of the component wavefunctions, Ccoskx and Ssinkx, are normalized (see below), 
then the amplitudes ck and sk may be calculated from the 1D version of Eq. (1.68): 

    dxekxCAdxxkxCsdxekxCAdxxkxCc
xx

kk
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 sin0,sin,cos0,cos . 

The second integral (of an odd function of x, in symmetric limits) equals zero, while the first one may be 
readily calculated 
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  What remains is to calculate the normalization coefficient C. The most transparent way57 to do 
this is to introduce (as was already discussed in Chapter 1 of the lecture notes) an artificial, very large 
segment –l/2  x  + l/2, with l >> 1, requiring the wavefunction to equal zero everywhere outside it, 
and hence on its boundaries, i.e. at x = l/2. For our eigenfunctions, Ccoskx, this gives the following 
spectrum of possible values, kn, of the wave number: 

57 Another way is to recognize that, in a spatially unlimited system, this sum over k is actually an integral, and use 
the so-called delta-normalization of . This approach, to be discussed in Sec. 4.7 of the lecture notes, would give 
identical final results. 
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,...2,1,0with  ,
22

  i.e.,0
2

cos  nn
lklk nn 

. 

If l is selected to be large enough, then for all essential wave numbers kn ~  >> 1/l, i.e. n >> 1, the first 
term in the last expression is negligible, so the spectrum may be well approximated as58 

           n
l

kn

2
 ,      (***) 

and the normalization condition becomes 
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With this, Eq. (**) yields the following probability of finding the particle in the state with a wave 
number k: 

 222

3
2 8








kl
cW kk . 

Now we may calculate the requested probability density w(k) as the ratio of the sum of all probabilities 
Wk within an elementary interval dk << k, to the width dk of this interval. Due to the small distance 
between the adjacent numbers kn, the sum may be calculated just as Wkdn, where dn is the number of 
these modes in the interval dk. According to Eq. (***),  dk = (2/l)dn, so  
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 Note the cancellation, in this final expression, of the length l of the artificial bounding segment; 
this is the necessary condition for the correctness of this normalization procedure. Another useful sanity 
check is the calculation of the total probability to find the released particle in the state with some k > 0: 
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where   k/. This is a table integral,59 equal to /4, so (fortunately :-) W = 1, as it should be. Our result 
for w(k) shows that the probability density is finite but nonvanishing at k  0, and rapidly decreases as 
soon as k is increased beyond the reciprocal spatial extension, , of the initial wavefunction.  

 Now we may use Eq. (****) to calculate the total energy60 of the particle at t > 0. 
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58 This approximation corresponds to the general 1D mode counting rule – see Eq. (1.100) of the lecture notes. 
59 See, e.g., MA Eq. (6.5b) with n = 2. 
60 Since, per the problem’s assignment, U = 0 at t > 0, this energy has only the kinetic component: Ek = 2k2/2m. 
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where   k/ again. The second integral is the same as the one above (and is equal to /4), while the 
first one is another well-known integral,61 equal to /2. As a result, we get an extremely simple formula: 

iniini

22

fin 2
EE

m
E 


. 

 It means, in particular, that the total work done on the system by the force lifting the potential 
well’s bottom is 

iniinifin 2 EEE  , 

i.e. twice larger than that (just  Eini ) necessary to do this process very slowly – with a duration t much 
larger than the characteristic time constant  ~ / Eini . This two-fold increase is the price for the high 
speed of the process: at a slow (“adiabatic”) well’s bottom lift, the total energy of the resulting de 
Broglie waves with Ek > 0 is vanishingly small. 

 

 Problem 2.18. Calculate the lifetime of the metastable localized state of a 1D particle in the 
potential 

    0with  ,  WW FxxxU  , 

in the WKB approximation. Formulate the condition of validity of the result. 

 Solution: According to Eqs. (2.159), (2.161), and (2.162) of the lecture notes, and the 
normalization carried out at the beginning of the previous problem’s solution, if F = 0, the normalized 
wavefunction of the (in this case, stable) localized state is 
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and the corresponding energy is 
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 At F  0,62 the potential’s profile is tilted – see the figure on the 
right. As a result, the localized particle may escape into the classically 
allowed region x > t, where 

F
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E
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 , 

by tunneling through the classically forbidden region 0 < x < t. If the 
force is sufficiently weak,  

      
4

32



Wm
F  ,      (**) 

the barrier is relatively thick, 0t >>1, the barrier’s transparency is low, and we may carry out the 
lifetime calculation by using the WKB approximation.  

61 See, e.g. MA Eq. (6.5a). 
62 Physically, F is just an additional constant force applied to the particle. 

FEt /

E

 xU

0 xFxU 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 50 

 According to Eq. (2.98) of the lecture notes, in this approximation, the wavefunction under the 
barrier is proportional to  
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For the metastable state with the energy given by Eq. (*), this wavefunction virtually coincides with 0 
at  x  ~ 1/0 << t, so the weak force does not change either the wavefunction’s normalization factor or 
the energy E substantially. As a result, for the potential-barrier region, 0 < x < t, we may write 
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 Now using the first mnemonic rule of the WKB connection, we may write the outgoing de 
Broglie wave in the classically allowed region (t < x) as  
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The probability current (2.95) corresponding to this wave is 
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so according to Eq. (2.6) (with the localized wavefunction normalized to 1), the metastable state’s 
lifetime is just 1/I:63  
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 Note that we could also calculate the lifetime simpler, but more crudely, using the WKB formula 
(2.117) for the barrier’s transparency, 
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and then Eq. (2.153) with the attempt time is ta estimated as 2/a, with a   E . This approach yields 
the following result, 
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with exactly the same tunneling exponent, but a numerically different pre-exponential numerical factor. 
This is natural, because the left side of the potential barrier (at x = 0) is sharp, so the WKB validity 
conditions are not satisfied for it. On the other hand, the first approach used above treats this sharpness 

63 This is the same integral as in Problem 2.10, with the replacement U0 – E  –E  E, and E given by Eq. (*). 
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explicitly, and hence yields the correct pre-exponential factor, though (as was discussed in Sec. 2.4 of 
the lecture notes) for most practical applications, this factor is of minor importance. 

 

 Problem 2.19. Calculate the energy levels and the corresponding 
eigenfunctions of a 1D particle placed into a flat-bottom potential well of 
width 2a, with infinitely high hard walls and a narrow potential barrier in the 
middle – see the figure on the right. Discuss the particle’s dynamics in the 
limit when W  is very large but still finite. 

Solution: With the origin of x in the middle of the well, its potential 
may be described as 
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From Sec. 1.7 of the lecture notes, we know that the standing-wave eigenfunctions n of the 
Schrödinger equation in the regions with U(x) = 0 (in our case, the segments  –a < x < 0 and 0 < x < +a) 
may be always represented as linear superpositions of the fundamental solutions sinkx and coskx. To 
immediately satisfy the boundary conditions  = 0 at x = a, we may take these solutions in the form 
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 What remains is to satisfy the boundary conditions at x = 0. Plugging the above solution into 
Eqs. (2.75) and (2.76) of the lecture notes, we get two equations for the coefficients C: 

          kaC
m

kaCCk sin
2

cos)(
2  


W
,    (*)  
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The second equation has two types of solutions, corresponding 
to antisymmetric and symmetric eigenfunctions (with the lowest-
energy functions sketched in the figure on the right): 

 (i) Antisymmetric solutions (index A), with 

    ,sin   i.e., AAAAA xkCCC     

and the eigenvalues independent of W: 
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Note that these values of k, and hence the eigenenergies E = 
2k2/2m of these antisymmetric states, 
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coincide with those of a single sub-well of width a – see Fig. 1.8 and its discussion.  
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 (ii) Symmetric solutions (index S): 

         ,sin   i.e., SSSSS axkCCC     

together with Eq. (*) giving the following characteristic equation for the eigenvalue kS: 

      

1

tan S ak ,     (**) 

where the parameter  is given by Eq. (2.78) of the lecture notes, with k = kS: 

S
2k

m



W
 . 

 The figure on the right shows the 
graphical solution of Eq. (**) for three 
representative values of this parameter, i.e. 
of the sub-well coupling strength.64 It 
shows that the equation has an infinite set 
of solutions that may be also indexed with 
integer numbers n = 1, 2,; for the nth of 
them, kSa is within the interval 

                   ,
2 S nakn     

so the values of k (and hence of the energy E = 2k2/2m) for the antisymmetric and symmetric states 
alternate, with the difference kA – kS, for each pair of adjacent states, being positive but smaller than 
/2a, for any .  

 In the limit   0 (i.e. W  0, meaning virtually no partition between the two sub-wells), kS  

(n – ½)/a, i.e. the symmetric eigenfunctions and eigenenergies approach those of the symmetric states 
of the full potential well of width 2a. In the opposite limit of weak sub-well coupling,   , we have 
kSa  n. In the vicinity of each such point, we may approximate tankSa with the difference (kSa – n) 
– see the dashed line in the figure above, drawn for n = 1. As a result, the characteristic equation (**), in 
this limit, is reduced to 
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  nak        

so the splitting between the wave numbers and eigenenergies of the adjacent symmetric and 
antisymmetric states is small: 
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 The dynamics of the particle placed into such a split well, even in the weak coupling limit W  

, i.e.   , depends on its initial state. In the simplest case when the state corresponds to just one 

64 For the eigenvalue classification using this plot, the fact that  depends on k is not essential. (For example, one 
may view the argument ka as a normalized well’s width 2a, which does not affect .) 
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(say, the nth) couple of the adjacent symmetric and antisymmetric eigenstates, with close values of the 
wave number: kA  kS  kn and energy: EA  ES  En,  the above expressions for the eigenfunctions may 
be approximated just as in Eq. (2.169) of the lecture notes (obtained in Sec. 2.6 for a different system – 
see Fig. 2.19): 

      ,)()(
2

1
)(,)()(

2

1
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 where R,L are the normalized ground states of the completely insulated wells:  
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 As a result, repeating all the arguments of Sec. 2.6, we arrive at the same picture of sinusoidal 
quantum oscillations of the particle between the two sub-wells (i.e. of the probability of finding on 
either side of the partition) with the frequency n = 2n/. Note that just as in the example analyzed in 
Sec. 2.6, the time period of these oscillations, 

              ,
22 2
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ma

nn
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is a factor of /2 >> 1 shorter than the lifetime  (2.152) of the metastable state of the particle in a 
potential well limited by two delta-functional walls (see Fig. 2.15) with the same parameter . 

 However, in contrast to the system analyzed in the lecture notes (see Fig. 2.19), which has just 
one pair of localized symmetric-antisymmetric states, our current system may have many such pairs. As 
a result, for an arbitrary initial state of the particle, the system may exhibit many simultaneous quantum 
oscillations, with incommensurate frequencies n. 

 

 Problem 2.20.* Consider a symmetric system of two 
potential wells of the type shown in Fig. 2.21 of the lecture notes, 
but now with U(0) = U() = 0 – see the figure on the right. Derive 
a general expression for the well interaction force due to their 
sharing a quantum particle of mass m, and determine its sign for the 
cases when the particle is in: 

 (i) a symmetric localized eigenstate, with S(–x) = S(x), and 
 (ii) an antisymmetric localized eigenstate, with A(–x) = –A(x). 

Use a different approach to verify your conclusions for the particular case of delta-functional wells. 

 Solution: In classical mechanics, a potential field described by a 1D potential U(x) exerts the 
force Fp = –dU/dx on the particle moving in this field. According to the 3rd Newton law, the force F 
exerted by the particle on the potential well (physically, on the source of the field) is equal and opposite: 

 
dx

xdU
FF  p . 

 Due to the correspondence principle, in quantum mechanics, this force is described by the 
corresponding operator, in the coordinate representation equal to dU/dx, whose expectation value F 

 xU

x0



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 54 

may be calculated using the general Eq. (2.4) of the lecture notes. However, if we want to calculate the 
force exerted just on just one potential well (say, the right one, with x > 0 – see the figure above), we 
need to limit the integration by the corresponding semi-axis: 

     dxtx
dx

dU
txtF ,,

0

 


* . 

In the nth stationary state, with its simple time dependence (1.62), this force is time-independent: 
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 Since in a localized stationary state of a 1D system, the probability current (2.5) has to vanish for 
all x,65 i.e. the wavefunction’s phase  has to be constant, for the notation simplicity, we may always set 
the phase (which, according to Eq. (2.4), does not affect the expectation value of any physical 
observable, including F) to zero, and write 
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Integrating the last expression by parts, we get 

       





 

x

x

n
x
xn dxUxUxF

0

2
0

2  . 

The first term of the last expression vanishes due to the condition imposed in this problem on the 
function U(x). Plugging into its second term the expression for U(x) following from the stationary 
Schrödinger equation (2.53) for the nth eigenstate we are considering, 
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In the second term of the last expression, we may write  
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so for the average force, we get 

65 Otherwise, according to Eq. (2.6), with say x = x1, and x2  , the probability W to find the particle to the right 
of point x would change with time.  Note that (as we already know from a discussion in Sec. 2.2), this statement is 
not necessarily true for infinite 1D systems, such as a fully free particle, because the probability there may “flow 
from – to +” without accumulation at any finite x. Later in the course, we will also see that even in finite 
systems of higher dimensions, the probability current density may not vanish in a stationary state, because the 
probability may “flow in circles”. 
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 Since we are discussing localized eigenfunctions n(x), which vanish at x   together with 
their derivatives, only the second substitutions (at x = 0) in the above expression may be different from 
zero, and we finally get 
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This general formula enables us to answer the problem’s questions. 

 (i) For any symmetric eigenfunction, the derivative dn/dx vanishes at x = 0, so the second term 
in Eq. (*) equals zero, while the first one is negative because for any localized state, En < U() = 0. 
Hence for such an eigenstate, F < 0. Since the above calculation was for the force exerted on the right 
well, we may conclude that sharing a particle in a symmetric eigenstate produces an attractive force 
between the wells. 

 (ii) On the other hand, for any antisymmetric eigenstate, the wavefunction n itself has to vanish 
at x = 0, so F > 0, meaning that in this case, the wells’ interaction is repulsive.  

 Now note that an alternative way to calculate the wells’ interaction force is to write 
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where a is the distance between the wells, with the partial derivative meaning that the shape of each well 
is kept constant at the distance variation. This requirement limits the strict applicability of Eq. (**) to 
the potential profiles with nonvanishing intervals with U(x) = const between the wells. In particular, it 
may be applied to the system of two delta-functional potential wells considered in Sec. 2.6 of the lecture 
notes (see Fig. 2.19): 

0with ,
22

)( 













 






  W W

a
x

a
xxU  . 

As a reminder, in the limit of distant wells (0a >> 1, where 0  2mW/2), that analysis gave, for the 
only pair of localized eigenstates (one antisymmetric and the other one, symmetric), the following 
expressions: 

  0exp
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, 

and E0 does not depend on a. Since  grows (and hence EA grows as well, while ES decreases) as a is 
reduced, the wells sharing a quantum particle in the antisymmetric state repulse each other, while if the 
particle is in an antisymmetric state, the wells attract each other – in full agreement with the conclusions 
following from Eq. (*).66 

66 As may be readily shown from Eqs. (2.166) and (2.172) (and their graphical solution shown in Fig. 2.20) of the 
lecture notes, this qualitative conclusion is valid for any distance between the wells – besides that the 
antisymmetric localized state does not exist at all if a is lower than the critical value amin given by Eq. (2.167).  
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 Problem 2.21. Derive and analyze the characteristic equation for 
localized eigenstates of a 1D particle in a rectangular potential well of a 
finite depth (see the figure on the right): 

        .0with  
otherwise,     ,0

2for    ,
)( 0

0 


 

 U
,a/xU

xU  

In particular, calculate the number of the localized states as a function of the well’s width a and explore 
the limit U0 << 2/2ma2. 

Solution: This problem is conceptually similar to the two-well problems analyzed in Sec. 2.6 of 
the lecture notes, as well as to Problems 19-20 above, though the quantitative results are different. 

 (i) The antisymmetric eigenfunctions satisfying the requirement of the wavefunction’s continuity 
at x = a/2 have the form 
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where the real parameters k and  are defined as in, respectively, Eqs. (2.65) and (2.162):  
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so, in particular, 
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 From here, by using the second pair of boundary conditions (of the continuity of the derivative 
d/dx at x = a/2), we get the following characteristic equation: 
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whose graphical solution is shown on the left panel of the figure below, for several representative values 
of the dimensionless parameter a.  
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 As the plots show, the solutions k of Eq. (**), besides the physically unacceptable solution k = 0 
(which gives vanishing ), may be numbered by integer numbers n = 1, 2, 3,…, with 

      n
ak

n n 
22

1
. 

The lower end of this interval, i.e. kna/2  n – ½, corresponds to   0. This means that the nth 
eigenfunction becomes delocalized, with  kn = K, at the following value an of the well’s width:  
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so the number of antisymmetric states in the well is 
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where floor() is the floor function (frequently denoted as ), defined as the largest integer not greater 
than the function’s argument  – whose values may be continuous. In particular, at a < amin, where 
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the well does not have any antisymmetric localized states at all.  

 (ii) The symmetric eigenfunctions,  
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lead, in an absolutely similar way, to a different characteristic equation: 
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whose graphical solution is shown on the right panel of the figure above. As the plots show, Eq. (***) 
has one solution kn in each of the complementary intervals: 
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Each of these solutions, besides k1 (i.e. for n = 2, 3,…), gives   0 and hence kn = K (i.e. 
becomes non-localized) at kna = 2(n – 1). Hence, such a solution is impossible at 
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 Notice that since U0 > 0, i.e. K > 0, this result shows that NS > 0 for any a > 0. This means that 
the lowest localized symmetric eigenfunction (with k = k1) exists in any potential well of nonvanishing 
width and depth. According to the first of  Eqs. (*), for very shallow wells with U0 << 2/2ma2, i.e. Ka 
<< 1, both ka and a have to be much less than 1, and for n = 1, the characteristic equation (***) is 
reduced to  
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giving the following equation for the only remaining energy level: 
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In this limit,  << k  K, and hence E1 << U0, so we may neglect  E1  on the right-hand side of the last 
expression, thus arriving at the following approximate (but asymptotically correct) result: 
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Note that for the (only) localized state of the particle in a delta-functional, i.e. very deep and narrow 
well, this formula coincides with Eq. (2.162):  
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Indeed, for the rectangular potential well, the “weight” W of the delta function is just the product U0a. 

 The task of the next problem is to generalize Eq. (****) to the case of an arbitrary (but very 
shallow) potential well. 

 

 Problem 2.22. Calculate the energy of a 1D particle localized in a potential well of an arbitrary 
shape U(x), provided that its width a is finite, and the average depth is very small: 
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 Solution: Let us select the origin of x in the middle of the well, and integrate both sides of the 
stationary Schrödinger equation, rewritten as 
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over an interval [–x0, + x0] with x0 > a/2. The result is 
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 As we already know from Secs. 2.3-2.6 of the lecture notes, near the points x = x0, i.e. outside 
the potential well, the wavefunction changes as exp{–  x }, where  is defined by the relation  
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, 

so we may rewrite Eq. (*) as 
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. (**) 

 So far, this is an exact result, valid for any x0 > a/2. Now let us suppose that if  U  satisfies the 
condition specified in the assignment, then  E  is even much smaller. (This assumption, implied by Eq. 
(****) of the previous problem’s solution, will be confirmed by our final result.) This means that 1/ is 
much larger than a, so if we select x0 somewhere within the following wide range, 

/10  xa , 

then within the interval [–x0, +x0], the wavefunction is virtually constant. Hence we may cancel it on 
both sides of Eq. (**), getting simply 
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


. 

Moreover, since at our choice, x0 << 1/  /(2mE)1/2, the last term on the right-hand side of this 
relation is negligible in comparison with its left-hand side, and the formula may be reduced to just 

    ,
2

2
2 2/
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2/1
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mEm a
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
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giving us the final result67 

  1
2

   so,
2 2

2
2

2
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
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




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U

E
dxxU

m
E


, 

confirming our assumption that  E   is much smaller than the average value of  U .  

 Just one warning: this scaling of the localized state’s energy (as the square of the average 
confinement potential) is only valid for 1D systems. As we will see in Chapter 3, in a similar 2D 
problem,  E  is exponentially low, while the 3D localization has a threshold: the confining potential  U  
has to reach a certain non-zero value before it can house a localized state. 

 

Problem 2.23. A particle of mass m is moving in a field with the following potential: 

     xxUxU W 0 , 

where U0(x) is a smooth symmetric function with U0(0) = 0, growing monotonically at x  . Use the 
WKB approximation to: 

67 In the particular case of a rectangular well, this formula is immediately reduced to Eq. (****) of the previous 
problem’s solution (obtained in the same limit). 
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 (i) derive the characteristic equation for the particle’s energy spectrum, and 
 (ii) semi-quantitatively describe the spectrum’s evolution at the increase of W, for both signs of 
this parameter.  

 Spell out both results for the quadratic-parabolic potential (2.111): U0(x) = m0
2x2/2. 

Solutions:  

 (i) As was demonstrated in Sec. 2.4 of the lecture notes, the "soft" potential U0(x) alone may be 
handled with the WKB approximation very successfully,68 but this approximation is not directly 
applicable to such "hard" potentials as the delta-functional peak – please have one more look at the 
condition expressed by Eq. (2.96). However, we may solve this problem by combining the WKB 
approach with the delta-functional potential treatment discussed in Sec. 2.3, based on the boundary 
conditions (2.75)-(2.76). For the delta-functional potential located at x = 0, they read 

              0
2

00,000
2




 W


m

dx

d

dx

d
 

 ,   (*) 

where (x) are the wavefunctions at x  0 and x  0, respectively.  

 Due to the symmetry of our current potential U(x), the eigenfunctions of our problem have to be 
either symmetric: (–x) = (x), or antisymmetric: (–x) = –(x). According to the latter of Eqs. (*), the 
antisymmetric eigenfunctions are not affected by the delta-functional potential peak at all, because, for 
them, (0) has to vanish. Hence for these eigenstates, corresponding to even values of the integer n in 
Eq. (2.109), we still may use the general Wilson-Sommerfeld result (2.110) for an arbitrary smooth 
potential U0(x), and the specific result (2.114) for the quadratic potential (2.111): 

,...5,3,11for  ,
2

1
0 






  nn'n'En  . 

 On the other hand, for symmetric eigenfunctions, for which the first of Eqs. (*) is satisfied 
automatically, and d–/dx = –d+/dx at x = 0, the second of the boundary conditions may be rewritten as 

              00 2 
   W



m

dx

d
.     (**) 

For x > 0, where U(x) = U0(x), we may use the connection formulas (2.105), obtained for exactly this 
situation: the total reflection of a monochromatic de Broglie wave from the classical turning point xc of a 
soft potential well – in our current case, of U0(x). With these formulas, Eq. (2.94) takes the form  

   
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  . 

Now calculating the wavefunction's derivative, 

 
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dx
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xk

a
ee

dx

d
i

xk

a

dx

d   , 

68 As a reminder, this approximation gives the exact result (2.114) for the energy spectrum of the harmonic 
oscillator. 
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we should note that since d/dx = –k, and  dk/dx  ~ k/a, where a is the potential’s change length scale, 
the first term on the right-hand side is by the factor ~ka larger than the second one. However, the WKB 
approximation is strictly valid only at ka >> 1, so the second term is negligible unless the first one 
vanishes.69 As a result, after the cancellation of a/k1/2(0), Eq. (**) yields 

    ,
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where 
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xx


  , (***) 

because k(0) should be understood as a limit of k(x > 0) at x  0, i.e. calculated taking into account only 
the "soft" part U0(x) – which, in our case, vanishes at x = 0.  

 The system of the last three relations defines the eigenenergies E of the symmetric modes. Since 
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the first of them may be rewritten in a more compact form, 

          
k

m
24

cotan


W







 

 .     (****) 

Together with Eqs. (***), this is the required characteristic equation – for symmetric eigenfunctions. 

 (ii) Since, according to Eqs. (***), both  and k are functions of E, the characteristic equation 
(****) does not allow an analytical solution for an arbitrary potential U0(x). For its semi-quantitative 
analysis, we may notice that since in the region   0, the function cotan( + /4) turns to 0 at points l 
= (l + 1/4), with l = 0, 1, 2,..., then if W = 0 (no delta function at origin), Eq. (****) is satisfied at  
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, 

thus returning us to the odd-n subset of the Wilson-Sommerfeld series (2.110). In the particular case of 
the quadratic potential, we may rewrite Eq. (2.113) of the lecture notes as 
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, 

so for the energy, we get the following eigenvalues: 
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i.e. the subset of the spectrum (2.114), with even n'  n – 1 = 2l = 0, 2, 4, 

69 Besides that, in our current problem, the derivatives dU0/dx, and hence dk/dx, vanish at the point of our interest, 
x = 0, so the second contribution to d+/dx vanishes exactly. 
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 The situations with W  0 may be 
analyzed graphically, by plotting both sides 
of Eq. (****) as functions of . Each 
continuous branch of the function cotan( + 
/4) is descending with the growth of , 
spanning the values from +1 to – in the 
interval 0     – /4, and from + to – 
within intervals  (l – 1/4)     (l + 3/4), 
with l = 1, 2,  – see the black lines in the 
figure on the right. The red and blue lines in 
this figure show the right-hand side of Eq. 
(****) for the particular case of the quadratic 
potential, for the positive and negative W, 

respectively, and for several values of the dimensionless parameter E0/0, where E0  mW2/22 is the 
energy scale imposed by the delta-functional potential – see Eqs. (2.79) and (2.162) of the lecture notes. 
Semi-quantitatively, these plots are also valid for any smooth symmetric potential U0(x), monotonically 
growing at x  . 

 As the plots show, an increase of the positive “weight” W leads to the shift of each eigenvalue 

toward larger  and hence larger E, and vice versa, while for W  < 0 (corresponding to a narrow 

potential well at x = 0), each eigenvalue is shifted down as W is increased.  In the former case (W > 0), 

this trend is unlimited but saturated: at W  + we get 
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For the particular case of the quadratic potential, this formula yields 
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with even values of n' = 2l = 0, 2,. This means that due to the barrier, the even-numbered energy 
levels approach (from below) the odd-numbered levels, with higher n', of the system without the central 
barrier. (In the figure above, these values correspond to the vertical black lines.) 

 In the opposite limit of a very deep potential well (W  –), there is a similar saturation of the 

phase shifts , and hence of the eigenenergies: 
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so for the quadratic potential, 
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This expression shows that the even-numbered energy levels approach the odd-numbered levels, now 
with lower n', of the system without the central well. Note that this trend is not valid for the ground state 
– the symmetric state with l = 0. As the figure above shows, the corresponding solution of Eq. (****) 
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exists only for relatively small values of W – for the quadratic potential, only for the ratio E0/0 

smaller than ~0.058). However, this particular prediction of the WKB approximation is unreliable, 
because, as was discussed in Sec. 2.4, its validity condition (2.96) is strictly fulfilled only for n' >> 1. 
Physically, it is evident that as –W grows, the ground-state energy should become negative at E0/0  ~ 

1, and at E0/0  >> 1 (i.e. when the potential U0(x) has a negligible effect on this state) should approach 
the value (2.162):  

2

2

0g 2

Wm
EE  . 

 

 Problem 2.24. Prove Eq. (2.189) of the lecture notes. 

 Solution: According to Eqs. (2.94), (2.98), and (2.105) of the lecture notes, within the WKB 
approximation, the localized wavefunction inside one of the wells, say L(x), may be represented as  
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where xc and xc’ are the classical turning points at the state’s energy E – see Fig. 2.21.70 As we know 
from the derivation of the WKB formulas, the derivative dL/dx is dominated, in this approximation, by 
the exponential function – see, e.g., Eq. (2.90). (See also the solution of the previous problem.) As the 
result, in the under-barrier region (where the symmetry point x = 0 resides), we may write 
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 As a result, the last form of Eq. (2.188) yields 
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where the last step uses the barrier’s symmetry.  

The coefficient c2 in this relation should be found from the normalization condition, 

1
left well

2

L  dx . 

Since the WKB approximation is strictly valid only when the well houses many (n >> 1) de Broglie 
wavelengths , at this calculation, we can neglect the wavefunction’s penetration into the classically 
forbidden regions (by distances of the order of ) and thus limit the integration to the classically 
accessible segment, where the first of Eqs. (*) is applicable: 

70 For a stationary state with no probability current, the coefficient c may be always taken to be real. 
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Since k(x’) changes little on each de Broglie wavelength, the sine squared in this integral may be 
replaced with the average of sin2kx’ over one wavelength, i.e. with the factor ½.  We may also use Eq. 
(2.33b) for the group velocity to write k(x’) = (m/)vgr(x’). As a result, the normalization condition 
becomes 
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But the last integral is just the time of the classical motion of the wave packet’s center x0 (i.e. of the 
classical position of the particle) from one wall limiting the well to the opposite one, i.e. the half of its 
oscillation period at the energy E, i.e. of the tunneling attempt time ta. As a result, the normalization 
condition yields c2 = m/ta, and for the energy splitting, we get Eq. (2.189): 
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 Problem 2.25. For the problem discussed at the beginning of Sec. 2.7 of the lecture notes, i.e. the 
1D particle’s motion in an infinite Dirac comb potential (Fig. 2.24), write explicit expressions for the 
eigenfunctions at the very bottom and at the very top of the lowest energy band. Sketch both functions. 

 Solution: According to Eq. (2.193b) of the lecture notes, at the bottom of the lowest energy band 
(i.e. in the ground state of the particle), where eiqa = 1, the wavefunction is purely periodic: 

   xax   . 

Moreover, due to the mirror symmetry of the potential profile U(x) with respect to any point (ja + a/2), 
where j is the comb period’s number, the wavefunction also must have the same symmetry, in particular 

   xax  . 

Finally, at each segment ja < x < (j +1) a, where U(x) = 0, the fundamental solutions of the stationary 
Schrödinger equation are sinkx and coskx. Hence we may make an educated guess that at such a 
segment, the eigenfunction has the following simple form: 

                ,
22

for  ,
2

cos
aa

jax
a

jaxkCxx j 





    (*) 

(see the figure on the right), so on this segment, 
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 In order to confirm this solution, we may 
calculate the wave number k following from Eq. 
(*) and the boundary condition (2.75) at any 
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point x = ja.71 Plugging into that relation the expressions following from Eqs. (*) and (**), 
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and dividing both parts of the resulting equation by 2Ck, we get 
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where  is the (only) dimensionless parameter of the problem, given by Eq. (2.197) of the lecture notes: 

2

amW
 . 

 Multiplying both parts of Eq. (***) by 2sin(ka/2), and then using the trigonometric identities72 
2sin2 = 1 – cos2 and 2sincos = sin2, we may rewrite it in the form 

ka
ka

ka sincos1


 . 

But this is exactly the result given by the general characteristic equation (2.198) of the system, 

       ka
ka

kaqa sincoscos


 ,     (****) 

for our particular set of quasimomentum values, with cosqa = 1. 

 Next, according to the same Eq. (2.193b), the wavefunction corresponding to the top of the 
lowest energy band, i.e. to eiqa = –1, changes its sign each lattice period: 

   xax   . 

Besides that, as the dispersion relation (****) shows (see its plot, for a fixed , in Fig. 2.25 of the 
lecture notes), at the top points of the lowest band, cosqa = –1 regardless of the parameter . This is 
only possible if the wavefunction does not interact with delta-functional potential peaks, i.e. (ja) = 0. 
The only linear combination of sinka and coska satisfying these conditions is a pure sine function with 
its nodes at points x = ja: 

  ,...2,1for  ,with  ,sin  nnkakxCx  . 

At the lowest energy band, n = 1, i.e. ka =  . 
This function, shown in the figure on the right, 
has (ja) = 0 and   

   ja
dx

d
ja

dx

d  


, 

so it satisfies both boundary conditions (2.75) 
and (2.76), for any value of W. 

71 Eq. (*) automatically satisfies the boundary condition given by Eq. (2.76). 
72 See, e.g., MA Eqs. (3.3d). 
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 Problem 2.26. A 1D particle of mass m moves in an infinite periodic system of very narrow and 
deep potential wells that may be described by delta functions: 

    0with  ,  




WW
j

jaxxU  . 

 (i) Sketch the energy band structure of the system for very small and very large values of the 
potential well’s “weight” W, and 
 (ii) calculate explicitly the ground-state energy of the system in these two limits. 

 Solutions:  

 (i) This system is similar to the Dirac comb potential analyzed at the beginning of Sec. 2.7 of the 
lecture notes (see Fig. 2.24 and its discussion), but with the negative sign of W, and hence of the 

parameter   maW/2 – see Eq. (2.197). As a result, its characteristic equation has the same form 
(2.198), 

       ,
sin

coscos
ka

ka
kaqa       (*) 

but now should be analyzed for the case  < 0. For a comparison of these two cases, the left panel of the 
first figure below shows the plots of the right-hand side of Eq. (*) for two representative values of , 
each for two opposite signs of this parameter.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 For  > 0, i.e. for the Dirac comb, these plots (which are similar to those shown in Fig. 2.25 of 
the lecture notes, but now with the parameter  rather than   /(ka) considered fixed) give the picture 
of the energy bands (with –1 < cosqa < +1) and gaps, that was discussed in detail in Sec. 2.7, with all 
energies En(q) > 0 – see the first and the third top panels of the second figure below.73 However, for our 

73 Just to save space, these plots are limited to one-half of the first Brillouin zone. In these plots, as in Fig. 2.26(b) 
of the lecture notes, E0  2/2ma2  – the natural energy scale of this problem. 
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current case  < 0, only the higher energy bands are (qualitatively) similar – see the second and the 
fourth top panels in that figure, while the lowest energy band is either completely absent (for  < –2), or 
hits the horizontal axis (E = 0) at a certain value of the quasimomentum q. 

 The explanation of this behavior is straightforward. In contrast with the case W > 0, when U(x)  
0 at any x, so the total (potential plus kinetic) energy cannot be negative, in the case W < 0, the potential 

energy U(x)  0 at all points, so En(q) can be negative for some , n, and q. According to the definition 
of the parameter k (see Eq. (2.54) of the lecture notes), 

2
2 2



mE
k  , 

in order to calculate the dispersion curve branches with En(q) < 0, we have to take k = i, with 

           
22

2 22



EmmE
 .     (**) 

 With this substitution, Eq. (*) takes the form 

      
a

a
aqa


 sinh

coshcos  .    (***) 

The right-hand side of this equation is plotted, as a function of a, on the right panel of the figure above, 
for several values of . The plots show that for any positive , this function is always larger than +1, so 
the equation does not have any real solutions for the quasimomentum q. Hence, in agreement with the 
above argument, the dispersion curves cannot spill into the negative energy region. However, for each  
< 0, there is a (single!)  range of the argument ka where the right-hand side is in the range from –1 to +1, 
giving either (for  < –2) the whole lowest branch of the dispersion relation, or (for –2 <   < 0) just its 
part – see the plots in the lower two subpanels of the figure below, which have been calculated 
numerically from Eqs. (**) and (***). 

 (ii) The lowest point E1(0) of the lowest band, i.e. the ground state energy of the system, may be 
found from Eqs. (**) and (***) with q equal to any multiple of 2/a, i.e. with cosqa = 1: 

        .0for  ,1
sinh

coshwith  ,
2

0
22

1g  



a

a
a

m
EE


  (****) 

Since sinha > a, and cosha > 1 for any a > 0, the (only) solution of this characteristic equation is 
real, and hence Eg < 0, for any   < 0. In particular, if W  0, i.e.   0, then a   0, and we may use 

the Taylor expansions sinha  a and cosha  1 + (a )2/2 to find: 

 
a

EE
a W

 0g

2

2,
2


. 

Note that this Eg is just the spatial-average potential energy, aU /W , of the system. As Eq. (*) with 
k = 0 shows, in this limit, the lowest energy band spills into the negative-energy region only at very 
small values of the quasimomentum, qa < (2)1/2 << 1. 

 On the other hand, in the opposite limit   –, both hyperbolic functions of a may be well 
approximated with exp{a/2}/2 >> 1, and the unity on the right-hand side of the characteristic equation 
(****) is negligible. This approximation yields 
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2

2

0
2

g 2
,



m
EEa

W
  . 

This is exactly the energy of the (only) localized eigenstate of a single well – see Eq. (2.162) of the 
lecture notes. This is natural because the limit   – corresponds to a system of very deep and hence 
virtually uncoupled potential wells. (As Eq. (***) shows, in this limit, the lowest allowed energy band is 
exponentially narrow.)  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Problem 2.27. For the system discussed in the previous problem, write explicit expressions for 
the eigenfunctions of the system, corresponding to: 

 (i) the bottom of the lowest energy band, 
 (ii) the top of that band, and  
 (iii) the bottom of each higher energy band. 

Sketch these functions. 

 Solutions: 

 (i) As the solution of the previous problem has shown, the wave number k corresponding to the 
ground state energy of the system is imaginary, k = i, for any W < 0, and hence the wavefunction at 

any segment ja < x < (j + 1)a has to be a linear combination of sinha and cosha. Next, according to 
the Bloch theorem (2.193), at the bottom points of the lowest energy band (i.e. in the ground state of the 
system), where eiqa = 1, the wavefunction has to be periodic: 

   xax   . 

Moreover, due to the mirror symmetry of the potential profile U(x) with respect to any point (ja + a/2), 
the wavefunction also should have the same symmetry, in particular 
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   xax  . 

 Hence we may conjecture that the eigenfunction has the following form:  

         ,1at ,
2

cosh ajxja
a

jaxCxx j 





     (*) 

(see the figure on the right), so  

 

    ,
2

sinh

,
2

sinh

1 a
Cja

dx

d
ja

dx

d

a
jaxCx

dx

d

jj

j















 



 

  .
2

cosh
a

Cja
   

 Plugging these expressions into the only remaining74 boundary condition (2.75), 

jax
m

dx

d

dx

d
j

jj   at  ,
2

2

1 


W


, 

we get, after the division of both parts by 2C, the following characteristic equation: 

   ,
2

cosh
2

sinh  i.e.,
2

cosh
2

sinh
2

a

a

aa

k

ma 






W
   (**) 

where  is the system’s dimensionless parameter defined by Eq. (2.197) of the lecture notes: 

2

amW
 . 

Now multiplying both parts of Eq. (**) by 2sinh(a/2), and then using the identities75 2sinh2 = cosh2 
– 1 and 2sinhcosh = sinh2, we may rewrite this characteristic equation in the form 

a
a

a 

 sinhcosh1  . 

But this is exactly the result given by the general characteristic equation of the system, obtained in the 
solution of the previous problem, 

      0  ,0for  ,sinhcoshcos  Ea
ka

aqa  ,   (***)  

for our particular case cosqa = +1. This agreement confirms our conjecture (*). 

 (ii) At the top points of the lowest energy band, exp{iqa} = –1, so, according to the Bloch 
theorem, the eigenfunctions at each period of the system are similar, but with alternating signs: 

   xax   . 

Also, the eigenfunctions should be, at all points x  ja, the solutions of the Schrödinger equation with 
U(x) = 0, i.e. be linear superpositions of either sinkx and coskx (for E > 0) or sinhx and coshx (for at E 

74 Indeed, our solution (*), by construction, satisfies the boundary condition (2.76): j+1(x) – j(x) = 0 at x = ja. 
75 They may be readily proved using either the definition of hyperbolic functions or MA Eqs. (3.3d) and (3.5). 

x
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< 0). (As was discussed in the previous problem, at the top of this band (i.e. at cosqa = –1), the sign of 
the eigenenergy E depends on whether the parameter  is larger or smaller than –2.) 

 Moreover, as the general characteristic equations for E < 0 and E > 0 show (see the plots of their 
right-hand sides in the solution of the previous problem), for  < 0, at the top points of the lowest band, 
ka is not equal to qa (as it is at for  > 0), so the states do “interact” with the delta-functional potential 
wells located at x = ja, i.e. their wavefunctions cannot be equal to zero at these points. As a result, we 
may conjecture that the wavefunction has one of the following forms (see sketches in the figure below): 

                   















 







 


,2for  ,

2
sinh

,2for    ,
2

sin
1






a
jax

a
jaxk

Cxx j
j

  (****) 

 
 
 
 
 
 
 
 
so 

      .1at  
.2for  ,

2
cosh

,2for    ,
2

cos
1 ajxja

a
jax

a
jaxkk

Cx
dx

d jj 
















 







 





  

 We may readily verify this picture by using the same boundary condition as in Task (i), 

    jax
m

dx

d

dx

d
j

jj   at  ,
2

2

1 


W


, 

 with an arbitrary integer j. For our wavefunctions (****) this condition yields, respectively, 

     
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2
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After the division of all terms by 2(-1)jCk, and using the definition of the parameter , these equations 
are reduced to 

.2for  ,
2

sinh
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cosh

,2for     ,
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 Multiplying these characteristic equations, respectively, by 2cos(ka/2) and 2cosh(a/2), and 
using the well-known identities 
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 2sinhcoshsinh2,2cosh1cosh2;2sincossin2,2cos1cos2 22  , 

we may recast them in the form 

.2for  ,
sin

cosh1

,2for  ,
sin

cos1











a

a
a

ka

ka
ka

 

But these are exactly the general characteristic equations derived in Sec. 2.7 of the lecture notes and in 
the solution of the previous problem, taken for our current case: cosqa = –1. Hence Eqs. (****) indeed 
give the required eigenfunctions. 

 (iii) A bit counter-intuitively, the wavefunctions corresponding to the bottom points of the higher 
energy bands (with n > 1) differ substantially from those given by both Eq. (*) and Eqs. (****), valid for 
n = 1 only. Indeed, as was discussed in the model solution 
of the previous problem, at those points E > 0, so we have 
to look at the dispersion relation (2.198) derived in Sec. 2.7 
of the lecture notes for this case: 

,
sin

coscos
ka

ka
kaqa   

but with  < 0.  

 As the blue-line plots of the right-hand side of this 
characteristic equation in the figure on the right76 show, the 
allowed energy minima for n > 1 correspond to sinka = 0 
(but ka  0) independently of the parameter . This is only 
possible if the eigenstate does not interact with delta-
functional potential peaks, i.e. if (ja) = 0. The only linear 
combination of sinka and coska satisfying this condition is 
a pure sine function, with its nodes at points x = ja: 77 

    ,...3,2for  ,1with  ;sin  nnkakxCx    

(For example, at the lowest of such energy 
bands, with n = 2, this relation yields ka = , 
giving the wavefunction sketched in the figure 
on the right.)  

 Such functions, with (ja) = 0 and   

   ja
dx

d
ja

dx

d  


, 

automatically satisfy both boundary conditions (2.75) and (2.176), for any value of . 

76 These plots were already discussed in the model solution of the previous problem, and are reproduced here just 
for the reader’s convenience. 
77 As the red lines in the figure above show (and as was discussed in the solution of Problem 25), in a similar 
system, but with  > 0, such simple solutions, with ka = n, are implemented at the top rather than bottom points 
of each energy band. 
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 Problem 2.28.* The 1D “crystal” analyzed in the last two problems, now extends only to x > 0, 
with a sharp potential step to a flat potential plateau at x < 0: 

 
 



















.0for                                             ,0

,0for  ,0with  ,

0

1

xU

xjax
xU j

WW 
 

Prove that the system has a set of the so-called Tamm states localized near the “surface” x = 0, and 
calculate their energies in the limit when U0 is very large but finite. (Quantify this condition.) 78 

 Solution: Let us start with a semi-qualitative 
observation. A localized wavefunction should be 
unable to propagate to either x  – or x  +. 
This means that the corresponding eigenenergy E 
should be, first, lower than U0, and also inside one 
of the energy gaps of an infinite “crystal” with the 
same parameters as our semi-infinite one – see the 
figure on the right.79  

 For a quantitative analysis of the Tamm 
states, let us notice that in the limit U0 = , the 
simple bottom-of-the-band states discussed in Task 
(iii) of the previous problem (see the dashed line in the figure below, drawn here for the particular case 
of the second energy band) are not affected by the crystal termination at x = 0. Indeed, their 
wavefunctions vanish at x = 0, and hence their parts located at x  0 are exactly the same as in a similar 
but infinite crystal. Now, if U0 is large but finite, then, as we know from Sec. 2.3 of the lecture notes 
(see in particular Eq. (2.58) and Fig. 2.4), the wavefunction penetrates the classically forbidden region x 
< 0 by a small distance ~–1 – see the solid line in the figure below: 
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, 

 
 
 
 
 
 
 
 
 

78 In applications to electrons in solid-state crystals, such delta-potential potential wells model the attractive 
potentials of the atomic nuclei, while U0 represents the workfunction, i.e. the energy necessary for the extraction 
of an electron from the crystal to the free space – see, e.g., lecture notes QM Sec. 1.1(ii), and also EM Sec. 2.6 
and SM Sec. 6.3. 
79 This figure uses a somewhat strange but very common (and hopefully, self-explanatory) format, displaying the 
system’s energy not only as a function of the quasimomentum q (for the bulk states), but also (very crudely) as a 
function of the wavefunction’s location in space. 
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so  

           


 A
dx

d
A  

 0,0 .     (*) 

 Since the function and its first derivative have to be continuous at x = 0, this shift to the left  
“pulls” the wavefunction in the allowed regions x > 0 to the left by a comparable distance  ~ 1/. This 
shift leads to some interaction of the wavefunction, now not vanishing at x = ja, with the delta-
functional potential wells at these points, creating, according to Eq. (2.75) of the lecture notes, “cusps” 
(derivative jumps) of the initially smooth wavefunction. These cusps, in turn, result in the decrease of 
the sinusoidal wavefunction’s amplitude, by some factor 0 <  < 1 (see the solid-line sketch in the figure 
above), eventually resulting in its full decay at x  , i.e. to the state’s localization near the “surface”. 

 These arguments allow us to guess that the wavefunction at x  0 has the following form: 
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d
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This wavefunction, with the wave number k simply related to the state’s energy E: 

E
m

k


2

22
, 

is an exact solution of the Schrödinger equation between the delta-functional wells, so we need only to 
satisfy all boundary conditions at the special points x = ja with j  0. With the account of Eqs. (*), the 
boundary conditions at x = 0:  

        000,000 0
0  

 dx

d

dx

d 
 , 

yield, after the exclusion of the C/A ratio, one equation for three so-far unknown parameters , , and k:  

               kkk sincos  .     (**) 

 Two other equations for these parameters may be found from the boundary conditions (2.75)-
(2.76) written for any point x = ja with j > 0:  
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1
1

2
,0
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W
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 . 

After the substitution of the assumed form of j and the cancellation of the common factors C(-1)jj-1, 
these two equalities become 

             k
m

akkkkakk sin
2

coscos,0sinsin
2

W
 . 

From these two relations,  may be readily eliminated, reducing them to just one equation, 
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                 
kak

ka
ka sinsin

2
sin  ,    (***) 

where  is the dimensionless parameter of the “crystal”, defined by Eq. (2.197) of the lecture notes: 

2

amW
 . 

(In our current problem, W < 0, and hence   < 0, though the Tamm states may also exist at W > 0.) The 
fact that our wavefunction assumption has led to two j-independent characteristic equations (**) and 
(***) for two unknown parameters  and k (assuming that  is known80) proves that this guess was 
indeed correct – for arbitrary U0 and for any energy band number n.  

 Proceeding to the analysis of these equations, let us notice that Eq. (**), rewritten as  

       
2/1

0

tan 










EU

Ek
k


 ,     (****) 

shows that for any energy within the range of our 
interest, 0  E  U0, the product k is a monotonic 
function of E, and is confined to the interval [0, +/2]. 
The figure on the right shows the plots of the left-hand 
and right-hand sides of Eq. (***) as functions of the 
product ka, for several values of k from that interval, 
and a modest negative value of . (The variation of this 
parameter does not change the topological properties of 
the equation’s solutions.) The plots show that the 
equation has just one solution for ka somewhat below 
each value (n – 1) corresponding to the bottom of the 
nth energy band – see the solution of the previous 
problem. This means that the system has just one Tamm 
state inside each energy gap – see the energy scheme at 
the very beginning of this solution.  

 The plots also indicate the way to solve this equation analytically when U0 >> E, so k  0, and 
as a result, the product ka is only slightly below (n – 1), i.e. the Tamm state’s energy is right below the 
nth energy band’s bottom,81 
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22
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2

 n
ma

En


. 

Indeed, in this limit, we may take ka =  [(n – 1) – ], and expand both parts of Eq. (***) in the Taylor 
series in small parameters (k)2 and , dropping all the terms but the leading ones. Such expansion, after 
the cancellation of the common multiplier cos(n – 1), reduces Eq. (***) to 

80 An explicit relation between k  (2mE)1/2/ and   [2m(U0 – E)]1/2/ enables finding the state’s energy E, and 
hence all other characteristics of the system. 
81 In the similar limit, but at W > 0, the Tamm state’s energy, inside the same bandgap, is close to the top of the 
previous, (n –1)th energy band. 
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Now by using Eq. (****), which in this limit U0 >> E is reduced to k  (E/U0)
1/2, we may continue as 
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so the distance between the Tamm level and the bottom of the nth energy band is 
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Note also that in this limit, the wavefunction decay parameter  is very close to 1: 
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so the scale x ’s a/(1 – ) of the Tamm state’s extension into the “crystal” is much larger than a. 

 These results are quantitatively valid if the dimensionless parameters k and  are much smaller 
than 1, i.e. when 

   min0 ,
1

nE
a

n
U

W
 . 

 In conclusion, note that these states, named after I. Tamm (who was the first to predict them in 
1932), are just one species of a general class of surface states. (Another important member of this class 
is the so-called Shockley states, described by a different theoretical model.)82 

 

Problem 2.29. Calculate the transfer matrix of the rectangular potential barrier specified by Eq. 
(2.68) of the lecture notes, for particle energies both below and above U0. 

Solution: By either acting exactly as in Sec. 2.3 but with the account of an additional wave 
incident from the right or, even easier, using Eq. (2.71a) together with the universal relations mentioned 
in Sec. 2.5 (and derived in the model solution of Problem 15), we get the following transfer matrices 
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82 For more on this topic, see, e.g., S. Davison and M. Stęślicka, Basic Theory of Surface States, Clarendon, 1992.  
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(If you use the second approach, the algebraic identity 
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is very handy for doing the calculations.) 

 As useful sanity checks, the top left elements (T11) of these expressions agree with Eq. (2.71b) of 
the lecture notes for T = T11–2, and the matrices are reduced to Eq. (2.135) for the particular case of a 
very thin and high barrier (kd << d << 1).  

 

Problem 2.30.  Use the results of the previous 
problem to calculate the transfer matrix of one period of the 
periodic Kronig-Penney potential shown in Fig. 2.31b of the 
lecture notes (reproduced on the right).  

Solution: According to Eq. (2.132) of the lecture 
notes, in order to calculate the transfer matrix T of one 
potential’s period starting from the potential barrier, it is sufficient to multiply the matrix Td calculated 
in the  previous problem by the transfer matrix (2.138) of the free-motion interval of the length (a – d), 
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The result, for E < U0, is 
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for E > U0, it is sufficient to make the usual replacement (2.65):   –ik’. 

At the alternative choice of the starting and ending points of the period (the free-motion interval 
first and the barrier next), the exponents in T12 and T21 would be complex-conjugated, with no effect on 
any observable result.  

 

Problem 2.31. Using the results of the previous problem, derive the characteristic equations for a 
particle’s motion in the periodic Kronig-Penney potential, for both E < U0 and E > U0. Try to bring the 
equations to a form similar to that obtained in Sec. 2.7 of the lecture notes for the delta-functional 
barriers – see Eq. (2.198). Use the equations to formulate the conditions of applicability of the tight-
binding and weak-potential approximations, in terms of the system’s parameters and the particle’s 
energy E.  

 Solution: Requiring the difference between the matrix T calculated in the previous problem for 
the case E < U0 and the diagonal Bloch matrix 

x

)(xU
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a
0U

d
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to have zero determinant, we get the following characteristic equation 

   ).(sinsinh
2

1
)(coscoshcos dakd

k

k
dakdqa 






  


   (*) 

Following the analysis of the periodic system of delta-functional barriers (see Fig. 2.25 and its 
discussion), we may notice that the right-hand side of this equation is a sinusoidal function of ka, and 
rewrite Eq. (*) in the following equivalent form: 

  )(coscos dakAqa , 

where   is independent of a (and unimportant for our current purposes), while 
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so the characteristic diagram is topologically similar to that 
shown in Fig. 2.25 of the lecture notes – see the figure on the 
right. 

The tight-binding approximation is applicable when an 
allowed energy band (with –1  cosqa  +1) is much narrower 
than the adjacent energy gaps. As the figure on the right 
shows, this condition may be represented as A >>1, giving 
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where E is close to one of the eigenvalues E(n)  of isolated potential wells – see Eq. (1.85): 
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 For analysis of the opposite case U0 < E,  we may use Eq. (**) with the replacement (2.65):   
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so instead of Eq. (***), we have to require 
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Let us analyze these conditions. If E < U0 ( is real), virtually the only way to satisfy Eq. (***) is 
to have sufficiently thick barriers, d >> 1. (The only other option is to have a very low E << U0, which 
requires an extremely large a – d  >> d.)  In the opposite case, U0 < E,  since  sin k’d  cannot exceed 1, 
the tight-binding approximation is only possible when En is almost exactly equal to U0. 

 The weak-potential approximation requires, on the opposite, the parameter A to be very close to 
1 – see the last figure above again. This requirement may be rewritten as (A2 – 1)1/2 << 1, and if E < U0, 
it reads 
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where now E is close to the branch anticrossing point – see Figs. 2.28 and its discussion in Sec. 2.7: 

.
2

2
2

22
)( n

ma
EE n 

  

This condition may be only satisfied for very thin barriers, d << 1.  

In the opposite case, U0 < E, the weak-potential condition becomes 
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and, if E >> U0, is satisfied even for thick barriers because the magnitude of sink’d can never be larger 
than one. 

 To summarize these conditions, if the relative thickness of the barrier is appreciable (d ~ a), the 
tight-binding approximation typically works well at E < U0, while at U0 << E, the weakly-potential limit 
is typically applicable. Semi-quantitatively, this is exactly the behavior visible at the characteristic 
curves of the Mathieu equation – see Fig. 2.32 in the lecture notes. 

 

Problem 2.32. For the Kronig-Penney potential, use the tight-binding approximation to calculate 
the widths of the allowed energy bands. Compare the results with those of the previous problem (in the 
corresponding limit).  

Solution: According to Eq. (2.206) of the lecture notes, in the tight-binding limit, the allowed 
energy band’s width En equals 4 n , where n is given by Eq. (2.204): 
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nn 
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where un are the localized wavefunctions of an isolated potential well. For the Kronig-Penney potential, 
the wells are rectangular and their eigenfunctions were calculated in the solution of Problem 21. In that 
solution, the well’s width was denoted as a, and should be replaced with (a – d) in our current notation – 
see Fig. 2.31b. With this replacement (but still keeping the origin of x in the well’s middle), the solution 
takes the following form: 

(i) Antisymmetric eigenfunctions, implemented at odd n = 1, 3, …:    
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with the following relation between k and : 
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where K2  k2 + 2 = 2mU0/
2. 

 (ii) Symmetric eigenfunctions, corresponding to even n = 0, 2, 4,…: 
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with a different relation between k and , 
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which may be rewritten as  
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From here, we can readily spell out the n given by Eq. (*) with the points x0 and hence (a – x0) 
somewhere under the barrier, i.e. with (a – d)/2 < x0 < [a – (a – d)/2]  (a + d)/2, because the result is 
independent of the choice:83  
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so our task is reduced to the calculation of the normalization coefficients C.  

   For the symmetric modes, the normalization condition, with an account of Eqs. (***), gives 
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a similar calculation for the antisymmetric modes, with an account of Eqs. (**), gives exactly the same 
result (though we should not forget that the values of k and  are specific for each n), so, finally, we get 

83 Note that the alternation of the n’s sign confirms the results of the general discussion of Eq. (2.204) in Sec. 2.7. 
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i.e., as we could expect, the allowed energy band is exponentially narrow. 

  Let us compare this result with that following from the exact characteristic equation derived in 
the previous problem (for the most natural case E < U0): 
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To solve this transcendental equation in the tight-binding limit, in which A >> 1, we may linearize its 
right-hand side within the narrow interval of k in which the right-hand side ranges 
from –1 to +1: 
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where k
~

 is the deviation of k from the point where the cosine function equals zero 
– see the figure on the right. For the distance k between the edges of this interval 
(on which cos qa = 1), this gives the expression 
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 Generally, the required differentiation is a bit tedious because A and  are also functions of k, 
but in the most interesting case when (a – d) >> 1 (meaning that the penetration of the wavefunction 
under the potential barrier is small), the derivative over k is dominated by the explicit dependence of 
cosine function of this parameter, and is simple: 
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where in our limit A >> 1, 
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where the last approximate equality is valid at the same condition, d >> 1, which was used in our 
calculation of En from the tight-binding limit formula. 

 What remains is to recalculate this (small) difference of the wave vector’s values into the 
difference of the energies. We can do that by differentiating the relation E  = (2k2/2m + const) over k: 
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 This is the same result as given by Eq. (****) in the same limit (a – d) >> 1. 
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Problem 2.33. For the same Kronig-Penney potential, use the weak-potential limit formulas to 
calculate the energy gap widths. Again, compare the results with those of Problem 31, in the 
corresponding limit. 

 Solution: In this limit, we may use Eq. (2.224) of the lecture notes to write 

nn U2 , 

where Un is the nth Fourier coefficient of the function U(x) defined by the Fourier expansion (2.207). 
The coefficient may be calculated using the reciprocal Fourier transform: 
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Where the integral is over one period of the function U(x). For the Kronig-Penney potential, with the 
origin of the x-axis aligned with the middle of the potential barrier,84 this integration gives 
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Besides the monotonic decrease of the gap with the growth of number n, this expression 
describes an interesting commensurate effect of the gap suppression at nd  ma, where m is another 
integer. At such a relation of the parameters a and d, the gap location, n/a, on the wave-vector axis 
coincides with value k’  km = m/d corresponding to one of the over-barrier resonances (see the 
solution of Problem 8), which enhances the traveling wave transmission and hence suppresses its 
interaction with the lattice – which, as was discussed in Sec. 2.7 of the lecture notes, is responsible for 
the energy gap formation.  

 Now let us write the general characteristic equation of the system for the relevant case U0 < E. It 
may be either derived exactly as this was done in the solution of Problem 31 for the opposite case or just 
obtained from Eq. (*) of that solution with the usual replacement   –ik’. The result85 is 
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In the weak-potential limit U0 << E, we may approximate the front factor in the last term with two 
leading terms in its Taylor expansion in the small parameter U0/E: 

       
 

  2

0
2/1

2/1
0

2/1
0

2/1

8

1
1

2

1

2

1


















 










 

E

U

E

UE

UE

Ek'

k'

k


, 

so Eq. (**) reduces to 
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84 The origin’s choice affects the phase of the complex coefficient Un, but not its magnitude (the only parameter 
defining the energy gap’s width), so for our purposes, we may select it in any way we like. 
85 In the model solution of Problem 31, only the resulting formula for A2 was given. 
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 The difference k corresponding to the energy gap n may be 
calculated as the distance between two close roots of the equation  cosqa  
= 1 – see the figure on the right. To find it, we need to expand the right-

hand side of Eq. (***) into the Taylor series in the small parameter k
~
 k 

– kn, where kn is the value of k corresponding to the nth maximum of the 
magnitude of the right-hand side of Eq. (***). Since in our limit U0 << E, 
the last term on that side and the difference between k and k’ are small, the 
main contribution to this expansion is given by the first term: 
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From here, at the nth gap position (k’  k  kn = n/a, with sinka  0), we get 
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so that the recalculation of this result to the energy gap at E  E(n) = 2kn
2/2m = 2n22/2ma2: 
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brings us back to Eq. (*). 

  

 Problem 2.34. 1D periodic chains of atoms may exhibit what is called the Peierls instability,86  
leading to the Peierls transition to a phase in which the atoms are slightly displaced, from the exact 
periodicity, by equal but sign-alternating shifts xj = (-1)jx, with x << a, where j is the atom’s number 
in the chain, and a is its initial period. These displacements lead to an alternation of the coupling 
amplitudes n (see Eq. (2.204) of the lecture notes) between close values n

+ and n
–. Use the tight-

binding approximation to calculate the resulting change of the nth energy band, and discuss the result. 

 Solution: In order to describe the band structure, we may use an equation similar to Eq. (2.203) 
of the lecture notes, but with alternating coupling constants: 
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The Bloch solution of the type (2.205) now has to accommodate alternating complex amplitudes a:  
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(Another way to express the same fact is to say that since the potential profile U(x) is now 2a-periodic, 
the Bloch theorem is only valid for this larger period.) Plugging the last expression into Eq. (*), we get a 
system of two linear equations for two complex amplitudes a: 

86 Named after Rudolf Peierls (1907-1995), a theorist most famous for the introduction of the notion of holes in 
semiconductors (and also as one of the main initiators of the Manhattan Project). 
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The condition of consistency of this homogeneous system of linear equations, 
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solved for the energy’s deviation n from the uncoupled-limit value En, gives the following dispersion 
relation: 

     2/122
2cos2 qannnnn

   . 

 A more revealing form of the same result may be obtained by using the trigonometric identity 
cos2qa = cos2qa – sin2qa, and then noticing that the terms under the square root form two full squares: 
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This equality shows that if the coupling alternation is negligible (n
+ – n

-  0), the energy band tends 
to the sinusoidal form (2.206) with the “usual” period q = 2/a. However, even a small but 
nonvanishing alternation of n results in the formation of an additional energy gap (see the numerical 
plots of Eq. (**), for two alternation amplitudes, in the figure below), so the quasimomentum period 
decreases to (q)’ = /a. (Again, this is very natural from the point of spatial period’s doubling: a’ = 2a, 
leading to the quasimomentum’s period (q)’ = 2/a’ = /a.)87 The gap’s minimum (reached at qa = /2 
+ m, with m integer) is 
                   nnn  2 .     (***) 

 

 

 

 

 

 

 

 

 
 
  
 This effect may take place in highly anisotropic (quasi-1D) crystals (such as organic compounds 
TTF-TCNQ) of atoms with an odd number of electrons in incomplete energy shells (see, e.g.,  Sec. 3.7 
of the lecture notes), and has rather dramatic consequences for their transport properties. Indeed, due to 

87 Note that such a gap opening is not an exclusively quantum phenomenon, but takes place at the propagation of 
waves of any nature in nearly-periodic systems – see, e.g., CM Problem 6.12. 
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the Fermi statistics of electrons, their states fill exactly the lower half of the usual conduction energy 
band. Such an “open” Fermi surface enables ready activation of electrons above the surface by even 
weak applied electric field, and hence their high electric conductivity.88 However, the Peirce transition 
separates the lower half-band, completely filled with electrons, from the completely depleted upper half-
band with the energy gap (***), suppressing the electron activation, and hence the crystal’s 
conductivity. As a result, the conductor turns into what is called the Peierls dielectric. 

 It is curious that the conductivity electrons are not only affected by the Peierls instability but also 
may cause it. Indeed, as the figure above shows, the Peierls transition leads to the reduction of electron 
energies in the lower (filled) half-band and hence can make the transition energy-favorable. Note that 
such self-supporting instabilities of the initial symmetry are very common in physics – another 
prominent example is the Cooper pairing of electrons in superconductors. 

 

 Problem 2.35.* Use Eqs. (1.73)-(1.74) of the lecture notes to derive Eq. (2.252), and discuss the 
relation between these Bloch oscillations and the Josephson oscillations of frequency (1.75). 

 Solution: First, let us combine Eqs. (1.73) and (1.74) to calculate the work of an external voltage 
source at the Josephson phase’s change between some arbitrary initial (ini) and final (fin) values, as the 
integral of its power IV over the time interval t of the change:  
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We see that the work depends only on the initial and final values of  (but not on the law of the phase 
evolution in time), and hence may be represented as the difference U(fin) – U(ini), where the function 
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may be interpreted as the potential energy of the junction – if we consider the Josephson phase as a 
generalized coordinate. 

 Besides this energy, the Josephson junction, as a system of two close, nearly isolated 
(super)conductors, has a certain mutual capacitance C and the associated electrostatic energy EC = 
CV2/2. Using Eq. (1.73) again, we may represent it as 
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This expression means that considering the phase  the generalized coordinate of our system, EC should 
be taken for its kinetic energy, whose dependence on the generalized velocity d/dt is similar to that of a 
1D mechanical particle, with an effective mass89 
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e
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.       

88 See, e.g., SM Sec. 6.3. 
89 Since the dimensionality of the generalized coordinate  is different from [m], that of mJ is different from [kg].  
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Hence the total energy of the junction, EC + U(), is formally similar to that of a 1D non-relativistic 
particle of the mass mJ, moving along the -axis in the sinusoidal potential (*) with the period aJ = 2. 

 However, before using the results of the 1D band theory discussed in Secs. 2.6-2.7 of the lecture 
notes, to this system, we have to resolve one paradox – which, in the mid-1980s, was the subject of a 
lively scientific discussion. In Sec. 2.6, we (or rather Dr. F. Bloch :-) implied that the particle’s 
translation by the potential’s period a is in principle measurable, i.e. the particle’s positions x and (x + a) 
are distinguishable – otherwise Eq. (2.193) with q  0 would not have much sense. For the Josephson 
phase , a similar assumption is less plausible. Indeed, for example, if we change  by aJ = 2  via 
changing the phase of one of the superconductors, say 1 (see Fig. 1.7 of the lecture notes) by 2, then 
its wavefunction becomes  exp{i(1 + 2)} =  exp{i1}, and it is not immediately clear whether 
these two states may be distinguished.  

 In order to resolve this contradiction, it is sufficient to have a look at Eq. (1.73). It shows that if 
 changes in time by 2, the voltage V across the junction exhibits a pulse with the following “area”: 

sV 1022
222
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e
dt

dt

d

e
dttV

 
.  (**) 

Such single-flux-quantum (SFQ) pulses90 have been not only observed experimentally but even used to 
demonstrate fast signaling and ultrafast (sub-THz) computation.91 

 Hence, the 2-shifts of phase  are measurable, and in the absence of dissipation, the Josephson 
junction dynamics is indeed similar to that of a 1D particle in a periodic (sinusoidal) potential (*). As 
this formula implies, the energy spectrum of this system forms the energy bands and gaps described by 
the Mathieu equation – see Fig. 2.31a and Eqs. (2.227)-(2.229) of the lecture notes.  Experimentally, the 
easiest way to verify this picture is to measure the corresponding Bloch oscillations induced by an 
external current Iex(t). To find the frequency of these oscillations, it is sufficient to replace Eq. (2.237), 
which expresses the 2nd Newton law for the quasimomentum q, with the charge balance equation 

   ,ex tI
dt

dQ
       (***) 

for the corresponding variable Q, called the quasicharge. This relation tells us that the quasicharge Q 
has the simple physical sense of the external electric charge being inserted into the junction by the 
external current Iex – just like the physical sense of the quasimomentum q of a mechanical particle, 
according to Eq. (2.237), is the contribution into the average particle’s momentum, due to the external 
force F. (Notice that at such quantum-mechanical averaging of the electric charge, the supercurrent 
(1.74) drops out from the equation, affecting the phenomena “only” via its contribution to the energy 
band structure.) 

 Since the Josephson-junction analog of the usual wave number k = (m/)(dx/dt) of a particle is 

90 This term has originated from the fact that the right-hand side of Eq. (**) equals the single quantum unit (0) of 
the magnetic flux in superconductors – see Sec. 3.1 of the lecture notes (and/or EM Sec. 6.4-6.5). 
91 To the best of my knowledge, this technology (dubbed RSFQ) still holds the absolute records for the highest 
speed and smallest energy consumption at an elementary computation – see, e.g., P. Bunyk et al., Int. J. on High 
Speed Electronics and Systems 11, 257 (2001) and references therein. 
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and CV is the genuine charge on the capacitor, the analog of q (the quasimomentum divided by ) may 
be obtained just by the replacement of that product with the quasicharge Q: 
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2J  .       

Comparing this expression with Eq. (***), we see that qJ obeys the following equation of motion: 
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so the role of the mechanical force F is now played by FJ = Iex/2e. Hence if Iex(t) = const = I , we can 
use Eq. (2.244) with that replacement and also with a  aJ = 2, to get Eq. (2.252) of the lecture notes: 
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.     

This very simple result has the following physical sense.92 In the quantum operation mode, the 
junction is recharged by the external current, following Eq. (***), until its electric charge reaches e (i.e. 
until the normalized quasimomentum qJaJ = (Q/2e)2 reaches  – see Fig. 2.33a of the lecture notes); 
then one Cooper pair passes through the junction changing its charge to e – (2e) = –e, with the same 
charging energy Q2/2C – the process corresponding to crossing the border of the 1st Brillouin zone; then 
the process repeats again and again.93 It is paradoxical that Eq. (2.252), describing the frequency of such 
a quantum property of the Josephson phase  as its Bloch oscillations, does not include the Planck’s 
constant, while Eq. (1.75), describing the classical motion of , does.94  

In this context, one may wonder which of these two types of oscillations would a dc-biased 
Josephson junction generate. For the dissipation-free (OK, virtually dissipation-free :-) junction, the 
answer is: the Bloch oscillations (2.252) with the frequency proportional to the dc current. However, 
any practical junction has some energy losses that may be approximately described by a certain Ohmic 
conductance G connected in parallel to the junction. Very luckily for Dr. Josephson and his Nobel Prize, 
it turns up much easier to fabricate and test junctions with G >> 1/RQ, where RQ is the so-called 
quantum unit of resistance 

        k45.6
2 2e

RQ


,      

92 D. Averin et al., Sov. Phys. – JETP 61, 407 (1985). 
93 Note that the qualitatively similar effect of the single-electron-tunneling (SET) oscillations, with twice higher 
frequency fSET = I/e, takes place, at sufficiently low temperatures, in small “normal” (non-superconducting) tunnel 
junctions – see, e.g., EM Sec. 2.9 and references therein. However, the quantitative descriptions of these effects 
are rather different, because, in contrast to the Cooper pairs, the electrons in “normal” conductors do not form a 
coherent Bose-Einstein condensate. 
94 The phase locking of the Bloch oscillations, as well as that of the SET oscillations, by an external signal of a 
well-characterized frequency, may enable fundamental standards of dc current. The experimentally achieved 
relative accuracy of such standards is close to 10-8, just a few times worse than that of a less direct way toward 
such standards – by using a Josephson voltage standard combined with a resistance standard based on the 
quantum Hall effect. 
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the fundamental constant that comes up at analyses of several other effects as well – see, e.g., Sec. 3.2 
below. As will be discussed in Chapter 7, the dissipation so high provides what is called dephasing – the 
suppression of the quantum coherence between different quantum states of the system (in our current 
case, between the wavefunctions u( – 2j) localized at different minima of the potential energy U), and 
thus make the dynamics of the Josephson phase   virtually classical, obeying equations (1.73) and 
(1.74). As was discussed in Sec. 1.6 of the lecture notes, dc biasing of such a junction leads to Josephson 
oscillations with the frequency (1.75), which is proportional to the applied dc voltage, rather than the 
current. 

 

Problem 2.36.* A 1D particle of mass m is placed into the following triangular potential well: 

  0with  
,0for  ,

,0for  ,











 F

xFx

x
xU . 

 (i) Calculate its energy spectrum using the WKB approximation. 
 (ii) Estimate the ground state energy using the variational method, with two different trial 
functions. 
 (iii) Calculate the three lowest energy levels, and also the 10th level, with an accuracy better than 
0.1%, from the exact solution of the problem. 
 (iv) Compare and discuss the results. 

 Hint: The values of the first few zeros of the Airy function, necessary for Task (iii), may be 
found in many math handbooks, for example, in Table 9.9.1 of the open-access online version of the 
collection edited by Abramowitz and Stegun.95   

 Solutions:  

(i) Acting just as in Sec. 2.4 of the lecture notes (see, in 
particular, Fig. 2.10 and its discussion), let us calculate the total 
roundtrip phase shift of a traveling de Broglie wave of energy En. The 
quasiclassical motion from the left classical turning point xL = 0 to the 
right point xR = En/F (see the figure on the right) yields the shift 

     .2
3

2
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1
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2/3
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L
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E
mdxFxEmdxxk n

n

n

FEx

x 
   

The total phase change of the wave’s roundtrip (including also the way back from xL and xR) 
consists of twice that shift, plus two shifts due to the wave reflection from the classical turning points. 
One of these reflections (at x = xR) may be treated quasiclassically, giving the additional shift (in 
comparison with the “hard”, vertical wall) equal to  = /2.  The reflection from the left, vertical 
potential wall at x = 0 does not give such an additional shift.96 As a result, the total phase change on the 
roundtrip is 

  .
2

2
3

4

2
2

2/3
2/1

total

   F

E
m n


 

95 See https://dlmf.nist.gov/9.9. 
96 Note that by this direct (non-WKB) treatment of the potential wall, we avoid violation of the condition (2.107). 

0L x xFEx n /R 

FxU )(xU

nE
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Requiring this change to equal 2n, with n = 1, 2, …, we get the WKB spectrum 
3/122

0

3/2

0WKB 2
with  ,

4
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2

3




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


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












 

m

F
EnEEn


. 

 (ii) Looking at the potential profile of the problem (see the figure above), it is clear that the 
following simple trial function:  

  0with  
,0for  ,

,0for           ,0
1 



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


    xCxe

x
x x , 

may give a reasonable approximation for the ground state of the system. (In particular, it yields the 
exact, zero values of the wavefunction for x  0 and x = +, and also ensures the function’s continuity at 
all points.) Its normalization condition is 

1
0

22

0

2

1
2  


 dxexCdx x . 

Using the table integral MA (6.7d) with n = 2, we readily get 
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The expectation value of the Hamiltonian in this trial state is 
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All these integrals are of the same type MA (6.7d), with n = 2, 1, and 3, respectively. Using the above 
expression for the normalization constant, we finally get 



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2

22
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F

m
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
. 

This expectation value is positive for all  > 0 and diverges both at   0 and   , so it certainly has 
a minimum at some optimum value opt, for which 

0
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H . 

Performing the simple differentiation, we get 
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 Now let us try a somewhat different trial function: 
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
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,0for                 ,0
2/22 xCxe

x
x x  

also having the proper (zero) boundary values at x  0 and x = +. (Since the factor ½ in the exponent 
may be always absorbed into the fitting parameter , it is not necessary but convenient for calculations.) 
For this function, the normalization condition is 
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where   1/2x. The last dimensionless integral97 equals 1/2/4, so  
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With this normalization, the expectation value of the Hamiltonian in the trial state is 
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where the same substitution as above,   1/2x, was used. The first dimensionless integral is the same as 
above (equal to 1/4/4), and the remaining two are of the same type,98 equal, respectively, to (3/8)1/2 and 
1/2, so 
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. 

 This expectation value is also positive and diverges both at   0 and   , so it certainly has 
a minimum at some optimum value opt, for which 
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Performing the differentiation, we get 
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 The fact that Evar 2 < Evar 1 shows that the second trial function provides a better approximation, 
though the difference is not that large (below 6%).  

97 See, e.g., MA Eq. (6.9c). 
98 See, e.g., MA Eq. (6.9d) and Eq. (6.9e) for n = 1.  
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 (iii) In order to obtain the exact solution to the problem, we can solve the stationary Schrödinger 
equation 

         
nEFx

dx

d

m


2

22

2


,     (*) 

at x > 0, with the boundary conditions (0) = (+) = 0. By normalizing, just as it was done in Sec. 2.4 
of the lecture notes, the coordinate x to the constant 
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we can reduce Eq. (*) to the canonical form (2.101) of the Airy equation, with the general solution 

),(Bi)(Ai)(  BA CC   

where   (x – xR)/x0. One of the boundary conditions (at x  ) may be satisfied only by taking CB = 0, 
so the second one (at x = 0, i.e. at  = –xR/x0) is reduced to the requirement Ai (–xR/x0) = 0,99 i.e. 
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, 

where n is the nth root of the Airy function Ai(). Using the values of n from any math handbook (see 
the Hint), we get the results shown in the rightmost column of the table below. 

  
 
 
 
 
 
 
 

 

(iv) The table shows that the variational method results for the ground state depend much on the 
trial function. Indeed, our second attempt gave an error of just ~0.3% – pretty good for virtually any 
practical application. Looking at the asymptotic behavior of the Airy functions (see, e.g., the first line of 
Eq. (2.102) of the lecture notes), we may guess that an even better trial function could be 
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with the classical turning point xc treated as an adjustable parameter. The reader is invited to explore this 
option (running into less common integrals) as an additional exercise.  

 On the other hand, even for the ground level (n = 1), which is always the hardest task for the 
WKB approximation, for this particular problem, it works surprisingly well, with a relative error of 

99 Note that the above WKB result could be also obtained by using this equation with the asymptotic form given 
by the second of Eqs. (2.106). 

n En/E0WKB  
= [(3/2)(n – ¼)]2/3 

Evar1/E0 
= min H1 

Evar2/E0 
= min H2 

En/E0exact  
= –n 

1 2.320 2.476 2.345 2.338 

2 4.081 - - 4.088 

3 5.517 - - 5.520 

10 12.8281 - - 12.8287 
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~1%; the error decreases fast as we go up the energy level ladder, dropping below 10–4 for n = 10. 
Please remember, however, that while with the variational method, we may be always sure that the 
genuine ground state energy is below the estimated value, this is not true for the WKB method. 

 

 Problem 2.37. Use the variational method to estimate the ground state energy Eg of a 1D particle 
in the potential well  

    0  and,0with  ,exp 0
2

0  UxUxU  . 

Spell out the results in the limits of small and large U0, and give their interpretation. 

 Solution: Since any smooth, symmetric potential well U(x) may be Taylor-approximated, near its 
bottom, with a quadratic parabola, the calculation at the beginning of Sec. 2.9 of the lecture notes 
indicates that a Gaussian function similar to that given by Eq. (2.270),100 
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is a reasonable choice for the trial function for our potential. The calculation of the expectation value of 
the corresponding Hamiltonian, 
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is almost similar to that in Sec. 2.9 and in Task (ii) of the previous problem: 
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 The last expression is negative at   0, with a negative derivative Htrial/ at  = 0, while it 
is positive and diverges at   . Hence, Htrial as a function of  > 0 has a minimum, corresponding to 
a localized ("bound") ground state of the system. For an arbitrary U0, the condition of this minimum, 
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gives a rather unpleasant 4th-degree-polynomial equation for the dimensionless variable   opt/: 
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with an extremely bulky general solution.101  

100 Just as in the previous problem, the factor ½ is unnecessary but makes calculations a bit less bulky. 
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 However, we may readily spell out the result in the limits when the depth U0 of the potential well 
is much smaller or much larger than the scale T0 of the kinetic energy of the particle in it. In the former 
case, we should have  << 1, so the left-hand side of Eq. (*) may be approximated with , and this 
equation yields 

0min
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This result has a simple physical meaning: if the well is shallow, its particle-localization effect is weak, 
so the localized wavefunctions are spread far beyond the effective well’s width 1/1/2. On the scale of 
this spread, the potential well potential may be well approximated with the delta function, 
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whose "weight” W may be calculated from the delta function's definition: 
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If we now plug this value into Eq. (2.165) of the lecture notes, for the ground-state energy in such a 
delta-functional potential, Eg = –mW2/22, we get 
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So, in this limit, the variational method captures the correct functional dependence of the ground-state 
energy but is ~60% off the exact result.102 

 In the opposite limit of a very deep potential well, U0 >> T0, the left-hand side of Eq. (*) may be 
well approximated with  4 and this equation yields 

  2/1
000min

2/1

0

0opt  giving,1 TUUH
T

U














 . 

In order to interpret this result, let us use the fact that in this limit the wavefunction’s spread is much 
smaller than the well’s width scale 1/1/2, so it "feels" only the very bottom of the well, where the 
confining potential may be approximated with just two leading terms of its Taylor expansion: 

    2
00

2
0 exp xUUxUxU   . 

But this is exactly the potential of a harmonic oscillator (offset by –U0): 

101 Mercifully, since in the physically acceptable range   0, the left-hand side of Eq. (*) is a monotonically 
growing function of , starting from 0 at  = 0, this particular equation has just one root of our interest, for any 
ratio U0/T0.  
102 The reason for this difference is clear from the comparison of our Gaussian trial function with the exact ground 
state wavefunction (2.159): g  exp{- x }.  
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 
2/1

0
00

2
02

2
0

0

2
  i.e.,

2
with  ,

2








m

U
U

m
x

m
UxU





, 

whose exact ground state energy is 

  2/1
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0
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2
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m

U
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




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. 

Thus, as might be expected, in this limit, the Gaussian trial function yields the exact ground-state 
energy. 

 

Problem 2.38. For a 1D particle of mass m, in a potential well with the following profile, 

  0  and  0with  ,2  saaxxU s , 

 (i) calculate its energy spectrum using the WKB approximation, and 
 (ii) estimate the ground-state energy using the variational method. 

Compare the ground-state energy results. 

 Solutions:  

 (i) Let us use the Wilson-Sommerfeld quantization rule (2.110),  

       ,...2,1with  ,
2

1
22

R

L







   nndxxpdxxp

x

x
 ,   (*) 

where in our current case 

              2/122/12/122/1 1222 s
nn

s
nn xxmEaxEmxUEmxp  . 

Here xn  xR = –xL is the distance of the classical turning points from x = 0, related to the energy E = En 
by the condition 
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s

n
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s
nnn a

E
xaxxUE

2/1

2   giving, 






 . 

Introducing the dimensionless variable   x/xn, so dx = xnd, and using the potential’s symmetry with 
respect to the origin, we get 
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s
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x
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This is a table integral103 equal to (1/2/4s)(1/2s)/(3/2 + 1/2s), so Eq. (*) yields the following energy 
spectrum: 

           ,...2,1for  ,12 1/2
WKB   nnEE ss

n ,   (**) 

where EWKB  E1 is the WKB result for ground-state energy: 

103 See, e.g., MA Eq. (6.6b).



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 94 
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 As Eq. (**) shows, for the quadratic-parabolic potential, i.e. for s = 1, 2s/(s + 1) = 1, the energy 
levels are equidistant: 

  const2  i.e.,12 111   EEEnEE nnn , 

as they should be for a harmonic oscillator – see, e.g., Eq. (2.114). However, as the parameter s grows, 
i.e. as the particle confinement becomes more rigid, the ratio 2s/(s + 1) tends to 2, i.e. the dependence of 
En on n gradually approaches the quadratic one, En  n2, pertinent to the hard-wall well discussed in 
Sec. 1.7 – see Eq. (1.85).  

 (ii) Since the potential is symmetric with respect to point x = 0 and continuous at this (and all 
other) points, the simplest natural selection of the ground-state trial function is a Gaussian, for example 

 


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4
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22
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Cx

 , 

with some real . The normalization coefficient C may be immediately found either from the standard 
Gaussian integration of trial(x)2 over all x, or just from the comparison of this expression with Eq. 
(2.16) of the lecture notes, in which  = 1/x, i.e. x = 1/, giving 

    2/12/1

2

22

1







x
C . 

 Now the expectation value of the particle’s Hamiltonian, 
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in the trial state, may be calculated as 
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All these three integrals are of the same well-known type,104 yielding 
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104 See, e.g., MA Eq. (6.9). 
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 Since for s > 0 this expression is positive for any 2 and diverges at both 2  0 (due to the 
second term) and 2   (due to the first term), it always has a minimum at some 2 = 2

opt, which may 
be found from the requirement 
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 For the quadratic potential, with s = 1, and hence (s + 1/2) = (3/2) = 1/2/2,105 both the last 
expression and Eq. (***) yield the same (and exact!) result 
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
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E ,     (****) 

where 0  (2a/m)1/2 is the classical frequency of this harmonic oscillator. However, with the growth of 
parameter s, the variational method starts to give higher ground-state energy than the WKB result. This 
is only natural because, for harder-wall potential wells with higher values of s, the Gaussian becomes an 
increasingly inadequate choice for the trial function. However, we should remember that the WKB 
approximation does not give accurate ground-state results either. (As was noted in Sec. 2.4 of the lecture 
notes, the validity of Eq. (****) in this approximation is occasional.) Moreover, plugging the above 
WKB results for xn and En into Eq. (2.107) spelled out for our potential, we see that it is fulfilled only if 
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so that at s >> 1, this approximation gives accurate results only for very high energy levels. 

  

 Problem 2.39. Use the variational method to estimate the 1st excited state of the 1D harmonic 
oscillator. 

 Solution: As was mentioned in Sec. 2.9 of the lecture notes, this may be done by requiring the 
new trial function to be orthogonal to the previously calculated ground state’s eigenfunction, in our 
current case given by Eq. (2.275): 
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This wavefunction is symmetric, and has no zeros; hence, in the light of the Sturm oscillation theorem 
mentioned in Sec. 2.9, it is very natural to look for the first excited state’s wavefunction in the form 

  0with  ,exp 2
trial   xCx , 

105 See, e.g., MA Eq. (6.7e). 
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because it is antisymmetric (and hence automatically orthogonal to g), and has just one zero. The 
normalization requirement, 
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with   (2)1/2x, includes a well-known table integral106 equal to 1/2/4, and hence yields  
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 With this normalization, the Hamiltonian’s expectation value is 
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with the same notation   (2)1/2x. The former of these two dimensionless integrals is the same as 
above, and the latter one is of the same type,107 equal to 31/2/8. As a result, we get 
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The (only) minimum of this function of  is achieved, not quite surprisingly, at the same value  
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as for the ground-state wavefunction (*), so the resulting 1st excited state’s wavefunction is proportional 
to the same exponent: 
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 Comparing this expression with Eq. (2.284) of the lecture notes for n = 1, and taking into 
account Eq. (2.282) for H1, we see that for the harmonic oscillator, the variational method yields the 
exact expression for 1(x), and hence for the corresponding eigenenergy: 

2

3 0

opt
trial1





 HE . 

Note, however, that the further development of this success would require a rapidly increasing volume 
of calculations. Indeed, as Eqs. (2.282) and (2.284) show, the next exact eigenfunction, 2(x), is 

106 See, e.g., MA Eq. (6.9c). 
107 See, e.g., MA Eq. (6.9d). 
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proportional to the Hermite polynomial H2(x/x0) = (4x2/x0
2 – 2) rather than just to some power of x as 

1(x) is, so finding it by using the variational approach would require at least two adjustable parameters, 
for example, trial  (x

2 + 1)exp{–2x
2}. 

 

 Problem 2.40. Assuming the quantum effects to be small, calculate the 
lower part of the energy spectrum of the following system: a small bead of mass m, 
free to move without friction along a ring of radius R, which is rotated about its 
vertical diameter with a constant angular velocity  – see the figure on the right. 
Formulate a quantitative condition of validity of your results. 

 Hint: This system was used as the “testbed problem” in the CM part of this 
series, and the reader is welcome to use any relations derived there. 

 Solution: As was discussed in the CM part of this series, the classical Hamiltonian function of 
the system has the form108 
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where p is the generalized momentum corresponding to the generalized coordinate  (the angle of the 
bead’s deviation from the lowest point of the ring – see the 
figure above), and   (g/R)1/2 is the frequency of small 
oscillations of the bead near that point in the case  = 0 (no 
ring rotation).  

 The transition to quantum mechanics may be 
achieved, as was discussed in Chapter 1, by using the 
corresponding Hamiltonian operator, 
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Since the function Uef() is not quite trivial (see the figure 
on the right), in the general case, the eigenvalues of this 

108 This result may be readily obtained by using either the Lagrangian formalism in an inertial (“lab”) reference 
frame or the effective 2nd Newton law with the additional centrifugal “inertial force” Fc = –mac  –m(r) in 
the rotating (non-inertial) reference frame rotating with the ring – see, e.g., CM Secs. 2.2 and 4.6, respectively. At 
the latter approach, the second term in the above expression for Uef is just the additional potential energy of the 
bead in the field of this “force”. Note also that is H the effective energy Eef of the bead in the rotating reference 
frame rather than its “genuine” mechanical energy in an inertial reference frame. (The latter energy is not an 
integral of motion because of the bead’s strong interaction with the ring, and its minima do not correspond to 
stationary values of . The reader to whom this point is not clear is strongly advised to review a discussion of this 
issue in classical mechanics – see, for example, the cited sections of the CM part of this series, in particular, CM 
Eq. (4.103) and the accompanying discussion.) 
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Hamiltonian cannot be calculated analytically. However, if the quantum-mechanical contributions to the 
system’s lowest energies are small, it is sufficient for our task to consider only small vicinities of the 
minima of this effective potential.  

 If the ring’s rotation is slow, 2  2  g/R, the function Uef() has only one minimum, at the 
lower point of the ring: 0 = 0.109 On the other hand, if the rotation velocity  exceeds the threshold 
value equal to , there are two similar minima of Uef() at two symmetric points 1 = sin-1(2/2) > 0, 
corresponding to the bead’s rotation at the opposite sides of the ring. Taylor-expanding the effective 
potential energy near these points, and keeping only two first leading terms of the series, we get 
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 In this approximation, the Hamiltonian (*) is reduced to that of a harmonic oscillator with a 
frequency equal to either 0  (2 – 2)1/2 (if 2 < 2), or 1  (2 – 2)1/2 (if 2 < 2). Hence the 
lower part of the effective energy’s spectrum is well described, in both cases, by Eq. (2.262) of the 
lecture notes: 
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 These expressions are only correct when this energy is within the range where the expansion 
(**) is valid, i.e. only if (Eef)n – Umin << Umax – Umin, giving the following validity condition: 

 ,max
2

max 


mR
nn . 

If the nmax so defined is less than or even of the order of 1, quantum effects are strong for all n, and the 
harmonic-oscillator approximation is not valid at all. Note, however, that in the opposite limit of very 
strong quantum effects,  when nmax << 1, i.e. when 2/mR2 >> Umax – Umin, the system’s properties 
become very simple again. (The planar rotor model valid in this limit will be discussed in Sec. 3.5.) 

 

Problem 2.41. A 1D harmonic oscillator with mass m and frequency 0 was in its ground state. 
At t = 0, an additional force F is suddenly exerted on it and then that is kept constant. Calculate the 
probability of the oscillator staying in its ground state. 

Solution: The ground-state wavefunction of the initial oscillator is given by Eq. (2.275) of the 
lecture notes, which may be recast as 
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where x0  (/m0)
1/2. Since the wavefunction does not have time to change during the abrupt 

application of the force, ini(x) plays the role of the initial condition, (x,0), for the final system, 
described by the modified Hamiltonian 

109 For our current task, all the bead’s positions that differ by a multiple of 2 may be considered identical, and it 
is sufficient to consider just one of them. 
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 The last expression shows that the modified Hamiltonian differs from the initial one only by the 
shift X of the argument – which of course is just the classically-calculated static extension F/ of the 
oscillator’s spring, with the elastic constant  = m0

2, by the applied force F. Hence the ground-state 
wavefunction of the final system differs from the initial one only by this shift: 
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 Now we can calculate the requested probability as W0 = c02, where the coefficient c0 is given 
by the 1D version of Eq. (1.68): 
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where   x/x0 and X  X/x0  (F/m0
2)/(/m0)

1/2. This is a Gaussian integral, which may be readily 
worked out by the same completion to the full square as was repeatedly used in Chapter 2: 
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so, finally,  
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The probability is very small if the force is larger than the so-called standard quantum limit 

  0

2/13
00 xmF    ; 

this constant serves as a natural scale for the force effect’s masking by quantum uncertainty. 

 

 Problem 2.42. A 1D particle of mass m was placed into a quadratic potential well (2.111), 

2
)(

22
0 xm

xU


 , 

and allowed to relax into the ground state. At t = 0, the well is fast accelerated to move with velocity v, 
without changing its profile, so at t  0 the above formula for U is valid with the replacement x  x’  x 
– vt. Calculate the probability for the system to still be in the ground state at t > 0. 

 Solution: Due to the invariance of the Schrödinger equation with respect to the Galilean 
transform (whose proof was the task of Problem 1.6), in the reference frame moving together with the 
potential profile, U is the function of the relative coordinate x’ = x – vt only, but not of time. As was 
discussed in Sec. 1.5 of the lecture notes, in such time-independent potentials, the stationary state 
probabilities, in particular that of the ground state (W0), cannot change. Hence the system’s exit from its 
ground state can arise only at the moment of its abrupt acceleration, t = 0. 
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 For this short transient process, the ground state that existed at t  0, with the wavefunction 
given by Eq. (2.275) of the lecture notes, 

            
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serves as the initial condition, so to calculate the requested probability W0, we may apply Eq. (1.68) 
written in the moving reference frame: 

   dx'x''x'ccW 0,with  , *
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 . 

Here 0(x’) is given by the same Eq. (*), with the replacement x  x’, because in the moving reference 
frame the potential U(x’), and hence the ground state wavefunction, are exactly the same as they are in 
the lab frame at t  0. However, the initial wavefunction ’(x’, 0) has to be recalculated from (x, 0) 
using the wavefunction transform whose proof was the subject of the same Problem 1.6; for the 1D case 

   









 2

exp,,
2tmv

i
mvx

itxt'x'' . 

For t = 0, when x’ = x, this transform is reduced to  
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This is a standard Gaussian integral, with a structure similar to that, for example, of Eq. (2.21) of the 
lecture notes, which was worked out in detail in Sec. 2.2. An absolutely similar calculation yields 
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This result shows that if the motion’s velocity v is much lower than the natural quantum-
mechanical scale v0 of the particle’s velocity in its ground state,110 then W0  1, i.e. the oscillator 
remains in its ground state with an almost 100% probability. If, on the contrary, v >> v0, then W0  0, 
meaning that the abrupt acceleration of the potential well almost certainly (with the probability 1 – W0 
 1) “shakes up” the oscillator into a linear superposition of its excited states. 

 

Problem 2.43. Initially, a 1D harmonic oscillator was in its ground state. At a certain moment of 
time, its spring constant  is abruptly increased so that its frequency 0 = (/m)1/2 is increased by a 
factor of , and then is kept constant at the new value. Calculate the probability that after the change, 
the oscillator is still in its ground state. 

110 For example, it is easy (and hence left for the reader :-) to use Eq. (*) to prove that the expectation value of the 
observable (p/m)2, i.e., of the square of the particle’s velocity, in the ground state equals v0

2/2.  
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Solution:  According to Eq. (2.275) of the lecture notes, the ground state’s wavefunction of the 
initial system is 
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Since this wavefunction does not have time to change during the abrupt parameter’s change, it plays the 
role of the initial condition, (x,0), for the new system (the oscillator with the new spring constant). 
Hence we can use the 1D version of Eq. (1.68) to calculate the overlap integral c0 of this function with 
the similar ground state eigenfunction of the finite system (in which we have to make the replacement 
0  0): 
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From this result, the probability that the oscillator remains in its 
ground state is: 

.
1

2 2/1
2

00 



 cW  

 This function is plotted in the figure on the right, in the 
most revealing log-log scale. As a sanity check, at  = 1 (i.e. no 
parameter change at all), W0 = 1, just as it should be. If the 
spring constant has been changed, then W0 < 1 both for  > 1 (as 
in the problem’s assignment), and for  < 1, i.e. for the spring 
constant’s reduction. 

 

Problem 2.44. A 1D particle is in the following potential well: 
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 (i) Find its eigenfunctions and eigenenergies. 
 (ii) The particle was allowed to relax into its ground state, and then the infinite potential wall at x 
< 0 is rapidly removed so that the system is instantly turned into the usual harmonic oscillator (with the 
same m and 0). Find the probability for the particle to remain in the ground state. 

Solutions:  

(i) The stationary Schrödinger equation of the initial system at x > 0 coincides with that of the 
usual harmonic oscillator and is hence satisfied by any of its eigenfunctions – see Eq. (2.284) of the 
lecture notes. However, the infinite potential at x < 0 imposes the boundary condition n(0) = 0, which 
is satisfied only by the antisymmetric eigenfunctions with odd quantum numbers n = 2m +1 (with m = 0, 
1, 2,…). Taking into account that the wavefunctions should be now normalized on the segment 0 < x < 
+ rather than  – < x < +, we may write 

0W


0.01 0.1 1 10 100

0.1

1
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where x0 is given by Eq. (2.276), and the Hermite polynomials Hn() may be defined by Eq. (2.281). 

 (ii) Taking into account that, according to Eq. (2.282), H1() = 2, for the ground state of the 
initial system, with m = 0, the above result is reduced to 
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After the fast removal of the wall, this function plays the role of the initial condition (x, 0) for the 
resulting harmonic oscillator, so we may calculate the requested probability as Wg = cg2, with the 
coefficient cg calculated by using the 1D version of Eq. (1.68): 

      dxxxc )()( 0gg
*  , 

where g(0) is the ground-state wavefunction of the usual harmonic oscillator, given by Eq. (2.275): 
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As a result, we get 
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so, finally, Wg = 1/  0.318. 

 

Problem 2.45. Prove the following formula for the propagator of the 1D harmonic oscillator: 
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Discuss the relation between this formula and the propagator of a free 1D particle. 

Solution: According to its definition given by Eq. (2.44) of the lecture notes (see also Eqs. 
(2.45)-(2.46) and their discussion), the propagator G(x, t; x0, t0) of a 1D quantum system has to satisfy 
two conditions: 

 (i) if considered as a function of x and t only, it should obey the Schrödinger equation of the 
system, and 
 (ii) it has to approach (x – x0) at t  t0. 

 For our case, condition (i) may be checked by direct differentiation of G over x (twice) and t, and 
plugging the results into the Schrödinger equation (2.261): 
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In order to check condition (ii), we may notice that in the limit (t – t0) << 1/0, the propagator coincides 
with that of the free particle, given by Eq. (2.49) of the lecture notes, for which the condition (ii) is 
satisfied by construction – see Sec. 2.2. 

 

 Problem 2.46. In the context of the Sturm oscillation theorem mentioned in Sec. 2.9 of the 
lecture notes, prove that the number of eigenfunction’s zeros of a particle confined in an arbitrary but 
finite potential well always increases with the corresponding eigenenergy. 

 Hint: You may like to use the suitably modified Eq. (2.186). 

 Solution: Repeating the simple calculation that has led to Eq. (2.186), but now for two stationary 
states with such numbers n and n’ that En’ > En and for the x-segment limited by two adjacent zeros xm 
and xm+1 of the stationary wavefunction n(x) corresponding to the lower energy, we get 

                  0  where,
2 1

121





 



 mnmn

m

m

n'
n

m

m

n'nnn' xx
dx

d

m
dxEE

x

x

x

x
 

. (*) 

 Since, by construction, the zero points xm and xm+1 are adjacent, 
the function n(x) does not change its sign between them. Since the 
wavefunctions are defined to an arbitrary complex multiplier exp{i} 
with a real and constant phase ,111 let us select this constant so that 
n(x) is real and positive on the interval xm < x < xm+1. Then dn/dx has 
to be positive (or equal zero) at x = xm and negative (or equal zero) at x 
= xm+1 – see the figure on the right.  

 Let us assume for a minute that the function n’(x) corresponding to the larger energy En’ > En 
also does not have a zero on this interval; in this case, we may also make this function real and positive 
on the whole interval [xm, xm+1] by the appropriate choice of its phase. Then the left-hand side of Eq. (*) 
is positive, while its right-hand side is either negative or equal to zero. Hence our assumption has been 
wrong, i.e., the function n’(x) has at least one zero on the interval xm < x < xm+1. (It may be useful for 
the reader to revisit Figs. 1.8 and 2.35 of the lecture notes to see how spectacularly this general result 
works for the particular cases of hard and soft confinement.)  

 Now let us apply this result to each inter-zero interval of the function n(x), noticing that it is 
also valid for infinite intervals, with xm  – and/or xm+1  +. (In these cases, the product 
(dn/dx)n’ in Eq. (*) equals zero at the corresponding end of the interval; note that the zero(s) of the 
function n’ at such an interval still have to be finite.) If the function n(x) has M finite zeros xm, there 
are (M + 1) of such intervals, and hence the function n’(x) has at least (M + 1) finite zeros. So the 
statement in the assignment is indeed correct. 112 

111 According to Eq. (2.5) of the lecture notes, the phase  of a stationary wavefunction of a confined 1D state, 
with the probability current I = 0, cannot depend on x.  
112 Other facts necessary for the full proof of the Sturm oscillation theorem, namely that M grows exactly by 1 at 
each step of the energy spectrum ladder and equals zero for the ground state, require more refined arguments. 
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 xn



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 104 

 Problem 2.47.* Use the WKB approximation to calculate the lifetime of the metastable ground 
state of a 1D particle of mass m in the “pocket” of the potential profile 
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Contemplate the significance of this problem. 

Solution: This potential profile, sketched in the figure on the right for the case  > 0,113 forms a 
soft potential well at x ~ 0, from which the particle may tunnel 
into the unrestricted half-space x > x0. As a result, even the 
ground state of the particle in the well is metastable.  

 As was discussed in Sec. 2.5 of the lecture notes, the 
very notion of lifetime  of such a state is valid only if the 
potential barrier’s transparency T calculated at the state’s 
energy E is much less than 1. For a smooth potential like ours, 
we may estimate the transparency by using the WKB-
approximation-based Eq. (2.117), as  
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where x1 is the point where U(x) = 0. Calculating x1 and Umax for our potential, 
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and plugging these results into the above estimate, we see that the condition T << 1 requires that 
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(In this limit, we may use Eq. (2.274) to write 
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because for the small distances from the potential well’s bottom where the ground-state wavefunction is 
localized, the cubic term of the potential is negligible.) Due to this condition, the WKB expression, 
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which follows from the general Eq. (2.117) for our potential profile, may be simplified. 

 In the crudest approximation, in which the ground-state energy E = 0/2 is neglected 
completely in comparison with U(x), the integral is simple: 

However, they are virtually evident from the WKB-based Wilson-Sommerfeld quantization rule (2.110). Indeed, 
each new half-wave of the wavefunction corresponds to the increase of , defined by Eq. (2.108), by , and 
hence of  =  also by , i.e. to the increase of the total wave change (2.109) by 2, i.e. to the increase of 
the quantum number n by 1. 
113 This choice of sign makes the notation simpler. (All final results for negative , i.e. for the potential U(x) = 
m0

2x2/2 + ’x3, with ’ = – > 0, are evidently similar, with the coordinate inversion x  –x.) 

)(xU

0 x
E

1x

maxU

mxintx
0x
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where   x/x1. The last integral may be readily worked out (for example, using the new substitution   
1 – ) and is equal to 4/15, so we get 
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proving that, indeed, T0 << 1 only if 0 << Umax.  Now, using Eq. (2.153) of the lecture notes, we can 
estimate the metastable lifetime  as ta/T0, where ta is the period between the classical particle’s 
“attempts” to pass through the potential barrier.114 In our case, ta is the period 2/0 of the classical 
oscillations at the bottom of the potential well, so 
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 This expression is satisfactory for most practical applications because, as will be shown below, it 
gives the correct exponent – which, in our case 0 << Umax, dominates the value (**).115 To make a 
more exact calculation, we need to take into account the small ground-state energy E = 0/2 << Umax, 
at least in the first nonvanishing approximation. Looking at the figure above, it is clear the effect of non-
zero E on the WKB integral (*) is strongest at x ~ 0 where the function U(x) grows most slowly. In this 
region, x0  x  xint, where x0 is the left classical turning point defined by the condition 

 
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2
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2
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0   so,
22
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
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, 

 and xint is some intermediate point (see the figure above again) satisfying two strong conditions:  

        3
int

2
int

2
00

int0 22
 that  so, x

xm
xxx m 





,   (***) 

we may ignore the potential’s anharmonic term x3. On the other hand, in the complementary region xint 
 x  x0, the anharmonic term has to be treated exactly but the effects of non-zero energy E = 0/2 may 
be described in the linear approximation. As a result, the leading correction to our baseline result (**) 
may be calculated as 

114 One may wonder whether this expression (which, for the lifetime problem considered in Sec. 2.5 of the lecture 
notes, was proved rather than conjectured, and is very intuitive for any nearly-classical motion) is quantitatively 
correct for the essentially quantum motion of the particle in the ground state of our current problem. However, its 
use is justified by the fact that, as was shown in Sec. 2.4, the WKB approximation gives the exact result of the 
ground-state energy of the harmonic oscillator and hence provides a perfect “stitching” of its exact wavefunction 
(2.275) with the WKB expression for it at x >> x0. (As the calculation below shows, for our current system with 
0 << Umax, this stitching may be performed within the broad range x0 << x << xm, and is hence unaffected by the 
potential’s anharmonicity at x ~ xm.) 
115 Note the proximity of the numerical coefficient under the exponent, 36/5 = 7.20 for this cubic-parabolic 
barrier, to that for the quadratic-parabolic barrier, 2  6.28 – see Eq. (2.119) of the lecture notes, which is 
correctly described by the WKB approximation at (Umax – E) >> 0. 
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Performing the differentiation inside the last integral, and using the notation introduced above to bring 
the integrals to dimensionless forms, we get 
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where   x/x0, and   x/xint. The second of these integrals is elementary, while the other two may be 
also readily worked out: the first one, by using the substitution   cosh, and the last one, by using the 
substitution   (1 – )1/2. The result, 
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is independent of the exact choice of the auxiliary parameter xint (as it has to be for the correctness of our 
“stitching” procedure), and we get the corrected WKB expression 
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so the corrected lifetime of the metastable state is      
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 We see that the lifetime correction due to the ground-state energy leads not to just a different 
numerical factor in the pre-exponential coefficient; it makes this factor dependent on the system’s 
parameters. 

 Finally, let us discuss why this problem is very important. Let a 1D particle be confined at a 
minimum of an arbitrary but smooth potential U0(x). Let us gradually deform this potential, for example 
by application of an additional force F, which “tilts” its profile as 

FxxUxU  )()( 0 , 

so at some critical value Fc of the force, the minimum finally disappears. At F below but very close to 
this critical value, the “pocket” of energies Umin < E < Umax is very shallow, and the spatial extension of 
the pocket is very small, so the potential U(x) in its vicinity may be expanded into the Taylor series at its 
minimum, with only a few leading terms being essential. The linear term of the expansion, by definition, 
disappears at the minimum of the potential energy (say, x = 0), so the leading term is quadratic and may 
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be always represented as m0
2x2/2, as in the potential of the solved problem. However, this term cannot 

describe the potential barrier – and hence the finite lifetime of the metastable state. For the minimal 
description of this effect, we need to keep the next, cubic term in the Taylor series, thus arriving at the 
model analyzed above.  

 Hence, our result for  is valid for the metastable ground state in virtually any sufficiently 
smooth potential U(x), near the critical point of the potential well’s disappearance. (The exception 
would be a very special function U(x) whose third derivative vanishes exactly at the point where the first 
one does.) 
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Chapter 3. Higher Dimensionality Effects 

 Problem 3.1. A particle of energy E is incident (in the figure on the 
right, within the plane of the drawing) on a sharp potential step: 









.0for  ,

,0for    ,0
)(

0 xU

x
U r  

Calculate the particle reflection probability R as a function of the incidence 
angle , and discuss this function for various magnitudes and signs of U0. 

 Solution: As was discussed in Chapter 1, in wave mechanics, a particle with a definite energy, 
propagating in a definite direction (as implied by the assignment), is described by a monochromatic 
plane de Broglie wave (1.88) with a c-number wave vector k. In our current case of the planar boundary 
(x = 0) between two internally uniform regions, the vectors k of the incident, reflected, and transmitted 
waves may have only two (x- and y-) components. In order to satisfy the boundary conditions at all 
points along the boundary’s plane, the y-dependence of the waves at x  0 and 0  x should be the same. 
Thus the appropriate plane-wave solutions of the Schrödinger equation in these two regions are116 
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r  

where the wave vector components are related by a natural generalization of Eqs. (2.54) and (2.57): 
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.   (*) 

These expressions are valid even if E is so low that k’x
2 < 0 (for U0 > E, this is the case for any angle ); 

in this case, we may take k’x = i, with real  > 0, so toward the bulk of the region with 0 < x, the 
wavefunction decays as exp{–x}. 

 Thus the problem is reduced to the similar 1D problem that was solved in Sec. 2.3 of the lecture 
notes (see Fig. 2.4 and its discussion), and we can use the first of Eqs. (2.63), which, in our current 
notation, reads 

    ..  so,
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However, due to Eqs. (*), and the evident geometric relation (see the figure above) 

        ,tan
x

y

k

k
      (***) 

116 In classical mechanics, the fact that ky is the same at x < 0 and x > 0, corresponds to the conservation of the y-
component of the particle’s momentum, due to the absence of a force in this direction: Fy = –U(r)/y = 0. 

k

x

y

 0
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we may see that if ky  0 (i.e.   0), the energy dependence of the x-component of the wave number is 
now different from the 1D case. Indeed, from Eqs. (*) and (***), we can readily get 

    ,)cos(2,cos2
2/1

0
22/1 UEm'kmEk xx     

so Eq. (**) yields 
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 The figure on the right shows this reflection 
probability as a function of the incidence angle , for 
several values of the U0/E ratio. If U0 is negative, then Eq. 
(****) is valid for any angle and describes a gradual 
increase of the reflection from such a potential “step-
down” with the growth of  – see the dashed lines. (Note 
that the reflection always becomes almost total at   /2, 
i.e. at the “grazing-angle” incidence.) Another visible 
trend is that the reflection is generally lower for smaller 
steps, and vanishes at U0  0. 

 As the solid lines show, both these trends are also 
valid for the potential “step-up”, i.e. if U0 is positive but 
still less than the particle’s energy E. Here Eq. (****) also 
describes a reflection probability’s growth with the 
incidence angle, but now the increase is faster, and the reflection becomes total at a final “critical” value 
c = arccos (U0/E)1/2. At larger angles (and also at any angle for U0 > E), kx’ is purely imaginary, and Eq. 
(**) yields 

E

U 02cosfor  ,1  R , 

describing the so-called total internal reflection, completely similar to that of electromagnetic waves.117  

 Moreover, Eq. (****) is an analog of the well-known Fresnel formulas. However, due to the 
scalar nature of the de Broglie waves, there is only one such formula in wave mechanics, rather than two 
in electrodynamics – for two possible electromagnetic wave polarizations. 118 

 

 Problem 3.2. For a charged particle moving in a magnetic field B, calculate the commutation 
relations between Cartesian components of the kinetic (“mv-”) momentum operator defined by Eq. 
(3.20). Can the result be represented in a vector form? 

 Solution: The operator form of Eq. (3.20), with the canonical momentum operator given by Eq. 
(3.25), is119 
            Ap qi  ˆ ,     (*) 

117 See, e.g., EM Sec. 7.4. 
118 See, e.g., EM Eqs. (7.91) and (7.95).  
119 Implicitly, this expression was already used in Eq. (3.26) of the lecture notes. 
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where q is the particle’s electric charge, so the jth Cartesian component of the operator is 

j
j

j qA
r

ip 



 ˆ , 

where the index j may take any value of the set {1, 2, 3}. Let us calculate the commutator of two such 
components, with j’  j: 
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 The first of the four commutators in the last expression equals zero because of the well-known 
rule of double partial differentiation of any function: 

0   so,
'

2

'

2

'''

2

'

2

















































 

jjjjjjjjjjjj rrrrrrrrrrrr
. 

The second of the commutators in Eq. (**) also vanishes because all Cartesian components of the vector 
operator A are functions of r (and maybe time), and hence, in the coordinate representation we are 
studying now, act upon any function just like the operator r̂  (see the first of Eqs. (1.26) of the lecture 
notes), i.e. just as simple multipliers, which may be swapped: 

    .0 ,   so,'   jj'j'jj'jjjj'j AAAAAAAAAA  

 However, the last two commutators in Eq. (**) do not vanish. Indeed, we may consider their 
action upon a function just as it was done with the operators of x and px in Eq. (2.14): 
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Since this equality is valid for any , we may represent it as the following operator identity: 

j

j'
j

j r

A
A

r 



















', . 

The last commutator in Eq. (**) differs from this one only by the operand order (i.e. by the sign) and the 
index swap. As a result, Eq. (**) yields 
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 However according to vector algebra,120 if the indices j and j’ run in any “correct” order: 1  2 
 3  1  2, the expression in the parentheses is just the (j”)th component of the vector A, where 

120 See, e.g., MA Eq. (8.5). 
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the index j” is complementary to j and j’. On the other hand, classical electrodynamics121 tells us that the 
vector A is just the magnetic field B, so we get a very simple result: 

  .ˆ,ˆ j''j'j qipp B  

In the opposite case when the indices j and j’ run in an “incorrect” order, this equality is still valid but 
with the opposite sign. Finally, if j = j’, the right-hand side of Eq. (***) vanishes. All these facts may be 
represented by using the Levi-Civita symbol:122 
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where the choice of the indices j, j’, and j” is now arbitrary. In particular, since this symbol may be used 
to rewrite the well-known relation123 between the Cartesian components of the vector product and its 
operands as 
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the set of Eqs. (****) for all Cartesian components may be represented in the following compact vector 
form:124 

Bqipp ˆˆ . 

 Note that according to this formula, the vector product of the kinetic momentum operator by 
itself vanishes only in the absence of a magnetic field, while for the corresponding c-number vector of 
classical mechanics, this is always the case. 

 

 Problem 3.3. In the classical mechanics version of the Landau-level problem discussed in Sec. 
3.2 of the lecture notes, the geometric center of the particle’s orbit is an integral of motion, determined 
by initial conditions. Calculate the commutation relation between the quantum-mechanical operators 
corresponding to the Cartesian coordinates of the center. 

 Solution: The Landau problem is that of a non-relativistic 2D particle of mass m, with electric 
charge q, moving in a uniform magnetic field B = Bnz normal to the particle’s confinement plane [x, y]. 
Its solution in classical mechanics is simple and well-known:125 since the magnetic Lorentz force F = 
q[vB] exerted on the particle is perpendicular to the vector of its velocity v, it causes the particle’s 
rotation within the confinement plane, with the radius r that may be readily calculated from 2nd Newton 
law for the circular motion: 

121 Just as a reminder, in this course until Chapter 9, we consider quantum properties of particles moving in the 
fields described classically. 
122 See, e.g., MA Eq. (13.2). Note that in some texts, the sum on the right-hand side of this (and other similar 
relations) is dropped. This is only correct if this omission is compensated by adding the condition j”  j, j’. 
123 See, e.g., MA Eq. (7.3). 
124 A direct derivation of this formula from Eq. (*) is a useful additional exercise, highly recommended to the 
reader. 
125 If necessary, see, e.g., EM Sec. 9.6 – which also discusses the relativistic version of the problem. 
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In contrast, according to the same equation, the “cyclotron” frequency c   d/dt of the particle’s 
rotation does not depend on its speed v, i.e. on the initial conditions: 126 
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qB
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However, the coordinates {X, Y} of the rotation center, participating in the circular motion’s description, 

0c   where,sin,cos   trYyrXx , 

(as well as the orbit’s radius r and the initial angle 0), are constants determined by initial conditions. 
Since the Cartesian components of the particle’s velocity are 

,cos,sin cc  r
dt

dy
vr

dt

dx
v yx   

these constants may be expressed as time-independent combinations of the coordinate and velocity 
components:  

                    xy vyYvxX
cc

1
,

1


 .    (*) 

 Now in quantum mechanics, as was discussed in Sec. 3.1 of the lecture notes,127 in the presence 
of a magnetic field, the operator of the particle’s velocity is 

                
m

q

m

APp
v

ˆˆˆ
ˆ


 ,     (**) 

where P is the canonical momentum whose operator may be expressed by Eq. (3.25) of the lecture 
notes, so it commutes in the standard way (2.14) with the Cartesian components of the radius vector: 

                      0ˆ,ˆ,0ˆ,ˆ,0ˆ,ˆ,ˆ,ˆ,ˆ,ˆ  yxxyyx PPPyPxiPyiPx  . (***) 

 Let us select, for the sake of simplicity, the Landau gauge (3.44) of the magnetic potential with 
x0 = 0, so Ax = 0 and Ay = Bx. (It is straightforward, though more bulky, to show that the final result for 
the commutator is the same in any gauge.) Then Eq. (**) is reduced to 

x
m
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m

xqP
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P
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x ˆ
ˆˆˆ

ˆ,
ˆ

ˆ c

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B

, 

so the operators corresponding to the variable combinations (*) are 

126 In contrast to Eq. (3.48) of the lecture notes, giving the cyclotron frequency’s magnitude, this expression may 
have any sign, and describes the correct direction of the particle’s rotation in the [x, y] plane: say, clockwise (c < 
0) if qB > 0. 
127 See also the solution of the previous problem. 
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Now it is straightforward to use Eqs. (***) to calculate the commutator of these operators: 
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
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where rL is the Landau radius (see Eq. (3.51) of the lecture notes), while the sign is determined by that 
of the product qB. This result shows that in the Landau problem, the observables X and Y are not 
independent and that rL gives the spatial scale of their uncertainty.  

 

 Problem 3.4.* Analyze how are the Landau levels (3.50) modified by an additional uniform 
electric field E directed along the plane of the particle’s motion. Contemplate the physical meaning of 
your result and its implications for the quantum 
Hall effect in a gate-defined Hall bar. (The area 
lw of such a bar is defined by metallic “gate” 
electrodes parallel to the 2D electron gas plane – 
see the figure on the right. The negative voltage 
Vg applied to the gates squeezes the 2D gas from 
the area under them into the complementary, Hall-bar part of the plane.)  

 Solution: The constant electric field directed along a certain coordinate axis (say, x) creates the 
additional potential 

xqU E . 

Reviewing the calculations carried out at the beginning of Sec. 3.2 of the lecture notes with the account 
of this additional potential, we see that Eq. (3.47) is now modified as follows: 
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where, as in Sec. 3.2, 

Bq

k
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This equation may be rewritten in a form similar to the initial one: 
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but with an additional shift of the reference point: 

E
B 2000   where,~

q

m
'x"x"xxx  , 

and, more importantly, with a different constant on the right-hand side: 
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2
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E
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"xqEE  . 

This means that Eq. (3.50) of the lecture notes is now valid for the parameter E
~

 rather than for the 
eigenenergy E, and the genuine energy spectrum now depends on x0”, i.e. on the position of the 
wavefunction’s center:  

const
2

1
0c 






  "xqnEn E . 

 The physical interpretation of this result is straightforward: the whole set of Landau levels moves 
up or down together with the electrostatic potential energy the particle would have if it was classically 
localized at the center {x0”, y0} of its wavefunction: 

      00c ,
2

1
y"xUnEn 






   ,    (*) 

where, in our particular case, U(x, y) = –qEx + const. It is virtually evident that Eq. (*) is valid for any 
external potential U(x, y) if it changes in space smoothly enough. Indeed, it may be shown that Eq. (*) is 
asymptotically correct if the potential’s curvature is sufficiently small; for example, for U = U(x) and 
relatively low Landau levels, n ~ 1, the potential has to satisfy the following condition: 128 

               
x

U

rx

U








L
2

2 1
,     (**) 

where rL is the Landau radius (3.51): rL  (/qB)1/2. For the usual quantum Hall experiments, with q 
~ e  1.610-19C and B of a few teslas, the Landau radius is of the order of 10 nm, while the walls of the 
potential well U(x) in the gate-defined Hall bar are smeared by a distance of the order of the gate 
electrode’s distance d from the 2D electron gas 
plane – typically of the order of a few hundred 
nm. Hence the condition (**) is reasonably 
well fulfilled; as a result, one may analyze the 
quantum Hall effect in such a bar using the 
picture of space-dependent Landau levels 
En(x, y) repeating the potential well’s profile – 
see the figure on the right. 

 As was discussed in Sec. 3.2 of the 
lecture notes, at sufficiently low temperatures, 
the electron states corresponding to the regions 
where these levels are submerged below the 
Fermi energy EF are fully occupied, while those 
above it are empty. As I hope the reader knows 
from undergraduate physics (and as will be 
discussed in detail in SM Chapter 6), the 
electric-field-driven electron transport may take place only at the Fermi surface, because it requires 

128 If this condition is not met, the electric field may also affect the distance between the Landau levels – see, e.g., 
the next problem. 
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repeated pick-ups of small portions of energy from the driving field and their consequent drain to 
electron scattering centers. Hence, at the quantum Hall effect, the transport is only possible in quasi-1D 
edge channels (of a small width ~ rL) formed by each Landau-level surface En(x, y) crossing the Fermi 
energy plane E = EF = const.  

 Detailed analyses (for whose description I do not have time/space this series) show that electrons 
traveling along these channels cannot be back-scattered by (unavoidable) small inhomogeneities of the 
sample. This fact is exactly the origin of the unprecedented accuracy of the Hall resistance RH (3.56), 
which is so unusual for solid-state physics. 

 

 Problem 3.5. Analyze how are the Landau levels (3.50) modified if a 2D particle is confined in 
an additional 1D potential well U(x) = m0

2x2/2. 

 Solution: With this additional potential, the Schrödinger equation (3.41) becomes 
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. 

With the same choice of the vector-potential as in Eq. (3.44), and the Fourier expansion (3.45), instead 
of Eq. (3.47) we now get 
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The two terms inside the square brackets (both quadratic-parabolic functions of x) may be merged: 
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where ef is the effective frequency defined by the following relation: 

          ,with  , c
2
0

2
c

2
ef m

qB
      (*) 

and x
~~   x – xk is the coordinate x referred to a certain point xk, which depends on our arbitrary choice 

of x0, and hence is itself arbitrary. As a result, besides an arbitrary (and inconsequential) choice of the 
energy and coordinate offsets, the Schrödinger equation is again reduced to that of a 1D harmonic 
oscillator, and hence has a similar energy spectrum, 







 

2

1
ef nEn  , 

but now with the modified (increased) frequency defined by Eq. (*). Hence the “soft” confinement 
increases the distance between the Landau levels. 

 

 Problem 3.6. Find the stationary states of a spinless, charged 3D particle moving in “crossed” 
(mutually perpendicular) uniform electric and magnetic fields, with E << cB. For such states, calculate 
the expectation values of the particle’s velocity in the direction normal to both fields and compare the 
result with the solution of the corresponding classical problem. 
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 Hint: You may like to generalize Landau’s solution for 2D particles, discussed in Sec. 3.2 of the 
lecture notes, to the 3D case. 

 Solution: Just as was done in Sec. 3.2, let us direct the z-axis along the magnetic field and the x-
axis along the electric field; then we may use the same choice (3.44) of the vector-potential: 

  0,,0 0  zyx AxxAA B , 

and write the electrostatic potential in the form 

      xqqUx EE  rrr    so, .  

With these choices, the Schrödinger equation (3.27) takes the form 
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It is evidently satisfied by the following eigenfunction (which is a natural generalization of the function 
used in Eq. (3.45) of the lecture notes):129 

            00exp zzikyyikxX zykk  ,    (*) 

where the function Xk(x) obeys the following 1D equation:  
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This equation may be rewritten in the form of Eq. (3.47): 
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where "xxx 0
~   is the coordinate x offset by the value (now depending on both applied fields):  
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and kE
~

is the eigenenergy Ek, offset by a constant.130 As was discussed in Sec. 3.2, Eq. (**) is satisfied 

by eigenfunctions of a 1D harmonic oscillator with the frequency c equal to the cyclotron frequency of 
the particle’s motion in the applied magnetic field – see Eq. (3.48) of the lecture notes.  

 Now we may combine Eqs. (3.20) and (3.25) of the lecture notes to calculate the operator of the 
particle’s velocity along the y-axis normal to both applied fields: 
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129 Here the index k symbolizes the set of c-number parameters ky, kz, x0, y0, and z0. 
130 Eqs. (**) and (***) are a natural 3D generalization of the corresponding formulas derived in the model 
solution of Problem 4. 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 117 

By using Eq. (***), this result may be represented as 
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 For the properly normalized eigenfunction (*), the expectation value of the operator /y is iky, 
so the expectation value of the expression in the last parentheses vanishes.  Also, due to the symmetry of 
the confining potential of a harmonic oscillator and the resulting symmetry of its eigenfunctions,131 

       xXxXxXxX kkkk
~~  i.e.,~~  , 

the expectation value of its coordinate equals zero for any eigenstate: 
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 so we finally get 

       cvv yy   , for 
B

E
.     (****) 

(The last strong equality explains the condition E << cB in the assignment; if it is not fulfilled, the 
analysis of this problem requires relativistic quantum mechanics.) 

 Very counter-intuitively, this simple result is valid for any eigenfunction (*) of the system, i.e. 
any set of parameters ky, kz, x0, y0, and z0!132 This fact becomes (slightly :-) less surprising if we recall 
the classical solution of this problem:133  it shows that the trochoid-like trajectory of the particle “drifts”, 
in the direction normal to both vectors E and B, exactly with the velocity expressed by Eq. (****), 
independently of initial conditions.134 Of course, the instant velocity v of a classical particle, besides the 
average drift component (****), generally has other components oscillating with the cyclotron 
frequency, whose amplitude and phase do depend on the initial conditions. But the same may be true for 
the expectation value v in quantum mechanics if the initial state of the particle is a superposition of 
two or more eigenstates (*) rather than just one of them, as was implied at the calculation of Eq. (****). 

 

Problem 3.7. Use the Born approximation to calculate the angular dependence and the total 
cross-section of scattering of an incident plane wave propagating along the x-axis, by the following pair 
of similar point inhomogeneities: 
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131 See Eqs. (2.281) and (2.284) and/or Fig. 2.35 of the lecture notes. 
132 In particular, it gives the average velocity of the particle’s motion along the edge channels that were discussed 
in the solution of Problem 2. 
133 See, e.g., EM Sec. 9.6 (iii), and in particular Eq. (9.168) and Fig. 9.12. 
134 Even the reader unfamiliar with this general classical result should readily recognize its following particular, 
simple case: a linear, uniform motion of the particle along axis y is possible only with such velocity vy that the 
electric and magnetic components of the Lorentz force cancel each other, so the total force vanishes: F = q(E  + 
vB)  q(Enx + vynyBnz)  nxq(E + vyB) = 0, giving the result identical to Eq. (***). 
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Analyze the results in detail. Derive the condition of the Born approximation’s validity for such delta-
functional scatterers. 

Solution: Plugging the given U(r) into the general Born integral given by Eq. (3.86) of the 
lecture notes, we get the following scattering function: 
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Since in this problem (see the figure on the right) 
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where   is the angle between the direction of the vector k (toward the observer) 
and the z-axis,135 our result may be rewritten as 
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so, according to Eq. (3.84), the differential cross-section of scattering is 
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 Now we can calculate the total cross-section, by using spherical coordinates with the z-axis taken 
for the polar one: 
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where 1 is the energy-independent total cross-section of each point scatterer: 
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 This situation is of course just a variety of the Young-type experiment (cf. Fig. 3.1 of the lecture 
notes), and Eq. (*) is a particular embodiment of Eq. (3.11) with a1 = a2 and the alternative path 
lengths difference l2 – l1 = l = a cos – see the figure above. For this particular geometry, the scattered 
wave is symmetric about the z-axis. This is natural, because in the Born approximation, the role of the 
incident wave, in our case propagating along the x-axis, is reduced to the excitation of spherical 
secondary waves s from all (in our case, just two) partial scatterers. As a result of the interference of 
these two spherical waves, the scattered wave’s intensity oscillates with the angle , reaching its 
maxima at 

,...2,1,0with  ,
2
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n
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
, 

i.e. at the angles at which the path difference l between the two waves is a multiple of the de Broglie 
wavelength  = 2/k.  

135 Note that  is different from what is usually called the scattering angle  (between the vectors k and ki). 

a
l



z

k

ik



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 119 

 However, at low particle energies (ka << 1, i.e. a << ), this “constructive interference” 
condition may be satisfied only for n = 0, and the scattering is spherically-symmetric and energy-
independent:  = 41, the factor of 4 arising from the coherent addition of the two waves in all 
scattering directions. On the other hand, at high energies (ka >> 1) the intensity of the scattered wave 
oscillates rapidly with the angle , so the total cross-sections of the scatterers add up as if they were 
incoherent:  = 21. 

 In order to estimate the Born approximation’s validity condition, let us replace the delta-
functional scatterer with one of a finite (though very small) size R << a, k–1, and a potential of such a 
magnitude ~U0 that W ~ U0R

3. According to Eq. (3.77) of the lecture notes, to have | ψs | << | ψi | inside 
the scatterer, we should have 
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

 W . 

For a fixed W (and hence σ1), this condition is never fulfilled at R → 0. This means that we cannot take 
the above expression for σ1 too literally (unless it is indeed much less than R2, where R is the physical 
size of the “point” scatterer).  

However, the calculated interference pattern as such, i.e. the functional dependence of the 
intensity on the angle ,  has a much broader validity. Indeed, in order for the Born approximation to be 
correct on this issue, it is sufficient for the wave scattered by one point not to interfere with the incident 
wave at the other point. For that, in the integral (3.72) calculated for that location, we can approximately 
replace Ud3r with W,  with i, and the denominator with a. Then the generic requirement of the Born 

approximation, s  << i gives a much milder condition, 
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which does not involve the scatterer’s size R. 

 

 Problem 3.8. Use the Born approximation to analyze the scattering of particles of energy E by a 
very thin, straight, uniform rod of length l, oriented normally to the incident particle’s velocity. In 
particular, calculate the differential and total cross-sections of scattering and analyze the results in the 
low-energy and high-energy limits. 

Solution:  Let us direct the z-axis along the incident particle’s velocity, and the x-axis along the 
scattering rod’s length, with the origin in its middle. Then we can describe the scattering potential as 
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where   {y, z}. For this potential, Eq. (3.88) of the lecture notes yields 
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where  is the angle between the x-axis and the vector k (and hence the direction toward the 
observer),136 while  


 sin

sinc   

is the function frequently met in the theory of diffraction of waves of any physical nature, its square 
describing, in particular, the famous Fraunhofer diffraction pattern – see, e.g., EM Secs. 8.4-8.8. 

Eq. (*) shows that the scattering pattern is axially symmetric, with the axis defined by the rod’s 
orientation (x) rather than the initial particle propagation direction (z). In particular, at kl << 1, the 
scattering is completely isotropic, while in the opposite limit kl >> 1, the scattered wave is concentrated 
near the plane normal to the rod’s axis, where  – /2 ~ 1/kl << 1, so  
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 The total cross-section of scattering may be readily obtained by the integration of the right-hand 
part of Eq. (*) in spherical coordinates, with the polar axis directed along the x-axis:  
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where the dimensionless function 







df 
0

2sinc
1

)(  

is plotted, together with its asymptote f()  /2,137 in the 
figure on the right. Thus in the low-energy limit kl << 1, the 
cross-section is energy-independent, while at high particle 
energies, it decreases with energy as   1/kl  E–1/2. 

 

 

Problem 3.9. Complete the analysis of the Born scattering by a uniform spherical potential 
(3.97), started in Sec. 3.3 of the lecture notes, by calculation of its total cross-section. Analyze the result 
in the limits kR << 1 and kR >>1. 

 Solution: The scattering intensity has the axial symmetry about the axis of the incident wave’s 
propagation, so the total cross-section may be calculated as 

136 Again (as in the previous problem), please mind the difference between this angle and the scattering angle, 
typically denoted as  – the angle between the vectors k and ki (the latter one, in our current notation, is directed 
along the z-axis). The integration in Eq. (*) has used the fact that the wave vector ki of the incident wave does not 
have an x-component, so qx  (k – ki)x = kx = k cos. 
137 See, e.g., MA Eq. (6.12). 
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with the differential cross-section given by the last of Eqs. (3.98) of the lecture notes:  
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(The dimensionless parameter u0 was already used in Fig. 3.10 of the lecture notes.)  

 The easiest way to calculate the integral in Eq. (*) is to notice that since 
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the product sind  may be replaced with qdq/k2, so 
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where   qR, while g  R2 is the largest geometric cross-section of the sphere, i.e. its cross-section 
“as seen by the incident particles”. This is a table integral,138 finally giving 
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 The figure on the right shows the normalized cross-
section given by Eq. (**) as a function of the 
dimensionless product kR proportional to E1/2. In the low-
energy limit (kR  0), the result tends to the energy-
independent value 4/9, which could be readily obtained 
without the general integration, just by using the fact 
(discussed in Sec. 3.3 of the lecture notes) that in this 
limit, the scattering is isotropic, with d/d = 0u0

2/9:  

g
2
011 9

4
4  u

d

d
kRkR 


  . 

Note also that according to the analysis in the model 
solution of the previous problem, the Born approximation 
is only valid if the parameter u0 is much smaller than 1, i.e. 
if the calculated total cross-section is much smaller than 
g.139 

138 See, e.g. MA Eq. (6.3b). 
139 As will be discussed in Sec. 3.8 of the lecture notes, the exact (i.e. beyond-Born) theory of scattering by an 
opaque sphere (which may be described by our current model with u0 >> 1) gives, in this limit, the total cross-
section  = 40. 
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 In the opposite, high-energy limit kR >> 1, the general result (**) is reduced to 

  g2

2
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
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u
kR  , 

i.e. the cross-section decreases as 1/E. This happens because, as Fig. 3.10 of the lecture notes shows, 
substantial diffraction takes place only at qR ~ 1, i.e. at small scattering angles    q/k ~ 1/kR, and 
hence within a small solid angle of the order of  2 ~ 1/(kR)2 << 1. 

 

 Problem 3.10. Use the Born approximation to calculate the differential cross-section of particle 
scattering by a very thin spherical shell, whose potential may be approximated as U(r) = W(r – R). 
Analyze the results in the limits kR << 1 and kR >> 1, and compare them with those for a uniform sphere 
considered in Sec. 3.3 of the lecture notes. 

 Solution: Plugging the given (spherically-symmetric) potential into Eq. (3.90) of the lecture 
notes, we get 
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so the differential cross-section (3.84) of the shell is 
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As was already mentioned in the model solution of Problem 
8, the square of the function   


 sin

sinc  , 

describes, in particular, the well-known Fraunhofer 
diffraction pattern – see the solid red line in the figure on the 
right. (The dashed blue line shows its envelope 1/2.)  

 In a qualitative (but not quantitative!) similarity to Eq. (3.98) of the lecture notes, which gives 
the differential cross-section of a uniform sphere in the same Born approximation, Eq. (*)  also 
describes an infinite set of zero-scattering points qn = n/R, with n = 1, 2,…, now exactly periodic in 
q, besides the forward-scattering point q  2ksin(/2) = 0, i.e.  = 0. 

 However, just as in the case of a uniform sphere, these diffraction minima (which may be 
observed as “dark” rings with constant values of the diffraction angle ) are physically implemented 
only at sufficiently large values of the product kR: in order to have N rings, kR has to be larger than N. 
In the opposite case kR << 1, the product qR is much lower than 1 for any angle , so sinc(qR)  1, and 
the scattering is virtually isotropic, with the total cross-section 
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where g  R2 is the largest geometric cross-section of the sphere, and   is the dimensionless 
parameter characterizing W and defined similarly to the one used in Chapter 2 for the discussion of 1D 
problems – see Eq. (2.197): 

mR2/2

W
 . 

 With the proper replacements a  R, U0  WR, Eq. (3.75) of the lecture notes shows that Eq. 

(**) is valid only if  << 1, i.e. if the total cross-section of scattering is much smaller than its geometric 
cross-section. Note also that d/d and  do not depend on the sign of W; as will be shown in the exact 
analysis of scattering by this potential (see the solution of Problem 47), this independence only holds in 
the Born approximation. The same analysis will show that the Born approximation also misses the 
spectacular Ramsauer-Townsend effect of high-Q resonant scattering due to long-living metastable 
states of the system at positive and sufficiently high values of the parameter  – see the solution of 
Problem 46. 

 

 Problem 3.11. Use the Born approximation to calculate the differential and total cross-sections of 
electron scattering by a screened Coulomb field of a point charge Ze, with the electrostatic potential140 
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r , 

neglecting spin interaction effects, and analyze the result’s dependence on the screening parameter . 
Compare the results with those given by the classical (“Rutherford”) formula141 for the unscreened 
Coulomb potential (  0), and formulate the condition of the Born approximation’s validity in this 
limit.  

 Solution: Applying Eq. (3.90) of the lecture notes to the spherically symmetric scattering 
potential energy 
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This integral  may be easily worked out by representing sin(qr) as Im[exp{iqr}]:  
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so Eq. (3.84) yields the following differential cross-section of scattering: 
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140 This Yukawa potential was first suggested in 1935 by H. Yukawa as a model for strong interactions. 
141 See, e.g., CM Sec. 3.5, in particular Eq. (3.73).
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 In order to calculate the total cross-section  from Eq. (3.85), we can use the geometric relation 
q = 2ksin(/2) (see Fig. 3.9b), and also the trigonometric identity sin2( /2) = (1 – cos)/2, to get 
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 In the limit of strong screening,   , there is a growing range of the values of k2 (and hence of 
the electron energies E), in which we may neglect q2 in comparison with 2 in the denominator of Eq. 
(*),  so the scattering becomes virtually energy- and angle-independent. In this limit, Eq. (**) yields 
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i.e. the total cross-section is also energy-independent and scales as a4 ~ A2  1/4  0, where a ~ 1/ is 
the effective screening radius, i.e. A  a2 is the potential’s “physical” cross-section. 

 In the opposite limit of negligible screening (  0), i.e. of the unscreened Coulomb potential, 
the total cross-section (**) diverges as A  a2 = 1/2, just as it does in the classical theory.142 In this 
limit, Eq. (*) yields 
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Noticing that (k)2/2m is just the energy E of the scattered particles, we see that this result exactly 
coincides with the classical Rutherford formula  
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This coincidence is quite remarkable in view of the completely different conceptual structures of 
classical and quantum calculations.  

 The divergence of the effective screening radius a ~ 1/ at  0 also affects the application, in 
this limit, of Eq. (3.77) of the lecture notes for the Born approximation validity. Indeed, since our 
potential diverges at r  0, i.e. does not have an immediately apparent magnitude scale U0. We may 
give a fair estimate of this scale by identifying the magnitude of the integral U(r)d3r with U0a

3. For our 
particular potential, 
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so U0 ~ C/a. With this estimate, Eq. (3.77) yields the following limitation on the constant C: 

142 As was mentioned in CM Sec. 3.5, this divergence disappears at the account of a nonvanishing spatial density 
n of such scattering centers, with the average reciprocal distance ave = n1/3 between them playing a role 
qualitatively similar to that of our parameter . 
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 1,max
2

ka
ma

C


 . 

But in the limit   0, i.e. a  , ka becomes much larger than 1 for virtually any values of k, so for 
the unscreened Coulomb potential we may replace max[ka, 1] with just ka, and the validity condition 
takes the form 
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where v is the scale of velocity of the scattered electron. (With this estimate’s accuracy, the difference 
between the phase and group velocities, given by Eq. (2.33b), is insignificant.) Using the definition of 
the fine structure constant (which will be repeatedly discussed later in this course): 
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this condition may be rewritten as  
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v
Z  .      (***) 

 Since all our results so far are only valid for non-relativistic particles, with v/c << 1, the Born 
approximation is valid only for relatively light atoms;143 for the important case of a hydrogen atom (Z = 
1), Eq. (***) takes the form 

137
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c

v
.  

  

 Problem 3.12. A quantum particle with electric charge Q is scattered by the field of a localized 
distributed charge with a spherically symmetric density (r) and zero total charge. Use the Born 
approximation to calculate the differential cross-section of the forward scattering (with the scattering 
angle   = 0), and evaluate it for the scattering of electrons by a hydrogen atom in its ground state. 

 Solution: According to classical electrostatics, the potential energy of a point charge Q in an 
external electric field is U(r) = Q(r), where (r) is the electrostatic potential of the field. If the field is 
created by a static charge distribution (r), its potential satisfies the Poisson equation144 
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In our current case, the charge distribution is spherically symmetric, and so is the potential distribution: 
(r) = (r). In this case, the Laplace operator is (relatively :-) simple, 
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enabling us to write an explicit expression for (r) as the following double integral: 

143 Note that for heavy atoms, the potential model explored in this problem is very approximate anyway; a better 
approximation is given by the so-called Fermi-Thomas model – see Chapter 8. 
144 See, e.g., EM Eq. (1.41). 
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where the integration constant, for convenience, may be selected from the usual condition () = 0. The 
resulting expression for U(r) = Q(r) may be plugged into Eq. (3.90) of the lecture notes, written for the 
forward-scattering limit k  ki (i.e. at q  k – ki  0): 
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and the resulting triple integral may be reduced to a single one via a double integration by parts. (This 
additional exercise is highly recommended to the reader.) 

 However, the same final result may be obtained more simply way from Eq. (3.86) by recalling 
that (as was already noted in that section of the lecture notes) the integral  

  rdeUU i 3rqrq
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in that expression is just the complex amplitude in the 3D Fourier expansion of the function U(r) into 
the Fourier integral over monochromatic plane wavefunctions e–iqr. The Laplace operator’s action on 
such a function is equivalent to its multiplication by the factor (–iq)(–iq)  –q2, so Eq. (*) immediately 
yields the following simple relation between Uq and the similarly defined Fourier amplitude q of the 
charge distribution: 
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and the Born integral (3.86) takes the form 
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 This expression is valid for an arbitrary localized charge distribution. If it is spherically 
symmetric, the formula may be readily reduced to a 1D integral, exactly as it was done for an arbitrary 
potential profile in Eq. (3.90) of the lecture notes: 
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At the nearly-forward scattering, q  0, and the sine function under the integral may be well 
approximated by just two leading terms of its Taylor series at q  0: 
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The integral of the resulting first term, q(r)r2dr,  is proportional to the net charge of the scattering 
center and, by the problem’s condition, equals zero. This leaves us with the integral of the second term: 
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which does not depend on q, and hence is valid for the purely-forward scattering (k = ki) as well. The 
corresponding differential cross-section is given by Eq. (3.84): 
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 For the hydrogen atom, the charge distribution (r) consists of a proton’s contribution, which is 
well approximated by e(r), and hence does not contribute to our integral, and that of the electron: (r) 
= –e(r) 2. According to Eq. (3.174), (3.179), and (3.208) of the lecture notes, in the ground state, with 
the quantum numbers n = 1, l = 0, and m = 0,  
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with r0 = rB, so the required integration is easy:145 
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Now with Eq. (1.10) for the Bohr radius,  
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Eq. (**), with m = me and Q = –e, yields a remarkably simple result: 
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Problem 3.13. Prove the optical theorem (3.99). 

 Hint: For the general solution (3.64) of the scattering problem, with i given by Eq. (3.6) and s 
in the form (3.81), calculate the full probability current I through a spherical surface of radius r >> k–1, 
and then require that in accordance with the continuity relation (1.48), in this stationary situation, I = 0. 

 Solution: Following the Hint, at large distances (r >> k-1) from the scatterer we may represent the 
full wavefunction as 
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Plugging this sum into the basic Eq. (1.47), in the form  

  *Im
m


j , 

which is valid for any stationary wavefunction (1.69), we may represent the probability current density 
as a sum of three terms: the incident wave’s current 

145 See, e.g., MA Eq. (6.7d) with n = 4. 
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and the interference term 
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. 

 The first term, i.e. the uniform current density ji of a plane de Broglie wave, does not contribute 
to the full probability current 
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through any spherical surface.146 Calculating the (only needed) radial components of the two other terms 
(js and jint), we may take into account that due to the strong inequality kr >> 1, the corresponding 
component nr/r of the gradient is dominated by the fast-changing exponents, while the derivative of 
the factor f/r is negligible. Indeed, for the first of these two terms, this fact was already used in Sec. 3.3 
of the lecture notes, giving Eq. (3.83): 
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where the last step used Eq. (3.85). 

 What remains is to apply the same “far-zone” approximation to the interference current jint: 
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where cos  kir/kr – see also the previous footnote. Now integrating this expression over the solid 
angle to calculate Iint, we should note that since kr >> 1, both complex exponents in the square brackets 
oscillate fast at minor changes of , so their averages over almost all elementary angles d vanish. The 

146 If this is not evident, take into account that jinr  kinr  cos, where  is the polar angle in the spherical 
coordinates with the incident wave direction taken for the z-axis, and that the integral of cos over the whole solid 
angle vanishes. 
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only exception is a close vicinity of the positive direction of the ki-axis, where k  ki, i.e.    << 1, so 
the function (cos  – 1) is near its maximum (equal to 0) and hence changes very slowly. In this vicinity, 
we may expand this function to the Taylor series (cos  – 1 = – 2/2 +) and keep only the leading term 
in this expression, as well as in the pre-exponential factor cos = 1 –  2/2 … and in the spherical area’s 
polar factor sin =   –  3/6 +…:147 
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 Only the second term in the last square brackets, which is an odd function of 2, gives a 
nonvanishing contribution to this integral: 
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where   kr 2/2. The “infinite” upper limit in this integral should be understood as an average of some 
values max >> 1. Since the integral, equal to (1 – cosmax ), is a fast-changing function of max, it has to 
be taken equal to the average value of this function,148 in our case to 1. Hence, 
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so that using Eq. (*), we get 
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Requiring this full probability current to vanish for any i, we get the optical theorem (3.99). 

 Besides proving the theorem, the above calculation yields a very clear physical picture of its 
physical origin: the incident and scattered waves strongly interfere in the forward direction where k  
ki. Depending on the sign of Imf(ki, ki), this interference may be either constructive or destructive. Now 
there should be no surprise that the Born approximation fails to satisfy the theorem: in it, the mutual 
interference between the incident and scattered waves is completely neglected – please revisit Eq. 
(3.83). As we have just seen, this deficiency most strongly affects the forward scattering’s description. 

 

 Problem 3.14. Reformulate the Born approximation for the 1D case. Use the result to find the 
scattering and transfer matrices of a “rectangular” (flat-top) scatterer with 

147 We are also assuming that the scattering function f(k, ki) is sufficiently smooth at k  ki, so within the small 
polar region where kr 2 ~ 1, it may be replaced with its forward-scattering value f(ki, ki). 
148 This fact may be proved, for example, using the standard following trick: multiplying the function under the 
integral by exp{–} where  is a small positive constant, working out the integral in the limits [0, ], and then 
following the limit   0. 
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Compare the results with those of the exact calculations carried out in Chapter 2 and analyze how their 
relationship changes in the eikonal approximation. 

Solution: Just as in the 3D case discussed in Sec. 3.3 of the lecture notes, the solution of the 1D 
version of the Born equation (3.66), 
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via the 1D Green’s function that satisfies the following equation: 
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 At x  x’, the equation is evidently satisfied by the usual monochromatic de Broglie waves 
propagating from the source, i.e. from the point x’: 
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(As in the 3D case, the waves converging upon the source point x’ are irrelevant.) The coefficients C in 
this relation may be found from the boundary conditions at the source point x = x’. First, the Green’s 
function (as any wavefunction) should be continuous, giving C+ = C–  C, so we may write 
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Second, integrating the above differential equation for G over a small interval of x around x’, just as this 
was done at the derivation of Eq. (2.75), we get another boundary condition: 
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giving C = 1/2ik, so in the 1D Born approximation, 
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 For the “rectangular” scatterer specified in the assignment, and an incident wave of a unit 
amplitude arriving from the left, 0(x) = exp{ikx}, this approximation yields 
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(For our current purposes, we do not care too much about the wave inside the scattering region.) 
Carrying out these elementary integrations, and adding the incident wave to the scattered one, for the 
total wavefunction outside of the scatterer, we get 
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where I have used the convenient dimensionless parameter: 
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which reduces to our old friend (2.78),   = mW/k2, for a short scatterer with d << 1/k and W  U0d. 

(Please note that according to Eq. (*), the Born approximation is only valid if  << max [1, kd], i.e. only 
if U0/E << max[1/kd, 1].) 

 Comparing Eq. (*) with the definition of the complex amplitudes used in the discussion of the 
1D transfer and scattering matrices (see Eq. (2.120) of the lecture notes), with the reference points x1 = –
d/2 and x2 = +d/2, 
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we see that in our case, 
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Now here and the definition (2.123) of the scattering matrix components, we obtain 
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 As a sanity check, for a short scatterer (kd << 1) with  << 1, the above results for S11 and S21 coincide 
with the results obtained in Sec. 2.5 of the lecture notes – see Eqs. (2.133). The two remaining elements 
of the scattering matrix, 

  ,1,
sin

1222
ikdikd eiSe
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may be found by repeating our calculations for a wave incident from the right.149 Now we can use Eqs. 
(2.126) to calculate the transfer matrix. Keeping only the main terms proportional to 0  1 and 1  , 
we get 

149 Note that using, for this purpose, the general relations discussed in Sec. 2.5, is dangerous because of 
the approximate character of the Born approximation. For example, for the transfer matrix obtained by 
using it, the first two general relations derived in the solution of Problem 2.15 are violated in the second 
order in . This situation is similar to that with the optical theorem (see Sec. 3.3 and Problem 13), which 
is also violated in the Born approximation. 
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 On the other hand, the exact transfer matrix for this scatterer, whose derivation was the task of 
Problem 2.29, is (for the relevant case E > U0): 
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In the limit U0  0, pertinent to the Born approximation, i.e. at 
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the matrix takes the form 
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 Comparing the last form of this relation with Eq. (**), we can see that the main deficiency of the 
Born approximation150 is that, by construction, it ignores the changes in the propagation speed of the 
incident and scattered waves, due to the scatterer’s potential. (This deficiency disappears only if the 
difference between kd and k’d is much smaller than 1 – which is, for large d, a very tough call.)  

 This drawback of the Born approximation is corrected in the eikonal approximation – see Eq. 
(3.102) of the lecture notes. Indeed, applying that formula to our current problem, we see that it yields a 
result similar to Eq. (**), but with the replacement 
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tends to the so-corrected value k” much faster than to the uncorrected (free-space) value k. 

 

150 In addition, the Born approximation gives, in the diagonal elements of the transfer matrix, a term proportional 
to , which is not apparent in its exact form. It is easy to check, however, that such a term appears in the first 
order of the Taylor expansion of exp{k'd} in this small parameter. 
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   Problem 3.15. In the tight-binding approximation, find the lowest stationary states of a particle 
placed into a system of three similar, isotropic, weakly-coupled potential wells located in the vertices of 
an equilateral triangle. 

 Solution: Since in this system, just like in the 1D chain analyzed in Sec. 2.6 of the lecture notes, 
each potential well is coupled equally with its two neighbors, we may repeat all arguments that had led 
us to Eq. (2.206) of the lecture notes, and rewrite that relation as 

 cos2 11  EE , 

where   qa, and 1 is given by Eq. (2.204) for the ground state (with n = 1). However, in contrast to 
the infinitely long chain, in our current ring-like, periodic system, the phase shift  in Eq. (2.205), 
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cannot take an arbitrary real value. Indeed, a shift by three positions (j = 3) has to lead to a physically 
indistinguishable probability amplitude aj, so 3 should be a multiple of 2m, where m is any integer. 
This gives us only three physically distinguishable values of , and hence only two possible 
eigenenergy values: 
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Hence, due to the wells’ coupling, the ground-state energy level splits into two sublevels, with the lower 
(genuine ground-state) one being non-degenerate, and the higher sublevel doubly-degenerate. 

 Please note a deep analogy between these quantum states and the states (with n = 0 and 1) of 
the particle on a ring, which was analyzed in Sec. 3.5 – see, e.g., the eigenenergy diagram shown in Fig. 
3.18, for  = 0. Similarly to that system, if the particle in our current problem is electrically charged, a 
magnetic field with a non-zero component normal to the well’s common plane lifts the higher level’s 
degeneracy. 

 

 Problem 3.16. The figure on the right shows a fragment of a periodic 2D 
lattice, with the red and blue points showing the positions of different local 
potentials.  

 (i) Find the reciprocal lattice and the 1st Brillouin zone of the system. 
 (ii) Calculate the wave number k of a monochromatic de Broglie wave 
incident along the x-axis, at which the lattice creates the lowest-order diffraction 
peak within the [x, y] plane, and the direction toward this peak. 
 (iii) Semi-quantitatively, describe the evolution of the intensity of the peak when all local 
potentials become similar. 

 Hint: The order of diffraction on a multidimensional Bravais lattice is a somewhat ambiguous 
notion dependent on the lattice type, but the lowest-order peak is always that corresponding to the 
smallest non-zero magnitude of the vector Q. 

a

a

x

y
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 Solution: In this case, the Bravais lattice basis evidently has to consist of 
at least two points – one “red” and one “blue”. A natural (though by no means 
not unique) selection of the primitive vectors is shown in the figure on the right: 

   aaa ,;0,2 21  aa . 

For a 2D lattice, we may define the third primitive vector a3 formally, for 
example as a normalized vector product of a1 and a2, in our case getting151 
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aa

a
aa

zyx

2,0,0
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002
121
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
nnn

aa
a , 

so the products participating in Eqs. (3.111) are 

   ,0,4,0
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32 a

a
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zyxzyx
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nnn
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aa  

and a1(a2a3) = 4a3. With these expressions, the first two of Eqs. (3.111) 
yield the following primitive vectors of the reciprocal lattice: 

   20,1,1 21  ,
aa


bb . 

 This result shows that the reciprocal lattice is also of the square type, 
but turned by /4 relative to the axes nx and ny – see the figure on the right. 
Naturally, the 1st Brillouin zone of this lattice is also a square – see the 
dashed lines in that figure. 

 (ii) Of all the reciprocal lattice vectors (3.109), in our case 

 1212211 2, lll
a

ll 


bbQ , 

four vectors 
 1,1 

a


Q  

have the smallest nonvanishing magnitude Q = 2/a. The red arrows in the figure 
above show the two of them, 

   ,1,12  and,1,1 211   aa


bbQbQ  

that are responsible for the lowest order of diffraction for particles incident from the 
left, with ki = {k, 0}. The figure on the right shows that in this case, the lowest-order 
elastic scattering (with  k  =  ki   k) is by the angles  = /2 and that the resonant 

151 There is no need to be overly concerned by this choice, because for 2D lattices the third primitive vector a3 is a 
formal (mathematical) construct, which enables us to use the 3D relations (3.111) directly, and it is only important 
to keep it is linearly independent of a1 and a2.  
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value of the incident wave vector, for both peaks, is 

a

Q
k


 

2
. 

  (iii) According to Eq. (3.84) of the lecture notes, the diffraction intensity (as quantified by the 
differential cross-section of scattering) in a particular direction scales as the modulus square of the Born 
integral (3.86). For our particular case (q = Q), the function under this integral is 

   






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





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



   y

a
ix

a
iUyx

a
iUiU


expexp)(exp)(exp)( rrrQr . 

The positions of the local potentials, symbolized by the red and blue points in the figure given in the 
assignment, differ by x = a, corresponding to equal and opposite values of the factor exp{ix/a}, in 
each basis. Hence if these potentials become equal, the Born integral along the x-axis vanishes for any 
fixed y, so the whole integral equals zero, i.e. this particular diffraction peak disappears. 

 This result is natural, because in this case, the scattering system may be represented with a 
simple square lattice (the 2D version of the one shown in Fig. 3.11a of the lecture notes) with a single-
point basis and a different (simpler) set of primitive vectors. The reader is challenged to work out this 
simpler case, and in particular to calculate the direction toward the lowest-order diffraction peak and the 
necessary value of k.  

 

Problem 3.17. For the 2D hexagonal lattice (see Fig. 3.12b of the lecture notes): 

(i) find the reciprocal lattice Q and the 1st Brillouin zone;  
(ii) use the tight-binding-approximation to calculate the dispersion relation E(q) for a 2D particle 

moving through a potential profile with such periodicity, with an energy close to the eigenenergy of 
similar isotropic states quasi-localized at the lattice points; 

(iii) analyze and sketch/plot the resulting dispersion relation E(q) 
inside the 1st Brillouin zone. 

Solutions:  

(i) Let us choose the primitive vectors of the direct Bravais lattice 
R as shown with the blue arrows in the figure on the right: 

   ,3
2

,3
2 21 yxyx

aa
nnanna   

where a is the so-called lattice constant – in this case, the distance 
between the adjacent points. Making also a natural choice a3 = anz (so that this artificial primitive vector 
is linearly independent of the substantial two), we get 
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 so for the primitive vectors of the reciprocal lattice Q, Eqs. (3.111) yield 
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The vectors b1,2 have equal lengths, b = 4/3a, and the angle 
between them is a multiple of /3. Hence the reciprocal lattice Q is also 
hexagonal, with the lattice constant equal to b, but turned by /6 with 
respect to the direct lattice – see the figure on the right. Now we can form 
the 1st Brillouin zone by connecting the central point of the lattice (qx = qy 
= 0) with its 6 nearest neighbors and drawing the perpendicular to the 
middle of each segment – see the dashed lines in the figure on the right. 
We see that the zone (shaded in this figure) is a hexagon whose side’s 
closest approach to the origin is qmin = b/2 = 2/3a and the farthest is 
qmax = (2/3)qmin = 4/3a. 

(ii) In the direct hexagonal lattice R, each quasi-localized state has 
6 closest similar neighbors, at the same distance a, so the tight-binding approximation should account 
for 6 corresponding state couplings. For isotropic localized states, all coupling coefficients n are equal, 
so instead of Eq. (3.118) of the lecture notes (derived for a square lattice), we may write  

      210

neighbors
nearest

coscoscos2 aqaqaq
rq

 



nn

j

j
nn EeEE

i
 , 

where a0  –anx (see the green arrow in the first figure above). 
Plugging into this relation the Cartesian representations of the 
vectors a1,2 (spelled out above) and q = qxnx + qyny, we get 
















2

3
cos

2
cos2cos2

aqaq
aqEE yx

xnn  . 

 (iii) The energy given by this formula is shown in the 
figure on the right as a color-coded contour plot, with the 
dashed line showing the boundary of the hexagonal 1st 
Brillouin zone calculated in Task (i) – cf. the previous figure. 
We see that the function E(q) has the periodicity of the 
honeycomb lattice, with the “summits” and “passes” along that 
boundary. Note that finding this zone from the plot of E(q) 
would be even simpler than that via the reciprocal lattice construction! (Practically, it is prudent to use 
both ways and compare the results, as a sanity check.)   

 

Problem 3.18. Complete the tight-binding calculation of the band structure of the honeycomb 
lattice, that was started at the end of Sec. 3.4 of the lecture notes. Analyze the results; in particular, 
prove that the Dirac points qD are located in the corners of the 1st Brillouin zone and express the velocity 
vn participating in Eq. (3.122), in terms of the coupling energy n. 
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 Solution: Let us select the two-point 
unit of the lattice as shown in Fig. 3.12a of the 
lecture notes, which is partly reproduced on 
the left panel of the figure on the right, with 
the letters  and  marking the probability 
amplitudes of the quasi-localized 
wavefunctions participating in Eqs. (3.119). 
The right two panels show the vectors rj and 
r’j’ participating in Eqs. (3.120)-(3.121), 
conveniently numbered to have r’j = –rj. Due 
to that symmetry, the double sum in Eq. (3.121) may be simplified as 

  
 
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e
 

 Selecting the coordinate axes as shown at the bottom of the same figure above, and taking into 
account that all the angles between the vectors rj are multiples of 2/3, the vector differences 
participating in the last expression may be represented in the Cartesian coordinates as 

    ,3,3
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where a is the distance between adjacent points of the lattice (see the figure above), so Eq. (3.121) 
yields:152 
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The left panel of the figure below shows the “global” 2D contour plot of the lower energy sheet, 
proportional to –1/2, on the q-plane, while its right panel is a local 3D plot of both sheets, i.e. 1/2, 
near  one of the special “Dirac” points (at that  = 0, i.e. the sheets touch), namely the point with  

        0,
33

4
DD  yx q

a
q


.    (*) 

(As the global plot shows, there are six such Dirac points at the same distance from the origin, separated 
by angles /3, i.e. located in the corners of a honeycomb cell.) 

 

152 This result was first obtained (as a part of a theoretical analysis of the usual graphite) by P. Wallace in 1947. 
Note that the shape of each energy sheet is similar to that for the hexagonal lattice, calculated in the previous 
problem (besides a proportional re-scaling of qx and qy); however, the existence of the top sheet is specific for the 
honeycomb direct lattice, with its two-point unit cell.
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However, any deviation of the quasimomentum q from qD (in either magnitude or direction) 
immediately breaks this balance. Indeed, expanding the function (qx, qy) in the Taylor series near any 
of the Dirac points, for example, the point described by Eq. (*), and neglecting all the terms beyond the 
quadratic ones, we see that the constant and linear terms cancel, giving 

  DD
222

D

~,~ where,~~
4

9
yyyxxxyx qqqqqqaqq  qq . 

This result shows that the dispersion relation E(q) near that point is indeed linear and isotropic,153 as 
Eq. (3.122) of the lecture notes has promised: 

         qqq
~

D nn vEE 
, 

with the dispersion-free velocity 



a
v nn 

2

3
 . 

For the 2pz electrons in graphene (a  0.142 nm), n  2.8 eV, and this result yields vn  0.9106 m/s.  

 

Problem 3.19. Examine the basic properties of the so-called Wannier functions154 defined as 

qdeC i 3
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)()(   Rqrr qR  , 

153 An additional exercise for the reader: describe the motion of electrons with E  En in an additional uniform 
magnetic field B = Bnz, assuming that it is not too strong (Ba2 << ’0), and using the quasi-classical 
approximation analogous to Eq. (2.237). 
154 Named after G. Wannier who introduced these functions in 1939. 
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where q(r) is the Bloch wavefunction (3.108), R is any vector of the Bravais lattice, C is a 
normalization constant, and the integration over the quasimomentum q is extended over any (e.g., the 
first) Brillouin zone. 

 Solution: According to the Wannier function’s definition, it is just the 3D Fourier image of the 
Bloch function (i.e. of any extended eigenfunction of the stationary Schrödinger equation for a particle 
in a periodic potential) considered a function of its quasimomentum q. (Notice the index attached to 
(r) to emphasize its dependence on q; this index was just implied in Secs. 2.7 and 3.4 of the lecture 
notes.) Let us plug Eq. (3.108) of the lecture notes (with the same index q attached to the periodic 
functions u(r) as well) into the Wannier function’s definition: 

   qdeuCqdeeuC
iii 3
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RrqRqrq rrr qqR
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Since the functions uq(r) are, by definition, invariant with respect to the translation by any Bravais 
lattice vector R’, 
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we may calculate 
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This result means that the Wannier function depends only on the difference between r and R, i.e. is 
repeated near each point of the Bravais lattice.  

Next, the Wannier functions centered at different Bravais lattice points R and based on (mutually 
orthogonal) Bloch functions q,n(r) of particular energy bands n form a full orthogonal basis: 
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where the r-integration is over the primitive cell (UC) of the Bravais lattice. (The set may be readily 
made orthonormal, with the appropriate choice of the constant C in the Wannier function definition.)   

 In order to appreciate the practical value of the Wannier functions, notice that the Bloch 
functions (as all eigenfunctions of any time-independent Hamiltonian) are only defined to an arbitrary r-
independent phase coefficients exp{i}, where the choice of the real phase , for any q, is arbitrary.  
Hence the shape of Wannier functions depends on the choice of the function (q); in particular, this 
function may be hand- (or rather computer-155) crafted to make R,n(r) maximally localized near the 
point r = R. This property of the Wannier functions, together with their evident independence of the 
quasimomentum q, and hence of the eigenenergy En(q), makes their basis convenient for several 

155 See, e.g., A. Mostofi et al., Comput. Phys. Commun. 178, 685 (2008). 
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applications, for example, for numerical simulations of the electron structure in condensed matter and of 
the electron transport in nanostructures.156 

 

Problem 3.20. Evaluate the long-range interaction (the so-called London dispersion force) 
between two similar, electrically neutral atoms or molecules, modeling each of them as an isotropic 3D 
harmonic oscillator with the electric dipole moment d = qs, where s is the oscillator’s displacement from 
its equilibrium position. 

Hint: You may like to represent the total Hamiltonian of the system as a sum of Hamiltonians of 
independent 1D harmonic oscillators, and calculate their total ground-state energy as a function of the 
distance between the dipoles.157  

Solution: According to classical electrostatics, the potential energy of interaction between two 
electric dipoles is158 

 zzyyxx dddddd
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U 2121213
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, 

where the z-axis is directed along the vector r connecting the dipoles with moments d1 and d2. In the 
single-particle model of an electrically-neutral molecule, d1,2 = qs1,2, where s1 = {x1, y1, z1} and s2 = {x2, 
y2, z2} are the displacements of the effective particles, with electric charges q, from the oppositely 
charged immobile centers. In the isotropic 3D oscillator model, the interaction energy Uint should be 
added to the sum of the potential energies (3.123) of the two oscillators, so the total potential energy is 
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 Since the dipole approximation is only valid at large distances r >> a ~ x0  (/m0)
1/2, i.e. when 

the second term of this expression is relatively small, U has a stable minimum (at the point s1 = s2 = 0), 
which does not depend on r, so classical electrodynamics cannot describe the London dispersion force. 
However, such force appears in quantum mechanics (and also in statistical physics at temperature T  
0), in which Heisenberg’s uncertainty relation forbids the oscillators from fully static positions at these 
potential minima. To quantify this effect, let us notice that in new coordinates defined as 
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the system’s potential energy U and hence its Hamiltonian as a whole fall apart into sums of coordinate 
and momentum components squared: 
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156 See, e.g., http://www.wannier-transport.org/wiki/index.php/.  
157 This explanation of the interaction between electrically-neutral atoms was put forward in 1930 by F. London, 
on the background of a prior (1928) work by C. Wang. Note that in some texts this interaction is (rather 
inappropriately) referred to as the “van der Waals force”, though it is only one (long-range) component of the van 
der Waals model – see, e.g., SM Sec. 4.1.  
158 See, e.g., EM Eq. (3.16), which uses a different notation (p) for the dipole moments.
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 This is just the sum of Hamiltonians of six independent 1D harmonic oscillators with the 
following frequencies: 
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Here the Taylor expansions in the small parameter  are extended to the third (quadratic) terms, because 
in the full Hamiltonian, the sum of the linear terms vanishes, and the first nonvanishing correction to the 
ground-state energy of the whole system is proportional to 2: 
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 The first term of the last expression is evidently the ground-state energy of two fully separated 
3D oscillators, while the second term may be interpreted as the effective potential of their interaction: 
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where EH is the Hartree energy unit (1.13), and Z  q/e. (The factor Z4(me/m)2 may be much larger than 1 
in large atoms/molecules, where the polarization is due to a simultaneous displacement of N >> 1 
electrons, so Z4  N4 while (m/me)

2  N2.)   

 Note the following features of the result for Uef: 

 – the interaction is always attractive – for any sign of the charge q; 

 – the interaction potential is proportional to 1/r6, i.e. drops with the distance much faster than 
that (U  1/r3) for atoms with permanent (field-independent) dipole moments. 

 – Uef is proportional to , emphasizing again the quantum nature of the long-range attraction – at 
least when thermal excitations of the oscillators are negligible. 

 Later in the course (in Chapters 5 and 6), we will explore a completely different way to derive 
the same formula and its generalization to an arbitrary single-particle model of the atom. The latter 
result will show that the listed general features of the London dispersion force are very insensitive to 
model details. That alternative approach, while being somewhat less concise, will also reveal this force’s 
physics much more explicitly. 
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Problem 3.21. Derive expressions for the stationary functions and the corresponding energies of 
a 2D particle of mass m, free to move inside a round disk of radius R. What is the degeneracy of each 
energy level? Calculate the five lowest energy levels with an accuracy better than 1%. 

Solution: We may start the solution of this problem (which is just the 2D version of the problem 
solved at the end of Sec. 3.6 of the lecture notes) from Eq. (3.147) of the lecture notes, with U() = 0,  

         E
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
.    (*) 

For our problem, this equation has to be solved with the boundary condition 

      0)( RR ,      (**) 

due to the continuity of each partial wavefunction R()F()  R()eim on the whole border  = R, i.e. 

for all values of the angle  and the integer quantum number m. After the introduction of the 
dimensionless argument   k and with the usual definition of the free particle’s wave number k (as 
2k2/2m  E), Eq. (*) is reduced to the canonical form of the Bessel equation:159 
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d
 

Its general solution is a linear combination of the Bessel functions of the first and second kind, of the 
same integer order m: 
        ).()()( 21  mm YCJC R  

However, the functions Ym() diverge at   0,160 while the wavefunction has to stay finite in the center 
of the disk. Hence, the coefficient C2 has to equal zero, and Eq. (**) is reduced to the following 
requirement: 
      .0)( kRJ m  

 This condition, which plays the role of the characteristic equation, is satisfied if the product kR is 
equal to any nontrivial root of the Bessel function, m,l  0, where the index l = 1, 2, 3,… numbers the 
roots. As a result, the eigenfunctions are 

 ime
R

JC lmmllm 





 ,, , 

and the energy spectrum is 
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0
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,0, 2
  where,

R
EEE lmlm

m


  .    (***) 

Each energy level with m  0 is doubly degenerate, due to two possible signs of m. Indeed, the Bessel 
function J–m() equals (–1)m Jm(), and hence has the same set of roots m,l as Jm(). So, the 
eigenenergies of the states with the equal but opposite values of m are exactly equal, while their 
eigenfunctions are different, due to different azimuthal factors F() = exp{im}. 

159 See, e.g. EM Sec. 2.7 of the lecture notes. 
160 See, e.g., EM Eq. (2.152) and/or Fig. 2.19. 
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Per Eq. (***), the lowest energy levels correspond to the smallest roots m,l. Using a table of the 
roots,161 we get the following approximate values for the five lowest levels: 

 

 

 

 

 

 

Note the sudden “intrusion” of the second root of J0() (m = 0, l = 2) into the initially orderly 
sequence of the first roots of Jm(), very similar to that of a similar 3D problem solved at the end of Sec. 
3.6 of the lecture notes. The comparison of these two problems also shows that the lowest eigenenergies 
of this 2D system (a particle inside the disk of radius R) are lower than those of a similar 3D system – a 
particle of the same mass inside a sphere of the same radius. Let me challenge the reader: could you 
predict this fact before doing calculations? Also, would this relation hold if the 2D disk has a small but 
non-zero thickness, i.e. is a 3D system? 

 

 Problem 3.22. Calculate the ground-state energy of a 2D particle of mass m, localized in a very 
shallow flat-bottom potential well 
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 Solution: Starting from the case of an arbitrary (but positive) U0, and repeating the arguments 
made in the model solution of the previous problem (with E replaced with the difference E – (–U0)  E + 
U0, i.e. with the wave number k now defined by the relation 

0
2 0

22

 UE
k

m


, 

due to the different position of the well’s bottom – see the figure on 
the right), we get the following radial wavefunctions inside the well: 

                       RkJC m    for  ,R . (*) 

 Outside of the well (at  > R), where U() = 0, Eq. (3.147) of 
the lecture notes may be similarly reduced to the modified Bessel equation,162 
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161 See, e.g., EM Table 2.1 – or virtually any math handbook listed in MA Sec. 16(ii). 
162 See, e.g., EM Eq. (2.155) and its discussion. 

m l n,l Em,l/E0 = (n,l)
2 

0 1 2.405 5.78 

1 1 3.832 14.68 

2 1 5.136 26.38 

0 2 5.520 30.47 

3 1 6.380 40.70 

0U


R

0 E

0UE 
E

Energy
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whose general solution is a linear superposition of the modified Bessel functions Im() and Km(). Since 
the former functions diverge at    (i.e. at   ), R() has to be proportional to the latter function 
alone: 
                 RKC m    for  ,R .    (**) 

 At the well’s wall (at  = R), the wavefunction and its radial derivative have to be continuous. 
Plugging Eqs. (*) and (**) into these boundary conditions, we get two equations: 

       ,, RK'CkRkJ'CRKCkRJC mmmm     

where each prime sign denotes the corresponding function’s derivative over its total argument. The 
condition of compatibility of these two homogeneous linear equations for two constants C gives the 
following characteristic equation for two constants k and , and hence for energy E: 
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  i.e.,0 . (***) 

 Now let us consider the ground state, with the lowest, zero value of the magnetic quantum 
number m, in the limit of very low U0 and hence of very low values of  E  and E + U0, which are both 
contained between 0 and U0 (see the figure above): 
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EEUEUE
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
 . 

According to the above definitions of the parameters k and , this means that both arguments, kR and 
R, of the Bessel functions, are much smaller than 1. In this case, these functions may be approximated 
as163 

    ,
2

ln
2

ln,1
2

1 0

2

0 R

eR
RK

kR
kRJ




























  

(where   0.5771 is the Euler constant), so 
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and Eq. (***) is reduced to 
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 Since in the limit we are analyzing, the factor before the last logarithm function is much smaller 
than 1, the function itself has to be large, so its argument has to be extremely large. (Recall that this 
function grows very slowly at large values of its argument.) Since the sum of  E  and (E + U0) is equal 
to U0, i.e. is fixed (see the figure above), this is only possible if  E  is much smaller than not only E0 but 
than (E + U0) as well. Hence, we may neglect E in the numerator of the pre-logarithm fraction, getting  

163 See, e.g., EM Eqs. (2.146) and (2.157).
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This formula shows that a bound (localized) state, though with an exponentially small  E , exists 
for any U0, however small. Qualitatively, this is also true for a similar 1D system (see the solutions of 
Problems 2.17 and 2.18), but there, the ground state’s energy level is much deeper than the 
exponentially shallow level  (****):  E  ~ U0

2/E0  E0(U0/E0)
2. 

 

 Problem 3.23. Estimate the energy E of the localized ground state of a 2D particle of mass m, in 
an axially-symmetric potential well of a finite radius R, with an arbitrary but very small potential U(). 
(Quantify this condition.) 

 Solution: Just as in the previous problem, we may argue that the ground state has the “magnetic” 
quantum number m equal to 0, so Eq. (3.147) of the lecture notes for the radial factor R() of its 
wavefunction takes the form 
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with a negative E. Also as in the previous problem, at distances  > R where U() = 0, this equation 
reduces to the modified Bessel equation, 
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and has the same solution R = CK0().  From the solution of the previous problem, we may expect that 

if  U()  is sufficiently small, the magnitude –E   E  of the ground state energy E is even much 
smaller, so R << 1.  Hence, there is a broad range of intermediate distances , with R <  << 1/, 
where we may use the same approximation for the function K0 and hence R: 
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Because of the same smallness of  E , at  < R we may neglect, in Eq. (*), the full energy in 
comparison with the potential energy: 
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Let us quantify the smallness of the potential U by assuming that the scale of its magnitude is much 
smaller than the kinetic energy scale E0  2/mR2 – again just as in the previous problem. Then we may 
integrate the last equation from  = 0 (where dR/d = 0 because of the axial symmetry of the 

wavefunction) to the same intermediate value of the 2D radius, R <  << 1/, neglecting the small 
change of R  in the second term, i.e. taking it to be equal to the value R(0) at the center of the well. An 
elementary integration yields 
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 The last expression still differs from the last formula in Eq. (**) by the logarithm, but since it is 
a very slow function of its argument, we may require these two results to be close to each other at  ~ R,  
getting the following estimate164 
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finally giving 
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 In order for this estimate to be valid, –E should be much smaller than the scale of U, and hence 
than E0  2/mR2, so the integral in the exponent of Eq. (***) has to be negative and small by 
magnitude: 
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essentially repeating the assumption already made above.  

 Note that Eq. (***) yields the correct exponent (though only a rough estimate of the  pre-
exponential coefficient) for the particular system considered in the previous problem, U() = U0 = const, 
because in this case  
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Problem 3.24. Spell out the spherical harmonics ),(0
4 Y and ),(4

4 Y . 

Solution: According to Eqs. (3.165)-(3.171) of the lecture notes, any ,sin),(  ileCY ll
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 ieCY   The normalization, by using Eq. (3.173), is straightforward: 

,
315

128
4)1(4sinsin

1

0

42

0

8
2

0

24
4 



 



dddC  

so, finally,  

.sin
2

35

16

3
),( 44

2/1
4

4



 ieY 






  

164 Taking into account the difference between 2e–  1.123 and 1 would be beyond the accuracy of this estimate. 
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 Now proceeding to :),(0
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l for m = 0, the azimuthal-angle factor 

of spherical harmonics is just a constant. Hence, we need to calculate only the polar factor 
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4  PP   From the Rodrigues formula (3.165), leaving the numerical coefficient 

aside for a while, we have 

.)1()( 42
4

4

4  



d

d
P  

The differentiation is not as hard as one could imagine because  
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and the two lowest-power terms are not important, since they gradually disappear at the sequential 
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 The normalization is a bit more tedious but still very much doable: 
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 Problem 3.25. Calculate x and x2 in the ground states of the planar and spherical rotors of 
radius R. What can you say about px and px

2? 

Solution: Since for the planar rotor, the 2D radius   (x2 + y2)1/2 is fixed at value R, its square 2 

is definitely R2, so 
22 R . 

Due to the axial symmetry of the ground state’s wavefunction (corresponding to the azimuthal quantum 
number m equal to zero), we may write x  = 0 and x2 = y2, so 2  x2 + y2 = 2x2 and hence, 
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22
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x   . 

 For the spherical rotor, with fixed r2  x2 + y2 + z2 = R2,   

22 Rr  . 

Due to the spherical symmetry of the ground state, x  = 0 and x2 = y2 = z2, so r2  x2 + y2 + 
z2 = 3x2, and 
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rx  . 

 Using the same symmetry arguments, we may write px = 0 (for both systems), px
2 = p2/2 for 

the planar rotor, and px
2 = p2/3 for the spherical rotor. However, calculating the p2 participating in 

these formulas exclusively from the angular motion of a real (3D) particle would be wrong. (Indeed, in 
the ground, s-state of both systems, in which  does not have any angular dependence, this would give 
us p2 = 0 and px

2 = 0, in a clear contradiction with the Heisenberg’s uncertainty principle, because 
x2 is finite.) Actually, the momentum’s uncertainty in such systems is dominated by the lateral 
confinement of the motion165 and cannot be calculated exactly unless the confinement potential that 
forces the particle to be a rotor, is specified quantitatively. We can, however, use the uncertainty relation 
for the following estimate: px ~ p ~ /R, where R is the radial width of the potential well providing 
the radial confinement. Since for the validity of the rotor models, we need R << R,166 we may write 
xpx   ~ R/R >> . 

 

 Problem 3.26. A spherical rotor, with r = R = const and mass m, is in a state with the following 
wavefunction:  = C(⅓  + sin2), where C is a constant. Calculate the energy of its angular motion. 

 Solution: Rewriting the wavefunction as 
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and comparing the terms of this linear superposition with Eq. (3.174) and the third line of Eq. (3.176) of 
the lecture notes, we may write 
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This expression shows that our state is a linear combination of two eigenfunctions of the rotor, both with 
the magnetic quantum number m equal to zero, but with different orbital numbers: one with l = 0, and 
another with l = 2. The ratio of the probabilities W0 and W2 of these eigenstates equals that of the 
squares of the probability amplitude moduli: 
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165 If needed, please revisit Sec. 2.1 of the lecture notes and the solution of Problem 2.1. 
166 This condition ensures, in particular, that the above calculations of x2 are correct. 
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Requiring the sum of the probabilities to equal 1, we get 
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From here, and using Eq. (3.163) of the lecture notes for the eigenenergies of the rotor, we get 
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 As a reminder, for a genuinely 3D particle, this energy does not include that of radial 
confinement. (If necessary, please revisit the beginning of Sec. 2.1 and the previous problem’s solution.) 

 

 Problem 3.27. According to the discussion at the beginning of Sec. 3.5 of the lecture notes, 
stationary wavefunctions of a 3D isotropic harmonic oscillator may be calculated as products of three 
similar 1D “Cartesian oscillators” – see, in particular Eq. (3.125), with d = 3. However, per the 
discussion in Sec. 3.6, the wavefunctions of the type (3.200), proportional to the spherical harmonics 
Yl

m, also describe stationary states of this spherically symmetric system. Represent the wavefunctions 
(3.200) of: 

 (i) the ground state of the oscillator, and 
 (ii) each of its lowest excited states,  

as linear combinations of products of the 1D oscillator’s stationary wavefunctions. Also, calculate the 
degeneracy of the nth energy level of the oscillator. 

 Solutions: 

 (i) The ground state of a system is always degenerate, and according to (3.125) of the lecture 
notes (with d = 3), for the harmonic oscillator it is merely the product,  

       zyx 0000  r , 

of the ground-state wavefunctions 0 of three 1D Cartesian oscillators – see Eq. (2.275): 
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and similarly for the other two coordinates. So, we may rewrite 0(r) in the form (3.200) with l = m = 0:  
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and verify, by the direct differentiation, that this radial function indeed satisfies Eq. (3.181) with l = 0, 
U(r) = m0

2r2/2, and E = 0/2. 167 

167 The apparently unnatural increase of n by 1 in the first index of the radial functions reflects the difference in 
the conventions accepted for 1D harmonic oscillators (where the ground state is traditionally denoted with the 
quantum number n = 0) and for the spherical-wavefunctions representation (3.200) – where it is convenient (and 
hence common) to start counting the principal quantum numbers n from 1. 
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 (ii) In the 1D oscillator language, the three lowest excited states of the 3D oscillator correspond 
to three possible combinations of  the three indices nj  (see Eq. (3.124) of the lecture notes with d = 3) 
with the lowest nonvanishing sum n  nx + ny + nz = 1: 

                                zyxzyxzyx zyx 100101010011   and,,   rrr . (**)  

Here the wavefunction 1 of the first excited state of a 1D oscillator may be calculated, for example, 
from  Eq. (2.284) with n = 1, and the second of Eqs. (2.282): 
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and similarly for two other coordinates. Using these relations and then expressing the Cartesian 
coordinates in the pre-exponential factors via the spherical coordinates, we may write 

       

      .
2

expwith ,cosconst
2

exp

,sinconst
2

exp

2
0

1,212

2
02

011

1,2

2
02

0111

 


























 





r
rrr

r
zCC

er
r

iyxCCi

,z

yx
i










 

mm

m

RR

R

r

rr

 

 Comparing these expressions with Eqs. (3.175), we see that their angular parts are proportional, 
respectively, to the spherical harmonics Y1

1(, ) and Y1
0(, ). Finally, it is straightforward to verify, 

by the direct differentiation, that the radial function R2,1(r) does satisfy Eq. (3.181), again with U(r) = 

m0
2r2/2, but now with l = 1 and E = 50/2. Thus, the stationary wavefunctions (3.200) with n = 2, l = 

1, and all three possible values m = {–1, 0, +1} may be indeed expressed as linear combinations of the 
Cartesian wavefunction products (**). 

 Finally, the degeneracy g of the nth energy level of the system, following from Eq. (3.124) of the 
lecture notes, with d = 3, 

,
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equals to the number of different sets {nx, ny, nz} of these non-negative quantum numbers, with the fixed 
sum n = nx + ny + nz. In the usual combinatorics lingo, this is just the number of different ways to place n 
indistinguishable balls into three distinct boxes. According to MA Eq. (2.4), this number is 
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In particular, for the ground state with nx = ny = nz = 0 and hence n = 0, this formula yields g = 1, while 
for the first excited state with n = 1, it gives g = 3, reflecting the wavefunctions spelled out above.  

Note that this result for g, even after the necessary increase of n by 1 to compensate for the 
notation quantum number difference, differs from Eq. (3.204) of the lecture notes, which would give, in 
particular, g = 4 for our n equal to 1. There is no contradiction here: the latter formula was derived and 
is valid only for the Coulomb potential (3.190), while the radial functions of the 3D harmonic oscillator, 
with n  nx + ny + nz  1, have very different properties. For example, in our particular case n = 1, the 
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radial equation (3.181) with U(r) = m0
2r2/2 does not have a solution corresponding to a 2s-state with l 

= 0 and the same energy E = 50/2. 

 

 Problem 3.28. A particle of mass m is placed into a spherical, flat-bottom potential well  
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 (i) Calculate the smallest U0 at which the particle has a bound (localized) stationary state. 
 (ii) Calculate the energy of this state if U0 is barely larger than that minimum value. 
 (iii) Does such a localized state exist in a very narrow and deep well that may be described as 
U(r) = –W(r) with a positive and finite W? 

 Solution: As was discussed in Sec. 3.6 of the lecture notes, the lowest eigenenergy (and hence 
the smallest possible value of U0) corresponds to the s-state, with l = 0 and hence m = 0.168 The 
functional form of its wavefunction inside the well may be calculated just as in the particle-inside-a-
sphere problem discussed at the end of Sec. 3.6 of the lecture notes, besides the proper energy offset:  
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The corresponding solution outside the well is formally the same (just with U(r) = 0), but since the 
localized state’s energy E cannot be positive, it is more adequately represented as 
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Writing the usual conditions of continuity of the wavefunction and its first derivative (or even easier, of 
the function f   r) at r = R, we get two equations for the coefficients A and C: 
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The equations are compatible if  
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This characteristic equation contains answers to all the questions posed in the assignment. 

 (i) As U0 tends to its minimum value, the external wavefunction tends to become a delocalized 
one, i.e.   0. In this limit, Eq. (**) becomes coskR = 0. The lowest value of k > 0 that satisfies this 
equation is kmin = /2R. According to Eq. (*), at U0  (U0)min, i.e. at    0, the eigenenergy E tends to 
zero, so the above definition of k yields169 

168 A more formal proof of this fact by using the Hellmann-Feynman theorem is one of the tasks of Problem 43. 
169 A (very simple) additional exercise for the reader: use Eq. (**) to prove that to have n spherically-symmetric 
(s-) states, the well’s depth U0 has to be larger than Un = (U0)min(2n – 1)2.  
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 It is instructive to compare this result for the localization threshold in the 3D case with the 
solutions of similar problems in 2D (Problem 22) and 1D  (Problem 2.21): in contrast with the 3D case, 
at lower dimensionalities, there is no lower bound on U0 for the localization.170  

 (ii) If U0 is larger than, but very close to its minimal value, 

,)(0with  ,)( min000min00 UUUUU   

the bound state does exist but its localization energy  E  = –E is small, and so is the parameter . In this 
limit, the characteristic equation (**) may be solved approximately by taking k = kmin + k with kR << 
1, expanding both sides into the Taylor series in this small parameter, and keeping only the terms 
proportional to k and : 
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The resulting equation is kkR = , i.e. (R/2)(k2) = . With the above definitions of k and , and per 
Eq. (***), it gives the following relation between the corresponding energies: 
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At  E /U0  0, the second term on the left-hand side of the last equation is negligible, so we, finally, get 
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 (iii) In the delta-functional approximation U(r)  = –W(r), we should take 
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so our result for (U0)min may be rewritten as 
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We see that if R  0, then Wmin  0, i.e. despite the limit (***), a well with a sufficiently small R has a 
localized state for any finite W.  

 In this context: a thoughtful reader might be surprised by the fact that neither at this point nor 
anywhere else in this course, the localization properties of this 3D delta-functional potential, U(r) = –
W(r), are discussed in more detail. The reason is that most of these properties are not universal: due to 

170 Historically, this difference had interesting implications for the development of the theory of 
superconductivity, where the weak phonon-mediated attraction between electrons (fermions) leads to their 
binding into Cooper pairs (i.e. effective bosons capable of the Bose-Einstein condensation) only because the 
Fermi-Dirac statistics confines them to a quasi-2D momentum layer at the Fermi surface – see, e.g., Chapter 3 in 
M. Tinkham, Introduction to Superconductivity, 2nd ed., McGraw-Hill, 1996. 
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the (integrable) divergence of the wavefunctions of the type (*) at r  0, its interaction with a short-
range potential U(r) depends on the “internal design” of the potential, not only on its 3D integral, –W. 
(A clear illustration of this fact is given by Eq. (****): it shows that the state-localization ability of the 
flat-bottom potential well, even in the limit R  0, depends not only on W but also on another 
parameter, R.) This is why properties of short-range interactions are frequently described by less natural 
but also less ambiguous models, for example 

  ,;0for  ,0 00 f
dr

df
rrU r    

where, as above, f (r)  r(r), while 0 is a given parameter. The ground (s-) state of this model is 
described by Eqs. (*) with  = 0, and hence with E = –20

2/2m. 

 

 Problem 3.29. A 3D particle of mass m is placed into a spherically symmetric potential well with 
– < U(r)  U() = 0. Relate its ground-state energy to that of a 1D particle of the same mass, moving 
in the following potential well:  
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Use the found relation to: 

 (i) discuss the origin of the difference between the solutions of Task (i) of the previous problem 
and of Problem 2.21, and 
 (ii) calculate the energy spectrum of an electron moving over an impenetrable plane surface of a 
perfect conductor. 

 Solution: As was discussed in Sec. 3.6 of the lecture notes (and in the model solutions of several 
previous problems), the ground state of a spherically symmetric system is always an s-state, with the 
wavefunction 
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corresponding to the orbital quantum numbers l = m = 0. In this case, Eq. (3.181) for the radial function 
is reduced to 
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 At the beginning of Sec. 3.1, it was shown that in the particular case of a free particle, i.e. U(r) = 
0, a similar equation (3.3) for the radially-symmetric wavefunction (r) yields a 1D Schrödinger 
equation (also with U(r) = 0) for the function f(r)  r(r). Inspired by this fact, let us look for the 
solution of Eq. (*) in the similar form 
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Indeed, this substitution, followed by the cancellation of the common factor 1/r, yields: 
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Due to the condition U(r)  U()  0, the ground-state energy E corresponding to this equation has to be 
negative, so at large distances from the center, where U(r)  0, the ground-state wavefunction has to 
decay exponentially (see, e.g., the solution of the previous problem) and hence we have to require f(r)  
r(r)  0 at r  . On the other hand, to keep the wavefunction (**) finite at r  0,  f(0) has to equal 
zero. But Eq. (***) with these boundary conditions are exactly those satisfied by the ground-state 
wavefunction (x) and the energy E of the 1D system mentioned in the assignment; hence the values of 
E of these 3D and 1D ground states are also equal. Moreover, this mapping may be extended to all 
antisymmetric eigenfunctions with (–x) = –(x) of this and other 1D problems, and enables one to 
reuse the solutions of some key 1D problems for the corresponding 3D spherically-symmetric problems, 
and vice versa – as an example, see (ii) below. 

 (i) Note, however, that this 3D  1D mapping is valid only if the 1D potential at x < 0 is 
positively-infinite, thus enforcing the boundary condition f(0) = 0 on the 1D wavefunction. For example, 
the solutions of the apparently similar Problems 2.21 (1D) and 3.28 (3D), on the particle motion in a 
flat-bottom potential well of depth U0, are radically different. As a reminder, in the 1D case, a localized 
ground state exists for an arbitrarily small U0,171 while in the 3D case, there is a minimal value 
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22
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(where R is the well’s radius) necessary for such localization. The reason for this difference is that (as 
the solution of Problem 2.21 shows) the 1D well’s ground state wavefunction is symmetric, with f(0)  
0, and hence does not satisfy the 3D  1D mapping condition (0) = limr0 [f(r)/r]  < . 

 (ii) An electron moving over the plane surface x = 0 of a perfect conductor172 but not penetrating 
into it, i.e. into the half-space x < 0, may be described by the following Hamiltonian: 
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where the top line describes the Coulomb interaction between the electron and its positive charge image 
located at r’ = {–x, y, z}, where r = {x, y, z} is the electron’s position.173 The corresponding stationary 
Schrödinger equation is satisfied with the product  (r) = X(x)Y(y)Z(z), where the components Y and Z 
describe the free motion of the electron along the surface and hence give continuous contributions (2.18) 
to the electron’s energy spectrum: 
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On the other hand, the resulting equation for the function X(x) is similar to Eq. (***) with the potential 
energy 
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171 See also the solution of Problem 2.18 for a more general potential. 
172 Here the term “perfect conductor” means, most importantly, a conductor with a sufficiently high plasma 
frequency p >>  E / – see, e.g., the concluding discussion in the model solution of EM Problem 7.19. 
173 See, e.g., EM Sec. 2.9 and in particular Eq. (2.192). 
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that differs from that of the hydrogen atom’s electron only by the additional factor ¼. As Eq. (3.192) 
shows, such an additional factor reduces the energy scale E0 by a factor of 16, so that we may 
immediately use Eq. (1.12) to write the following expression for the discrete x-contribution to the 
electron’s spectrum: 

.3,2,1with  ,
32 2

H  n
n

E
Ex  

(As the analysis of the Coulomb potential problem in Sec. 3.7 has shown, all the radial factors Rn,l(r) of 
the 3D wavefunctions in that problem are finite at r = 0, and hence the corresponding 1D wavefunctions 
Xn,l(x) = xRn,l(x) tend to zero at x 0, i.e. satisfy the boundary condition X(0) = 0.)   

 

 Problem 3.30. Calculate the smallest value of the parameter U0, for which the following 
spherically symmetric potential well: 

  , ,/ 0,with  00   RUeUrU Rr  

has a bound (localized) eigenstate for a particle of mass m. 

 Hint: You may like to introduce the following new variables: f  rR and   Ce–r/2R, with a 
proper constant C. 

 Solution: For this potential, Eq. (3.181) of the lecture notes, with l = 0 (corresponding to the 
ground state of the system, which is always an s-state) and E = 0 (corresponding to the particle 
localization threshold), takes the form 
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Introducing the first replacement suggested in the Hint, R  f/r,174 we get 
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Now using the second of the suggested replacements,   Ce-r/2R, so d = –(Ce-r/2R)dr/2R  –dr/2R, i.e. 
dr = –2Rd/, and our particular function U(r) = –U0e

-r/R  –U02/C2, we see that if we choose C as 
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Eq. (*) reduces to  
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. 

 This is the canonical form of the Bessel equation of order  = 0,175 and its only solution that is 
finite at  = 0 (i.e. at r  ) is the Bessel function J0(), so our radial wavefunction (up to a constant 
multiplier) is 

174 See also Sec. 3.1 of the lecture notes and the solutions of the two previous problems.  
175 See, e.g., EM Sec. 2.7, in particular, Eq. (2.130) with  = 0. 
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1 R . 

In order for this function to be finite at r  0, i.e. at Ce-r/2R  C, this constant has to coincide with one 
of the roots of the function J0(). According to Eq. (**), the smallest possible depth U0 of the potential 
well corresponds to the smallest C, i.e. to the smallest, first root 01  2.405,176 so we finally get 
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Comparing this result with the solutions of the two previous problems, we see that they differ 
only by the numerical constant: 2  9.87  01

2  5.78. Hence in our current case of the exponential 
confining potential, its minimum depth necessary for particle localization is approximately twice smaller 
than that in the case of a flat-bottom potential well with the same radius R. (Of course, for the 
exponential potential well, the definition of its radius is to a certain extent conditional.)   

 

Problem 3.31.* A particle of mass m moves in the field of an attractive spherically symmetric 
potential U(r)  U()  0. Find a condition necessary for it to have at least one bound state. Compare 
the result with those of Problems 28 and 30. 

 Hint: You may like to use Eqs. (3.67) and (3.71). 

 Solution: Reviewing the calculation that has led to Eq. (3.67a), we may see that it is much more 
general than the scattering problem it was derived for. In particular, if we take i = 0, this integral form 
of the Schrödinger equation is valid for any stationary state of a particle in the time-independent 
potential U(r). Eq. (3.71) is also general, so by combining these two formulas we may write  

.  where,
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As was discussed in Sec. 3.6 of the lecture notes (and in the model solutions of several previous 
problems), the lowest-energy eigenstate of any spherically-symmetric system in an s-state, with 

        r )(r .      (*) 

Since all localized states must have E < 0, the last bound (localized) state to disappear at a gradual 
decrease of  U(r)  is its ground s-state. So for our task, we may consider only such states. For a 
spherically-symmetric potential U(r)  0 and the wavefunction (*), the above equation becomes 

.
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Let us select the wavefunction’s phase so that  is real and positive at all points,177 and apply this 
equation to the point r = r0 with the largest value of  : 

176 See, e.g., the top-left cell of EM Table 2.1.
177 As was discussed at the end of Sec. 2.9 and also in the model solution of Problem 2.46, the lowest-state 1D  
wavefunction  cannot have zeros, i.e. change its sign. 
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 So far, this is an exact equality. Now let us turn it into an inequality by changing the right-hand 
part so that it may only increase. For that, first, let us replace (r’) with max, and eikR with 1:  
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Next, let us spell the last integral: 
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The internal integral may be directly calculated.178 Indeed, directing the polar axis 
toward the point r0 (see the figure on the right), we may use the axial symmetry to 
write 
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where   cos, and continue as 
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Hence I cannot decrease if we replace it with 4/r’. Making this replacement in Eq. (**), we get the 
desired necessary condition on the confining potential U(r): 
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 For the case considered in Problem 28,  
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while, as we have seen, the exact threshold for U0 is just a factor of 2/8  1.23 higher. On the other 
hand, for the case considered in Problem 30, U(r) = –U0e

–r/R, Eq. (***) gives 
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178 This calculation may be used to prove the mean value theorem of electrostatics – see, e.g., EM Problem 1.11. 
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while the exact bound for U0 is a factor of 01
2/4  1.44 higher. 

 The reader should agree that these are very good results for the bound so general. 

 

 Problem 3.32. A particle of mass m, moving in a certain central potential U(r), has a stationary 
state with the following wavefunction: 

,cos  reAr   

where A, , and   > 0 are constants. Calculate: 

 (i) the probabilities of all possible values of the quantum numbers l and m, and 
 (ii) the confining potential and the state’s energy. 

 Solutions:  

 (i) Comparing the angular part of the given wavefunction, cos, with the second line of Eq. 
(3.175) of the lecture notes, we may see that it coincides (to a constant multiplier) with the spherical 
harmonic Y1

0, indicating that this is the state with l = 1 and m = 0, so the probability of any other set of l 
and m is zero. 

 (ii) Plugging the expression for the radial factor of the wavefunction,179 

        rerr  R , 

into Eq. (3.181) of the lecture notes, with the above-found value l = 1, and performing a straightforward 
differentiation, we get 
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Imposing the convenient (and common) condition U() = 0, we have to assign the r-independent term to 
the state's energy E, so, finally: 
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 As a sanity check, the radial function R2,1(r) given by the second of Eqs. (3.209) of the lecture 
notes, also corresponding to l = 1 (and to n = 2), is proportional to our current R(r) for the particular 

value  = 1 (so 2 +  – 2 = 0); in this case, we recover the Coulomb potential (3.190) with C = 22/m. 

With this value of C, the first of Eqs. (3.192) yields E0 = 422/m, so the above eigenenergy E is equal to 
–E0/8, as it should be for n = 2, according to Eq. (3.201). 

 

 Problem 3.33. For an isotropic 3D harmonic oscillator, calculate: 

 (i) the energy spectrum resulting from the Bohr quantization of circular classical orbits, and 
 (ii) the energy spectrum of the s-states in the WKB approximation. 

Compare the results with the exact energy spectrum of the oscillator, and comment. 

179 Due to the linearity of the Schrödinger equation, the constant multiplier may be dropped for this calculation.
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 Solution: As was discussed in Sec. 3.5 of the lecture notes, such an oscillator may be formed by a 
particle of mass m, moving is the spherically-symmetric potential U(r) = r2/2. Its energy spectrum is 
given by Eq. (3.124) with d = 3: 
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Our task is to compare this exact result with those following from the following two approximations. 

 (i) For a circular orbit, The Bohr quantization rule,180 
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takes the simple form 
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The second relation for r and v is given by the 2nd Newton law 
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where F = –dU/dr is the radial force, for our potential equal to –r. From here, 
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 (iii) Wavefunctions of the s-states can depend only on the radial coordinate r, and hence they 
obey Eq. (3.181a) with l = 0: 
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By introducing, as we repeatedly did in this chapter (see especially Problem 29), the function f(r)  
r(r), we may reduce this equation to the standard 1D Schrödinger form: 

  EffrU
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22
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. 

For it, the WKB approximation in the classically allowed region with E > U(r) has the standard form 
(2.94) with the notation replacements   f, x  r. Since we are interested only in stationary states, 
whose wavefunctions may be always represented by real functions, we may rewrite that expression as 

180 Here the integer number is denoted m because of its (loose) analogy to the angular quantum number used in 
the 2D problems (see, e.g., Eq. (3.128) and on) and to distinguish it clearly from the radial quantum number to be 
used in the next task.  
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 If the function U(r) satisfied the validity condition (2.107) of the connection formulas (2.105) at 
both classical turning points where U(rc) = E, we would not even need this expression but could directly 
use the Wilson-Sommerfeld quantization rule (2.110) – also with the replacement x  r. However, in 
our 3D case, we have the special point r = 0 where the exact function f(r) has to turn to zero in order the 
avoid the divergence of the wavefunction  = f(r)/r. The only way to fit such a function with Eq. (**) 
valid for r > 0 is to take  = 0, so at r  0 where U  0 and hence k  k0  (2mE)1/2/ = const, we get 
fWKB  ck0

1/2r  0, and WKB  ck0
1/2 = const.181 This choice of  is equivalent to saying that our 

effective 1D de Broglie wave f (r) is reflected from the point r = 0 as from a hard infinite potential wall, 
i.e. to replacing the last term /2 in Eq. (2.109) with 0. With this replacement, we get the following 
quantization rule: 
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where rc > 0 is the regular classical turning point. For our potential U(r) = r2/2, it is rc = (2E/)1/2, and 
the above integral is the same as was worked out in Sec. 2.4 at a similar calculation for a 1D oscillator – 
see Eq. (2.113): 
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so the quantization rule yields 
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 The results of Tasks (i) and (ii) show that in contrast to the 1D harmonic oscillator (see Eq. 
(2.114) of the lecture notes), the 3D oscillator cannot be exactly and fully described by simple WKB-
based approximate methods. In particular, the Bohr quantization of the particle’s angular motion, while 
giving the correct energy level interval  

01   mm EEE , 

fails to describe the genuine ground-state energy Eg = (3/2)0, giving a value 50% lower. In this sense, 
N. Bohr’s success with the quantitative explanation of the hydrogen atom’s spectrum by using this 
approach (see Sec. 1.1(iii) again) was a bit of luck – for him and for physics as a whole. 

 On the other hand, the WKB approximation applied to the particle’s radial motion gives the 
correct ground state energy but cannot describe the full energy spectrum (*). This is natural because this 
approximation (in the used form) is only applicable to the spherically symmetric s-states, i.e. the states 
with the angular quantum number l = 0, while Eq. (*) describes states with higher values of l as well – 
see, e.g., the solution of Problem 27. 

181 Indeed, as Eq. (3.187) and the first of Eqs. (3.186) show, in the case U(r) = 0, this wavefunction is exact. 
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 In this context, Eq. (***) has an aspect that may look, at first glance, puzzling. Namely, while 
correctly describing the energy of the ground state, whose wavefunction may be represented as the 
product of symmetric wavefunctions of 1D ground states:182 

             ,with  , 00000000g   zyxrr  

it obviously cannot describe similar products with any one operand being a different 1D eigenfunction, 
even if this function is symmetric, for example 
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because it would not remain its value at a swap of some coordinates (say, of x and y) – the symmetry 
requirement necessary for any s-state. Hence one might think that the lowest excited s-state covered by 
Eq. (***) should be 

       ,222222 zyx  r  

because the function 2 is symmetric just like 0 – see, e.g., Fig. 2.35. According to Eq. (*), the energy 
of this state is 0(3/2 + 2 + 2 + 2)  (15/2) 0. This value is indeed listed in Eq. (***), but there are 
two other energies separating it from Eg; what are the corresponding s-states? 

 The answer becomes simple if we recall one of the basic principles of wave mechanics (and 
indeed of quantum mechanics as a whole), the linear superposition principle: if a few functions are 
eigenfunctions of some eigenproblem, any of their linear superpositions is also its eigenfunction. 
Moreover, if all these eigenfunctions correspond to one energy, their superposition has the same energy. 
In particular, in our problem, the function 

 ,
3

1
002020200    

is an eigenfunction of the oscillator, and simultaneously is an s-state, with the eigenenergy equal to 
0(3/2 + 2 + 0 + 0)  (7/2) 0, giving the explanation of the second-lowest value in the list (***). 
Similar state identifications may be performed for all other values of that list – the additional task left 
for the reader’s exercise. 

 Hence, for the s-states of the isotropic 3D oscillator, the radial WKB approximation works as 
perfectly as for all states of its 1D cousin. 

 

 Problem 3.34. For a particle of mass m, moving in the spherically symmetric potential 
U(r) = ar4: 

 (i) use the variational method to estimate the ground-state energy, 
 (ii) calculate the energy spectrum resulting from the Bohr quantization of circular orbits, and 
 (iii) calculate the energy spectrum of the s-states in the WKB approximation. 

Compare the results and comment. 

 Solutions:  

182 See Eq. (3.125) of the lecture notes. 
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 (i) As was discussed in Sec. 3.6 of the lecture notes, for a motion in any spherically symmetric 
potential, the ground state is always an s-state, with a spherically symmetric wavefunction (r). Since, 
in addition, our confining potential is continuous everywhere, including the origin r = 0, the most 
natural simple trial function is the 3D Gaussian 
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with some real . (Indeed, as was shown in Sec. 2.9 of the lecture notes, such a trial function of x gives 
the exact value of the ground state energy 0/2 of a 1D harmonic oscillator, so the 3D function we are 
trying now, which is just a product of three similar functions of x, y, and z, also gives the exact result Eg 
= Eg = (3/2)0 for the isotropic 3D harmonic oscillator explored in the previous problem.) Calculating 
the constant C (or rather its modulus) from the normalization requirement, 
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Now we can calculate the expectation value of the system’s Hamiltonian 
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(in the last expression, the angular part of the Laplace operator is dropped due to the spherical symmetry 
of the trial state), for our trial function: 
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All these three integrals belong to the same Gaussian family,183 and the final result is 

183 See, e.g., MA Eqs. (6.9). 
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 This is a smooth function of 2, diverging at both very small and very large values of this 
argument, and hence having just one minimum between them. This minimum may be found from the 
usual requirement 

  0
30

8

3
opt6

2

opt2
trial 













  

aH

m

 , 

so we get 

  .424.2
10

8

9
,

80
3/1

2

43/1

2

4

opttrialvar

6

1

2opt 























  mm

m aa
HE

a 

   (*) 

The ground state energy, naturally, grows with the potential’s magnitude parameter a, i.e. with the 
confinement of the wavefunction becoming more tough. 

 (ii) Performing the same calculation as in Task (i) of the previous problem (for the spherical 
harmonic oscillator) but now for the potential U = ar4, with F = –dU/dr = –4ar3, we get, 
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 For the ground state with m = 1, this formula gives the result 
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which is functionally similar but numerically lower than the estimate (*). 

 (iii) Since in the limit r  0, our potential U = ar4 behaves qualitatively similar to the U = r2/2 
explored in Task (ii) of the previous problem, in particular giving U  0 and hence k  k0  (2mE)1/2/ 
= const, we may follow that solution by using the similarly modified quantization rule 
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where rc > 0 is the regular classical turning point. For our current potential U(r) = ar4, it is rc = (E/a)1/4, 
and the above integral is 
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For the ground state with n = 1, this formula yields 
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 Now let us compare and discuss the results. First of all, all three methods give the same 
functional dependence of the ground state energy on the problem’s parameters m and a and the Planck 

constant . This is barely surprising because (4a/m2)1/3 is the only possible combination of these 
parameters with the dimensionality of energy. At the same time, all three methods give substantially 
different results for the numerical constant before this combination. There is not much surprise here 
because all these methods are approximate.  

 In particular, the variational method’s results depend on the chosen trial functions, and 
encouragingly, in our case, it gave the highest value of Eg. (As a reminder, such a value is always higher 
than the genuine ground state energy.) On the contrary, the Bohr quantization of circular orbits gave the 
lowest value (*) of all three, but as we have seen in the previous problem, it underestimates Eg 
significantly in the harmonic oscillator as well. Of course, the quantization rules based on the WKB 
approximation guarantee asymptotically correct results only for high values of the corresponding 
quantum numbers, but note that the two WKB-based formulas have different numerical factors even in 
this limit: 
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 That is true for the 3D harmonic oscillator as well – see the previous problem’s solution. This is 
one more reminder of the fact that in an arbitrary spherically symmetric potential, the energy levels may 
depend differently on the radial and angular quantum numbers, so their high degeneracy in the Coulomb 
potential case is a rare exception rather than the general rule. 

 

 Problem 3.35. For a particle of mass m, moving in the attracting Coulomb potential U(r) = –C/r 
(e.g., the electron in a hydrogen atom): 

 (i) estimate the ground-state energy by using the trial wavefunction trial = A/(r + a)b, where both 
a > 0 and b > 1 are fitting parameters, and  
 (ii) calculate the energy spectrum of the s-states in the WKB approximation. 

Compare the results with the exact energy spectrum of the atom. 

184 Since this integral is just a numerical coefficient, evidently close to 1, let me skip the derivation of its value to 
avoid unnecessary math distraction. 
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 Solution:  

 (i) Due to the spherical symmetry of the trial wavefunction, in the system’s Hamiltonian, 
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we may keep only the radial part of the Laplace operator: 
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so the expectation value of energy in the trial state is 
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where r’  r + a, so r = r’ – a. Per the given conditions a > 0 and b > 1, all these integrals converge at 
both limits, with zero contributions from the upper of them, giving 
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 The calculation of the normalization coefficient A is similar and less bulky: 
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Plugging the resulting expression for  A2 into Eq. (*), we get  
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 Now let us optimize this expression, starting with the parameter a. Since for b > 1, all 
parentheses in it are positive, Htrial this is a smooth function of a > 0, going from + at a  0 to –0 at 
a  , and thus having just one (negative) minimum, which may be calculated from the condition  
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This simple equation yields 
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where r0  2/mC, and E0  2/mr0
2  m(C/)2 – see Eqs. 

(3.192) of the lecture notes.  

 For the optimization over b, we may notice that 
within the possible range of this parameter, 1 < b < , the 
fraction in the last displayed expression always grows 
with b (see the figure on the right), approaching ½ 
asymptotically at b  . In this limit, the expectation 
value approaches the exact ground state energy: 

0trial, 2

1
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– cf. Eq. (3.201) with n = 1. (Note that in this limit, aopt/r0  b  .) 

 The fact that a good fitting requires the power in the expression for trial to tend to infinity 
should not be surprising because, in this limit, the trial function tends to the genuine, exponential 
ground-state wavefunction – see Eq. (3.208) of the lecture notes.185 What is indeed counter-intuitive is 
that the fitting by an apparently different function enables finding the exact value of the ground-state 
energy. This fact demonstrates the power of the variational method with more than one fitting parameter 
– at the cost of longer calculations. 

 (ii) For finding the s-state spectrum, we may try to follow the approach used in the two previous 
problems but run into a complication: for the Coulomb potential, at r  0, the difference E – U(r) tends 
to C/r   rather than to a constant, so the effective wave vector k(r)  [E – U(r)]1/2 diverges as r–1/2, 
and the WKB approximation for the effective 1D wavefunction f(r)  r(r), 
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converges too slowly (even with the best phase choice  = 0) to prevent the divergence of the 3D 
wavefunction itself: 
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 As a result, we have to write the quantization condition in a somewhat less certain form 

185 As MA Eq. (1.2a) with n = br0/r shows, at a = r0b and b  , trial(r)/trial(0) = (1 + r/r0b)–b  exp{–r/r0}. 
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where the classical turning point rc is defined by the relation E – U(rc)  E + C/rc = 0, giving rc = –C/E  
C/ E , and 0 is some constant having the sense of the de Broglie wave’s phase shift at its reflection 
from the point rmin = 0. (From what we know about such reflections from the cases discussed in the 
lecture notes and the solutions of earlier problems, we may expect 0 to be negative and to have a 
magnitude of the order of 1.) Now calculating the involved integral186 
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and dividing all terms of Eq. (*) by 2, we obtain 
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where E0  m(C/)2 – see Eq. (3.191). This relation gives us the following energy spectrum of the s-
states: 
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 Regardless of the finite constant 0, the values En rapidly approach the exact result (3.201) (valid 
for all states including the s- ones) at n >> 1, i.e. in the only limit when we may expect the WKB 
approximation to be quantitatively correct. 

 Summarizing the results of both tasks, we see that the Coulomb potential is really a lucky one. 
Indeed, first, its ground state energy may be correctly calculated using even a trial wavefunction that 
looks different from the genuine one. Second, despite the formal divergence of the radial WKB 
approximation at r  0, it still gives the energy spectrum that is asymptotically correct at large values of 
the principal quantum number n. Finally, let us not forget that the Bohr quantization rule for circular 
classical orbits gives an exact result for any n – see Eqs. (1.9)-(1.12) of the lecture notes; in this unique 
case, with no difference between the radial and angular quantum numbers. 

 

 Problem 3.36. Calculate the energy spectrum of a particle moving in a monotonic but otherwise 
arbitrary spherically symmetric attractive potential U(r) < 0, in the approximation of very large orbital 
quantum numbers l. Formulate the quantitative condition(s) of validity of your theory. Check that for the 
Coulomb potential U(r) = –C/r, your result agrees with Eq. (3.201) of the lecture notes. 

 Hint: Try to solve Eq. (3.181) of the lecture notes approximately by introducing the same new 
function f(r)  rR(r) that was already used in Sec. 3.1 of the lecture notes and in the solutions of a few 
earlier problems. 

186 The resulting dimensionless integral may be readily worked out, for example, by the substitution   sin2. 
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 Solution: The suggested substitution, 

   
r

rf
r R , 

reduces Eq. (3.181) to 1D Schrödinger equation 

          EffrU
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with the following effective potential energy: 
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This is the same potential that participates in the classical theory of orbital (“planetary”) 
motion,187 besides that the square of the angular momentum is replaced with its quantum value (3.178): 

 122  llL  . 

The classical theory of the orbital motion gives us a hint of how our current problem may be solved. 
Indeed, if the magnitude of the attractive potential U(r) < 0 does not grow too fast (faster than 1/r2) at r 
 0, then the effective potential has a minimum at a certain radius r0, determined by the condition 
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In the classical limit, r0 is the radius of a circular orbit of the particle, at which the attractive force F = –
dU/dr provides exactly the necessary centripetal acceleration 2r = (L/mr2)2r  (L2/mr3)/m, so r does not 
change in time, i.e. the radial component of its momentum, pr  mvr = mdr/dt, equals zero.  On the other 
hand, in quantum mechanics, according to the Heisenberg principle, r and pr cannot be exactly fixed 
simultaneously, so the radial motion has to be quantized. 

 Let us assume that this quantization does not prevent the particle's energy E from being close to 
the effective potential energy’s minimum,  
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Then the motion takes place at r  r0, and we may replace the genuine effective potential with its Taylor 
expansion near the minimum: 
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 In this approximation, Eq. (*) describes the usual 1D harmonic oscillator with frequency 
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187 See, e.g., CM Secs. 3.4-3.5, in particular Eq. (3.44). 
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whose energy spectrum is given by Eq. (2.262), Er = 0(nr + ½), with nr = 0, 1, 2,… As a result, the 
total energy of the system becomes 
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 The validity of this result is determined by that of the approximation (***). If the potential U(r) 
is sufficiently smooth, the approximation is valid if the radial spread r of the wavefunction is much 
smaller than r0. As we know from Sec. 2.9 of the lecture notes, the spread may be estimated as 
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Since, according to Eq. (**), r0 grows with l faster than r  0
–1/2, this theory works well for large 

values of l and not very high values of nr, though the exact condition depends on the particular function 
U(r). 

 For the Coulomb potential, U(r) = –C/r, the above general relations yield 
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and the calculated energy spectrum is  
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For l >> 1, the expression in the figure brackets may be Taylor-expanded in the small parameter 1/l, 
giving 
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These leading terms of the expansion coincide with the similar expansion of the exact formula for this 
bracket, 1/n2 (see Eq. (3.201) of the lecture notes), provided that we take 

              .1 rnln      (****) 
Indeed, for small 1/l and nr/l,  
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 So, for the Coulomb potential, the approximate theory gives the result coinciding with the exact 
one at l >> nr, 1. Note also that the above calculation gave us, as a byproduct, a very interesting formula 
(****) which sheds a new light on the remarkable l-degeneracy of the hydrogen atom’s energy 
spectrum. Namely, a decrease of the background energy Uef(r0) due to a decrease of the orbital number l 
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by one is exactly equal and opposite to the addition 0 to the energy of the radial motion, due to an 
increase of the radial quantum number nr by one, so the total energy E does not change.188 The above 
general expression for E shows clearly that this exact compensation is a “mathematical accident”, and is 
violated for even a small deviation of the attractive potential U(r) from the Coulomb law, thus lifting the 
l-degeneracy. As was discussed in Sec. 3.7 of the lecture notes, this is exactly what happens in the atoms 
of heavier elements, due to radius-dependent shielding of the positive potential of their nuclei by the 
negative electric charge of other electrons. 

 

 Problem 3.37. Prove Eq. (3.210) and the first two of Eqs. (3.211) of the lecture notes for the 
ground state of a hydrogen-like atom/ion. 

 Solution: According to Eqs. (3.190), (3.174) and (3.198), the ground state’s wavefunction is 
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so the expectation value of observable rk (with any integer k  –2) in this state may be calculated as 

    de
r

r
drre

r
drrrRrdrr k

k

kkkk rr 2

0

3

0
3

0

2

0

0
3

0

2

0

2

0,1
3

0,0,10,0,1 2

44 /2* 








 






 , 

where   r/(r0/2). The last integral is a table one,189 equal to (k + 2)!, so, finally, 
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 For the particular case k = 0, this general result just confirms that the wavefunction is correctly 
normalized: 
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while for k = +1, k = –1, and k = –2 it yields the following formulas:  
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which coincide, respectively, with Eq. (3.210) and the first two of Eqs. (3.211) taken for n = 1 and l = 0.  

 

188 Graphically, we may consider this compensation as a trade-off of the number of "wiggles" (and hence zeros) 
of the radial and angular wavefunctions, at the same n, and hence the same total energy of the system. Rather 
amazingly, in this form, the exact compensation takes place even at lower values of l, where the radial functions 
differ rather substantially from those of the harmonic oscillator – please have one more look at Fig. 3.22 of the 
lecture notes. 
189 See, e.g., MA Eq. (6.7d). 
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Problem 3.38. For the ground state of a particle in the Coulomb potential (3.190), calculate the 
probability of finding it farther from the attracting center than the radius the same particle with the same 
energy would have on a classical circular orbit. 

 Solution: As was discussed in Sec. 3.7 of the lecture notes, the ground state’s wavefunction 
(corresponding to quantum numbers n = 1 and l = m = 0) is given by the product of the angular function 
(3.174) and the radial function (3.208) : 
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Both functions are normalized as defined, respectively, by Eqs. (3.73) and (3.194), so for our problem, 
which does not involve angular coordinates, the requested probability may be calculated merely as 
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where rc is the radius of the classical orbit. This integral may be readily worked out by parts, giving 

      .
2

exp122
0

c

0

c

2

0

c

c 




























 r

r

r

r

r

r
W rr     (**) 

 What remains is to calculate the ratio rc/r0 from the given condition of equal energies of the 
quantum and classical states. For the quantum state (*), the energy is given by Eqs. (3.201) with n = 1: 
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where C is the coefficient in the Coulomb potential (3.190): U(r) = –C/r. In classical mechanics, this 
potential energy corresponds to an attractive central force of magnitude F = C/r2, so that the 2nd Newton 
law for the circular orbit of radius rc is 
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where v is the particle’s velocity. From here, mv2 = C/rc, so the full classical energy of the particle is 
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Now requiring that Ec = Eq, we get 
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But this is exactly the expression (3.192) for the constant r0. Thus, for our problem, rc/r0 = 1, and Eq. 
(**) yields 
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 Problem 3.39. For the ground state and the lowest excited states of the hydrogen atom: 

 (i) calculate the spatial distribution of the electric current flowing around the nucleus, 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 172 

 (ii) evaluate its highest density, and 
 (iii) calculate and evaluate its magnetic field at the position of the nucleus. 

 Solutions:  

 (i) The density je of the electric current created by the single electron of the hydrogen atom is qj 
= –ej, where j is its probability current density. According to Eq. (1.49) of the lecture notes, if its state’s 
wavefunction is represented as   exp{i},190 then 
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As was discussed in Sec. 3.7 of the lecture notes, the ground state of the hydrogen atom is described by 
the wavefunction  
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where according to Eqs. (3.147) and (3.208), both operands may be taken in purely real forms. Hence, 
according to Eq. (*),  in this state, je = 0. (The fact that any of these functions may be multiplied by 
exp{i} with any space-independent real phase , i.e. with  = 0, does not affect this conclusion.) 

 The same result is valid for two of the four lowest excited states: the 2s-state (with n = 2, l = 0, 
and m = 0) and one of the three 2p-states (that with n = 2, l = 1, and m = 0), which have the same 
quantum number n  = 2 and hence have the same energy En = –EH/8.191 Indeed, their wavefunctions 
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may be also made real – see the same Eq. (3.147), the middle of Eqs. (3.175), and the first of Eqs. 
(3.209).  

 However, the other two 2p-states (with n = 2, l = 1, and m = 1) do have spatial gradients of 
their wavefunction phases; according to the top and bottom of Eqs. (3.175) and the second of Eq. 
(3.209) with r0 = rB: 

   
 

,
2/

sin
8

3

32

1
,

2/1

B

B
2/12/3

B

1
1121,1,2




 irr
ee

r

r

r
Yr,








 

 R  

i.e. their phases  are equal to . As vector calculus shows,192 the gradients of these functions are 
n/rsin, so for these states, Eq. (*) gives 
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This expression may be rewritten in a more physically transparent form 

190 I am using a different notation than in Eq. (1.49) for the wavefunction’s phase   arg to distinguish it from 
the azimuthal angle’s notation  used in Secs. 3.5-3.8.  
191 Actually, besides the very small fine-structure effects – see Sec. 6.3 and, in particular, Eq. (6.60) and Fig. 6.4. 
192 See, e.g., MA Eq. (10.8). 
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where the final step used the last of Eqs. (1.13b). Here I0  1.054 mA is the natural scale of the electron 
current; it may be represented as the current I0 = ef0 that would be carried by a classical electron rotating 
around the nucleus with the cyclic frequency f0 = EH/2  6.581015 Hz – which is the natural scale of 
the frequencies related to interstate quantum transitions in the atom.193 Note a quite macroscopic value 
of this current – it is not much lower than the currents driving your earbuds to play some deafening 
music! 

 Note that Eq. (**) is only valid for the excited 2p-states represented in their traditional form 
(3.175). (As will be discussed in Sec. 5.6, in this form, they are also the eigenstates of the operator of the 
angular momentum component Lz.) Since these states, in the absence of external fields, have the same 
energy, we may use the linear superposition principle to claim that the state with any wavefunction of 
the type 
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is also the lowest excited state of the atom. The current density in such a state is given by Eq. (**) 
multiplied by the additional factor (c+

2 – c–2). In particular, in the frequent case when the atom is 
excited by an agent not carrying any angular momentum (e.g., a linearly-polarized light), the states with 
the opposite signs of m have equal probabilities, and the excited state carries no current. 

 (ii) The value of the largest current density (reached at r = rB and  = /2) is even more 
impressive than that of the full current: 
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a current with such density, driven through a macroscopic sample of any material, would vaporize it 
instantly. 

 (iii) Due to the axial symmetry of the current distribution (**), its magnetic field is directed 
along the z-axis, so its magnitude may be calculated as a scalar sum of the contributions from all 
elementary circular currents dI = jed

2r = jerdrd. According to basic magnetostatics,194 this contribution 
is 
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so that the total field produced by a 2p state with m = 1 is 
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 Note that the scale  

193 Note that a similar expression for I0, just with the replacement rB  R, was already discussed in Sec. 3.5 of the 
lecture notes in the context of a planar rotor of radius R. 
194 See, e.g., EM Eq. (5.23) with R =  = r sin and z = r cos. 
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of this field is typical for all magnetic fields in atoms and condensed magnetic matter (e.g., permanent 
magnets), and hence explains why a-few-tesla fields may be readily produced in the lab.195 

 

 Problem 3.40. An electron had been in the ground state of a hydrogen-like atom/ion with nuclear 
charge Ze when the charge suddenly changed to (Z + 1)e.196 Calculate the probabilities for the electron 
of the changed system to be: 

 (i) in its ground state, and 
 (ii) in one of the lowest excited states. 

 Solutions: According to Eqs. (3.174), (3.200), and (3.208) of the lecture notes, the electron’s 
wavefunction before the nuclear change was 
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where r0 is given by the second of Eqs. (3.192) with m = me and the Coulomb interaction constant C = 
Ze2/40: 
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where rB is the Bohr radius – see Eq. (1.10).  

 (i) The ground state wavefunction g’(r) after the change of Z is given by the same formula (*), 
but with the replacement 
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According to Eq. (1.68), the probability Wg for the electron to be in the ground state of the new ion is 
determined by the wavefunction overlap integral 
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where   (2Z + 1) r/rB. This is a well-known integral197 equal to 2!  2, so, finally,   

195 Electron spin effects yield magnetic fields of the same order of magnitude – see Chapters 4-6 of the lecture 
notes. 
196 Such a fast change happens, for example, at the beta-decay when one of the nucleus’ neurons spontaneously 
turns into a proton, emitting a high-energy electron and a neutrino, which leave the system very fast (instantly on 
the atomic time scale), and do not affect directly the atom transition’s dynamics. 
197 See, e.g., MA Eq. (6.7d) with n = 2. 
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 (ii) Due to the spherical symmetry of the initial wavefunction (*), of the four lowest excited 
states (all with n = 2, but with either l = 0 and m = 0, or with l = 1 and m = 0, 1), it has a nonvanishing 
overlap integral only with the s-state (with l = 0). Its wavefunction is given by Eqs. (3.174), (3.200), and 
the first of Eqs. (3.209) of the lecture notes, again with the replacement (**): 

 
 

 
 

    B

B
2/3

B

2/32/1

0

0
2/3

0

2/1

e

2/12/ 1
2

2

1

4

1
2

2

1

4

1 rrZ'rr
e

r

rZ

r

Z
e

'r

r

'r









 




























 r , 

so the overlap integral is 
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where now   (3Z + 1)r/2rB. The first integral is the same as the one in the first task and equals 2, while 
the second one is of the same type, but with n = 3, and equals 3!  6, so 
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 The above results show that if Z is low, then the probabilities Wg and We are comparable; for 
example for Z = 1,198 Wg = 29/36   0.702, while We = ¼ = 0.25.199 However, in the limit Z >> 1, the 
probability Wg of staying in the ground state becomes close to 100%: 
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while the probability of the atom’s excitation is small; in particular, for the lowest excited state 
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This is very natural, because on the scale of Z >> 1, the change Z = 1 is relatively very small. 

 

 Problem 3.41. Due to a very short pulse of an external force, the nucleus of a hydrogen-like 
atom/ion, initially at rest in its ground state, starts moving with velocity v. Calculate the probability Wg 

198 This is, for example, the case of the beta-decay of tritium, with its nucleus consisting of one proton and two 
neutrons. 
199 The small difference between Wg + We and 1 gives the total probability of excitation of higher s-states.  
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that the atom remains in its ground state. Evaluate the energy to be given, by the pulse, to a hydrogen 
atom in order to reduce Wg to 50%. 

 Solution: Repeating the argumentation used in the model solution of Problem 2.42, we may use 
the Galilean transform    
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whose proof was the subject of Problem 1.6, to conclude that immediately after the application of the 
force pulse (say, at t = +0), its wavefunction, in the reference frame moving with the atom, is 
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where -0 is the wavefunction immediately before the pulse, i.e., that of the ground state of the atom. 
Hence the overlap integral (1.68) for the ground state is 
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Now using Eqs. (3.174), (3.200), and (3.208) of the lecture notes, and directing the z-axis along the 
vector v, so vr = vz = vrcos, in the corresponding spherical coordinates, we get 
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so the probability of staying in the ground state is  
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where v0  /mr0 is the natural scale of the velocity of the electron’s motion in the ground state. (Indeed, 
as the solution of the next problem will show, v0 = p21/2/m.)  

 For the hydrogen atom (with m = me  0.9110-30 kg and r0 = rB  0.5310-10 m), the velocity is 
close to 2.2106 m/s.  According to Eq. (*), in order to get Wg = ½, the velocity v should be equal to 
2(21/4 – 1)1/2v0  1.90106 m/s, giving the atom (whose mass is dominated by that of its single-proton 
nucleus, mp  1.6710-30 kg) the kinetic energy T  mpv

2/2  3.0210-15 J  18.9 keV. (Since this energy 
is much larger than the change of the electron’s energy, which is of the order of the Hartree energy unit 
EH  27 eV, the electron cannot affect the last calculation significantly.)   
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 Problem 3.42. Calculate x2 and px
2 in the ground state of a hydrogen-like atom/ion. Compare 

the results with Heisenberg’s uncertainty relation. What do these results tell about the electron’s velocity 
in the system? 

Solution: The simplest way to solve this problem200 is to notice that due to the spherical 
symmetry of the ground state’s wavefunction (corresponding to the quantum numbers n = 1, l = 0, and m 
= 0), we can write 
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Hence we can calculate the first average as 
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Since the spherical harmonics are normalized, the integral over the solid angle equals 1, while for the 
radial integral, we may use Eq. (3.208) and a table integral201 to get a surprisingly simple result: 
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 The second assignment may be addressed similarly, though it requires a bit more caution because 
of the involved differentiation: 
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At this point, it is vital to remember that even though R1,0 (as a radial function) depends on r only, the 

operator 2 is still different from d2/dr2 – see MA Eq. (10.9) with / = / = 0. As a result, we get 
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The last integral falls into a sum of two integrals similar to the one already worked out above, with n = 2 
and n = 1: 
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Thus the product of the r.m.s. uncertainties, 
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is only slightly (by ~15%) higher than the minimum /2 allowed by Heisenberg’s uncertainty relation. 

 Note that due to the spherical symmetry of the system, the r.m.s. value of the total  momentum is 
expressed by a very simple formula, 

200 A more straightforward solution, by using integration in spherical coordinates (with x2 replaced with r2sin2 
cos2, etc.), is also doable, but a bit bulkier.
201 See, e.g., MA Eq. (6.7d) with n = 4. 
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and that due to the classical relation v = p/m, the result of the division of this result by the particle’s 
mass m, 
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may be interpreted as the r.m.s. velocity of the electron in a hydrogen-like atom. As was estimated in the 
previous problem, for the hydrogen atom (with m = me  0.9110-30 kg and r0 = rB  0.5310-10 m), this 
velocity is close to 2.2106 m/s. The fact that it is much lower than c justifies, once again, the non-
relativistic analysis that was discussed in Sec. 3.6 of the lecture notes. 

 

 Problem 3.43. Use the Hellmann-Feynman theorem (see Problem 1.7) to prove: 

 (i) the first of Eqs. (3.211) of the lecture notes, and 
 (ii) the fact that for a spinless particle in an arbitrary spherically symmetric attractive potential 
U(r), the ground state is always an s-state (with the orbital quantum number l = 0). 

 Solutions: 

 (i) Let us notice that Eq. (3.181) for the radial part Rn,l of the eigenfunction may be considered a 
1D Schrödinger equation for the following effective Hamiltonian: 
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Temporarily taking the potential in the more general form U(r) = –(C – )/r (so it coincides with the 
genuine Coulomb potential (3.190) at  = 0  0), we get 
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so the Hellmann-Feynman theorem, with the proper index generalization n  {n, l}, yields 
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 On the other hand, with our temporary replacement C  C – , Eq. (3.201) reads 
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Comparing Eqs. (**) and (***), we get 
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But according to the second of Eqs. (3.192), the last fraction is just 1/r0, thus giving us the first of the 
results (3.211). The remaining two formulas (3.211) may be proved similarly.202 

 (ii) Now let us temporarily consider, in the same Eq. (3.181), the quantum number l to be a 
continuous parameter. Now the Hellmann-Feynman theorem yields 
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For all allowed values l  0, the operator inside the last bracket is a positively defined form, so its 
expectation value cannot be negative for any quantum state {n, l}, and hence 
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E ln , 

in particular showing that the ground state (with the lowest En,l) always corresponds to l = 0. 

 

 Problem 3.44. For the ground state of a hydrogen atom, calculate: 

 (i) the expectation value of E, where E is the electric field created by the atom as a whole, and 
 (ii) the expectation value of E2 at distances r >> r0 from the nucleus.  

Interpret the obtained relation between E2 and E 2 at distant observation points. 

 Solutions:  

 (i) The net electric field E of the atom is the sum of the field En of its nucleus, with the electric 
charge q = +e, and that (Ee) of the electron, with the equal and opposite charge, q’ = –e. At distances r 
much larger than the size of the nucleus, En may be calculated as the radial field of a point charge q: 
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Since, according to Eqs. (3.174), (3.200), and (3.208), the ground-state wavefunction  = 1,0,0 of the 
electron is spherically symmetric: 
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so is the expectation value of its electric charge density: 
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 Since the relation between the charge density and the electric field it induces in free space is 
linear, the expectation value of the electric field created by the electron may be calculated from the static 
inhomogeneous Maxwell equation,203 with this averaged charge density as the source: 

202 See, e.g., pp. 470-471 in R. Shankar, Quantum Mechanics, 2nd ed., Springer, 1980. 
203 See, e.g., EM Eq. (1.27). 
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Per basic vector algebra,204 this average field is also spherically symmetric and radial, Ee(r) = nrEe(r), 
with its magnitude obeying the ordinary, first-order differential equation 
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This equation (with the boundary condition Ee(0) = 0 imposed by the spherical symmetry of the field) 
may be readily integrated by parts, giving 
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so the net average magnitude of the atom’s field,205 
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and its square, 
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exponentially drop at large distances.  

 (ii) The calculation of E2 at arbitrary distances r ~ r0 is more cumbersome, so let us 
immediately use the given condition r >> r0. At such distances, in classical electrodynamics,206 the net 
electric field of an electrically-neutral  system consisting of a point charge q = +e, located at the origin, 
and an electron charge q’ = –e, located at point r’, with r’ ~ r0 << r, tends to the field  
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of an electric dipole with moment p = q0 + q’r’ = –er’, so 
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where   is the angle between the vectors r’ and r, so r’r = r’rcos. 

204 See, e.g., MA Eq. (10.10), with / = / = 0. 
205 Note that the corresponding average electrostatic potential (r) differs from the Yukawa potential whose 
properties were analyzed in Problem 11, even though it also features a similar exponential factor. 
206 See, e.g., EM Sec. 3.1, in particular Eq. (3.13).
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 Due to the correspondence principle, at the transfer to quantum mechanics, we still may use the 
above expression for E2 but have to understand it as a linear operator acting on the electron’s 
wavefunction (r’), so the expectation value of the corresponding observable may be calculated as 

             r'd''r'd''' 322322 ;;* rrrrrrrr  EEE . 

Taking the direction of the vector r for the polar axis, and then using Eq. (*) for the ground-state 
wavefunction, we get 
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where   cos  and   r/(r0/2). The first integral is elementary and equal to 4, while the second one is a 
table integral207 equal to 4!  24, so finally,  

      0

6

0

2

2
00

2 for  ,
4

6 rr
r

r

r

e




















rE .   (****) 

 Comparison of this result with Eq. (**) shows a rather dramatic difference between the square of 
the average electric field of the atom, and the average of its square: while the former expectation value 
drops exponentially with distance r from the atom, the latter one decreases much slower, as 1/r6. The 
interpretation of this difference is offered by the (frequently, very useful) notion of quantum fluctuations 
of the field: since (r’) 2 may be interpreted as the density of the probability of finding the electron at 
point r’, we may say that its “random motion” in the r’ space creates random fluctuations of the dipole 
field E, which, according to Eq. (***), decays with distance only as 1/r3, so its square drops as 1/r6, as 
described by Eq. (****). However, due to the randomness of the spatial orientations of the vector r’, and 
hence of the field vector E, the bulk of these fluctuations is averaged out from E, leaving behind only 
the exponentially small “tail” (**). This behavior, very typical for quantum mechanics, has already been  
met in the course,208 and will be met several more times. 

 Note also that Eq. (****) is closely related to the attractive London dispersion force with the 
effective potential Uef  1/r6 between two neutral atoms/molecules at large distances – see Problems 20, 
5.15, and 6.18. 

 

 Problem 3.45. Find the condition at which a particle of mass m, moving in the field of a very thin 
spherical shell with U(r) = W(r – R) and W < 0,  has at least one localized (“bound”) stationary state.  

207 See, e.g., MA Eq. (6.7d) with n = 4. 
208 For example, the Gaussian wave packet (2.16) of a free 1D particle, as well as the ground state (2.275) of a 1D 
harmonic oscillator, have x2 = 0, but x2 = x2 > 0, so if the particle in these situations is charged, its electric 
field has properties similar to those of the atom. 
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 Solution: Repeating the initial arguments of the model solution of Problem 28, with the only 
difference that now the product r(r) is given by a linear combination of two exponential functions 
similar to Eq. (**) of that solution even at r < R (this linear combination has to vanish at r = 0 to avoid 
the divergence of , i.e. to be proportional to sinhr), we may look for the ground-state eigenfunction in 
the form 

  0
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 As was discussed in the solution of Problem 29, the relation between the coefficients C may be 
found from the boundary conditions at r = R, using Eqs. (2.75) and (2.76) of the lecture notes, with the 
proper replacement   r. These conditions yield, correspondingly: 
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The condition of consistency of these two linear, homogeneous equations, 
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gives us the following characteristic equation for : 
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The product RcothR equals 1 at R = 0 and grows with the argument R (which should be positive by 
its definition), and the second term in the parentheses of Eq. (*) only increases this trend. Hence this 
equation may have a solution only if the magnitude of its right-hand side is larger than 1, i.e. if209 

      
Rm2

2
W ,      (**) 

i.e. if the dimensionless parameter   W/(2/2mR), already used in the model solution of Problem 10 
(and is negative in our current problem), is below –1. 

 This is the condition we were seeking for. Note that in the limit R  0, we may associate this 
potential with a 3D delta function, U(r) = W3D(r),210 with the parameter W3D defined by the following 
condition: 

  WW 2

0

2

0

3
3D 44)( RdrrUrrdU   



r . 

Plugging this relation into Eq. (**), we get the following condition, 

209 At the border of this range, at 2mWR = 2, the characteristic equation yields  R = 0, so the solution becomes 
unlocalized0. 
210 Of course, W3D should not be confused with W; these parameters even have different dimensionalities – 
respectively, J/m3 and J/m. 
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 W,WW , 

which is always satisfied at R  0 (of course only if W and hence W3D are negative). At small but 
nonvanishing R, the last expression for Wmin is qualitatively similar but quantitatively different from Eq. 
(***) in the model solution of Problem 28. This is one more illustration of the statement made at the end 
of that solution: the particle localization properties of a potential well of a very small size cannot be 
fully characterized by just the “weight” of the 3D delta function, even if the potential is axially 
symmetric – as it is in both these problems. 

 

Problem 3.46. Calculate the lifetime of the lowest metastable state in the same spherical-shell 
potential as in the previous problem, but now with W > 0, for sufficiently large W. (Quantify this 
condition.)  

Solution: We may follow the approach used in Sec. 2.5 of the lecture notes to solve a similar 1D 
problem – see Fig. 2.17 and its discussion. If W is large enough, the Schrödinger equation inside the 
shell may be approximately satisfied with a spherically symmetric standing wave vanishing at r = R.  As 
was discussed at the end of Sec. 3.6 of the lecture notes, in such cases, the lowest eigenfunction is a 
product of the spherical harmonic with l = 0 and m = 0 (which is just a constant) by a radial function 
proportional to the lowest spherical Bessel function of the first kind, j0(kr) = sinkr/kr – see the first of 
Eqs. (3.186). The boundary condition yields k = /R, and after an easy normalization, we get 
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where W (not to be confused with the 1D delta function’s “weight” W) is the total probability of finding 
the particle inside the shell.  

 Outside the sphere, we may take only the first term of the s-wave solution (3.6), 

,
}exp{

r

ikr
CRr   

which describes the outward traveling wave due to the particle’s “leakage” from the sphere. The 
coefficient C may be found exactly as in the 1D case; since for a spherically-symmetric function,  = 
nr/r, the calculation is literally the same and gives the same result: 

            
 i

A

i

A
C

21

1

2



 ,     (*) 

where  is the dimensionless coefficient defined by Eq. (2.78): 

2k

Wm
 . 

(The second step in Eq. (*) is legitimate because our calculation is valid only if  C  << A, i.e. when  
>> 1; by the way, this is exactly the requested condition of validity of our analysis.) 

Now everything is ready to calculate the total probability current outside the sphere: 
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which does not depend on the value of the radius r > R we are calculating it at: 
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(With the last form of the expression for I, the continuity equation (1.48) takes the form 
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so the   so defined is indeed the required lifetime of the metastable state.) The above result for  may be 
represented in a more transparent form: 
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where   2mRW/2 >> 1 is the dimensionless parameter already used in the model solutions of Problem 

10 and the previous problem for the similar potential, and E = 22/2mR2 is the eigenenergy of this 
(lowest) metastable state. 

 

 Problem 3.47. A particle of mass m and energy E is incident on a very thin spherical shell whose 
localized states were the subject of two previous problems, with an arbitrary “weight” W. 

 (i) Derive general expressions for the differential and total cross-sections of scattering. 
 (ii) Spell out the contribution 0 to the total cross-section , given by the spherically symmetric 
component of the scattered de Broglie wave.  
 (iii) Analyze the result for 0 in the limits of very small and very large magnitudes of W, for both 

signs of this parameter. In particular, in the limit W  +, relate the result to the metastable state’s 

lifetime  calculated in the previous problem. 

 Solutions:  

 (i) According to Eqs. (3.222) and (3.224) of the lecture notes, for this axially-symmetric 
problem, both d/d and  are fully defined by the set of the complex amplitudes Al of the so-called 
“partial waves”, i.e. the spherical-harmonic components of the scattered de Broglie wave   
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where ai is the amplitude of the incident wave, which may be also represented as a sum over the 
spherical harmonics (reduced to the Legendre polynomials Pl), using the expansion (3.225): 
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(Here jl() are the spherical Bessel functions of the first kind – see Eqs. (3.185)-(3.186) of the lecture 
notes, and k = (2mE)1/2/ is the wave number of the incident and scattered waves.) 
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 For our particular scatterer, described by the 1D delta-functional potential 

   RrU  Wr , 

which vanishes at all points with r  R, the radial functions obey the simple Eq. (3.183) both at r  R 
and r  R. As was discussed in Sec. 3.6 and 3.8 of the lecture notes, the appropriate solutions in these 
regions are 
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where the coefficient Al is the same as in the asymptote (*), and hl
(1)()  jl() + iyl() is the spherical 

Hankel function of the first kind – see the first of Eqs. (3.215). By its construction, the lth component of 
the total wavefunction (including i and s) is proportional to 

           krkrjlia ll
l R12i , 

so it already satisfies the boundary conditions at r = 0 and r  , and we only need to impose on it the 
conditions at r = R, due to the delta-functional potential of the spherical shell. We may derive these 
boundary conditions, for example, by using the fact discussed in the model solution of Problem 29: the 
product fl(r) of the lth radial function by r satisfies a 1D Schrödinger equation with the effective potential  
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The second term on the right-hand side is continuous at r = R, so it does not affect the boundary 
conditions at that point, which are therefore the same as in the 1D case – see Eqs. (2.75)-(2.76):211 
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Plugging in the above expressions for the total wavefunction into these boundary conditions, we get, 
respectively, 
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Solving this simple system of two linear equations for the coefficients Al and Cl, we get, in particular, 
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where  is the dimensionless real coefficient, characterizing the relative strength of the delta-functional 
potential, that was defined in the model solution of Problem 10 (see also the solutions of the two 
previous problems): 

211 Note that the model solution of the previous problem used an alternative way to derive the corresponding 
boundary conditions for l = fl/r. 
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 Eq. (**), together with Eqs. (3.222) and (3.224) of the lecture notes, gives a complete (though 
not immediately transparent) solution of the scattering problem. 

 (ii) The spherically symmetric component of the scattered wavefunction (with l = 0) is 
proportional to the coefficient A0. From the first column of Eq. (3.186), we get 
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and Eq. (**) with l = 0 is reduced to 
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(where sinc  sin/, as in the solution of Problem 10), giving the following contribution to the total 
cross-section (3.224): 
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where g  R2 is the “geometric” cross-section of the shell. 

 (iii) Two panels of the figure below show, on the appropriate semi-log scale, the ratio 0/g as a 
function of the dimensionless product kR  E1/2, for several representative values and two opposite signs 
of the parameter  (i.e., of the weight W).  

  

 

 

 

 

 

 

 

 

 
  
 In the weak-potential limit   0, the cross-section does not depend on the sign of this 
parameter – the usual feature of the Born approximation:  
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In particular, at kR  0, when scalar scattering by any object is spherically symmetric, and hence 0 
dominates the total cross-section , this result tends to the value /g = 42 that was calculated, in that 
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approximation, in Problem 10. However, as    becomes either comparable with or larger than 1, i.e. as 
we go beyond the Born approximation limit, 0 does depend on the sign of , and its dependence on the 
parameter kR (i.e. on the particle’s energy) shows new effects. Most interestingly, as the figure above 
shows, at    >> 1, the dependences exhibit sharp resonance peaks212 at values of kR close to each n, 
with n = 1, 2,  

 The physics of this effect213 for the case W > 0 (illustrated by the left panel of the figure) should 
be clear from the model solution of the previous problem, or rather its straightforward extension to an 
arbitrary metastable s-state with m = 0. Namely, at  = , when the spherical shell is impenetrable, it 
has localized states; for those with l = 0, n  sinknr/r and kn = n/R – see also Eq. (3.188) of the lecture 
notes. If  is large but finite, such a state is metastable, i.e. the amplitude of this standing de Broglie 
wave cannot persist on its own; however, it may be sustained via its weak coupling with a stationary 
incident wave. As at the resonant tunneling in 1D quantum systems discussed in Chapter 2 of this course 
(see, e.g., Fig. 2.16 and its discussion), if the energy E = 2k2/2m of the particle described by this de 

 Broglie wave approaches that of the metastable state, the amplitude of the induced standing wave 
strongly increases and so does the scattering intensity, 
i.e. its cross-section. 

 The figure on the right shows a zoom-in on the 
vicinity of the lowest resonance (with n = 1); for  >> 1, 
its basic features readily follow from Eq. (***). Indeed, 
the exact resonance is reached at the point (kR)res that 
makes the parentheses in the denominator of that 
expression vanish: 

    0cot
res

res 
kR

kR


; 

for  >> 1 and (kR)res  k1R = , when cot(kR)  –1/( – 
kR), this equation yields  
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



 1
1reskR . 

At that point, sinc(kR)res  1/, so the height of the resonance maximum is independent of : 
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. 

 As the figures above show, these asymptotic analytical expressions for (kR)res and res are in 
good correspondence with the numerical results for res >> 1. Moreover, it is easy to get an expression 
for the resonance width (kR), just as this was done in Sec. 2.5 for the 1D resonant tunneling – see the 
derivation of Eq. (2.142). Indeed, Eq. (***) shows that 0 decreases two-fold from its resonance value 

212 As was already mentioned in Sec. 2.5 of the lecture notes, such resonance functions of the incident particle’s 
energy are sometimes called the Breit-Wigner distributions (or “cross-sections”, or “functions”). 
213 It belongs to the group of resonant Ramsauer-Townsend effects that were discovered (apparently, 
independently) by C. Ramsauer and J. S. Townsend in the early 1920s at the scattering of low-energy electrons by 
noble-gas atoms. 
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res when the deviation of the parentheses in its denominator from 0 becomes equal to 1. Since at  
>>1, this deviation is dominated by the first term, cot(kR), we should require cot[(kR)res  (kR)/2)] to 
be equal to 1.214 With the asymptotic expression cot(kR)  –1/( – kR) already used above, and the 
anticipated condition (kR)<<  – (kR)res  / << 1, this requirement readily yields 

 
2

22




 kR , 

confirming the above assumption, and again in good agreement with the numerical plots. The resulting 
energy width of the resonance, 
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is in the same relation with the metastable state’s lifetime  = 2/4E calculated in the previous 
problem, as for the similar 1D problem: 

 E , 

emphasizing again the generality of this relation – with the reservations discussed in Sec. 2.5 of the 
lecture notes. Note also that all these results for the resonant scattering at kR  n are also valid for the 
total cross-section , because the contributions of the higher components l with l > 0 become 
comparable with g only near the corresponding non-s-state resonances, i.e. at k  l,n/R with l > 0 – see, 
e.g., the table following Eq. (3.188) of the lecture notes. 

 As the right panel of the first figure above shows, at  < 0 (i.e. at W < 0), the resonances at k  

n/R with n = 1, 2,… are virtually similar to those at  < 0, though they are located on the opposite side 
of the asymptotic values n/R. However, the low-energy scattering may be significantly stronger in this 
case. Indeed, in the limit kR  0, Eq. (***) is reduced to a 
simple expression, 

 
1,1for  ,
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
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kR , 

plotted in the figure on the right. According to this 
expression (valid also for the total cross-section , due to 
the dominance of the spherically-symmetric scattering in 
this limit), at     , the ratio 0/g tends to the value 4 
(describing the low-energy scattering by an impenetrable 
sphere, see Sec. 3.8 of the lecture notes, in particular, Fig. 
3.25b), independently of the sign of . However, at finite 
negative values of , the scattering is always stronger, with 
an infinitely high peak at  = –1. The origin of this peak 
becomes clear if we revisit the solution of Problem 45: as  tends to this value from below, the energy of 
the localized eigenstate and hence the corresponding eigenvalue of k tend to zero, enabling effective 
interaction of the corresponding wide-spread wavefunction with the low-k incident wave.  

214 This requirement stems from the usual definition of the “full width (of the resonance curve) at half-maximum” 
(FWHM) – see Sec. 2.5. 
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Problem 3.48. Calculate the spherically symmetric contribution 0 to the total cross-section of 
particle scattering by a uniform sphere of radius R, described by the following potential: 

 


 


otherwise,,0

   ,for  ,0 RrU
rU  

with an arbitrary U0. Analyze the result in detail, and give an interpretation of its most remarkable 
features. 

 Solution: Let us first assume that U0 is lower than the particle’s energy E. (Note that in this case, 
U0 may be either positive or negative.) Then, according to the discussion in Sec. 3.8 of the lecture notes, 
we may look for the solution of the scattering problem in the form 

          
          
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a

l
lll

l
llll

l




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where k and k’ are the de Broglie wave numbers, respectively, outside of the sphere and inside it, 
defined as usual: 

0

2222

2
,

2
UE

k'
E

k


mm


. 

Note that in contrast with the solution of the previous problem, the incident wave (represented as a sum 
over spherical harmonics – see Eq. (3.225) of the lecture notes) is taken into account explicitly only in 
the upper line of Eq. (*), i.e. outside the sphere, while inside it, it is included into a single sum with the 
scattered wave. (The motivation for this approach is that the spherical Bessel functions yl(kr), and hence 
hl

(1)(kr), do not have finite values at r  0, while the functions jl(kr) do.) 

 The boundary conditions on the sphere’s surface (the continuity of the wavefunction and its 
radial derivative at r = R) do not mix different spherical harmonics of the solution, and since we are only 
interested in the spherically-symmetric contribution 0 to the total cross-section, proportional to  A02, 
we may limit our analysis to the corresponding components of the wavefunctions (*): 
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ikr
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For these components, the usual boundary conditions at r = R yield two linear equations for the 
coefficients A0 and B0,  

  k'RBeAkRk'k'RBkeiAkR ikRikR coscos,/sin/sin 0000  , 

whose solution yields, in particular: 

ikRe
k'Rik'k'Rk

k'RkRkk'RkRk'
A 





cossin

sincoscossin
0 , 

so the second of Eqs. (3.231), with l = 0, gives 
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   

2

2

g2
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g2

020 cossin

sincoscossin444

k'Rik'k'Rk

k'RkRkk'RkRk'

kR
A

kR
A

k 



 .  (**) 

 Now reviewing the above calculation, we see that it remains valid in the case U0 > E when k’ is 

imaginary (k’ = i with real , so sink’r = isinr, eikr = e–r, etc.), so Eq. (**) may be used for any value 
of U0. This result is plotted in the figure below, as a function of the dimensionless product kR  E1/2, for 
several positive and negative values of the dimensionless parameter u0 U0/(

2/2mR2). 
 
  

 

 

 

 

 

 

 

 

 

 
 As the plots show, the energy dependences of 0 are rather uneventful, showing a fast decrease 
of this cross-section’s component as kR becomes larger than ~. (It does not make much sense to 
analyze this dependence at higher energies in detail, because here the actual total cross-section  may be 
significantly contributed by other spherical-harmonic components l with l > 0 – see, e.g., Fig. 3.25b of 
the lecture notes.) However, as the plots show, the low-energy scattering (which is dominated by the 
calculated 0 for almost all values of U0) has a rather non-trivial dependence on this parameter in the 
region U0 < 0, where   0 may be much larger than the “visible” cross-section g  R2 of the sphere. 
Indeed, in the limit kR  0, we may readily simplify Eq. (**) to get 

2

g

0 tan
14

k'R

k'R





; 

the figure below shows this result as a function of U0, which in this limit equals –2k’2/2m.  

 The plot shows that at U0 > 0 (i.e. when the spherical scatterer is a flat-top potential “bump”), the 
cross-section monotonically grows from the Born-approximation value (4/9)u0

2g << g (which was 
calculated in the solution of Problem 9), to the asymptotic value 4g that was calculated and discussed 
in Sec. 3.8 of the lecture notes – see, e.g., Fig. 3.25b. However, at U0 < 0, i.e. when the  scatterer is a 
potential well, the cross-section, on its way to the same asymptotic value 4g, exhibits a series of sharp 
(formally, infinite) resonances at the values U0 = –Un, where 
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 The physics of these resonances (also belonging to the group of Ramsauer-Townsend effects) is 
that, as was discussed in the model solution of Problem 28, a sufficiently deep potential well, with U0 < 
Un, has n localized s-states. As U0 approaches –Un, the eigenenergy En of the highest (nth) localized state 
tends to zero, and the effective radius Ref of its eigenfunction tends to infinity. Naturally, such an 
extended state strongly interacts with the long de Broglie wave of the incident low-energy particle, with 
the scattering’s cross-section  ~ Ref

2  . 

 Note that other contributions l to the cross-section also exhibit similarly sharp resonances at the 
corresponding values of U0; in close vicinity of such resonance for some l > 0, the corresponding 
contribution may become larger than 0 and dominate the total cross-section . The analysis of these 
resonances by using Eq. (*) may be carried out absolutely similarly to the above calculation of 0 but 
leads to bulkier formulas because it involves the spherical Bessel functions with higher l.  

 

 Problem 3.49. Prove that for a spherically symmetric scatterer, the complex amplitude Al of each 
partial scattered wave, as defined by Eq. (3.214), is indeed determined by just one real parameter – for 
example, the phase shift l of the wave. Express the partial cross-section l of scattering via this phase 
shift and use this result to re-solve the problem of scattering by an impenetrable sphere – see Eq. 
(3.226). 

 Solution: In the traditional theory of scattering by spherically symmetric objects (which is based 
on the pioneering Rayleigh’s analysis of acoustic wave scattering in the 1870s), the full solution of the 
Schrödinger equation (3.63) is being looked for not in the form (2.213), but in the form (3.179) which 
was used in Sec. 3.6 to describe stationary solutions of this equation. As was discussed in that section, 
for any axially symmetric problem, such a solution has the form 

               cos
0

l
l

l PrR




 ,     (*) 

where each radial function Rl(r) satisfy the corresponding radial equation (3.181a) and is generally 
different from the function Rl(r) participating in Eq. (3.213). According to Eqs. (3.214) and (3.215), at 

100 80 60 40 20 0 20 40 60 80 100
0.1

1

10

100

 22
00 2// RUu m

g

0


 4

4

9 2


4

2


4

25 2




Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 192 

distances r >> R, each of these radial functions may be represented by a linear superposition of the 
Hankel functions of the first and the second kind: 

         krhkrhrR lllll
21 ba  , 

where al and bl are some complex coefficients. Per Eqs. (3.216), at even larger distances r >> R, 1/k, l/k, 
this function tends to 
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 According to the basic Eq. (1.49), the magnitude of the outward-propagating probability current 
of this de Broglie wave is proportional to  al 2, while the inward-propagating current, to  bl 2, with all 
other factors equal. Now we may argue that these magnitudes have to be equal, so 

      .  22
ll ba        (**) 

Indeed, due to the particle conservation, the full probability currents flowing outward and inward have 
to compensate each other. Since, according to Eq. (3.225), our incident wave may be represented as a 
sum of partial waves with all l,215 the linear superposition principle requires the same compensation to 
take place even if the incident wave was limited to just one of these partial waves, so the wavefunction 
was expressed by just one term of the sum (*), immediately giving Eq. (**).  

 Due to this relation, we may take, for example,  
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where Al is some complex amplitude and l is some real constant called the partial phase shift. With this 
notation, the radial function of the lth partial wave takes the form  
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so at even larger distances, it tends to216  
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 Now let us compare the combination of Eq. (*) and the first form of Eq. (***), 

215 By the way, that mathematical identity, if read from the right to the left, allows for the following physical 
interpretation: a linear superposition of standing spherical-harmonic waves, with certain complex weights, may 
give a plane wave propagating along the z-axis, while mutually canceling each other in all other directions. From 
this standpoint, scattering may be viewed just as a perturbation of these weights, thus violating the exact 
cancellation and hence “revealing” the partial waves.  
216 Note that is some (even very popular) textbooks, the last form of Eq. (***) is taken as the starting point of the 
scattering theory, with inadequate justification.
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with the alternative form (3.213) of the same full wavefunction  (also for the large distances, when Eq. 
(3.220) is valid), by plugging into it the general expansion (3.225): 
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For the last two expressions for  to coincide for all angles , the coefficients before all Legendre 
polynomials have to be equal, giving the following equation: 
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In order for this relation to be satisfied for all r (still with the condition r >> R, 1/k, l/k), the coefficients 
before the outward-propagating and inward-propagating exponents have to be balanced separately, 
giving the following two equations relating three constants Al, Al, and l: 
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Eliminating Al, we see that the relative complex amplitude Al of each partial scattered wave, and hence 

each partial cross-section (3.224), may be indeed expressed via the real partial phase shift l:   

         llll
l
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
 . 

 The last expression immediately shows the largest possible value of l (reached at l = /2). 
However, in order to find the actual values of l (for each integer l) for the given scattering potential 
U(r), we need to compare Eq. (***) with the asymptotic form of the actual solution of the corresponding 
Eq. (3.181a).  

 As the simplest example, let us again consider the potential (3.226) describing an impenetrable 
hard sphere of radius R. As was already discussed in Sec. 3.6, in this case, the radial functions Rl(r) may 
be taken in the form similar to Eq. (3.214) for all r  R: 

            krybkrjarR lllll  .     (****) 

(Note that since the functions Rl(r) and the functions Rl(r) used in Sec. 3.6 are defined differently, the 
coefficients al and bl are different from the coefficients Al and Bl used there.) Since on the sphere’s 
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surface (r = R), the wavefunction as a whole and hence all radial functions Rl(r) have to vanish, Eq. 
(****) yields: 

     
       
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l
llllll  

From Eqs. (3.216)-(3.217), the asymptotic form of this radial function is 
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and hence it is proportional to the function given by Eq. (***) if we take 

 
 
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With the substitution of the last result, the above expression for l coincides with Eq. (3.231) of the 
lecture notes – see Fig. 3.25 and its discussion. 

 So, as the reader could see, the problem of spherically symmetric scatterers may be solved using 
two alternative approaches: by expanding, into the partial components’ sum, either the scattered wave 
only – as in Eq. (3.213) of the lecture notes, or the full wavefunction including the incident wave – as in 
this solution. For this particular author, the first approach (which does not require the introduction of 
partial phases) looks more natural and, at least for the simple particular problems considered in this 
course, allows for less bulky calculations.    

 

 Problem 3.50. Use the finite difference method with the step h = a/2 to calculate as many energy 
levels as possible, for a particle confined to the interior of: 

(i) a square with sides a, and 
(ii) a cube with sides a,  

with hard walls. For the square, repeat the calculations by using the finer step h = a/3. Compare the 
results for different values of h with each other and with the exact formulas. 

 Hint: It is advisable to either first solve (or review the solution of) the similar 1D Problem 1.18, 
or start from reading about the finite difference method.217 Also: try to exploit the symmetry of the 
systems. 

 Solutions:  

 (i) The simplest 2D finite-difference approximation of 2 (x, y) is218 

         
2

,4,,,,

h

yxhyxhyxyhxyhx  
, 

where h is the spatial step (the “mesh size”). For h = a/2, the only natural 
choice of the five involved points is shown in the figure on the right. Taking 

217 See, e.g., CM Sec. 8.5 or EM Sec. 2.11. 
218 See, e.g., CM Eq. (8.66) or EM Eq. (2.221). 

 A 

a/2 a/2 

a/2 

a/2 
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into account that due to the boundary conditions, the values of  at all these points except for the central 
point A, i.e. on the walls of the confining square, vanish, the finite-difference version of the 2D 
stationary Schrödinger equation reads 

,
40000

2 A2
A

2




E
hm







 

Canceling A  0 and plugging in h = a/2, we get  

.8
2

2

ma
E


  

This value has to be compared with the exact result for the ground state, which follows from the 2D 
version of Eq. (1.86) with nx = ny = 1: 

.)11(
2 2

2
222

2

2
2

1,1 mama
E

    

We see that the relative error of the numerical method, with this very crude “mesh”, is about 20% (8  
2  9.87). 

 For the finer step h = a/3, due to the obvious symmetry of the 
square problem (see the figure on the right), we may distinguish four 
significantly different (linearly independent) modes: 

(1, 1): A = B = C = D, 
(1, 2): A = B = –C = –D’ 

(2, 1): A = –B = C = –D, 
(2, 2): A = –B = –C = D. 

Here the numbers in the parentheses correspond to the values of quantum 
numbers nx and ny in the analytical solution of the problem (see Sec. 1.7 of 
the lecture notes), 

 
a

yn

a

xn

a
yx yx


 sinsin

2
,

2
 , 

that have similar wavefunction symmetries. 

 These relations enable us to solve the problem, for each mode, by writing a finite difference 
equation for just one internal point, e.g., point A. For example, for the lowest (1, 1) mode, the stationary 
Schrödinger equation becomes 

.
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From this equation (with h = a/3) we get 

.9
2

2

1,1 ma
E


  

This is a substantially better approximation of the exact result than what we had with the initial step h = 
a/2, with an error below 10%. 

 In the same way, for the (1, 2) mode we get 

A B 

C D 

a/3 

a/3 
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giving the following result: 

.18
2

2
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
  

 For the mode (2, 1), we evidently get the same result: E2,1 = E1,2, indicating that this energy level 
is doubly degenerate – just as it is in the exact theory. However, the above numerical value of the 
eigenenergy for these excited states is much farther from the exact result, 
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


, 

than for the ground state: the relative error here is ~35% instead of ~10%. 

 This trend (at fixed step size) continues as we go to higher energy levels. Indeed, for the highest 
mode (2, 2) that we can describe with the mesh so coarse, we get 
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resulting in 
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  

– a rather mediocre approximation of the exact result 
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So, we may clearly see the general trend: a finite-difference scheme with n internal points allows 
us to find n eigenstates, with a better accuracy achieved for the states with lower-energy states – because 
they have more smooth wavefunctions.   

 (ii) In 3D, the calculation is similar, besides that now the Laplace operator is approximated as219 
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The result for the crudest step h = a/2, 
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 is ~20% off the exact value given by Eq. (1.86) with nx = ny = nz = 1:  
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219 See, e.g., EM Eq. (2.222). 
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Chapter 4. Bra-ket Formalism 

 Problem 4.1. Prove that if Â  and B̂  are linear operators, and C is a c-number, then:  

 (i)   AA ˆˆ ††  ;   (ii)   †*† ˆˆ ACAC  ;  (iii)   ††† ˆˆˆˆ ABBA  ; 

 (iv) the operators †ˆˆAA and AA ˆˆ †  are Hermitian. 

 Solutions: In order to prove that two operators are equivalent, it is sufficient to prove that all 
their matrix elements in some full and orthonormal basis {u} are equal. For Task (i), this is very simple 
to do using Eq. (4.25) of the lecture notes twice (back and forth), and the fact that for any c-number, in 
particular any quantum-mechanical bracket, (c*)* = c: 

  j'jj'jjj'j'j uAuuAuuAuuAu ˆˆˆˆ
*

**††† 





 , 

thus proving the corresponding operator relation. 

 For Task (ii), the calculation may be similar, by taking into account that according to Eq. (4.19), 
any c-number multipliers may be moved into/out of any bra-ket combination at will, and that for any 
two c-numbers, (c1c2)* = c1*c2*: 

     
  .

†*†*

****†

ˆˆ

ˆˆˆˆ

j'jj'j

jj'jj'jj'j'j

uACuuAuC

uAuCuAuCuACuuACu




 

Note that the proved operator relation may be formulated verbally: for c-numbers, the Hermitian 
conjugation is reduced to the complex conjugation. 

 The proof requested in Task (iii) is also similar but a bit longer, involving the use of the closure 
relation (4.44) twice – back and forth: 

   

.ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆ

††††**

****†

j'j
j"

j'j"j"j
j"

j"j'jj"

j"
jj"j"j'

j"
jj"j"j'jj'j'j

uABuuAuuBuuAuuBu

uBuuAuuBuuAuuBAuuBAu








 

 Finally, for Task (iv), we may simply use the relations proved in Tasks (ii) and (iii) to show that 
both operator products in question do satisfy the Hermitian operator’s definition (4.22): 

        AAAAAAAAAAAA ˆˆˆˆˆˆˆˆˆˆˆˆ ††††††
,

††††††   . 

 

Problem 4.2. Prove that for any linear operators ,ˆ and ,ˆ,ˆ,ˆ DCBA  

         BDACBDCADBCADCBADCBA ˆˆ,ˆˆˆˆˆ,ˆˆ,ˆˆˆˆˆ,ˆˆˆˆ,ˆˆ  . 
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Solution: By using the associative law of multiplication, i.e. the legitimate ability to remove 
parentheses just as in the usual scalar products, we may represent the left-hand side of the equality in 
question as 

BADCDCBABADCDCBA ˆˆˆˆˆˆˆˆ)ˆˆ)(ˆˆ()ˆˆ)(ˆˆ(  , 

and its right-hand side as 

       
.ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

BADCBDACBDACBDCABDCADBCADBCADCBA

BADDACBDACCABDDBCADBCCBA




 

All adjacent terms of the last form, besides the first one and the last one, mutually cancel and we 
arrive at the same expression as for the left-hand side. 

 

Problem 4.3. Calculate all possible binary products jj’ (j, j’ = x, y, z) of the Pauli matrices 
defined by Eqs. (4.105) of the lecture notes: 
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and their commutators and anticommutators (defined similarly to those of the corresponding operators). 
Summarize the results by using the Kronecker delta and Levi-Civita permutation symbols.220 

Solution: A straightforward multiplication of the matrices, by using the basic rule (4.52), yields 
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Acting absolutely similarly, for other pairs of indices we get  

I.σσ,σσσ,σσσ,σσσ,σσσ  22
zyyzxyxzxyzxzy iiii  

From here, the commutator of x and y is 

  zxyyxyx iσ2σσσσσ,σ  ; 

similarly, we get 

    yxzxzy ii σ2σ,σ,σ2σ,σ  . 

 So, the index swap on the left-hand side of any of these relations changes the sign of its right-
hand side; also, the self-commutators [j, j] are equal to zero by definition. All these results may be 
conveniently summarized using the Levi-Civita and the Kronecker delta symbols: 

       



3

1

3

1

σ2σ,σ  ,Iσσσ
j"

jj'j"j"j'jjj'
j"

jj'j"j"j'j ii  ,   (*) 

220 See, e.g., MA Eqs. (13.1) and (13.2). 
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where the indices j and j’ may take any values of the set {1, 2, 3}. 

The same matrix products may be readily used to calculate their anticommutators: 

  jj'jj'j'jj'j I2σσσσσ,σ  . 

 

Problem 4.4. Calculate the following expressions, 

(i) (c) n, and then 
(ii) (bI + c) n, 

for the scalar product c of the Pauli vector’s matrix   nxx + nyy + nzz by an arbitrary c-number 
geometric vector c, where n is a non-negative integer c-number and b is an arbitrary scalar c-number.  

 Hint: For Task (ii), you may like to use the binomial theorem221 and then transform the result to 
a form enabling you to use the same theorem backward. 

Solutions:  

(i)  First, let us calculate 

    
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From the results of the previous problem, this expression is just  

IIII 2222 cccc zyx  , 

where c is the modulus of the vector c. Now we can use this result to calculate the expression (i): 
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(ii) Here we can first use the binomial theorem and then the above result of Task (i): 
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 This is already the answer, but we may use the sign-alternating property of the factor (–1)k to 
represent it in a more regular form: 
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1

2

/I σcσcσcσc
. 

This transform enables us to apply the binomial theorem again, now backward, to each of the two sums 
on the right-hand side of the last expression, and get the final result in a more compact form:  

221 See, e.g. MA Eq. (2.9).
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 Note that this result is very general (and hence very important) because any 22 matrix may be 
represented in the form (bI + c) – see Eq. (4.106) of the lecture notes. 

 

 Problem 4.5. Use the solution of the previous problem to derive Eqs. (2.191) of the lecture notes 
for the transparency T of the Dirac comb – a system of N similar, equidistant, delta-functional potential 
barriers. 

Solution: As was discussed in Sec. 2.7 of the lecture notes, the transparency may be found as 
T11–2, where T is the transfer matrix (2.190) of the system: 
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First of all, let us notice that an addition of one more operand Ta to the front of this product, 
turning it into a pure power of the product TaT, adds only a phase multiplier to the only matrix element 
we need: 

     ika
ikaika

ikaika

ika

ika

eT
eTeT

eTeT

TT

TT

e

e
T a

N
a 11

112221

1211

11
2221

1211

111111

0

0
TTTT 


























































 , 

while not changing the modulus of this element, and hence the resulting expression for transparency. 
Thus, it is sufficient for us to calculate the matrix T+  (TaT)N.  

 Now let us spell out the elementary product of this expression: 

 
  

















































 ikaika

ikaika

ika

ika

eiei

eiei

ii

ii

e

e
a










1

1

1

1

0

0
TT . 

As any 22 matrix, this one may be represented as a linear combination of the three Pauli matrices and 
the identity matrix, with certain c-number coefficients: 













zyx

yxz
a cbicc

icccb
b σcITT  . 

In our case, a comparison of the two last-displayed equalities yields 

 .cossin,cos,sin,sincos kakaickackackakab zyx    

Next, by using the natural notation c for the modulus of the c-number vector c, we may readily calculate 

           1cossincossinsincos 2222222222  kakakakakakacccbcb zyx  . 

Hence, if we consider Eq. (2.191b) of the lecture notes, 

    kakaqa sincoscos  ,     (*) 
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the definition of q, then b = cos qa, and 

 2222 sin1cos1 qaiqabc  . 

Hence we may take c = i sin qa with either sign, so 

., iqaiqa ecbecb    

 Now we may use the result obtained in Task (ii) of the previous problem, with the notation 
replacement n  N: 

         
Nqa

c
iNqa

c

cbcbcbcb
b

NNNN
N sincosI

2
I

2
IT

σcσc
σc








 . 

From here, for the only (top left) matrix element we are interested in, we get: 

       

.sin
sin

sinsin
cossincos

sin
σσσ

cossincos 11111111
11

Nqa
qa

kaka
iNqaNqa

c

c
iNqa

Nqa
c

ccc
iNqaNqa

c
iNqaT

z

zzyyxx








 σc

 

Since, per Eq. (*), q is always either purely real or purely imaginary, the first term of the last sum is 
always purely real while the second one is purely imaginary. (As soon as sinNqa becomes imaginary, so 
does sinqa.) Thus we may write 

 
12

22

11

2

11 sin
sin

sinsin
cos






















 
 Nqa

qa

kaka
NqaTT


T , 

thus proving Eq. (2.191a). As we have seen in Sec. 2.7, this expression is very convenient for exploring 
the basic features of resonant tunneling and the 1D band theory. 

 

Problem 4.6. Use the solution of Problem 4(i) to spell out the following matrix: exp{i n}, 
where  is the 3D vector (4.117) of the Pauli matrices, n is a c-number geometric vector of unit length, 
and  is a c-number scalar. 

Solution: As was discussed in Sec. 4.6 of the lecture notes, operator functions and hence matrix 
functions (such as the exponential function in this problem) are defined by their Taylor expansions. In 
our current case, 

            11

odd) (
1   

even) (
0   0 !

1

!

1

!

1
exp 



 


kk

k
k

kk

k
k

k

k

i
k

ii
k

i
k

i σnσnσnσnσn  . 

All powers of the product n in both these sums are even, and hence, according to the solution of 
Problem 4(i), are equal to the identity matrix I. Thus the above expression is reduced to 

    1

odd) (
1   

2/)1(

even) (
0   

2/
1

odd) (
1   

even) (
0    !

)1(

!

)1(
I

!

1

!

1
I 











 




 k

k
k

k
k

k
k

k
k

k
k

k

k
k k

i
k

i
k

ii
k

 σnσn . 
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But the last two sums are the Taylor expansions, at the point  = 0, of the functions cos  and sin, 
respectively, so, finally, 

   sincosIexp σnσn  ii . 

 Of course, we could expect in advance that the matrix in question might be represented by a 
linear combination of I and n; however, it is remarkable how simple the coefficients in this 
combination are. 

  

 Problem 4.7. Use the solution of Problem 4(ii)  to calculate exp{A}, where A is an arbitrary 22 
matrix.  

 Solution: As was discussed in Sec. 4.6 of the lecture notes, analytical functions of the linear 
operators (and hence of their matrices, in any basis) are defined by their Taylor expansions, with 
coefficients similar to those of c-number functions. In particular, 

  n

n n
A

!

1
Aexp

0





 . 

As was discussed in Sec. 4.4 of the lecture notes, any 22 matrix may be represented in the form (bI + 
c), where b is a scalar c-number, and c is a geometric vector with three c-number Cartesian 
components. Using such representation for the matrix A, we get 

   n

n

b
n

σc  




I
!

1
Aexp

0

. 

Now using the result of Problem 4(ii), we may write 

         

        ,
!

1

!

1
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1
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1

2

I

2
I

2!

1
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
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
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
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



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
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
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
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n
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n
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cbcbcbcb

n

σc

σc

 

where c  (cx
2 + cy

2 + cz
2)1/2. The sums in the last expression are just the “usual” (c-number) exponents 

of (b  c), so we finally get 

           

.
sinhcoshsinh

sinhsinhcosh

sinhcoshIexpexp
2

expexp
2

I
Aexp

































 






c
c

c
cc

c

icc

c
c

icc
c

c

c
c

e

c
c

cecbcb
c

cbcb

zyx

yxz

b

b σcσc

 

 As a sanity check, in the particular case when A = in, i.e. if b = 0 and c = in (i. e. c = i, cx /c 
= nx, etc.), the last expression reduces to 
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       
       

    



sincosIsinhcoshI

sinhcoshsinh

sinhsinhcosh
0 σnσn

nnn

nnn



















iii

iiii

iiii
e

zyx

yxz

, 

i.e. to the result that was already obtained in the solution of the previous problem. 

 

 Problem 4.8. Express all elements of the matrix B  exp{A} explicitly via those of the 22 
matrix A. Spell out your result for the following matrices: 

,A,A 





















ii

ii
'

aa

aa  

with real a and . 

 Solution: According to the solution of the previous problem, the elements of the matrix B are 

   

.sinhcosh,sinh

,sinh,sinhcosh

2221

1211







 












 

c
c

c
ceBc

c

icc
eB

c
c

icc
eBc

c

c
ceB

zyx

yxz

bb

bb

   (*) 

In that problem, the argument matrix A was taken in the form  





























 




















zyx

yxz
zyx cbicc

icccb
c

i

i
ccbb

10

01

0

0

01

10

10

01
IA σc . 

Comparing each matrix element of the last form with its explicit notation, 











2221

1211A
AA

AA
, 

and solving the resulting simple system of four linear equations, we get 

            
2

,
2

,
2

,
2

2211211221122211 AA
c

AA
ic

AA
c

AA
b zyx











 , (**) 

so the combinations participating in Eq. (*) are as follows: 

,, 1221 AiccAicc yxyx   

            2/12
22112112

2/12
2211

2
2112

2
2112

2/1222 4
2

1

2

1
AAAAAAAAAAcccc zyx  . 

 For the first particular matrix given in the problem’s assignment (with all Ajj’ = a), these relations 
give 

acccacb zyx  ,0, , 

so Eqs. (*) yield 

.
2

1
sinh,

2

1
cosh

2

2112

2

2211







a
a

a
a e

aeBB
e

aeBB  
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Note that the off-diagonal elements are “boosted” by the exponential operation less than the diagonal 
ones. 

 For the second particular matrix (with all A’jj’ = i), the general relations (**) give 

 ic'c'c'ic'b' zyx  ,0, , 

so in this case, Eqs. (*) yield 

.
2

1
sin,

2

1
cos

22

21122211











 

i
i

i
i e

ieB'B'
e

eB'B'  

 

Problem 4.9. Prove that for arbitrary square matrices A and B,  

)BA(Tr)AB(Tr  . 

Is each diagonal element (AB)jj necessarily equal to (BA)jj? 

Solution: Using the definition (4.96), and then Eq. (4.52) of the lecture notes, we get 

   
',

)AB(Tr
jj

j'jjj'
j

jj BAAB . 

This sum evidently does not depend on the operand order, i.e. does not change if we swap A and B. 

 However, single diagonal elements of the two products, 

 
''

)(  and)(
j

j'jjj'jj
j

j'jjj'jj ABBABAAB , 

are not necessarily equal. For example, looking at the Pauli matrix products calculated in Problem 4.3, 
we see that 

    etc.,σσbut ,σσ
1111

ii xyyx   

 

 Problem 4.10. Calculate the trace of the following 22 matrix: 

   σcσbσa A , 

where  is the Pauli vector’s matrix, while a, b, and c are arbitrary c-number geometric vectors. 

 Solution: From the definition of the Pauli matrices (see, e.g., Eq. (4.105) of the lecture notes), we 
get 

            











zyx

yxz
zzyyxx aiaa

iaaa
aaa σσσσa    (*) 

and similar expressions for two other operands. A straightforward multiplication of the last two 
operands yields 
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  

      
       .
























































zzyxyxyxzzyx

zyxyxzyxyxzz

zyx

yxz

zyx

yxz

cbiccibbiccbcibb

cibbiccbiccibbcb

cicc

iccc

bibb

ibbb
σcσb

  (**) 

For the calculation of Tr (A)  A11 + A22, we need only the diagonal terms of the product of matrix (*) by 
matrix (**); the multiplication yields 

          
          .

,

22

11

zzyxyxzzyxyxzyx

yxzzyxyxyxyxzzz

cbiccibbacibbiccbiaaA

iccbcibbiaaiccibbcbaA




 

Now summing these two elements, opening all parentheses, canceling the similar but opposite terms, 
and grouping the remaining ones, we finally get 

         
zyx

zyx

zyx

xyyxzzxzzyyzzyx

ccc

bbb

aaa

icbcbacbcbacbcbai 22ATr  . (***) 

 A good sanity check is the invariance of the result with respect to the loop replacement of the 
operand vectors: a  b  c  a, etc.; indeed, this feature might be predicted in advance by applying to 
this trace the property Tr (AB) = Tr (BA) whose proof was the subject of the previous problem: 

              σaσcσbσbσaσcσcσbσa  TrTrTr . 

Note also that according to Eq. (***), the trace vanishes if any two of the three vectors a, b, and 
c are parallel to each other. 

 

Problem 4.11. Prove that the matrix trace of an arbitrary operator does not change at its unitary 
transformation. 

Solution: Using the notation of Sec. 4.4 of the lecture notes for the “old” basis {u} and “new” 
basis {v}, for the trace in the new basis we have, by definition, 

v
j

jjvv AA ininin ATrˆTr  . 

Now we can use the general law (4.92) of the unitary transformation, and then change the summation 
order to get 

           
j

k'jjku
kk

kk'k'ju
kkj

kk'jkv
j

jj UUAUAUA ††
in

',
in

',,
in .   (*) 

In the last sum we can use the explicit expressions (4.82)-(4.84) for the unitary matrix elements (valid in 
any basis): 
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 
j

jk'kj
j

k'jjk vuuvUU † . 

This expression may be readily simplified by inverting both short brackets per Eq. (4.15) and then 
employing the completeness relation (4.44) for the identity operator: 

.*
**

kk'k'k
j

k'jjk
j

k'jjk
j

jk'kj uuuvvuuvvuvuuv 
















   

As a result, Eq. (*) yields 

u
k

kkkk'u
kk

kk'v
j

jj AAA inin
',

in    , 

which is just the trace in the “old” basis uj. This is why the frequently used notion of “the trace of an 
operator” (without specifying the basis) is quite meaningful. 

 

 Problem 4.12. Prove that for any two full and orthonormal bases {u}, {v} of the same Hilbert 
space, 
            .Tr jj'j'j uvvu   

Solution: By the definition of the trace, 

    .Tr 
j"

j"j"j'jj'j vuvu  

Since the trace of any operator is basis-independent (see the previous problem), we may use the matrix 
element definition (4.47) to calculate them in any basis, for example, in {u}: 

    jj'
j"

j"j'j"j
j"

j"j'jj"
j"

j"j'jj"
j"

j"j"j'j uvuvuvuuuvuuvu    ,  

q.e.d.222  

 

Problem 4.13. Is the 1D scattering matrix S, defined by Eq. (2.124) of the lecture notes, unitary? 
What about the 1D transfer matrix T defined by Eqs. (2.125)? 

 Solution: It is convenient to use Eq. (2.127a) of the lecture notes (whose proof was the subject of 
problem 2.11),  


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
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which expresses the matrix element symmetry. From here: 
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


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222 Just in case the reader has not run yet into this famous acronym: q.e.d. = quod erat demonstrandum, Latin for 
“what had to be demonstrated”. 
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But according to Eq. (2.127b), r2 + t2 = 1, so this product is just the identity matrix I, i.e. the scattering 
matrix is unitary – reflecting the so-called reciprocity principle. 

 For the transfer matrix T, we may use the similarly structured expression obtained in the model 
solution of Problem 2.15: 


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ii

ii

ere

ree
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1
T , 

with the same relation between the real coefficients r and t. From here, 








































 







12

21111
TT

2

2

2 )(

)(
†

rre

rer
tere

ree

tere

ree

t i

i

ii

ii

ii

ii










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. 

Besides the trivial case r = 0 (and hence t = 1), this product is different from I, so the matrix T is not 
unitary. Note, however, that 
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
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


; 

the matrices that obey this relation (including T) are called anti-unitary. 

 

 Problem 4.14. Calculate the trace of the following matrix: 

   σbσa  ii expexp , 

where  is the Pauli vector’s matrix, while a and b are c-number geometric vectors. 

 Solution: Since we may always take a = an, where n is the unit vector in the same direction, the 
solution of Problem 6 (with the notation change   a) may be rewritten as 

  a
a

iai sincosIexp
σa

σa


 . 

With a similar expression for the exponent including b, we get 

 
   

  
.sinsinsincoscossincoscosI

sincosIsincosIexpexp

ba
ab

ba
b

ba
a

iba

b
b

iba
a

iaii

σbσaσbσa

σbσa
σbσa









 












 







 


 (*) 

 The first term in the last expression is a diagonal matrix, so its trace equals 2cosa cosb. Next, 
since by the definition (4.105) of the Pauli matrices, 

        






















zyx

yxz

zyx

yxz

bibb

ibbb

aiaa

iaaa
σbσa   and, ,  (**) 

the traces of these matrices, and hence that of the whole second term of Eq. (*), equal zero. Finally, the 
trace of the matrix product in the last term of Eq. (*) may be readily calculated, for example, directly 
from Eq. (**): 
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   
  

  
  ,22

TrTr

ba

σbσa






















zzyyxx

zzyxyx

yxyxzz
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baibbiaa

ibbiaaba





 

 so, finally,  

     





 

 ba
ab

baii sinsincoscos2expexpTr
ba

σbσa . 

  

 Problem 4.15. Prove the following vector-operator identity: 

    ,ˆˆˆˆIˆˆ prσprpσrσ  i  

where  is the Pauli vector’s matrix, and I is the 22 identity matrix.  

 Hint: Take into account that the vector operators r̂  and p̂  are defined in the orbital-motion 

Hilbert space, different from that of the Pauli vector σ̂ , and hence commute with it – even though they 
do not commute with each other. 

Solution: Perhaps the simplest way to prove this identity is first to use the definitions of the 
scalar and vector products to express each side via the Cartesian components of the matrices and 
operators. In particular, the left-hand side is 

    
j"j'

j"j"j'j'
j"

j"j"
j'

j'j' prpr
,

ˆσˆσˆσˆσˆˆ pσrσ . 

where all the sums (and all those below in this solution) run from 1 to 3. Since the Pauli matrices 
commute with the coordinate and momentum operators, we may swap them and continue as 

    
j"j'

j"j'j"j' pr
,

ˆˆσσˆˆ pσrσ . 

Now using the first of Eqs. (*) of the model solution of Problem 3, we get 

       
j"j'j j'

j'j'jj'j"j"j'j
j"j',j

j"j'j'j"j'j"jj prpripri
,,,

ˆˆIˆˆσˆˆIσˆˆ pσrσ . 

 But this expression exactly coincides with the right-hand side of the identity in question, 
similarly spelled out via its Cartesian components:223 

    ,ˆˆσˆˆIˆˆσˆˆIˆˆˆˆI  
j,j',j"

jj'j"j"j'j
j

jj
j

jj
j

jj pripripri prprσpr  

so the identity is indeed valid. 

 Finally, notice that the proof did not use the commutation relation between pr ˆ and ˆ , so that 

actually, a similar identity is valid for any two operators that commute with σ̂ . 

  

223 See also Eq. (5.18) of the lecture notes. 
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 Problem 4.16. Let Aj be the eigenvalues of some operator Â . Express the following two sums, 

 
j

j
j

j AA 2
21 and , 

via the matrix elements Ajj’ of this operator in an arbitrary basis. 

  Solution: According to Eq. (4.98) of the lecture notes, in the basis in which the operator’s matrix 
is diagonal, the first sum is just the trace of the matrix: 

              ATr1  
j

jjA .     (*) 

But according to the statement whose proof was the subject of Problem 11, an operator’s trace does not 
depend on the choice of the basis, so Eq. (*) is valid in an arbitrary basis as well, and we may write 

 ÂTr1  . 

 For the calculation of the sum 2, we may notice that since the operators Â  and 2Â commute, 
they share their eigenstates j, so we may write 

jjjjjjjj AAAAAAAA  22 ˆˆˆˆˆ  . 

This means that the eigenvalues of 2Â , corresponding to these states, are just Aj
2, so 2 is the just trace of 

the operator 2Â , and hence may be calculated, in an arbitrary basis, as 

     
j'j

j'jjj'
j

jj AAA
,

22
2 AˆTr . 

 Note also that if the operator Â  is Hermitian, then Aj’j = Ajj’
*, and the last expression may be 

further simplified: 
        

',

2

,
2

*

jj
jj'

j'j
jj'jj' AAA . 

 

Problem 4.17.  Calculate z of a spin-½ in the quantum state with the following ket-vector: 

  const , 

where  (,  )  and (, ) are the eigenstates of the Pauli matrices z and x, respectively.  

Hint: Double-check whether your solution is general. 

Solution: A superficial solution to this problem stems from Eqs. (4.122) of the lecture notes, 
which yield in particular 

 2 , 

so  

  )21(const , 

and after the probability normalization, 
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 
  .

224

1
1,

224

223

121

21
22

2











  WWW  

we get 

             .707.0
2

1
11   WWWWz         (*) 

 However, this is not the general solution of the problem. Indeed, during the discussion of the 
diagonalization of matrix x in Sec. 4.4, it was emphasized that the coefficients U11 and U21 may be 
multiplied by the same phase factor exp{i+}, with an arbitrary (real) +. The same is evidently true for 
the second pair of coefficients, U22 and U12, whose phase – may be independent of  +. As a result, the 
most general form of that unitary matrix is 

.
2

1
U


























ii

ii

ee

ee
x  

From this, Eqs. (4.122) have to be generalized as 

    

2

}exp{
,

2

}exp{  ii
. 

These expressions show that physically,  are just the (arbitrary) phases of the states  and , with 
the phases of the states  and   taken for the references. 

 It is easy to verify that these phases do not affect not only the probabilities of these states but 
also the discussion of all Stern-Gerlach experiments in Sec. 4.4 of the lecture notes, so there we could 
use the particular values + = – = 0 quite legitimately. However, the state  being discussed in the 
current problem is affected by these phases: 









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

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













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i
e

i
e

i
e

C , 

because it is a coherent (pure) state superposition. In particular, its normalization yields 

,cos224
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1
22

1
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2



  
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e
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e
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e
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e
C  

so finally, 
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cos22

cos2)cos(
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1
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2




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














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



i

e
i

e
i

e
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e
CWWz  

 For + = – = 0, this expression is reduced to Eq. (*) but generally, depending on the choice of 
the phases + and –, the calculated average z may range all the way from (+1) to (–1). 
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 Problem 4.18. A spin-½ is fully polarized in the positive z-direction. Calculate the probabilities 
of the alternative outcomes of a perfect Stern-Gerlach experiment with the magnetic field oriented in an 
arbitrarily different direction. 

 Solution: As was discussed in Sec. 4.1 of the lecture notes, the Stern-Gerlach experiment 
measures the probabilities W of the particle’s magnetic moment m being oriented in the direction n of 
the magnetic field of the SG apparatus and opposite to it. Hence W may be calculated using Eq. (4.120) 
of the lecture notes, 

      
2

  mW  ,     (*) 

where m are normalized eigenstates of the corresponding scalar operator mn ˆˆ nm , and  is the given 

state  of the system – in our case, the up-polarized spin state . As Eqs. (4.115)-(4.117) show, in the 
usual z-basis, the matrix of the operator nm̂  is proportional to (and hence has the same eigenstates as) the 

matrix Pn  n, where  is the Pauli vector with the Cartesian components given by Eq. (4.105): 
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 Taking the Cartesian components of the orientation vector n in the usual polar-coordinate form, 

 cos,sinsin,cossin  zyx nnn , 

where  and  are the polar angles of the vector, we get 
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 
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 Now we may use the procedure discussed in Sec. 4.4 to find the eigenstates P of this matrix, 
more specifically, the coefficients P and P of their expansion over the z-basis states  and . 
For that, first, we may use the characteristic equation (4.103), in our case taking the form 

     0
cossin

sincos











Pe

eP

i

i








,    (**) 

to calculate the eigenvalues of the matrix: P = 1.224 Now plugging these values, one by one, into any 
of Eqs. (4.101), in our particular case having the form 

 

  ,0cossin

,0sincos










PPPe

PePP

i

i









 

224 This result could be anticipated, because as we know from Sec. 4.4 of the lecture notes, all Pauli matrices have 
the same eigenvalues, and they should not be affected by any rotation of the coordinate axes. 
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we get 
 
 
 
  .
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,
2/sin

2/cos

cos1
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
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
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ePePP
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
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








 

Now performing the normalization, i.e. requiring  P2 + P2 to equal 1, we get a very simple 
result: 

.
2

cos,
2

sin

,
2

sin,
2

cos






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



PP

PP

 

But according to Eq. (*), with  being the state , the squares of the two left expressions give us the 
required probabilities: 

              .
2

sin,
2

cos 22 
  WW     (***) 

 This is a very nontrivial225 and important result (which will be used, in particular, for the 
discussion of the Bell inequalities in the concluding Chapter 10 of the course), so it makes sense to pass 
it through the most evident sanity checks. The first (the most elementary) check is that W+ + W– = 1, as it 
has to be with the sum of all possible experimental outcome probabilities.  

 Next, let us examine the most important particular cases. If   = 0 (i.e. if we measure the spin 
along the axis of its prior polarization), then W+ = 1 and W– = 0 – quite naturally; while if  = /2 (the 
magnetic field is oriented along the axis x), we get W+ = W– = ½, i.e. the result which was already 
obtained in the lecture notes – see the first of Eqs. (4.123) and its discussion. 

Finally, we may use Eqs. (***) and the calculated eigenvalues P = 1  to find the expectation 
value of the observable Pn  mn from the general Eq. (1.37): 


cos

2
sin

2
cos 22   WPWPPn . 

But the same expectation value may be found simpler, from Eq. (4.125), with the long bracket 
calculated directly in the z-basis: 
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











i

i

e

e
PPn . 

 So, Eq. (***) yields sensible results. A forthcoming discussion in Sec. 5.1 of the lecture notes 
will enable us to re-derive this formula in a much simpler way – see Problem 5.1. 

 

 

225 Naively, one might expect the probability W+ to be equal to the square of the z-component nz of the vector n, 
i.e. to cos2. The result given by Eqs. (***) is, of course, very much different.
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 Problem 4.19. In a certain basis, the Hamiltonian of a two-level system is described by the 
matrix 

21
2

1 with  ,
0

0
H EE

E

E









 , 

while the operator of some observable A of this system, by the following matrix: 











11

11
A . 

Calculate possible results of measurements of the observable A, and also the probabilities of the 
corresponding measurement outcomes for the system’s state with the energy definitely equal to E1. 

 Solution: Let us calculate the eigenvalues of the operator of the observable A and also its 
eigenvectors and in the given basis. For this observable, the system of equations (4.101)-(4.102) 
becomes 

           
 

  ,01

,01

21

21





jjj

jjj

UAU

UUA
     (*) 

so the characteristic equation (4.103) of their consistency is 

  011
11

11
2 




j

j

j
A

A

A
. 

Its (very easy :-) solution yields two roots Aj: A1 = 0 and A2 = 2; these are the possible results of 
measurements of the observable A.  

 Now plugging these eigenvalues, one by one, into any equation of the system (*), for the unitary 
matrix elements we get  

22122111 , UUUU  , 

so after the proper normalization (4.104), and setting the inconsequential phases to zero, we get226 

        
2

1
,

2

1
22212111  UUUU .    (**) 

According to Eqs. (4.82)-(4.83), the obtained unitary transfer matrix elements Ukj (with the indices k and 
j taking, in our case, values 1 and 2) are just the short brackets uk  aj participating in the expansion,  


k

jjkj uaua , 

of the eigenstates of the operator Â  over the states u1 and u2 of the given basis. Hence Eq. (**) means 
that  

226 You may have noticed that these results coincide with those obtained in Sec. 4.4 of the lecture notes for the 
Pauli matrix x in the usual z-basis. This is not surprising, because the given matrix A is proportional to the sum 
of x and the identity matrix I – which is diagonal in any basis and thus cannot affect diagonalization results. 
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   212211
2

1
,

2

1
uuauua  , 

with the reciprocal transform 

            212211
2

1
,

2

1
aauaau  .   (***) 

 Now, since the matrix H is diagonal in the given basis, and the system’s energy E equals one of 
its eigenvalues (namely, E1), the system is definitely in the corresponding eigenstate, u1. As the first of 
Eqs. (**) shows, in this state, the probability of measuring each eigenvalue of A is 50%. 

 

 Problem 4.20. Three states u1,2,3 form a full and orthonormal basis of a system with the following 
Hamiltonian: 

  ,h.c.ˆ
133221  uuuuuuH   

where  is a real constant, while h.c. means the Hermitian conjugate of the previous expression. 
Calculate its stationary states and energy levels. Can you relate this system to any other(s) discussed 
earlier in the course? 

 Solution: According to Eq. (4.159) of the lecture notes, the stationary states a1,2,3 and the energy 
levels E1,2,3 of the system are just the eigenstates and eigenvalues of the system’s Hamiltonian, so the 
problem is reduced to the diagonalization of the Hamiltonian matrix H. According to the assignment, 
and Eq. (4.59), in the u1,2,3 basis, the matrix has the form 


















011

101

110

H  , 

so its characteristic equation (4.103) is 








E






  where,0

11

11

11

. 

 This equality gives a cubic equation for : 

  0233  f ; 

fortunately, the equation is so simple that its roots may be 
readily guessed (and then verified by their substitution into the 
equation) just by looking either at the equation itself or at the 
plot of the function on its left-hand side – see the figure on the 
right: 

1,2 3,21   . 

 In order to calculate the corresponding eigenstates 
a1,2,3 of the Hamiltonian, i.e. the coefficients in the expansions 
of its ket-vectors in the basis u1,2,3: 

3 2 1 0 1 2 3
6

4

2

0

2

4

6

)



 f
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,

,

,

3332231133

3322221122

3312211111

uUuUuUa

uUuUuUa

uUuUuUa







    (*) 

we need to plug in the calculated values 1,2,3, one by one, into the system of equations (4.101) for our 
matrix H. For the first root, 1 = –2, the system is 

.02

,02

,02

312211

312211

312111







UUU

UUU

UUU

 

It is evidently satisfied with any set of equal coefficients, U11 = U21 = U31. Thus, requiring the set to be 
normalized in accordance with Eq. (4.104), we may spell out the first of Eqs. (*) as follows:227 

        3211
3

1
uuua  .    (**) 

 For the (equal) 2nd and 3rd roots, 2,3 = +1, all equations of the system (*) looks similarly: 

      3,2with  ,0321  jUUU jjj .    (***) 

Due to the symmetry of these equations with respect to the rotation of the first indices of the coefficients 
Ukj, it is natural to assume that the solutions differ only by a constant phase multiplier, i.e. to look for the 
solutions in the form  
             ikUU kj exp0 .     (****) 

Evidently, the change of k by 3 has to give the initial value Ukj, perhaps besides an inconsequential 
phase multiplier exp{i2n}, with any integer n. This requirement immediately yields just three 
physically distinguishable values of  on the [–, +] segment: 0 and 2/3. The first of them does not 
satisfy Eq. (***),228 but two others do, because 

0
3

2
3exp

3

2
2exp

3

2
exp 000321 


























iUiUiUUUU jjj , 

for any U0 and any sign of the arguments. This means that the two eigenstates corresponding to the 
degenerate eigenvalue 2,3 = 1, may be taken, for example, in the form229 

227 As a reminder: according to Eq. (4.104), all coefficients of the string U12, U21, U31, and hence the ket-vector 
a1 as the whole, may be multiplied by coefficients exp{i1}, with an arbitrary real phase shift 1. The same is 
true for each of the two other eigenkets; for each of them, the phase shift may be individual.
228 Note, however, that the solution (****) with this  = 0 does describe our first eigenstate (**).  
229 Since these stationary states correspond to the same eigenenergy E = 2, any of their linear combinations is 
also a stationary state. Remember, however, that for applications, it is important to keep such linear combinations 
orthogonal, i.e. their inner product (4.11) equal to zero. (It is straightforward to verify that the above states a1,2,3 

do satisfy this requirement.) 
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,
2

31

2

31

3

1

3

2
exp

3

2
exp

3

1
3213212 






 



























 u

i
u

i
uuiuiua


 

.
2

31

2

31

3

1

3

2
exp

3

2
exp

3

1
3213213 






 



























 u

i
u

i
uuiuiua


 

 To summarize, all three eigenenergies of this system 

  3,21 ,2 EE , 

correspond to the states of the type (****), with different phase shifts : 1 = 0 and 2,3 = 2/3. But 
this is exactly the result that was obtained in Problem 3.15 for three similar and similarly coupled 
potential wells (say, located in the vertices of an equilateral triangle) within the tight-binding limit. In 
this particular physical implementation of our Hamiltonian, u1,2,3 have the physical sense of the particle’s 
localized states inside the corresponding wells. 

 

 Problem 4.21. Guided by Eq. (2.203) of the lecture notes, and by the solutions of the previous 
problem and also of Problem 3.15, suggest a Hamiltonian describing particle’s dynamics in an infinite 
1D chain of similar potential wells within the tight-binding approximation, in the bra-ket formalism. 
Verify that its eigenstates and eigenvalues correspond to those discussed in Sec. 2.7. 

 Solution: Inspired by the identity of solutions of the previous problem and Problem 3.15, which 
gave similar sets of eigenstates and eigenvalues, we may readily guess the effective Hamiltonian 
describing the system in the vicinity of the nth localized level: 









  .h.cˆ

1k
k

knk
k

knn uuuuEH  , 

where the state uk describes the particle’s position in the kth well. Indeed, in the basis of these states, the 
(formally, infinite) matrix of this Hamiltonian is tri-diagonal: 







































.....................

...000...

...00...

...00...

...00...

...000...

.....................

H

nn

nnn

nnn

nnn

nn

E

E

E

E

E









, 

so for its eigenstates aj (i.e. the coefficients Ukj of their expansion in the series  

 
k

kkj
k

kjkj uUuaua  

over the basis states uk) and eigenvalues Ej, Eqs. (4.101)-(4.102) of the lecture notes give the following 
infinite system of equations, 
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             011   jknkjjnjkn UUEEU  .    (*) 

Looking for the solution of this system in the Bloch-wave form,230 

 jkj ikUU  exp0 , 

we immediately get the dispersion relation (2.206): 

jnnj EE   cos2 . 

 In this infinite system, the phase shift (i.e. the dimensionless quasimomentum) j may take any 
real values.231  

 

 Problem 4.22. In a certain full and orthonormal basis of three states u1,2,3, operators Â  and B̂  are 
defined by the following equalities: 

33211132231
ˆ,0ˆ,ˆ;ˆ,ˆ,ˆ uuBuBuuBuuAuuAuuA  . 

 (i) Prove that the operators 2Â  and B̂ commute and form an orthonormal basis of their common 
eigenstates. 
 (ii) Give the most general expression for the matrix (in the u-basis) of an operator that would 

commute with B̂ . 

 Solutions:  

 (i) Per the assignment, the matrices of operators Â  and B̂ in the u-basis are as follows: 





































100

000

001

,

001

010

100

A B . 

From here, we may readily calculate the matrix of the operator 2Â : 

I

100

010

001

001

010

100

001

010

100

A2 

























































 . 

Hence, 2Â  is just the identity operator and as such, it commutes with any other operator, including B̂ .  

 This also means that to complete Task (i), it is sufficient to calculate the eigenstates of the 

operator B̂  alone. But the matrix of this operator in the u-basis is already diagonal, so the states u1,2,3 of 
this basis are its eigenstates (with the eigenvalues, respectively, 1, 0, and –1), and, per the assignment, 
these states are already orthonormal. 

230 If necessary, please revisit Eq. (2.193) of the lecture notes and its discussion in Sec. 2.7.
231 Note, however, that for any such chain of a finite length, the spectrum of possible values of the shift is discrete 
(and equidistant) – see, e.g., CM Section 6.4. 
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 (ii) Let us consider the most general (in the given three-functional u-basis) matrix M: 

,M

333231

232221

131211


















MMM

MMM

MMM

 

and calculate its commutator with the given matrix B: 

 

.

00

0

00

000

0

0

0

100

000

001

100

000

001

BMMBBM,

32

2321

12

333231

131211

3331

2321

1311

333231

232221

131211

333231

232221

131211























































































































































M

MM

M

MMM

MMM

MM

MM

MM

MMM

MMM

MMM

MMM

MMM

MMM

 

In order for M and B to commute, all elements of the last matrix have to vanish, so the most general 
form of the qualifying matrix M is 

        .

0

00

0

M

3331

22

1311


















MM

M

MM

 

 

 Problem 4.23. Calculate the eigenvectors and the eigenvalues of the following matrices: 





































0001

0010

0100

1000

B,

010

101

010

A  . 

 Solutions: Solving the characteristic equation (Eq. (4.103) of the lecture notes) for matrix A, 

,02  giving,0

10

11

01

3 







AA

A

A

A

 

we are getting three roots (the matrix eigenvalues) Aj: A1 = 0 and A2,3 = 2. Now we should plug these 
values, one by one, into the system of equations (4.101) for the elements Ukj  uk  aj of the unitary 
matrix U performing the transformation from the states u1,2,3 of the initial basis (in that the matrix A has 
the given form) to the eigenstates (with number j): 

332211 uUuUuUa jjjj  . 

For our matrix A, the system is 
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.0

,0

,0

32

321

21







jjj

jjjj

jjj

UAU

UUAU

UUA

     (*) 

 For the first eigenvalue, Aj = A1 = 0, the top and the bottom equations immediately yield U21 = 0, 
so the middle one yields U11 = –U31. The requirement for the vector Uk1 to be normalized (see Eq. 
(4.104) of the lecture notes), may be satisfied by setting U11 = 1/2, U31 = –1/2.  

 For the second and third eigenvalues, A2,3 = 2, which differ only by the sign, Eqs. (*) are 
reduced to two very similar systems of equations: 

   

,02

,02

,02

3222

322212

2212







UU

UUU

UU

  

,02

,02

,02

3323

332313

2313







UU

UUU

UU

 

The top and the bottom equations of these systems immediately yield U12 = –U32 = U22/2 and U33 = –
U13 = U23/2, so the normalization conditions for these two vectors may be satisfied by taking U22 = U23 

= 1/2, U12 = U33 = ½,  and U32 = U13 = –½. So, the eigenvectors of the matrix are: 

     32133212211 2
2

1
,2

2

1
,

2

1
uuuauuuauua  . 

For matrix B, the characteristic equation is 

      012  giving,0

001

010

010

100

24 







BB

B

B

B

B

.   (**) 

This is just a quadratic equation for B2, with two equal roots B2 = 1, so the four eigenvalues Bj of the 
matrix are  

1,1 4,32,1  BB . 

 The system of equations (4.101), corresponding to matrix B, is 

              

,0

,0

,0

,0

41

32

32

41









jj

jj

jj

jj

BUU

BUU

UBU

UBU

     (***) 

where Ukj  uk  aj, with the indices k and j taking values from 1 to 4, are the elements of the unitary 
matrix performing the transformation from the states uk of the initial basis to the eigenvector 
corresponding to the eigenvalue Bj: 

44332211 uUuUuUuUb jjjjj  . 
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 Plugging the first value, B = B1 = 1,  into Eq. (***), we get U11 = U41 and U21 = U31. The result 
for the equal eigenvalue B2 is of course similar:  U12 = U42 and U22 = U32, so the first two linearly 
independent eigenkets may be constructed, for example, by taking U21 = U31 = 0 and U12 = U42 = 0, 
giving (after the elementary normalization), 

   322411
2

1
,

2

1
uubuub  . 

Due to the degeneracy of the corresponding eigenvalues B1 = B2 = 1, not only these kets (multiplied by 
arbitrary phase factors) but also any pair of their linearly-independent superpositions is also a legitimate 
eigenvector. 

 For the two remaining eigenvalues B3,4 = –1, the possible eigenstates are similar, with just the 
opposite signs in the relations between nonvanishing matrix elements, so we may take 

   324413
2

1
,

2

1
uubuub  , 

with similar alternative options. 

 Note that the initial states participate in the final expressions for bj only as couples {u1, u4} and 
{u2, u3}; this becomes natural from a fresh look at the matrix B: it describes non-zero coupling only 
between the states within each of these groups. 

 

 Problem 4.24. A certain state  is an eigenstate of each of two operators Â  and B̂ . What can be 
said about the corresponding eigenvalues a and b, if the operators anticommute? 

 Solution:  Let us use the definition (4.34) of the anticommutator to write 

   ABBABA ˆˆˆˆˆ,ˆ  . 

Since  is an eigenstate of each of the operators, we may use Eqs. (4.68) and then (4.19) to proceed as 
follows: 

            ababbaBaAbaBbABA 2ˆˆˆˆˆ,ˆ  .  (*) 

But the anticommutation of operators Â  and B̂ means that 

  0̂ˆ,ˆ BA , 

where 0̂  is the null operator defined by Eq. (4.35). It turns each state it acts upon into the null state; in 
particular, 

        0ˆ,ˆ BA .     (**) 

Since the assignment implies that  is a really existing (not a null-) state, Eqs. (*) and (**) may be 
reconciled only if 

0ab , 

i.e. if at least one of these eigenvalues equals zero. 
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 Problem 4.25. An operator Â  commutes with each of two other operators B̂ and ,Ĉ  but these two 

operators do not commute:  CB ˆ,ˆ   0. Prove that the full set of eigenvalues of the operator Â  includes 
some degenerate ones. 

 Solution: Let us consider an arbitrary eigenstate aj of the operator Â . By its definition given by 
Eq. (4.68) of the lecture notes, 
      jjj aAaA ˆ ,     (*) 

where Aj is the corresponding eigenvalue. Let us apply the operator [ BA ˆ,ˆ ] to this state, and then 
transform the second term by using Eq. (*): 

      .ˆ  where,ˆˆˆˆˆˆˆˆˆ,ˆ
jjjjjjjjjjj aBbbAbAaBAaBAaABaBAaBA   

Per the problem’s conditions, this commutator equals zero, so the above expression equals zero as well: 

jjjjjj bAbAbAbA  ˆ  i.e.,0ˆ . 

This relation means that the so-formed state bj is also an eigenstate of the operator Â , with the same 
eigenvalue Aj.  

 Now let us suppose that this Aj is a non-degenerate eigenvalue of Â . Then bj has to coincide 
with aj – perhaps besides a different c-number multiplier before its ket: 

jjjjjjjj bBaBBbBaBb  ˆˆ  so, , 

i.e. bj is an eigenstate of the operator B̂ as well, with some eigenvalue Bj. Acting absolutely similarly, we 
may also conclude that in this case, due to the condition [ CA ˆ,ˆ ] = 0, the state cj with the ket-vector 

jj aCc ˆ   

is an eigenstate of the operator Ĉ , with a certain eigenvalue Cj. Now let us use these facts while 

considering the commutator of the operators B̂  and Ĉ , applied to the same state aj 

  0ˆˆˆˆˆ,ˆ  jjjjjjjjj aBCaCBaBCaCBaCB . 

 But if all eigenvalues of Aj were non-degenerate, such equalities would be valid for all its 
eigenstates aj. Since, per the assignment, such states form a full set, an arbitrary state  of this Hilbert 
space may be represented as their linear combination:  


j

jj a , 

in that case, we would be able to write 

      ,0ˆ,ˆ  i.e.,0ˆ,ˆˆ,ˆ  CBaCBCB j
j

j  

contradicting the problem’s conditions. Hence, at the given commutation relations, our assumption was 
wrong: at least some eigenvalues Aj have to be degenerate. Later in the course (Sec. 5.7), we will see 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 222 

that this is exactly the situation existing, for example, between the operators of the Cartesian 
components of the angular momentum L, and of its square L2. 

 

 Problem 4.26. Derive the differential equation for the time evolution of the expectation value of 
an observable, by using (i) the Schrödinger picture and (ii) the Heisenberg picture of quantum dynamics. 

 Solution: Let us differentiate the basic Eq. (4.125) of the lecture notes over time, restoring, for 
clarity, the time arguments of the participating states and operators: 

                   

              ,ˆˆ

ˆ
ˆ

ˆ





































t
t

tAtttAt
t

t
t

A

t

t
tAtt

t

tA
tttA

t

t
tA

dt

d









 

where the partial time derivative of A is over the explicit time dependence of its operator. (This 
derivative vanishes for such time-independent operators as, for example,  rp Ui   ,  ,ˆ 2  , etc., 
even if the observables they describe do evolve in time.) Now we are ready to use the two different 
pictures of the time evolution. 

 (i) In the Schrödinger picture, the time evolution of the bra- and ket vectors of the state is 

described by Eq. (4.158) and its Hermitian conjugate (with HH ˆˆ †  ),  

                   tHtt
t

i ˆ 



  , 

so we get 

                             .ˆ,ˆˆˆˆˆ ttHtAtttHtAtttAtHtt
t

A
itA

dt

d
i 








   

Since this result does not include the initial time t0, it is usually represented in a shorter form, with not 
only the state of the system but also the time argument t just implied: 

      HA
t

A
iA

dt

d
i ˆ,ˆ




  .    (*) 

 (ii) In the Heisenberg picture, the derivation of the same result is even simpler: it is sufficient to 
average both sides of Eq. (4.199) – as usual in this picture, over the statistical ensemble of initial states 
of the system. 

 In the particular but very common case when the operator Â  does not depend on time explicitly, 
the first term on the right-hand side of Eq. (*) vanishes. If, in addition, the commutator of this 
observable commutes with the Hamiltonian (at the same time instant), then A remains constant in time. 
This is the quantum-mechanical analog of a classical integral of motion, with the commutator playing 
the role of the Poisson brackets. 232 

 

232 See either Eqs. (4.203)-(4.205) of this course or the discussion at the end of CM Sec. 10.1. 
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Problem 4.27. At t = 0, a spin-½ whose interaction with an external field is described by the 
Hamiltonian  

zzyyxx σcσcσcH ˆˆˆˆˆ  σc  

(where cx,y,z are real c-number constants, and zyx ,,̂ are the Pauli operators) was in the state , one of the 

two eigenstates of z̂ . In the Schrödinger picture, calculate the time evolution of: 

 (i) the ket-vector   of the spin (in any time-independent basis you like), 
 (ii) the probabilities to find the spin in the states  and  , and 
 (iii) the expectation values of all three Cartesian components of the spin vector. 

Analyze and interpret the results for the particular case cy = cz = 0. 

 Hint: Think about the best basis to use for the solution. 

Solutions: 

 The problem is similar to the spin precession problem that was solved in Sec. 4.6 of the lecture 
notes as an illustration but is a bit more complex because the z-basis is not the eigenbasis for our present 
Hamiltonian (unless cx

 = cy = 0, returning us to the simple spin precession problem). This is why in the 
general case, we cannot directly use Eqs. (4.161), at least in the z-basis. There are two simple 
approaches to the problem, or rather to its Task(i); their comparison is rather instructive. 

 Approach 1 is to stay in the z-basis (of  the  and  states) and use the fact that in this basis, the 
Hamiltonian operator is represented by a very simple matrix: 

  .*,  so  , where,σσσH 22
yxyx

z

z

zzyyxx cccccciccc
cc

cc
ccc 
















 





  

Let us start with the calculation of the time-evolution operator û  of the system. In the z-basis, Eq. 
(4.157b) becomes the following matrix equation: 

.
22122111

22122111

2221

1211

2221

1211















































ucucucuc

ucucucuc

uu

uu

cc

cc

uu

uu

dt

d
i

zz

zz

z

z  

This system of four linear ordinary differential equations is actually a set of two independent (and 
similar) systems of two equations each: one for u11 and u21, and another one for u12 and u22. Their 
general solution is straightforward but a bit bulky. However, due to the initial conditions (4.178): u11 = 
u22 = 1 and u12 = u21 = 0 at t = t0  0, the solution simplifies to 

         ,
sincossin

sinsincos
)0,(u





























ct

c

c
i

ctct

c

c
i

ct

c

c
i

ct

c

c
i

ct

t
z

z

   (*) 

where the scalar c is the length of the geometric vector c  {cx, cy, cz}: 

.22222
zzyx ccccccc    

(By the way, by noticing that the matrix (*) may be represented in the form 
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,sinHcosIsincosIsincos
10

01
)0,(u



ct

c

ictct

c

ictct

cc

cc

c

ict
t

z

z 





















 σc  

we can guess that the same equality would be also valid for the corresponding operators: 

,sinˆcosˆ)0,(ˆ


ct
H

c

ict
Itu   

regardless of the basis. This fact (which is not used in this solution, but may be useful in other cases,  
including the next problem) may be indeed proved in two ways: either by the direct substitution of the 
last relation into Eq. (4.157b), for our particular Hamiltonian, or by the Taylor expansion of its solution 
(4.175), with t0 = 0. My strong recommendation to the reader is to work out both proofs, as an additional 
exercise.) 

 Now the remaining calculations are easy, using the fact that in the z-basis we are using, the 
initial state is represented by a simple row/column matrix of the elements 1 and 0. 

 (i) According to Eq. (4.157a), the ket-vector of the system evolves as 

,)0()0,(ˆ)(  tut   

where in our case (0) = , so in the z-basis, 
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z

z

sin

sincos

0

1

sincossin

sinsincos

)0(

)0(
)0,(u

)(

)(







. 

 (ii) According to Eq. (4.120), the probabilities to find the spin in  and  states are, respectively, 

,sin)(,sincos)( 2
2

22
22

2

2
22



ct

c

cc
tW

ct

c

cct
tW yxz


    

withstanding the simplest sanity check: W(t) + W(t) = 1. Notice that the matrix elements, and hence 
the state vectors, oscillate with the frequency c/ that is twice lower than the classical precession 
frequency   2c/, while all the observables oscillate with the full frequency . 

 (iii) Since the operator zŜ  is diagonal in the z-basis, we can readily find its expectation value 
using the first form of Eq. (4.124) : 

.sin
2

1
2

sincos
222

2
2

2
2

222
2 






 









 














 

 





 ct

c

ccct

c

cccct
WWS yxz

z  

However, for other spin components, we better use the general rule (4.125).  Actually, for Sx, a part of 
the calculation was already done in Sec. 4.6 of the lecture notes – see the first form of Eq. (4.171):  

.sinsincos)(*)()(*)(
2 2 


 ctct

c

ccct

c

c
ttttS zxy

x 











     

Carrying out a similar calculation for Sy, we get 
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






















 











 




0

0*,*
2

)(ˆ)(
i

i
tStS yy


 

        .sinsincos)(*)()(*)(
2 2 


 ctct

c

ccct

c

c
tttti zyx













     

 For the particular case specified at the end of the assignment, cy = cz = 0 (so that c = cx = c), 
the precession’s half-frequency is determined by the only nonvanishing Cartesian component of the 
field: /2 = cx/, and the above results acquire a very simple form: 

tStSS
tt

i

t
i

t

t zyx 
























 cos
2

,sin
2

,0;

2
cos

2
sin

2
sin

2
cos

)0,(u


.  

 Comparing these formulas with Eqs. (4.173)-(4.174) of the lecture notes, we see that our results 
describe another particular case of the same spin precession about the direction of the field vector c = 
{cx, cy, cz} – now oriented along the x-axis rather than the z-axis. (A simple generalization of this 
geometric picture to an arbitrary direction of the field vector c will be discussed in Sec. 5.1.) 

 Approach 2 is to use the relations discussed in Sec. 4.4 of the lecture notes to perform the unitary 
transform233 from the z-basis to the eigenbasis of the Hamiltonian, then use the fact of the very simple 
time evolution (4.161) of the system in that “new” basis, and finally perform the reciprocal 
transformation (at arbitrary t  0). Though such a program may look rather involved, the calculations are 
in fact simpler than those in Approach 1. 

 Indeed, let us call the Hamiltonian’s eigenstates + and –, while keeping our usual notation ( and 
) for the states of the “old” z-basis, and find the eigenstates of the spin-½ in the field, i.e. calculate the 
coefficients of their expansion in the z-basis states:234 

                .,     (**) 

For this, we need to solve the linear system of equations (4.101) (with Akk’ replaced with Hkk’, and the 
“old” basis {u} now consisting of just two states  and ), for each of two energy eigenvalues Ej: E+ = 
+c and E– = –c. For the first of them (in the notation of Sec. 4.4, j = 1), the system is  

.0)(

,0)(









ccc

ccc

z

z
 

Since c is an eigenvalue of this system, these two equations are compatible and we may use any of them, 
for example, the second one, giving 

233 The time-independent unitary matrix U of this transform should not be confused with the time-dependent 
unitary matrix u(t, 0) of the time-evolution operator. 
234 Here, “for variety” (actually, for training the reader to use this popular alternative notation), I use short 
brackets to denote the elements of the unitary transform matrix U – see Eqs. (4.82)-(4.83) of the lecture notes. 
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.


 

zcc

c
 

 Besides this linear relation, these two coefficients (which are just two of four elements of the 
unitary matrix of the transform between the two bases we are considering – see Eqs. (4.82)-(4.84) of the 
lecture notes), have to satisfy the normalization relation (4.104): 

.1
22

  

Solving these two equations together, selecting the arbitrary phase factor in the simplest way, and taking 
into account that  c 2 = c+c– = cx

2 + cy
2 = c2 – cz

2, and c  cz, so 

     zzzzyxz ccccccccccccccc  2222 2222222
, 

we readily get 

     
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2
,

2 2/12/1
zz

z
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c
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





   

Performing an absolutely similar calculation for E– = –c, we get a very similar result for the two 
remaining coefficients of the unitary transform matrix: 

     
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2 2/12/1
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z ccc
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
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   

 The first good sanity check is that in the z-oriented “field” c (with cx = cy = 0, and cz = c), the 
unitary matrix becomes diagonal, so each of the eigenstates a1,2  coincides with one of the z-states, either 
 or , depending on the sign of cz, i.e. on the field direction. Second, in a “horizontal” field (with, say, 
cy = cz = 0, i.e. c = c + cz = cx), all the unitary matrix elements are equal to 1/2, in agreement with Eq. 
(4.113). 

 Now we can use Eqs. (**) to calculate the initial state of the system (at t = 0) in the basis of the 
eigenstates . Since the system was initially entirely in the spin-up state (), we get 
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According to Eq. (4.161), the time evolution of these matrix elements is reduced to their multiplication 
by the simple phase factors exp{–iEjt/} = exp{ict/}: 
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 Now we may return to the z-basis, using the unitary transform reciprocal to Eqs. (**): 
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 This is the same result as has been obtained using Approach 1. Now we can perform Tasks (ii) 
and (iii) exactly as it was done in that approach.  

  

Problem 4.28. For the same system as in the previous problem, use the Heisenberg picture to 
calculate the time evolution of:  

 (i) all three Cartesian components of the Heisenberg spin operator HŜ (t), and 
 (ii) the expectation values of the spin components. 

Compare the latter results with those of the previous problem. 

Solutions:  

 (i) With the solutions of the previous problem on hand, one way to proceed is to use the result 
for the time evolution matrix in the z-basis: 
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where 
  2/1222, zyxyx cccciccc  , 

to spell out Eqs. (4.190) of the lecture notes, to write:  
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where  is the Pauli vector’s matrix – see Eq. (4.117). Now a straightforward multiplication yields, in 
particular,  

  ,cos
2

sin
2

sin
2 211 











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c
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c
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S yzx

x  

      ,cos
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2
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










 ct

c

cct

c

ccct
S xzy

y     (***) 

  ,sin
2

1
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2
211 






  



 ct

c

cc
S z  

with similar expressions for other 6 matrix elements.  
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 Alternatively, we could use the fact (see the remark in the model solution of the previous 
problem) that the evolution matrix in these problems may be represented as 

,sincosI)0,(u


ct

c
i

ct
t

σc 
  

and make the whole calculation in the vector form, using the multiplication and commutation rules for 
the Pauli matrices, which we already know from the solution of Problem 3. 

 One more option to derive the same result is by solving the differential equation (4.199) for the 
time evolution of the spin-½ operator, just as it was done in the lecture notes for the simple particular 
case cx = cy = 0 – see Eqs. (4.200)-(4.202). 

 (ii) Since the initial state of the system was ↑, according to Eq. (4.191) the expectation value of 
the spin vector is 

       
     .

0

1
0,1 11
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
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






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
  

As a result, by using Eq. (***), we get: 
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y
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x
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i.e. (very fortunately :-) the same result as from the Schrödinger picture – see the solution of the 
previous problem. 

 

Problem 4.29. For the same system as in the two previous problems, calculate the matrix 
elements of the operator z̂  in the basis of the stationary states of the system.  

Solution: The calculation is most straightforward in the z-basis {, }, in which the operator z̂  
has the simplest form – see the last of Eqs. (4.105) of the lecture notes: 

  22

10

01
,ˆσ

**






































  zz  . 

According to Eqs. (4.82)-(4.84), the short brackets participating in this expression are just the elements 
of the unitary matrix of transfer between the stationary-state basis {+, –} and the z-basis, and had 
already been calculated in Approach 2 in the model solution of Problem 27. Plugging them in, we get a 
very simple expression: 

  
     

 
    c

c

ccc

cc

ccc

cc

ccc

c

ccc

cc z
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






 
 2222

σ
22

2/1

2

2/1
, 

where, as in the two previous problems, c  (cx
2 + cy

2 + cz
2)1/2 and c  cx  icy, so  c+ 2 = c+c– = cx

2 + cy
2 

= c2 – cz
2 = (c + cz)(c – cz). 
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 This result readily passes two key sanity checks. First, if cz = c (i.e. cx = cy = 0), then (z)++ = 
1, as it should be, because in this case, the basis {+, –} coincides either with the z-basis {, }, so the 
answer is given by one of the diagonal elements of familiar matrix z in the z-basis. Second, if only cx is 
different from zero, i.e. cz = 0, our result yields (z)++ = 0. This is also what we should have because the 
stationary states {+, –} in such a “horizontal field” c are the eigenstates of the corresponding “horizontal 
operator” x̂  with the eigenstates described by Eqs. (4.122). In their basis, (z)++  has to vanish. 

 Absolutely similar calculations of other matrix elements yield 
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    .σσ *

c

c
zz


   

(The last calculation has used Eq. (4.66), which is valid for z̂  as a Hermitian operator.)  

 Note that in contrast to the two previous problems, the results of this solution do not depend on 
the initial state of the system. 

 

 Problem 4.30. In the Schrödinger picture of quantum dynamics, certain three operators satisfy 
the following commutation relation: 

    CBA ˆˆ,ˆ  . 

What is their relation in the Heisenberg picture, at a certain time instant t? 

 Solution: By using the definition of the commutator, then Eq. (4.190) of the lecture notes, and, 
finally, the unitary property (4.76) of the time-evolution operator, for the Heisenberg-picture operators 
(in this solution, indicated just by their displayed dependence on time), we may write  

            
                       
                        .,ˆˆ,ˆ,ˆ,ˆˆˆ,ˆ,ˆˆˆ,ˆ

,ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ,ˆ

ˆˆˆˆˆ,ˆ

000000000000

000000000000

†††

††††

ttutBtAttuttutAtBttuttutBtAttu

ttutAttuttutBttuttutBttuttutAttu

tAtBtBtAtBtA







 

But by the same definition (4.190) of the Heisenberg operators, at t = t0, they are just the Schrödinger-
picture operators, so 

                     tCttutCttuttuCttuttuBAttutBtA ˆ,ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ,ˆ
0000000

†††  . 
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 Hence, this commutation relation does not depend on the picture they are all considered in. (This 
conclusion is valid for the interaction picture as well.) Note, however, that this is true only if the time 
arguments of the operators coincide – for a counter-example, see, e.g., a footnote in Sec. 4.6 of the 
lecture notes. 

 
 Problem 4.31. Prove the Bloch theorem given by either Eq. (3.107) or Eq. (3.108), where R is an 
arbitrary vector of the Bravais lattice (3.106). 

Hint: Analyze the commutation properties of the so-called translation operator RT̂ , defined by 
the following result of its action on an arbitrary function f(r): 

)()(ˆ RrrR  ffT , 

and apply them to an eigenfunction (r) of the stationary Schrödinger equation for a particle moving in 
the periodic potential described by Eq. (3.105). 

Solution: Let us act by the translation operator on the function    rr fĤ , where the Hamiltonian 
is R-periodic in the sense of Eq. (3.105), and the function f(r) is so far arbitrary, i.e. may or may not be 
periodic. The result is 

  )(ˆ)(ˆ)()(ˆ)()(ˆ)()(ˆˆ)()(ˆˆ rrRrrRrRrrrrr RRR fHfHfHfHfH TTT  . 

Since f(r) is arbitrary, the comparison of the first and the last forms of this transformation chain shows 

that the operators RT̂  and Ĥ commute. Hence, according to the discussion in Sec. 4.5 of the lecture 

notes, they share their eigenfunctions (r): 

  ,ˆ,ˆ  RR  TEH  

where E and (R) are the corresponding eigenvalues. Without any restrictions, the c-number function 
(R) may be taken in the form  

         RR iFe       
(where F(R) may be a complex function), so 

        ,ˆ  R
R

iFeT      (*) 

 On the other hand, a successive action of two translation operators on any function evidently 
results in the net shift of its argument: 

               rrr RRRRRR fff '''  TTTTT ˆˆˆˆˆ .    (**) 

Hence, by applying Eqs. (*) and (**) to a joint eigenfunction (r) of the operators RT̂  and Ĥ , we may 
get any of the following two expressions: 

 
       

 




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
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e

eeee'
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TTTT
T  

Hence the function F(R) has to satisfy the following relation: 
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)()()( RRRR  'iFiF'iF eee , 

for an arbitrary choice of R and R’ (from the Bravais lattice set). This is only possible if it is a linear 
function of each Cartesian component of the vector R, with certain coefficients qj: 

        RqrRrrRqR R
 ieZqYqXqF zyx T̂  if  i.e., . 

 This is the Bloch theorem in the form (3.107). The only detail to add is that if the particle’s 
probability density (r)*(r) is periodic in the sense of Eq. (3.105), as it is inside each allowed energy 
band, then the vector q should satisfy the following requirement: 

           rrrrRrRr RqRq ****   ii ee . 

This condition gives the following equality: exp{i (q – q*)R} = 1, which may be satisfied (for arbitrary 
R) only if the quasimomentum is real: q* = q. 

 

 Problem 4.32. A constant force F is applied to an (otherwise free) 1D particle of mass m. 
Calculate the stationary wavefunctions of the particle in: 

 (i) the coordinate representation, and 
 (ii) the momentum representation. 

Discuss the relation between the results. 

 Solutions:  

 (i) In the coordinate representation, the Hamiltonian of the particle, 

      xF
m

p
H ˆ

2

ˆˆ
2

 ,     (*) 

may be rewritten as 

Fx
xm

H 




2

22

2
ˆ 

. 

so the corresponding stationary Schrödinger equation is 

 EFx
dx

d

m











2

22

2


. 

 This is the Airy equation, which was discussed in Sec. 2.4 of the lecture notes and may be 
reduced to its canonical form (2.101), 

      ,0
2

2





d

d
 

by defining the following dimensionless argument:235  

235 Cf. Eq. (2.100) of the lecture notes, which differs only by the sign of dU/dx = –F and hence by the opposite 
sign of x, selected to keep the expression under the cubic root positive. 
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                    

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
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


F

E
x

mF
3/1

2

2


 .      (**) 

As was discussed in Sec. 2.4, the fundamental solutions of 
this linear differential equation are the Airy functions Ai() 
and Bi() – see Fig. 2.9a, reproduced on the right. Of them, 
only Ai() is finite at all , so if Eq. (*) is valid on the 
whole axis – < x < +, its solution has to be proportional 
to this function alone: 

      , Ai  xC  

i.e. 

              
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where Cx is a normalization constant. 

 (ii) In the momentum representation, we may use the first of Eqs. (4.269) to rewrite Eq. (*) as  

p
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m

p
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The corresponding stationary Schrödinger equation for the wavefunction (p) is 
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Rewriting this linear ordinary differential equation in the variable-separated form, 

dpE
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
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we see that it may be readily integrated, giving 
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 Now let us verify that the functions (***) and (****) are indeed related by the Fourier transform 
– see Eq. (4.264) of the lecture notes:  
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 
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For that, by plugging the last of Eqs. (****) into this integral, and then introducing the dimensionless 
integration variable   (2mF)-1/3p, we get 
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where   –p/(2mF)1/3, and  is defined by Eq. (**). But as was mentioned in Sec. 2.4 of the lecture 
notes, the expression in the last square brackets is just the integral form of the function Ai(), so this 
function (x) is indeed proportional to the one given by Eq. (***). Hence, at the proper relation between 
their normalization coefficients Cx and Cp, the functions (x) and (p) are indeed just the spatial Fourier 
images of each other. 

 

 Problem 4.33. Use the momentum representation to re-solve the problem discussed at the 
beginning of Sec. 2.6 of the lecture notes, i.e. calculate the eigenenergy of a 1D particle of mass m, 
localized in a very short potential well with “weight” W. 

 Solution: The Hamiltonian of the system is  

         0with  ,  where,ˆ
2

ˆˆ
2

 WW xxUxU
m

p
H  .   (*) 

As was discussed in Sec. 4.7 of the lecture notes, the momentum representation of its first term is just 
the multiplier p2/2m, but in contrast to the previous problem, the direct use of Eq. (4.269) to find the 
corresponding representation of the second term is problematic due to the ultimately localized character 
of the delta function, making its Taylor expansion non-trivial. This is why it is more prudent to start at 
square one, namely from the general form of the eigenproblem: 

 EH ˆ . 

Proceeding just like was done in Sec. 4.7 for the coordinate representation, i.e. inner-multiplying both 
parts of this equation by p , and then using the closure relation analogous to Eq. (4.252), 

Ip'p'dp' ˆ , 

we get 

            pEp'p'Hpdp'pEp'p'Hpdp'Hp    ˆ  i.e.,ˆˆ ,  

where (p)  p is the eigenfunction in the momentum representation. Now by using, for our 
particular potential, the general Eq. (4.272) for the above long bracket, we get 
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The integral of the first term in the square brackets gives just (p2/2m)(p), as it should: 
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while that of the second one is 
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i.e. a p-independent constant.  Hence Eq. (**) is reduced to 

     pEdp'p'p
m

p 


  22

2 W
, 

immediately giving the following implicit solution (actually, a homogeneous integral equation): 

   
 dp'p'

Emp
p 

2/

2/
2

W
. 

Integrating both sides of this equation over p in the same (infinite) limits, we get236 
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Emp
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 WWW 
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Requiring the integrals on both sides of this equality to be equal, we get exactly the same eigenenergy, 

2

2

2

Wm
E  , 

as was obtained in Sec. 2.6 using wave mechanics, i.e. the coordinate representation. (Evidently, using 
that representation is simpler for this problem – as for most problems with localized potentials.) 

 

 Problem 4.34. The momentum representation of a certain operator of orbital 1D motion is p–1. 
Use two different approaches to find its coordinate representation. 

 Solution: Let us call the operator in question ̂ , then, according to the assignment, if 

 ˆ  

where  is an arbitrary 1D orbital state of a particle, then  

         pp
p  
1

,     (*) 

where (p) and (p) are the momentum representations of the states  and , respectively. Hence,  

         ppp   .     (**) 

Now we may proceed by using either of the following alternative approaches. 

 Approach 1. Let us consider the following ket-vector 

 p' ˆ . 

In the momentum representation, this relation takes the form  

   ppp'   , 

236 As was discussed in Sec. 2.6, the eigenenergy E of the localized state has to be negative, so the denominator of 
the fraction under the integral is positive for all p, and we may use for it the standard table integral – see, e.g., MA 
Eq. (6.5a). 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 235 

where ’(p) is the momentum representation of the state ’. The comparison of this expression with Eq. 
(**) shows that ’(p) = (p) for any state , i.e. this state and ’ have identical momentum 
representations. Since the set of the momentum basis states p, defined by Eq. (4.257) of the lecture 
notes, is full, this may be only if the states   and ’ are identical, i.e. 

   ˆˆˆ  so, pp' , 

for any state . This means that (as we could expect from the very beginning), 

Ip ˆˆˆ  . 

(A similar calculation in the opposite order shows that Ip ˆˆˆ  as well, so the operators ̂  and  p̂  
commute.)237 Hence the action of this operator product on an arbitrary coordinate-representation 
wavefunction cannot change it: 

     xxIxp   ˆˆˆ . 

In the coordinate representation, this relation is 

      xx
x

i x  



 in 
ˆ . 

Integrating both sides of this relation, after replacing x with x’,  over the interval [-, x], and multiplying 
them by i/, we get: 

             'dxx'
i

x
x

x 



-

in 
ˆ 


.     (***) 

This equality,238 valid for any function (x), is the required coordinate representation of the operator ̂ . 

 Approach 2. Let us use Eq. (4.264), then Eq. (*), and, finally, Eq. (4.265), to calculate the 
coordinate-representation wavefunction corresponding to the state : 
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  (****) 

 The inner integral Ip may be readily worked out by comparing it with similar integrals over 
closed contours on the plane of the complex variable p  Rep + iImp, where Rep  p. Indeed, the 
exponential function under such an integral,  

237 Such operators are frequently called the inverse of each other, and one may run into symbolic equalities like 
1ˆˆ  p . However, such expressions should be treated with utmost mathematical care; in this course, they are 

avoided.  
238 Actually, as it follows from our derivation, the lower limit of this integral may be an arbitrary constant. 
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is analytic for any p. If x – x’ > 0, it tends to zero exponentially fast at Imp  +. Hence Ip may be 
replaced with the integral over the contour C+ shown on the left panel of the figure below, which 
bypasses the pole point p = 0 via an infinitesimal semicircle, and returns to the initial point p = – along 
another semi-circle, this one with an infinite radius, in the upper half-plane. 

 

 

 

 

 

 
  
Applying the Cauchy integral formula to the exponential function alone,239 we get 

 
0for  ,2exp 
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


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 


x'xi
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iI
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p 
p
pp


. 

 On the other hand, if x – x’ < 0, the exponential function tends to zero at Imp  –. In this case, 
Ip may be replaced with the integral over the contour C– shown on the right panel of the figure above, 
inside which the whole function under the integral, including the 1/p factor, is analytic. Here the Cauchy 
integral theorem, applied to this composite function,240  yields 
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Plugging these results into Eq. (****), we get 
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2

1ˆ
in , 

i.e. arrive at Eq. (***) again. 

 Finally, note that acting absolutely similarly, for another operator (say, ̂ ), defined by its 
coordinate representation as 

xx

1ˆ
in  , 

we may readily get the following momentum representation:  

239 See, e.g., MA Eq. (15.2) with z = p, z’ = p’ =  0, and f(z) = exp{ip(x – x’)/}, so f(z’) = 1. 
240 See, e.g., MA Eq. (15.1) with z = p and f(z) = exp{ip(x – x’)/}/p. Note that, generally, the contour integral 
taken in this negative (clockwise) direction has to be taken with the negative sign, but in our current case Ip = 0, 
so the sign does not matter. 
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   



p

p dp'p'
i

p 


in 
ˆ . 

This relation is similar to Eq. (***), besides its opposite sign – the change that might be expected from 
the comparison of Eqs. (4.264) and (4.265) of the lecture notes. 

 

 Problem 4.35.* For a particle moving in a 3D periodic potential, develop the bra-ket formalism 
for the q-representation, in which a complex amplitude similar to aq in Eq. (2.234) of the lecture notes 
(but generalized to 3D and all energy bands) plays the role of the wavefunction. In particular, calculate 
the operators r and v in this representation, and use the result to prove Eq. (2.237) for the 1D case in the 
low-field limit. 

 Solution: Let us consider 3D orbital motion of a particle in a periodic potential U(r) described by 
the Hamiltonian 

)()(with  ),ˆ(
2

ˆˆ
2

0 RRrr UUU
m

p
H  ,   (*) 

where R is an arbitrary vector of the Bravais lattice – see Sec. 3.4. According to the Bloch theorem 
(3.108), in the coordinate representation, the wavefunction of an arbitrary orbital state of the particle 
may be expressed as an expansion over the eigenfunctions of the Hamiltonian (*):  

  )()(with  ,)( ,,
3

,, rRrrr qqqq
rq

nn
n

nn uuqdeua i    , 

which is a natural generalization of Eq. (2.234) to the 3D case and an arbitrary number of energy bands 
(numbered here with the integer index n).  

 The radius-vector’s operator acts on this wavefunction as follows: 

          .)(ˆ 3
,, 

n
nn qdeua i rqrrrr qq     (**) 

Let us calculate the gradient of the last product under the integral, multiplied by (–i), in the reciprocal q-
space of the quasimomentum:241 

   qq
rqrqrq r ,,, nqqnnq uieeueiu iii    . 

Expressing from this relation the first term on its right-hand side, and plugging it into Eq. (**), we get 

    
n

nqn
n

nqn qdueaiqdeuai ii 3
,,

3
,,ˆ qqqq

rqrqr  . 

Now let us take the integral in first term on the right-hand side by parts over a volume so large that on 
its surface, we may take   = 0, while in the second term, expand the q-gradient of the function un,q into 
a series over the full set of these (mutually orthogonal) functions in all energy bands: 

241 I am taking the liberty to use this convenient term for q, despite the fact (discussed in Sec. 2.7-2.8 and 3.4 of 
the lecture notes), that the genuine quasimomentum equals q. 
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           .,ˆ, ,, qq qΩq n'
n'

nq un'niu   

Here n,q are the eigenvectors of the Hamiltonian (*), so the Bloch wavefunctions 

  rq
qqrr  ieun nqn ,, , , 

while the vector operator Ω̂  is, at this stage, defined just by its matrix elements (geometric vectors!) 
participating in the above expansion. Then the result of the integration by parts is 

   
n

n'n
nn

nqn qdeuan'nqdaeui ii 3
,,

',

3
,, ,ˆ,ˆ rqrq

qqqq qΩqr  . 

Swapping the indices n and n’ in the last term, we may rewrite our result as 

     










n
nn'

n'
nq qdeuann'ai i 3

,,, ,ˆ,ˆ rq
qqq qΩqr  .   (***) 

On the other hand, in the q-representation, the amplitude function an,q plays the role of the 
wavefunction – just as in the usual momentum representation, which was discussed in detail in Sec. 4.7 
for the 1D case, the state with the Schrödinger wavefunction (4.264) is described by the function (p). 
In this representation, any operator should be described by its action on that wavefunction.  This is why 
in the q-representation, Eq. (***) may be re-written as 

   Ωr ˆˆ  qi .     (****) 

In the basis of the {n, q} eigenstates, the matrix of the first term of this sum is diagonal in n. On the 
other hand, the matrix of the second operator is, by its definition, diagonal in the q-subspace, and hence 
commutes with the Hamiltonian (*). Let us use this fact and Eq. (4.199) to calculate the velocity 
operator in the Heisenberg picture:  

    ΩvΩrrv q




 ˆˆˆˆ,

1ˆ,ˆ
1

ˆˆ 00  Hi
i

H
i q . 

As we know from the band theory, the Hamiltonian (*) is diagonalized by the kets n,q, with 

)(,ˆ, 0 qqq nEnHn  , 

so the first contribution ( qv̂ ) to the velocity operator is diagonal in both the n- and q-spaces, with the 

diagonal elements that act on the q-wavefunction an,q as 

   


)(
)()(

1
)(,

1
ˆ ,,,,,

q
qqqv qqqqqq

n
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E
aaEaEaEi

i
a   . 

For a wave packet localized in just one energy band n, with a narrow quasimomentum distribution about 
some central value q0, the action of this operator is reduced to the multiplication by the expression 

)(
)(

gr q
q

v nq
n

q

E
 


, 
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in which we may immediately recognize the natural 3D generalization of Eq. (2.235) for the group 
velocity of the particle. Hence we may expect that at least in this case, only the first term in Eq. (****) 
is important. 

To confirm this guess, let us discuss the second component, Ω
̂

, of the velocity operator v̂ . Its 
matrix is diagonal in the q-space, and we may use the same Heisenberg equation Eq. (4.199) to describe 
the dynamics of its nonvanishing elements: 

    qΩq
qq

qΩΩqqΩqqΩq ,ˆ,
)()(

,ˆˆˆˆ1
,,ˆ,ˆ1

,,ˆ, 000 n'n
EE

n'HH
i

nn'H
i

nn'n nn'



 
 . 

Due to the definition of the matrix elements qq ,ˆ, n'n  , it is clear that they should be finite (because 

for any finite U(r), the functions un,q(r) should be finite and continuous).242 Hence the second 

contribution to the velocity operator vanishes for n = n’, so the operator ̂  is indeed important “only”243 
for interband transitions, and in the absence of such transitions, does not affect the dynamics of a wave 
packet limited to just one energy band. 244 

 In order to analyze such dynamics in the presence of an external classical force F(t), we should 
add, to the periodic potential energy U(q), an additional term with the spatial gradient equal to –F(t). 
For the simplest 1D case, the total Hamiltonian becomes 

     xtFHH ˆ)(ˆˆ
0  .      

If the scale F of the force magnitude is small in the sense of Eq. (2.236), Fa << En, n, it cannot cause 
interband transitions, so if the system was initially localized in one energy band, we may ignore the 
second term in Eq. (****). The remaining first term of that relation obeys the commutation relations 
similar to the Heisenberg commutator (2.14); in the 1D case its only nonvanishing component is 

  Iiq
q

iqx x
x

x
ˆ,ˆ,ˆ 











 . 

On the other hand, since the Hamiltonian (*) is diagonal in the q-representation, it commutes with the 
operator of the quasimomentum qx. Now we may use these commutation relations to spell out the 
Heisenberg equation of motion (4.199) for that operator: 

  )(
1

)(ˆ,
1ˆ,ˆ

1
ˆ 0 tF

q
tiFHq

i
Hq

i
q

x
xxx


 











 . 

242 A good additional exercise for the interested reader: calculate these matrix elements explicitly for a 1D 
periodic potential U(x), both in the tight-binding limit and the weak-potential approximation. 
243 Actually, this operator plays a key role in the description of interband transitions in semiconductors, with such 
important applications as semiconductor lasers, photovoltaic cells, and detectors of radiation. For the reader 
interested in a detailed discussion of such transitions, I can recommend, for example, the monograph by B. 
Ridley, Quantum Processes in Semiconductors, 4th ed., Oxford U. Press, 2000. (See also Sec. 7.6 of this course.)  
244 This fact is the mathematical expression of the vague statement “the quasimomentum is the average 
momentum” made in Sec. 2.8. Indeed, an elementary 3D generalization of the first of Eqs. (4.269) shows that in 
the actual-momentum (p-) representation, kir̂ (where k  p/), i.e. coincides with the first component, qi , 

of that operator in the q-representation.
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 For a narrow wave packet as,q, with the center at point q0, this equation is equivalent to the 
quasi-classical equation (2.237), thus (finally!) justifying its applications discussed in Sec. 2.8 of the 
lecture notes. 

  

 Problem 4.36. A uniform, time-independent magnetic field B = nzB is 
induced in one semi-space, while the other semi-space is field-free, with a sharp 
plane boundary x = 0 between these two regions  – see the figure on the right. A 
monochromatic beam of non-relativistic, electrically-neutral spin-½ particles 
with a gyromagnetic ratio   0,245 in a certain spin state and with a kinetic 
energy E,  propagating within the [x, z] plane, is incident on this boundary from 
the field-free side, under angle  . Calculate the coefficient of particle reflection 
from the boundary. 

 Solution: We may represent the spin ket-vector of the incident particles as a linear superposition 
of z-polarized states: 

  cc , 

where the z-axis is directed along the magnetic field – see the figure above. (The expression “certain 
spin state” in the problem’s assignment means that the coefficients c and c are known – perhaps up to 
a common phase factor.) Since the states  and  are the eigenstates of the Pauli Hamiltonian (4.163), in 
the field region (in the figure above, at x > 0), this operator may be replaced with its eigenvalues in this 
state basis: E = –B/2 and E = +B/2, respectively. Hence we may describe the orbital motion of 
the beam by a linear superposition of two wavefunctions,246 (r) and (r), which obey different 
Schrödinger equations:  
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 But each of these independent247 boundary problems is exactly similar to that of a spinless 
particle’s reflection from a potential step – see Problem 3.1. According to its solution, with the 
replacement of the parameter U0 with either E or E, respectively, the reflection coefficients R of these 
two waves, referred to the initial intensity of the whole beam, are as follows (provided that B > 0): 

245 The fact that  may be different from zero even for electrically-neutral particles such as neutrons, is explained 
by the Standard Model of elementary particles, in which a neutron “consists” (in a broad sense of this word) of 
three electrically-charged quarks with a zero net charge. 
246 As will be discussed later in the course, such a set of two wavefunctions is frequently called a spinor. 
247 Still note that for the nearly monochromatic incident particles, and in the absence of dephasing (see Chapter 7 
of the lecture notes for its discussion), the de Broglie waves  and  remain coherent, and if their beams are 
eventually recombined, the particles may exhibit quantum interference phenomena – see, e.g., Sec. 3.1 of the 
lecture notes. 
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   ,cos 
2

for  ,
2/coscos

2/coscos

2

2

2

2/12

2/12

2

E

EE

E

c








B

B

B

B

R








 

(For B < 0, these expressions should be interchanged.)   

 In particular, if the spin polarization energy  B  /2 is larger than the incident particle energy E, 
the reflection of one de Broglie wave (for B > 0, ) is total for any incidence angle , so only the 
other wave () propagates into the field region x > 0. Hence such a setup may be used for getting a 
beam of spin-polarized particles from an incident beam of unpolarized ones. 
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Chapter 5. Some Exactly Solvable Problems 

 Problem 5.1. Use the discussion in Sec. 5.1 of the lecture notes to find an alternative solution of 
Problem 4.18. 

 Solution: According to the discussion in Sec. 5.1, the expectation value of the z-component of 
spin-½, in the state fully polarized in the direction n = nxsincos + nysinsin + nxcos, is given by 
the last of Eqs. (5.12): 

      





  1

2
cos2

2
cos

22
2  

zzS .    (*) 

But according to Eq. (1.37) and the fact that in the z-basis, the operator zŜ  has just two eigenstates,  

and , with the eigenvalues /2, this expectation value may be also represented as 

       












 WWWWS z 222


.    (**) 

where W and W are the probabilities of the corresponding states. Since the sum of these two 
probabilities has to equal 1, i.e. W = 1 – W, Eq. (**) may be rewritten as 

    12
2

1
2

  WWWS z


. 

By requiring this expression to give the same result as Eq. (*), we get 

.
2

sin
2

cos11  hence and,
2

cos 222 
  WWW  

Now we may argue that due to the isotropy of free space, this result has to be independent of the 
absolute directions of the two axes (those of the initial polarization of the spin and the direction of the 
magnetic field in the Stern-Gerlach apparatus), and may depend only on the angle   between these axes. 
Thus we have re-derived the solution of Problem  4.18 – in a much simpler way. 

 

 Problem 5.2. A spin-½ with a gyromagnetic ratio  is placed into an external magnetic field, with 
a time-independent orientation, its magnitude B(t) being an arbitrary function of time. Find explicit 
expressions for the Heisenberg operators and the expectation values of all three Cartesian components of 
the spin as functions of time, in a coordinate system of your choice. 

 Solution: In the coordinate system with the z-axis directed along the applied magnetic field 
(evidently, the easiest choice), the Hamiltonian of our system is given by Eq. (4.163) of the lecture 
notes: 

    zz tStH  ˆ
2

ˆˆ 
BB  . 

In the z-basis, its matrix is 
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    










10

01

2
σ

2
H


tt z BB  . 

This expression coincides with Eq. (5.3) of the lecture notes,1 with b = 0 and 

  zt nc
2


B . 

Hence we may use Eq. (5.19) rewritten for the spin operator  σS ˆ2/ˆ  : 

        ztttt ncΩSΩS B


 2
with  ,ˆˆ , 

so in the Cartesian components, 

        0ˆ,ˆˆ,ˆˆ  zxyyx SStSStS


.     (*) 

 The last equation obviously yields 

    const,0ˆˆ  zz StS  

while the easiest way to solve the system of the first two equations (*) is to introduce (just as it was 
done for the orbital momentum in Sec. 5.6 of the lecture notes), the spin-ladder operators2  

      
yx SiSS ˆˆˆ 
,       

with the reciprocal relations 

             
i

SS
tS

SS
S yx 2

ˆˆ
ˆ,

2

ˆˆ
ˆ  




 .    (**) 

By using these formulas and Eqs. (*) to calculate the time derivatives of the ladder operators, we get two 
simple independent equations  

    StiS ˆ̂
, 

which are easy to solve: 

                              .  where,exp0ˆ0ˆexp0ˆˆ
0
 

t

yx dt't'ttiSiStiStS   (***) 

Now using Eqs. (**) to return the real Cartesian coordinates of the spin operator, we finally get 

                   tStStStStStS xyyyxx  sin0ˆcos0ˆˆ,sin0ˆcos0ˆˆ  . 

 In the particular case of a time-independent field, the argument (***) of the trigonometric 
functions in these expressions is just t, so our results are reduced to Eq. (4.194)-(4.195) of the lecture 
notes (written there for the z-basis matrices, but actually valid, as operator relations, in any basis). 

Finally, since in the Heisenberg formalism, according to Eq. (4.191), the expectation value of 
any observable is calculated with time-independent bra- and ket-vectors, the relations between the 

1 See also Eq. (5.13) with B = B(t)nz. 
2 Implicitly, these operators (or rather their expectation values) have already been used in the lecture notes – see 
Eqs. (4.172)-(4.173).
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expectation values of the spin components exactly replicate the above operator relations. Again, for the 
case of a constant magnetic field, they coincide with Eqs. (4.170), (4.173)-(4.174). 

 

Problem 5.3. A two-level system is in the quantum state  described by the ket-vector  = 
 + , with given (generally, complex) c-number coefficients . Prove that we can always 
select such a geometric c-number vector c = {cx, cy, cz} that   would be an eigenstate of σc ˆ , where σ̂  
is the Pauli vector operator. Find all possible values of c satisfying this condition, and the second 
eigenstate (orthogonal to ) of the operator σc ˆ . Give a Bloch-sphere interpretation of your result. 

Solution: In the z-basis, the operator σc ˆ  has the following matrix: 

,     where,
10

01

0

0

01

10
σσσ yx

z

z
zyxzzyyxx iccc

cc

cc
c

i

-i
ccccc 





































 



σc  

so the system of equations (4.102) for its eigenstates and eigenvalues has the form 

.0

































jz

jz

cc

cc
    (*) 

The condition of compatibility of these equations, the characteristic equation 

,0








jz

jz

cc

cc




 

has two roots  = c, where  

    c 

2/12222/12
zyxz ccccccc . 

 Plugging these roots back into the initial system of equations (*), we get 

., zz cccccc 








 





 

With the characteristic equation satisfied, any one of these relations contains the same information. 
Moreover, up to this point, this solution repeats Approach 2 in the model solution of Problem 4.27. 
However, since c–* = c+, while c and cz are real, for our current purposes, it is convenient to use the 
second equation together with the complex conjugate of the first equation, 

.
*

*

zccc 



 


 

Indeed, by adding both sides of these two equations, we may eliminate c (which is an inconvenient, 
nonlinear combination of the c-vector components):  

        .2
*

*

zcc 


















 





     (**) 

 This is the only equation we need to satisfy in order to make the given quantum state the 
eigenstate of our Hamiltonian. Formally solving it for c+,                                                                                                 
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,22
22

*1

*

*







































zz ccc  

then finding c– as the complex conjugate of c+: 

22

*

2











zcc , 

we may return to cx and cy: 

.
1

2
,

2 22

**

22

**
































i

c
i

cc
cc

cc
c zyzx  

Now let us assume that the given ket vector  is normalized: ( 2 +  2)1/2 = 1, and their 
(inconsequential) common phase is set so that the coefficient  is real. Then in the Bloch-sphere 
representation given by Eq. (5.11) of the lecture notes, the above result takes a much simpler form: 

,cos),sinsin,cossin (i.e.,sin   ccccccecc zyx
i  

  

where c may be arbitrary, while   and  are just the spherical angles of the state-representing point: 

  .arg,cos2 1


        

This result has a very simple interpretation: in order for a state , represented by a certain point 
on the Bloch sphere, to be an eigenstate of the operator σc ˆ , it is sufficient to have the “field” vector c 
directed from the origin to this point. This is just an alignment of the (average) spin’s direction with the 
field; the degree of freedom we still have in the solution corresponds to the arbitrary field’s strength c. 

 The Bloch sphere graphics also give a simple way to find the eigenstate ’ orthogonal to the 
given one (): their representing points should be diametrically opposite. Hence, to find the coefficients 
’and ’ for this second eigenstate, it is sufficient to make the following replacements:     –   
and    +   in Eqs. (5.11), getting 

                      argexp
2

cos,argexp
2

sin ie'i' i .   

(Generally, both coefficients may be multiplied by the common phase factor exp{i’} with an arbitrary 
real ’, just as it is done in Eq. (5.10) for the initial state.) It is also straightforward to verify that the 
simultaneous replacement   ’ changes the signs of the eigenvalues : from +c to –c and vice 
versa. 

 

Problem 5.4. Rewrite the key formulas of the solutions of Problems 4.27-4.29 in terms of the 
Bloch sphere angles, and verify at least one of them using the general relations of Sec. 5.1 of the lecture 
notes. 

 Solution: In those solutions, the c-number “field vector” c that participates in the problems’ 
Hamiltonian 
          σc ˆˆ H ,      (*) 
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(where σ̂  is the Pauli matrix operator) was represented by its Cartesian coordinates cx, cy, and cz in the 
usual z-basis, with the convenient complex-number notation c  cx  icy, so that cx

2 + cy
2 = c+c–. Here, 

let us use the standard spherical-coordinate representation of this vector instead: 

  .cossin  so,cos,sinsin,cossin ,    

c

c
e

c

c
c zic  

It is imperative to distinguish these spherical angles  and , describing the direction of the given vector 
c, from the Bloch-sphere angles of an arbitrary state of the two-level system, which were used in most 
formulas of Sec. 5.1 of the lecture notes; as was shown in the solution of the previous problem, these 
notions coincide only for the eigenstates of the Hamiltonian (*). 

 In this angular notation, Eq. (*) of the model solution of Problem 4.27 becomes3 

  ,

2
sincos

2
cos

2
sinsin

2
sinsin

2
sincos

2
cos

0,u


































t
i

tt
ei

t
ei

t
i

t

t
i

i









 

where   2c/ is the same quantum oscillation frequency as in Eq. (5.14).4 For the particular case of 
the initial state , which was the subject of that problem, the other major results of its solution acquire 
the following forms: 

 
 

 
 

,
sinsin

2
sincos

2
cos




























































tei

t
i

t

t

t

t

t

i










 

,1
2

sinsin,
2

sinsin1
2

sincos
2

cos 2222222
 











 W

t
W

ttt
W   

,
2

sin
2

sincoscos
2

cossinsin
ttt

S x








 




   

,
2

sin
2

sinsincos
2

coscossin
ttt

S y








 




   

     .
2

sinsin21
2

22 





 


t
S z 

    (**) 

 As a sanity check, let us re-derive the last expression from the last of Eqs. (5.12) of the lecture 
notes: 

statestate cos
2

  i.e.,cos  
 zz S , 

where the subscript is added to distinguish the polar angle of the Bloch-sphere point representing the 
quantum state from the tilt  of the c-number vector c. According to Eq. (5.21), in our current case of a 
time-independent vector   2c/, the state-representing point moves, with a constant angular velocity 

3 In the particular case of a z-oriented field ( = 0), this expression reduces to Eq. (4.193) of the lecture notes. 
4 In the particular case of the spin-½ precession in a magnetic field B when, according to Eq. (5.163), c = –

(/2)B, this frequency is reduced to Eq. (4.164):  = –B.  
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, along a circle whose symmetry axis is directed along the vector c. If the initial state of the system is 
 (as it is in Problems 4.27-29), this circle has to pass through the Bloch sphere’s North Pole – see the 
left figure below, where the circle is shown in red. 

 

 

 

 

 

 

 

 

 

 

 
  
 The balance of the calculation becomes more clear from the right figure above, which shows the 
projection of the same geometry on the common plane of the vertical axis and the vector c. Since the 
Bloch sphere has a unit radius, the radius of the circular trajectory of the state point (see also the blue 
segment in the left figure) is sin. The projection of the state point on this plane is offset from the 
circle’s center by the distance sin cost, and hence its distance from the North Pole of the sphere is 
sin – sin cost  sin (1 – cost). The projection of this segment on the vertical axis is sin sin (1 
–cost)]  sin2 (1 – cost), so, finally,  

  





 





2
sinsin21

2
  i.e.,

2
sinsin21cos1sin1cos 22222

state

t
S

t
t zz  

, 

thus confirming Eq. (**). (The above expressions for Sx and Sy may be verified by using the same 
sketch and a bit more involved trigonometry.) 

 Besides that, while developing Approach 2 to the solution of Problem 4.27, we have derived the 
following relations between the eigenstates  of the Hamiltonian (*) and the z-basis states  and :  

        
.

2
,

2
,

2 2/12/12/1
zzz

z

ccc

c

ccc

c

ccc
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








   

In the spherical-coordinate representation of the vector c, these relations become 

  
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2
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
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Since in the notation (5.1) of the lecture notes, + is just , while + is , there is no surprise that 
the expressions for these two short brackets are in agreement with Eqs. (5.11) of the lecture notes, 
because the points representing the eigenstates  on the Bloch sphere are located where the vector c 
pierces it. (Cf. the solution of the previous problem.) 

 So, we see that the bulkiness of some formulas in the solution of Problem 4.27 was not due to the 
complexity of the quantum oscillations as such but rather due to the awkwardness of the Cartesian-
component representation of the circular motion of the state point on the Bloch sphere. 

 Next, the objective of Problem 4.28 was to obtain essentially the same results using the 
Heisenberg picture, but that of Problem 4.29 was different: to calculate the matrix elements of the 
operator zσ̂ in the basis of the states . The result, in the matrix form, was 


























z

z

z
cc

cc

c

1
σ in . 

In the angular representation of the vector c, this formula reads 






























cossin

sincos
σ in i

i

e

e
z . 

 For the “field vector” c aligned with the z-axis ( = 0), this result is reduced to the canonical 
form of the Pauli matrix z, regardless of the azimuthal angle . On the other hand, for a field normal to 
this axis ( = /2), the result is a function of the azimuthal angle: 

,
0

0
σ in 





















i

i

e

e
az  

turning into the canonical forms of the Pauli matrices x at  = , and y at  = –/2. 

 

 Problem 5.5. A spin-½ with a gyromagnetic ratio  > 0 was placed into a time-independent 
magnetic field B0 = B0nz and let relax into the lowest-energy state. At t = 0, an additional field B1(t) is 
turned on; its vector has a constant magnitude but rotates within the [x, y]-plane with an angular velocity 
. Calculate the expectation values of all Cartesian components of the spin at t  0, and discuss the 
representation of its dynamics on the Bloch sphere. 

 Solution: Let us take the direction of the vector B1 at t = 0 for the x-axis; then the total field at t 
 0 is5 

  zyx tt nnn 01 sincos BB  B , 

so the Pauli Hamiltonian (4.163a) becomes 

5 This choice of the sign before ny corresponds to the positive (counterclockwise) rotation of the vector B1 within 
the [x, y] plane. To describe the opposite rotation, it is sufficient to change the sign before  in all the formulas 
below. 
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BBBσ  

where (as in Sec. 4.6 of the lecture notes), 0  –B0 and 1  –B1. In the usual z-basis, the matrix of 
this Hamiltonian is 
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tt zyx 



 
 

Let us take the spin’s ket-vector in the form (5.1): 

      ,  where,    ttt  

then the Schrödinger equation (4.158) yields 
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




  (*) 

 This is a system of two ordinary linear differential equations with time-dependent coefficients. 
There are no regular methods for analytical solutions of general equations of this type; however, in our 
particular case, the functions of time are very simple and may be eliminated by the following trick.6 Let 
us define two functions of time, which differ from (t) only by simple phase factors: 















  2

exp,
2

exp
titi  . 

For these new variables, Eqs. (*) yield a system of equations with constant coefficients: 

              ,
2

,
2 11    ii     (**) 

where    – 0 is “detuning” – the difference between the frequencies of the ac field B1(t) and of the 
spin precession in the dc field B0.  

 The general solution of this system of linear equations may be expressed as 

                 ,
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t
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t
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t
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t
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where the frequencies  are the roots of the characteristic equation that results from the substitution of 
any of these exponents into Eq. (**): 

     .  where,  giving,0
2/12

1
2

0

2/12
1

2

1

1
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
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




 

6 It will be also used in Sec. 6.5 of the lecture notes for the solution of a very similar problem. 
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This  is called the Rabi oscillation frequency.7 In order to find the constant coefficients b, we may plug 
each exponent participating in the solution (***), one by one, back into Eqs. (**) and solve any of the 
resulting linear homogeneous algebraic equations for the ratios of these coefficients. The result is8 

, , 1
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so Eqs. (***) are reduced to 
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where b+  b+ and b–  b–. These two remaining coefficients are determined by the initial conditions. 
In our particular case, in the absence of the field B1, i.e. at t  0, the system’s Hamiltonian was simply 
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so at B0 > 0, the state  had the lowest energy and hence is the initial state of our system for its 
evolution at t  0. Hence, the initial conditions for the system’s evolution at t  0 are as follows: 

        .0001,00     

For the coefficients b and b, these conditions give a simple system of two linear equations, 
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so Eqs. (***) become 
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and for our original expansion coefficients, we get 
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Now plugging this solution into Eqs. (4.130) and (4.132)-(4.133) of the lecture notes, we finally get 

7 Indeed, the process considered in this problem is a particular case of the general effect of Rabi oscillations, 
which is ubiquitous in quantum systems driven by periodic external fields – see Sec. 6.5 of the lecture notes. 
8 Note that the above expression for  implies that ( – )/1 = 1/( + ). 
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 Let us discuss these results, starting with the last one. It shows that the spin’s component aligned 
with the dc field (or rather its expectation value) oscillates with the Rabi frequency . (Note that this 
law may be also calculated from the probability to find the spin in its initial state () as 
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Just as a sanity check, we may also calculate  
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so W  + W = 1 at all times, as it should be. This is sufficient to calculate Sz:  

   ,
22

tWtWSz  


 

getting the same result as in Eq. (****).) If the ac field’s amplitude is so small that 1 << , 0, while   
is very close to 0, then the Rabi frequency is much lower than both  and 0.9 In this case, the 
oscillation swing, 
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minmax 
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
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zz SS  

is much smaller than  (and is proportional to B1
2) at most frequencies , but shows a sharp resonant 

maximum at   very close to 0, reaching its maximum value of  at the exact resonance  = 0.10 At 
this magnetic resonance, the spin completely reverses its direction each half-period of the Rabi 
frequency .  

 On the Bloch sphere (see Fig. 5.3 of the lecture notes), this result means that the state-
representing point travels periodically from the North Pole to the South Pole and back. However, its 
trajectory is not circular, i.e. does not follow one of the sphere’s meridians, as it would if the field B1 
applied within the [x, y]-plane was time-independent. Rather, as the first two of Eqs. (****) show, the 
meridional motion of the point is accompanied by its azimuthal rotation about the z-axis. The difference 
between these two motion components is especially spectacular at the magnetic resonance in a low ac 

9 Note that this is possible only at similar signs of 0 and , i.e. only at a certain direction of the ac-field’s 
rotation. 
10 This resonance condition may be interpreted as the equality of the gap  = 0  B0 between the spin’s 
energy levels in the dc magnetic field B0 and the energy quantum  of the external ac field, leading to periodic 
absorption and emission of such quanta by the spin. This general phenomenon and the effect of energy dissipation 
on it will be discussed in Chapters 6 and 7.  
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field: in this case, the azimuthal rotation’s frequency is close 
to 0, while the Rabi frequency  of the meridional 
oscillations is much lower, of the order of 1, so that the 
point’s trajectory is a dense spiral winding about the dc 
field’s direction – see the figure on the right, which shows 
the trajectory during the first half-period of the frequency . 

 Note, however, that if we view this evolution from 
the reference frame rotating together with the field B1, i.e. 
measure the linear combinations 

tStS'S

tStS'S

yxy

yxx
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then the fast evolution with the frequency  disappears:  
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





 sin
2

,cos1
2

1
2

1  
. 

On the Bloch sphere, these formulas (together with Eq. (****) for Sz, 
which does not change at this transform) describe the rotation, with the 
frequency , along a circle with the radius (/2)cos = (/2)1/, passing 
through the initial point S(0) = (/2)nz, with its plane normal to the 
vector  = nx’ 1 – nz. (Figure on the right shows its side view, for the 
case  < 0, i.e. 0 > .) The physics behind this result is that according to 
basic kinematics,11 from the point of view of an observer rotating with the 
angular velocity  = nz, the spin’s average magnetic moment m = S 
follows not the basic Bloch equation (5.22), 

 ,tt
dt

d
zyx nnnmm

m
011 ΩsincosΩ   B  

which is valid in an inertial reference frame, but the modified equation 

     ,ΩΩ 101rot Ωmnnmnnmmn
mm

 zxzxz ''ω
dt

d

dt

d   

similar to that for a constant magnetic field of the magnitude B = / = (B0
2 + B1

2)1/2 – see the last 
figure above. By the way, this fact might be used to calculate the Cartesian components of the vector 
S’ directly from the Bloch equation so modified (just as this was done in the previous problem) and 
then transfer the results to the lab frame. 

 

 Problem 5.6.* Analyze statistics of the spacing S  E+ – E– between energy levels of a two-level 
system, assuming that all elements Hjj’ of its Hamiltonian matrix (5.2) are independent random numbers, 
with equal and constant probability densities within the energy interval of interest. Compare the result 

11 See, e.g., CM Eq. (4.8).
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with that for a purely diagonal Hamiltonian matrix, with a similar probability distribution of its random 
diagonal elements. 

 Solution: According to Eq. (5.6) of the lecture notes, 
2/1
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2
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
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
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 

  HH
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EES . 

Since the Hamiltonian has to have real eigenvalues, its matrix has to be Hermitian, i.e. the diagonal 
elements H11 and H22 have to be real, while the off-diagonal elements H12 and H21 to be complex-
conjugate, so we may rewrite the expression for S as 

  ,2
2/122 YXS   

where X  (H11 – H22)/2 and Y  Re [H12] = Re [H21] are independent random real numbers distributed, 
each along its axis, with a certain constant probability density w0. As a result, the probability for them to 
be within an elementary interval dXdY (i.e. an elementary area of the [X, Y] plane) is  

dXdYwdw 2
0 . 

By introducing, in the standard way, the polar coordinates  and  on that plane: 

 sin,cos  YX , 

we get dXdY = dd  and S = 2. Hence the probability for the system to be within a small interval d, 
regardless of the angle  (which does not affect S) is  

 SdSwdwdW 2
0

2
0 2

2
  . 

On the other hand, by the definition of the probability density w of a 1D variable (in our case, S), dW 
should be equal to w(S)dS, so in our case, 

        SwSw 2
02


 .     (*) 

 However, this result may be taken for the genuine probability density of the interlevel spacing 
only for small S, because it does not reflect the fact that each two-level system has only one value of S. 
(For example, if integrated over S from 0 to some growing value, Eq. (*) would eventually give a 
probability larger than 1.) The standard general way to correct this deficiency is to say that as S is 
increased, the probability W(S) of having the spacing at the interval [0, S] increases as 

        
      SWSw

dS

SdW
 1 .      

Here the additional factor [1 – W(S)] reflects the fact that only if the spacing is not located on the 
interval [0, S], it may be located at larger values of the spacing. Integrating this simple differential 
equation with the obvious boundary condition W(0) = 0, we get 
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
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Now the genuine probability density of the interlevel spacing may be calculated as  
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 As a sanity check, at S  0, this probability density coincides with the “seed density” w(S), but 
at S  , it drops exponentially, ensuring the automatic convergence of the aggregate probability to 
have the spacing at one (some) value S, 
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to the appropriate (unit) value, for any seed function w(S): 
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 For our particular case, by plugging Eq. (*) into the general Eq. (**), we get 
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This result may be used, in particular, to calculate the average level spacing,12 
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The last relation allows one to express the parameter w0 as 1/S, and rewrite Eq. (***) in its canonical 
form, as the probability density of the normalized spacing s  S/S:13 

         

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



 2

4
exp

2
~~~ ssSwSSw

ds

dS
sw


.   (****) 

 This result (called the Wigner surmise) shows that the probability of having the two 
eigenenergies of a random two-level system very close to each other is vanishingly small. This fact,  
called the level repulsion, is perhaps the best-known qualitative result of the field called the Random 
Matrix Theory (RMT).14 

 To appreciate how nontrivial Eq. (****) is, let us compare it with the statistics of spacing 
between fully independent energy values, which may be described by Eq. (5.2) with H12 = H21 = 0, so 

XHHS 22211  . 

12 Using the well-known Gaussian integral – see, e.g., MA Eq. (6.9c). 
13 The first of these equalities follows from the invariance of the elementary probability dW with respect to the 
choice of its argument: dW =    dsswdSSw ~~  . 
14 The de-facto bible of the RMT (whose founding father set notably includes E. Wigner and F. Dyson) is the 
monograph by M. Mehta, Random Matrices, Elsevier/Academic Press, 2004. The field was inspired by the 
experimental observations, in the 1940-50s, of pseudo-random energy spectra of atomic nuclei, but is applicable 
to many other systems with uncontrollable parameters, for example solid-state “quantum dots” – see, e.g., C. 
Beenakker, Rev. Mod. Phys. 69, 731 (1997). The general RMT shows that Eq. (****) is valid for the so-called 
orthogonal ensemble – just one of three major statistical ensemble types. (The reader interested in this 
classification and other details of the RMT is referred to the cited sources.) 
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With the probability density of X equal to w0 = const, we have dW = w(S)dS = 4w0dX (with the 
additional factor of 2 coming from the contributions from two branches of the function S(X), for positive 
and negative X), so the seed density is 

  const4 0  wSw . 

Plugging this expression into the general Eq. (**), we get a purely exponential distribution:  

   SwwdS'wwSw
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00
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00 4exp44exp4~ 
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
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
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
  , 

which is usually also recast into that for the normalized 
spacing s: 

   ssw  exp~ , 

Where, as above, s  S/S, but in this case, with 

   
0000 4

1
exp

4

1~ 
w

d
w

dSSwSS  


 . 

This exponential distribution is shown, together with the 
one given by Eq. (****), in the figure on the right; please 
agree that their difference is quite spectacular.  

 The Wigner surmise may be interpreted as the 
direct result of the level repulsion at their anticrossing – 
see, e.g., Fig. 5.1 of the lecture notes.  

 Let me also note one more interesting aspect of the RMT: its application to the statistics of 
energy spectra of classically chaotic Hamiltonian systems.15  Namely, in such systems, the level spacing 
distribution is closer to the Wigner surmise (****),  while in non-chaotic (“integrable”) systems it is 
closer to the exponential one. To the best of my knowledge, this Bohigas-Giannoni-Schmit conjecture 
has not received any general proof (yet), but it has been implicitly confirmed by many numerical 
simulations of particular systems.16  

  

 Problem 5.7. For a periodic motion of a single particle in a confining potential U(r), the virial 
theorem of non-relativistic classical mechanics17 is reduced to the following equality: 

UT  r
2

1
, 

where T is the particle’s kinetic energy, and the top bar means averaging over the time period of motion. 
Prove the following quantum-mechanical version of the theorem for an arbitrary stationary state, in the 
absence of spin effects: 

15 For a brief discussion of the classical deterministic chaos see, e.g., CM Sec. 9.3; for a brief remark on quantum 
dynamics of classically chaotic systems, see a footnote at the beginning of Sec. 3.5 of the lecture notes. 
16 See, e.g., S. McDonald and A. Kaufmann, Phys. Rev. Lett. 42, 1189 (1979). 
17 See, e.g., CM Problem 1.12. 
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UT  r
2

1
, 

where the angular brackets denote (as usual in this course) the expectation values of the observables. 

 Hint: Mimicking the proof of the classical virial theorem, consider the time evolution of the 

following operator: pr ˆˆˆ G . 

 Solution: According to Eq. (4.199), in the Heisenberg picture of quantum dynamics 

 HGGi ˆ,ˆˆ  , 

where, in the absence of spin effects, the particle’s Hamiltonian may be taken in the form (4.237), so 

    rprpr U
im

p

i
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i
G ˆ,ˆˆ

1

2

ˆ
,ˆˆ

1ˆ,ˆ1ˆ
2













 . 

Let us use, for each Cartesian coordinate, the commutation relation similar to Eq. (5.27), so that all of 
them may be summarized as the following vector equality: 

        pr ˆ2ˆ,ˆ 2 ip  . 

If we also use a set of three equations similar to Eqs. (5.33)-(5.34) which give, in the coordinate 
representation, the following vector relation 

                UiU rp ˆ,ˆ ,     (*) 
then we get 







  UTU

m

p
G  rr ˆ

2

1ˆ2ˆ
ˆˆ

2
. 

 Averaging both sides of this equation over the ensemble of initial quantum states, we get the 
following relation for the expectation values of the involved variables 

      





  UTG r

2

1
2 .     (**) 

Since, by its definition, for any localized motion, G is a limited variable, the expectation value of its 
time derivative has to vanish in any stationary state of the system. Hence the right-hand side of Eq. (**) 
has to equal zero as well, thus proving the quantum virial theorem. 

 Note that, just as in classical mechanics, the theorem may be generalized as follows, 

         



N

k
kk UT

1

ˆ
2

1
r ,     (***) 

for a system of N particles described by the spin-independent Hamiltonian 

 N
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k k

k U
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p
H rrr ˆ,...ˆ,ˆˆ

2

ˆˆ
21

1

2

 
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. 

Indeed, the commutators  'ˆ,ˆ kk pr  for all particle pairs (k  k’) vanish because these operators belong to 

different Hilbert spaces, and Eq. (*), in the form 
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   UiU kk ˆ,p̂ , 

is valid even if the potential energy depends on the positions of other particles as well, making the proof 
of Eq. (***) similar to that of its single-particle version. 

 

 Problem 5.8. A non-relativistic 1D particle moves in the spherically symmetric potential U(r) = 
Cln(r/R). Prove that: 

 (i) p2 is the same in each stationary state, and 
 (ii) the spacing between the energy levels is independent of the particle’s mass. 

 Solutions:  

 (i) In this particular case, the virial theorem18 applied to the nth stationary state, 

nn
UT  r

2

1
, 

takes the form 

   Cmp
C

C
dr

dU
rp

m nn
n

n
 22   i.e.,

22

1

2

1

2

1
,  (*) 

so that p2n is fully determined by the constant C and the particle’s mass. 

 (ii) Let En be the particle’s energy level, and apply to it the Hellmann-Feynman theorem in the 
form  
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Now using Eq. (*), we get 

,
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m

En 



 

so that this derivative does not depend on the stationary state’s number n. Hence for the spacing   En+1 

– En between the energy levels, we may write: 

,01 
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m

E

m

E

m
nn  

i.e. it is indeed independent of m. 

 Finally, note that this function U(r) is not as artificial as it may look, despite its divergences at r 
 0 and r  . For example, it describes the potential energy of a charged particle in the field of a 
long, thin, straight filament carrying a distributed change with a constant density19 – of course, within 
the limits imposed by a final length and a non-zero thickness of the filament. 

 

Problem 5.9. Calculate, in the WKB approximation, the transparency T of the following saddle-
shaped potential barrier:  

18 See the previous problem. 
19 See, e.g., the solutions of EM Problems 1.1 and 1.6. 
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,1),(
20 





 

a

xy
UyxU  

where U0  > 0 and a are real constants, for tunneling of a 2D particle 
with energy E < U0. 

Solution: The equipotential lines of this potential profile, 
corresponding to U (x, y) = E, are hyperbolas symmetric with respect 
to the straight-line diagonals y = x – see the figure on the right. 
Hence the quasi-classical instanton trajectory that provides the 
minimum of the tunneling exponent given by Eq. (5.56) of the lecture 
notes, 

  ,
2

   where,
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cannot deviate from one of these symmetry axes.  If U0 > 0, the diagonal connecting classically allowed 
regions with energies E < U(0, 0) = U0 is y = –x – see the red arrow in the figure above. Plugging this 
relation into the function U(x, y), and the resulting function into the above expression for 2, we get 
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with dl = 2dx, lc = 2xc, where xc are the x-coordinates of the classical turning points r0 and r, 
determined by the condition 
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A simple integration yields 
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giving the following WKB transparency (5.58): 
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 Problem 5.10. In the WKB approximation, calculate the so-called Gamow factor20 for the alpha 
decay of atomic nuclei, i.e. the exponential factor in the transparency of the potential barrier resulting 
from the following simple model for the alpha-particle’s potential energy as a function of its distance 
from the nuclear center: 
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20 Named after G. Gamow, who made this calculation as early as 1928. 

x

y

yx 

0r

r

EU 

EU  0UU 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                 Page 259 

where Ze = 2e > 0 is the charge of the particle, Z’e > 0 is that of the nucleus after the decay, and R is the 
nucleus’ radius. 

 Solution: Evidently, such tunneling is possible only for energies E > U() = 0. Due to the 
spherical symmetry of the potential, the instanton trajectory that minimizes the functional I given by Eq. 
(5.56) of the lecture notes, has to be a straight radial line, so  
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where R’ > R is the radius at which the particle of energy E comes out from under the barrier: 
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. 

 By using this definition to simplify the function under the integral, and then the variable 
substitution r  R’sin2  (so that dr = 2R’sincosd), we get 
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At this point, it is convenient to introduce a natural energy constant, 
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to, finally, get 
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 Just for the reader’s reference, the typical energies E of emitted alpha particles are much smaller 
than E0, so the experimental data are reasonably well described by a simpler expression that follows 
from the last formula after dropping the two last terms in the square brackets: 
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where  is the fine structure constant. Moreover, the last expression gives reasonable results not only for 
alpha particles, but for many other nuclear reactions, provided that Z and Z’ are taken equal to the 
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numbers of protons in the reacting nuclei, and the particle’s mass m is replaced with the so-called 
reduced mass of the two reacting nuclei.21 

 

Problem 5.11. Use the WKB approximation to calculate the average time of ionization of a 
hydrogen atom, initially in its ground state, made metastable by the application of an additional weak, 
uniform, time-independent electric field E. Formulate the conditions of validity of your result. 

 Solution: The net potential energy of the atomic electron’s motion is 

  zq
r

q
U E

0

2

4
r , 

where z is the electric field’s direction. If the field is sufficiently weak, 

       HB Erq E ,     (*) 

where rB is the Bohr radius and EH is the Hartree energy (see, respectively, Eqs. (1.10) and (1.13) of the 
lecture notes), then the field-induced correction to the ground-state energy E of the electron in the atom 
is negligible, and we may use for it the unperturbed value (1.12) with n = 1: 

2
HE

E  . 

 The green dashed arrow in the (schematic) 
figure on the right shows the electron tunneling path 
leading to the atom’s ionization. Due to the axial 
symmetry of the potential U(r) and the ground-state 
wavefunction 100, the instanton trajectory that 
minimizes the tunnel integral I (5.56) has to be a straight radial line along the z-axis (i.e. along the 
direction shown in the sketch22), so  
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where z are the classical turning points that are defined by the condition U(nzz) = E (see the figure 
above): 

0
24

H

0

2

 


E
zq

z

q
E


. 

In the case (*), there is no need to solve this quadratic equation for z exactly, because 
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21 See, e.g., CM Sec. 3.4 of the lecture notes, in particular, Eq. (3.35). As will be discussed in Chapter 8 below, 
this mass renormalization is valid in quantum mechanics as well. For the relatively light alpha particles, this mass 
renormalization is typically not essential. 
22 Strictly speaking, for the electron’s charge q = –e < 0, all z in this figure and all the following relations should 
read –z, but the final results are still valid, with the replacement q  +e > 0.  
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and the integral I may be well approximated by neglecting the Coulomb term in Eq. (**): 
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This is exactly the same (easy) integral as at the WKB approach to the Fowler-Nordheim tunneling (see 
Problem 2.12, and also Problem 2.18), with the replacements U0 – E  EH/2 and F  qE, which yields 
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 Since this expression does not include a possible pre-exponential factor,23 it does not make much 
sense to calculate the attempt time ta exactly. By taking it at a reasonable value / E   2/EH and using 
the general Eq. (2.153), we get the following estimate of the lifetime of the metastable ground state, i.e. 
of the average ionization time: 
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In the limit (*), the main (exponential) factor in this result is quantitatively correct and is much 
larger than 1. This condition is only violated in extremely high electric fields above EH/erB ~ 1012 V/m, 
practically attainable using very intensive laser beams.24 

 

Problem 5.12. For a 1D harmonic oscillator with mass m and frequency 0, calculate: 

  (i) all matrix elements n'xn 3ˆ , and 

  (ii) the diagonal matrix elements nxn 4ˆ , 

where n and n’ are arbitrary Fock states. 

Solutions:  

 (i) Breaking 3x̂  into the product of x̂  by 2x̂ , and using the closure relation (4.44), we may write 







0

2223 ˆˆˆˆˆˆˆˆ
n"

nxn"n"xn'n'xIxnn'xxnnxn' . 

Now we may use Eqs. (5.92) and (5.94) of the lecture notes to get 

    3,
2/1

1,
2/3

1,
2/3

3,
2/1

3
03 )3)(2)(1()1(33)2)(1(
8

ˆ   nn'nn'nn'nn' nnnnnnnn
x

nxn'  . 

(ii) Here it is simpler to factor 4x̂  into the product of 2x̂  by 2x̂ , so by using the closure relation 
again, we get 

23 Calculation of this factor (which in this 3D problem is different from that for the 1D Fowler-Nordheim 
tunneling discussed in the solution of Problem 2.12) is a good additional exercise for the reader. 
24 This case is used, in particular, for the so-called High-Harmonic Generation (HHG) – see, e.g., EM Sec. 10.4 
and/or the review paper by M. Lewenstein et al., Phys. Rev. A 49, 2117 (1994). 
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





0'

2222224 .ˆˆˆˆˆˆˆˆ
n

nxn'n'xnnxIxnnxxnnxn  

Now, by using Eq. (5.94) again and keeping only the partial products with equal and opposite 
differences between the indices n and n’ (because all other products vanish), we get  

 122
4

3
ˆ 24

0
4  nnxnxn . 

 Note that for n = 0, this result may be readily calculated in the wave-mechanics approach as 
well, by using Eq. (2.275) for the ground state wavefunction and the table integral MA Eq. (6.9d): 

  ,
4

3
exp

2
exp

1
0ˆ0 4

0

0

24
2/1

4
0

2
0

2
4

0
2/10

4
0

4 * xd
x

dx
x

x
x

x
dxxx 








 










but for higher n, such calculations are harder because of the much more involved form (2.284) of the 
eigenfunctions n. 

 

 Problem 5.13. Calculate the sum (over all n > 0) of the so-called oscillator strengths, 

         2

02
0ˆ

2
xnEE

m
f nn 


, 

 (i) for a 1D harmonic oscillator, and  
 (ii) for a 1D particle confined in an arbitrary stationary potential well.25 

 Solutions:  

 (i) According to Eq. (5.92) of the lecture notes, for a harmonic oscillator, only one of the 
oscillator strengths is nonvanishing: 

nm
xn ,1

2/1

02
0ˆ 

 









 , 

while E1 – E0 = 0, so 

nnn m

m
f ,1,1

0
02 2

2
 


 





, 

and the sum in question equals 1 indeed. 

 (ii) According to the Eqs. (4.191) and (4.199) for the Heisenberg picture, the time evolution of a 

matrix element of an operator Â  that does not depend on time explicitly, in the basis of stationary states 
n of an arbitrary system, is described by the following equation: 

   
  .ˆˆ

ˆˆˆˆˆ,ˆˆ

' nn'nnnn'

nn'

AEEn'AnEEn'An

n'AHnn'HAnn'HAnn'tAinAi



 


 

25 This Thomas-Reiche-Kuhn sum rule is important for applications because the coefficients fn describe, in 
particular,  the intensity of dipole quantum transitions between the nth energy level and the ground state – see, e.g., 
Sec. 9.2 and also EM Sec. 7.2. 
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For the matrix element of our current interest, 0ˆ
0 xnxn  , and its complex conjugate x0n, this means 

      nnnnnnnn xEExixEExEExi 00000000 ,   . 

Now may use these expressions to rewrite the oscillator strengths sum’s definition, 

   



0

0002

2

0
0

02
0

22

n
nnnn

n
n

n
n xxEE

m
xEE

m
f


, 

in two different forms: either as 

  0ˆˆ0
22

00
002

0

xnnx
m

ixxi
m

f
nn

nn
n

n 


 





, 

or as 

  0ˆˆ0
22

00
002

0

xnnx
m

ixix
m

f
nn

nn
n

n









 . 

  Taking the arithmetic average of these two expressions, and using the closure condition (4.44) 
for the full set of orthonormal stationary states n, we get 

          0ˆˆˆˆ0
0

xxxx
m

if
n

n







.     (*) 

But for a particle with the time-independent Hamiltonian (4.237), we may use Eq. (5.29),  

m

p
x xˆ
ˆ  , 

and the Heisenberg’s commutation relation (4.238), to transform Eq. (*) as 

    10ˆ00ˆ,ˆ00ˆˆˆˆ0
0




Ipx
i

pxxp
i

f xxx
n

n


, 

so the Thomas-Reiche-Kuhn sum rule is valid even for 1D systems that are different from the harmonic 
oscillator.  

 Note that it is only one of a broad family of very similar sum rules – see, e.g., the next problem. 
Just for the reader’s reference, of the rules not used in this course, perhaps the most useful one is 

  npn
m

n'xnEE
n'

nn'
2

2

2
22 ˆˆ


 . 

 

  Problem 5.14.  Prove the so-called Bethe sum rule, 

 
m

k
n'enEE xik

n'
nn' 2

222ˆ 
  

(where k is any c-number constant), valid for a 1D particle moving in an arbitrary time-independent 
potential U(x), and discuss its relation with the Thomas-Reiche-Kuhn sum rule whose derivation was the 
subject of the previous problem. 

 Hint: Calculate the expectation value, in a stationary state n, of the double commutator 
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  xikxik eeHD ˆˆ ,,ˆˆ   

in two ways: first, just by spelling out both commutators, and, second, by using the commutation 

relations between the operators xp̂  and xike ˆ , and compare the results. 

 Solution: By spelling out the commutators involved in the definition of D̂ , we get 

       
 .ˆˆˆ2

ˆˆˆˆˆˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆ

xikxikxikxik

xikxikxikxikxikxikxikxikxikxik

eHeeHeH

HeHeeHeHHeeHeeHeeHD








 

Since the Hamiltonian operator Ĥ is Hermitian, the second term inside the last parentheses is just the 
Hermitian conjugate of the first one, their expectation values are complex conjugates of each other, so 

 c.c.ˆ2ˆ ˆˆ   neHenEnDnD xikxik
nn . 

Inserting the identity operator on any side of the Hamiltonian operator, and then using the closure 
relation (4.44) in the stationary state basis, we may rewrite this relation as 

     

   
  .2c.c.2

c.c.ˆ2c.c.ˆˆ2

'

2

'

'

ˆˆˆ

ˆˆˆˆ





















n
n'n

n
n'n

n
nnn

n'enEEnen'n'enEE

nen'n'HenEneIHenED

xikxikxik

xikxikxikxik

      (*) 

Since the eigenenergy En is a c-number, we may formally represent it as a similar sum: 

,

ˆ

'

2ˆ

ˆˆˆˆˆˆ







 

n
n

n'
nnnnn

n'enE

nen'n'enEneIenEneenEnnEE

xik

xikxikxikxikxikxik

 

and then use the last expression to recast Eq. (*) as  

                  .22
' '

2

'

2 ˆˆ  
n n

nnn'nn n'xikn'xik enEEenEED   (**) 

 On the other hand, the same double commutator D̂ may be calculated by using the explicit form 
of the particle’s Hamiltonian: 

 xU
m

p
H ˆ

2

ˆˆ
2

 , 

where xpp ˆˆ   for brevity. Since the operators  xU ˆ  and xike ˆ are all functions of the coordinate 

operator, and hence commute with each other, the double commutator reduces to 

          xikxik eep
m

D ˆˆ ,,ˆ
2

1ˆ 2  .     (***) 

By reviewing Eqs. (5.32)-(5.35) of the lecture notes, in which the commutator of the operators p̂ and 

 xU ˆ  was calculated, we may see that this calculation is valid for any function  xf ˆ : 
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    
dx

xdf
ixfp

ˆ
ˆ,ˆ  , 

so for the particular cases f(x) = eikx, we get  

                xikxikxikxikxikxik kepeepkeikeiep ˆˆˆ
,

ˆˆˆ ˆˆ  i.e.,ˆ  








  . (****) 

Applying the last formula, with the top signs, twice to the inner commutator in Eq. (***), we get 

 
.ˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆ2






 





 






 





xikxikxikxikxikxik

xikxikxikxikxikxikxikxikxik

eppekppeepkpkepe

ppeepkpepppekepepppeeppep




 

With this, Eq. (***) becomes 

.ˆˆ
2

,ˆˆ
2

ˆ ˆˆˆˆˆˆ 




 



 





   xikxikxikxikikxxikxik epeepe

m

k
eeppe

m

k
D


 

Now applying Eq. (****) again (with the corresponding signs) to each of these two terms, get finally get 

     .ˆˆ
2

ˆ
22

m

k
kpkp

m

k
D





  

So, our operator D̂ is actually just a c-number, so its expectation value in any state, including any 
stationary state n, is the same: 

.ˆ
22

m

k
nDnDn


  

Requiring this expression to give the same result as in Eq. (**), we get the Bethe sum rule: 

 
m

k
n'enEE xik

n'
nn' 2

222ˆ 
 . 

 This relation, which is also valid in higher dimensionalities (with the replacement eikx  eikr), is 
especially useful for the solid-state theory.26 As a sanity check, in the limit k  0, we may expand the 
exponent inside the matrix element into the Taylor series in k, and keep only two leading terms: 

       

     ,ˆˆ 

ˆˆ1

22222
'

222ˆ








n'
nn'

n'
nnnn'

nn'
n'

nn'
n'

nn'
n'

nn'

n'xnEEkn'xnkEE

n'xnikEEn'xiknEEn'enEE xik




 

so the Bethe sum rule is reduced to 

 
m

n'xnEE
n'

nn'
2

ˆ
2

2 
 . 

26 See, e.g., Sec. 5.6 in the famous monograph by J. Ziman, Principles of the Theory of Solids, 2nd ed., Cambridge 
U. Press, 1979, or any of its later re-printings. 
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In the particular case n = 0, and with the replacement n’  n, this result is reduced to the Thomas-
Reiche-Kuhn sum rule for the oscillator strength, proved in the previous problem: 

10ˆ
2 2

2
 

nn
n xn

m
f


. 

  

 Problem 5.15. Spell out the commutator   †ˆexp,ˆ aa  , where †â and â  are the creation-

annihilation operators (5.65), and  is a c-number. 

 Solution: Let us expand the operator  †ˆexp a  into the Taylor series: 

     
 times00

††††† ˆˆˆ
!

ˆ
!

ˆexp
nn

nn

n

n

aaa
n

a
n

a 









 . 

Then we may write 

                 
 times0

†††† ˆˆˆˆ
!

ˆexpˆ
nn

n

aaaa
n

aa 





 ,    (*) 

and use the commutation relation (5.71), 

Iaaaa ˆˆˆˆˆ ††  , 

n times to transform Eq. (*) as follows: 

     

   

     .ˆexpˆˆexpˆˆ
!1

ˆˆˆ
!

ˆˆˆˆˆ
!

ˆˆ2ˆˆˆˆˆ
!

ˆˆˆˆˆˆˆ
!

ˆˆˆˆˆˆˆ
!

ˆˆˆˆˆˆ
!

ˆˆˆˆˆ
!

ˆˆˆˆ
!

ˆexpˆ

††††††

††††††††††

††††††††††††

††††††††††††

1  times)1(

1

0  times

0  times)1( times0  times)1( times)2(times2

0  times)1( times)2(0  times)1( times)2(

 times)1( times)1(0 times)1(0 times)1(0

aaaaa
n

aaa
n

aanaaa
n

aaaaaaa
n

aaaaIaaa
n

aaaaaaa
n

aaaaaa
n

aaIaa
n

aaaa
n

aa

n n

n

n n

n

n nn

n

n nn

n

n nn

n

n nn

n

nnn

n

nn

n

nn

n





























































































 







 



 



 



 























 

From here, 

        †††† ˆexpˆˆexpˆexpˆˆexp,ˆ aaaaaaa   . 

 

Problem 5.16. Given Eq. (5.116) of the lecture notes, prove Eq. (5.117) by using the hint given 
in the accompanying note. 

Solution: Following the hint, we can write 

     ...
ˆ

!2

ˆ

!1
ˆ)(ˆ

02

22

00 







   



 ff

ff .    (*) 

Let us calculate the derivatives participating in this expression, for our current case 
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     ABAf ˆexpˆˆexpˆ   . 

 Since both exponents  Âexp   are defined by their Taylor expansions: 

  ,ˆˆˆ
!3

ˆˆ
!2

ˆ
!1

ˆˆexp
32

 AAAAAAIA
  

their differentiation over the parameter  gives 

   .ˆexpˆˆˆ
!2

ˆ
!1

ˆˆˆˆˆ
!2

ˆˆ
!1

ˆˆexp
22

AAAAAIAAAAAAAA 















  

 As a result, the differentiation of the operator f̂  over  yields 

       ,,ˆ,ˆ,ˆˆ,ˆ
ˆˆ

,ˆ,ˆˆˆˆˆ
ˆ

2

2

fAAfA
ff

fAAffA
f































 

so at  = 0 (when Bf ˆˆ  ), we may combine this result with Eq. (5.116) to get 

       .,0̂
ˆ

,0̂ˆ,ˆˆ,ˆ,ˆ
ˆ

,ˆˆ,ˆ
ˆ

3

3

2

2

00 











 





 
f

IABAA
f

IBA
f

 

Plugging this result into Eq. (*), we get (for arbitrary ): 

,ˆ
!1

ˆ)(ˆ IBf    

for the particular case  = 1, giving Eq. (5.117). 

 

 Problem 5.17. Use Eqs. (5.116)-(5.117) of the lecture notes to simplify the following operators: 

  (i)    xiapxia x ˆexpˆˆexp  , and 

  (ii)    xx piaxpia ˆexpˆˆexp  , 

where a is a c-number. 

 Solutions:  

 (i) Let us apply Eq. (5.117) of the lecture notes, 

         IBABA ˆˆˆexpˆˆexp  ,    (*) 

where  is the c-number coefficient in the commutation relation (5.116), 

          IBA ˆˆ,ˆ  ,      (**) 

to the following operators: xiaA ˆˆ   and xpB ˆˆ  . Since, according to the Heisenberg uncertainty relation 

(4.238), for these two operators, 

        IaIiiapxiapxiaBA xx
ˆˆˆ,ˆˆ,ˆˆ,ˆ   , 
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i.e. Eq. (**) is valid with  = –a, Eq. (*) yields 

    Iapxiapxia xx
ˆˆˆexpˆˆexp  . 

 (ii) Now applying Eq. (*) to another pair of operators, xpiaA ˆˆ   and xB ˆˆ  : 

        IaIiiaxpiaxpiaBA xx
ˆˆˆ,ˆˆ,ˆˆ,ˆ   , 

so in Eq. (**),   = +a,  we get 
    Iaxpiaxpia xx

ˆˆˆexpˆˆexp  . 

 

Problem 5.18.* Derive the commutation relation between the number operator (5.73) and a 
reasonably defined quantum-mechanical operator describing the harmonic oscillator’s phase . Write 
the uncertainty relation for the corresponding observables, and explore its limit at N >> 1. 

 Solution: Attempts to introduce the operator ̂  of the phase directly run into the following 
problem. All operators discussed in Sec. 5.4 of the lecture notes are defined in the Hilbert space of the 
oscillator’s Fock states that are invariant with respect to 2-rotations of the phase plane (see Fig. 5.8); 
however, the operator ̂  would not have such an invariance. Instead, let us take a clue from the fact that 
Eq. (5.104) for the classical oscillations may be represented as follows: 

                tiaettiaet ii
00 exp,exp *     ,    

where a is the real amplitude of the oscillations and  is their phase. Comparing these equations with 
Eqs. (5.141), 

           tiatatiata 00 exp0ˆˆ,exp0ˆ ††   , 

we see that according to the correspondence principle, the annihilation and creation operators may be 
viewed as the quantum-mechanical operators of, respectively, ae+i and a*e–i. Next, comparing Eqs. 
(5.89), 

               ,0for  ,11ˆ,1ˆ 2/12/1 †  nnnnannna   (*) 

with the combination of Eqs. (5.74) and (5.80), 

nnnN ˆ , 

we see that in quantum mechanics, the factors (n + 1)1/2 and n1/2 play the role of the (normalized) 
classical real amplitude a  E1/2  (n + ½)1/2 – see Eq. (5.86). Hence, the quantum-mechanical operators 
that are defined by Eqs. (*) stripped of these factors:27 

            ,1ˆ
,0for  ,0

  ,0for  ,1
ˆ 








  nne
nn

nn
ne     

27 The special condition for n = 0 in the first of these definitions is necessary to avoid running into the non-
existing state with n = –1. (As the first of Eqs. (*) shows, for the corresponding annihilation operator â , this 
cutoff is automatically provided by the front factor n1/2.) 
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are reasonable representations of, respectively, e+i and e–i.   

 Let us establish the basic properties of these operators, first of all, by calculating their matrix 
elements in the Fock state basis: 

 .1ˆ,
0for  ,0

  0for  ,1
ˆ 11

1





 















 n,n',n'n

n,n'
n'nn'en

n'

n'n'n
n'en 


 (**) 

(Given the implied condition n, n’  0, the last form of the first formula automatically excludes the 
special case n’ = 0.) Now we may readily calculate the following matrix elements: 

   
    .ˆˆˆˆˆˆ,ˆ

,ˆˆˆˆˆˆ,ˆ

1',

',1









nn

nn

n'enn'nn'Nenn'eNnn'eNn

n'enn'nn'Nenn'eNnn'eNn




 

Comparing these results with Eqs. (**), we see that we may write the following operator relations: 

                    .ˆˆ,ˆ,ˆˆ,ˆ
  eeNeeN     (***) 

 We cannot use these commutation relations in Eq. (4.140) directly because since (as Eqs. (**) 
show) the operators 

ê are not Hermitian, they cannot correspond to any real observables. However, let 
us consider their linear combinations, 

,
2

ˆˆ
ˆ,

2

ˆˆ
ˆ

i

ee
s

ee
c  




  

which correspond to the real observables cos and sin, and are Hermitian. Indeed, per Eqs. (**), their 
only non-zero matrix elements are 

.0for  ,
2

1
1ˆˆ1,

2

1
1ˆˆ1

*  n
i

nsnnsnncnncn  

For these operators, Eqs. (***) yield 

    ,ˆˆ,ˆ,ˆˆ,ˆ cisNsicN   

so that Eq. (4.140) gives the following uncertainty relations: 

               cos
2

1
sin,sin

2

1
cos  NN .   (****) 

 In the quasiclassical case N >> 1, the uncertainty N may be much larger than 1, so per Eqs. 
(****), the phase uncertainty  may be much smaller than 1. In this case, we may use the 
approximations (cos)   sin  and (sin)   cos , and both Eqs. (****) are reduced to the 
same inequality:  

.
2

1
N  

 This result is of key importance for the properties of laser radiation (to be discussed in Sec. 9.3 
of the lecture notes), which may be interpreted as a coherent set of N >> 1 photons in the same quantum 
state – see Sec. 9.3. Moreover, it is also valid for Bose-Einstein condensates of particles with nonzero 
rest mass, such as Cooper pairs in superconductors – please revisit the last part of Sec. 3.1.  
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 Problem 5.19. At t = 0, a 1D harmonic oscillator was in a state described by the ket-vector 

 3231
2

1
 , 

where  n are the ket-vectors of the stationary (Fock) states of the oscillator. Calculate: 

 (i) the expectation value of the oscillator’s energy, and  
 (ii) the time evolution of the expectation values of its coordinate and momentum. 

Solutions:  

 (i) In this Hamiltonian system, the energy is conserved, so we may calculate it in the initial 
moment: 

   3231ˆ3231
2

1
)0(ˆ)0(  HHE  . 

Using the fact that the Hamiltonian is diagonal in the basis of the Fock states n, with the diagonal 
elements equal to En = 0(n + ½), we get 

  .32
2

1
32

2

1
31

2
32ˆ3231ˆ31

2

1
0

0 



















 






  HHE  

 (ii) The time evolution of the expectation values of x and p may be obtained, for example, from 
Eqs. (5.36) of the lecture notes, with U = m0

2x2/2:   

         ., 2
0 xmp

m

p
x       (*) 

These equations (which coincide with the classical equations of motion of the corresponding 
observables) have the well-known solution28 

   ,sin)0(cos)0()(,sin
)0(

cos)0()( 0000
0

0 txmtptpt
m

p
txtx 


   (**) 

so the only thing still to be done is to find the expectation values of these observables at t = 0. This may 
be accomplished exactly as has been done above for the energy, but with a little bit more care, because 
the matrices of the coordinate and momentum operators, in the Fock state basis, are not diagonal – see 
Eqs. (5.92)-(5.93) of the lecture notes: 

        ,43232
22

1
31ˆ3232ˆ31

2

1
3231ˆ3231

2

1
)0( 0

0 x
x

xxxx   

        ,03232
22

1
31ˆ3232ˆ31

2

1
3231ˆ3231

2

1
)0( 00 

xm
pppp


 

where x0  (/m0)
1/2. Plugging these expressions into Eq. (**), we get 

28 As a (hopefully, unnecessary) explanation: one can, for example, differentiate one of Eqs. (*) over time again, 
and plug the counterpart equation into the result, getting the standard second-order differential equation 

02
0   , with   being either x or p. The general solution of this equation is (t) = Cccos0t + Cssin0t. 

Now calculating the constants Cc and Cs from the initial conditions, we arrive at Eqs. (**). 
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.sin4,cos4 00000 txmptxx    

 Note that the exact answer could be different if there was a phase shift between the component 
Fock states – see, e.g., the solution of Problem 4.17. However, even then, the expectation values of the 
coordinate and momentum would oscillate harmonically with the oscillator’s frequency 0. 

 

 Problem 5.20.* Re-derive the London dispersion force’s potential of the interaction of two 
isotropic 3D harmonic oscillators (already calculated in Problem 3.20), by using the language of 
mutually-induced polarization. 

 Solution:29 The solution of Problem 3.20, based on the calculation of the ground-state energy of 
the system, somewhat obscures the physical nature of the force. A more transparent physical picture of 
this effect is that the “quantum fluctuations” (whose r.m.s. values are equal to the quantum 
uncertainties) of the dipole moments d1,2 of the interacting oscillators cause proportional fluctuating 
electric fields E1,2 (r)  d1,2 in their vicinity, including the location of the counterpart oscillator. Each of 

these fields induces a small additional polarization, 12

~
Ed   d1 and 21

~
Ed  d2, of the counterpart 

oscillator, on top of its own spontaneous fluctuations. In contrast to these spontaneous fluctuations d1,2, 

which are statistically independent, the induced parts 2,1

~
d of the polarization are correlated with their 

sources: 2

~
d with d1, and 1

~
d with d2, so their interaction has a nonvanishing average component resulting 

in a mutual attraction of the oscillators. 

 Let us make this argumentation quantitative, using the isotropic single-particle model already 
used for the model solution of Problem 3.20: d1,2 = qs1,2, where q is the electric charge of the effective 
oscillator’s particle and s1,2 its displacement from the equilibrium position. Since the classical electric 
field E of a dipole is proportional to its moment d, the relation between their Heisenberg-picture 
operators in quantum mechanics is the same, namely30 

       
   

 ,ˆ2ˆˆ
4

ˆ2ˆˆ
4

1ˆ)ˆ(3

4

1

3
0
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zkzykyxkx
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zyx
r

q

ddd
rr

r

nnn

nnn
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r











E

  (*) 

where k = 1, 2 is the dipole number, and {xk, yk, zk} are the Cartesian components of the displacement 
vector sk, and r >>  sk  is the distance between the kth oscillator and the field observation point. 
According to Eq. (5.141) of the lecture notes, the coordinate operators change with the oscillator’s 
eigenfrequency, for example  

           tiatia
m

tata
m

tx kkkk
k

kk
k

k 


exp0ˆexp)0(ˆ
2

ˆ)(ˆ
2

ˆ ††
2/12/1





















 

29 This explanation of the long-range interaction between electroneutral atoms and molecules was suggested by P. 
Debye in 1921 and quantified by F. London in 1937. 
30 See, e.g., EM Sec. 3.1, in particular Eq. (3.13), which uses a different notation (p) for the electric dipole vector. 
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      ,)0(ˆ
2

ˆwith  h.c., expˆexpˆexpˆ
2/1

† a
m

XtiXtiXtiX
k

kkkkkkk 







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
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
 

and similarly for two other Cartesian components,31 so the electric fields (*) they induce are similar 
functions of time.  

 Let us use these relations for the field at the location of the counterpart dipole, so that r in Eq. (*) 
becomes the distance between the dipoles. Next, since the classical equations of motion of the harmonic 
oscillator are linear, the Heisenberg equations of motion are also linear, so the complex amplitudes of 
the induced dipole moment operators may be also calculated using the classical relation32,33 

        22
'

2

''''

ˆ
ˆˆˆ~̂

kk

k
kzkykxk m

q
ZYXq




 


E
nnnd ,    (**)  

where the index k’, which may be formally defined as (3 – k), is used for the notation of the counterpart 
oscillator. Since these expressions diverge at k  k’, i.e. at 1  2, let us assume for a while that 
the oscillator eigenfrequencies are not exactly equal. 

 The energy of interaction of the dipole dk’ with the external electric field Ek is proportional to the 
scalar product dk’E’. In our case, the dipole moment of this oscillator is the sum of two parts: the 

spontaneous fluctuations dk’ and the externally induced polarization '

~
kd . Only the latter part is 

correlated with Ek, so only it contributes to average interaction energy.34 Since ,
~

' kk Ed  the energy 

needs the factor ½ before the usual scalar product kk E '

~
d ,35 so the expectation value of the full time-

averaged interaction potential may be calculated as 

             1221

~̂

2

1~̂

2

1 ˆˆ dd  EEU ,    (***)  

where the top bar, as usual, means the time average. Let us spell out, for example, the first average of 
this sum, using Eq. (**) first and then Eq. (*) with k = 1 and k’ = 2: 

                 
†††

1111112
1

2
2

2

21212121
ˆˆˆˆˆˆˆˆˆˆ ~̂~̂~̂~̂
 zzyyxxzzyyxx m

q
tdttdttdt EEEEEEEEE 


dE  

31 Due to the assumed oscillator’s isotropy, the frequencies k are the same for all 3 coordinates. 
32 If this formula is not immediately evident, see, e.g., CM Sec. 5.1. 
33 This relation between d and E defines the complex electric permittivity () of the continuous medium of 
such dipoles, which in turn determines the dispersion of electromagnetic wave propagating in it (see, e.g., EM 
Sec. 7.2). This fact was apparently the origin of the term dispersion force, coined by F. London for the dipole-
dipole interaction we are calculating.  
34 Mathematically, the absence of mutual correlation of the main (spontaneous) part dk with Ek’  dk’ at k  k’ is 
expressed as the difference of their Heisenberg-picture operator frequencies, leading to averaging out of all terms 
exp{i(k k’)t} of the dk Ek’ products. The special case k = k’  (i.e. 1 = 2 ) requires a bit more subtle 
analysis (based on random phase differences), which leads to the same conclusion. 
35 See, e.g., EM Eq. (3.15b). 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                 Page 273 

        
†††
111111

2

3
0

2
1

2
2

2

ˆˆ4ˆˆˆˆ
4 

ZZYYXX
r

q

m

q











 . 

Due to the assumed isotropy of the oscillators, all coordinate product averages are equal, so we get 
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 The last average may be treated as that of the Schrödinger-picture operators, and according to 
Eqs. (5.89) of the lecture notes, equals 1 in the ground state of the oscillator, so, finally, 
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The second term in Eq. (***) is absolutely similar, with swapped indices 1 and 2, so we finally get36 
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 Now that the terms proportional to 1/(1 – 2) have cancelled, it is safe to consider the most 
important case of similar oscillators, 1 = 2  0:  
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This result exactly coincides with the one that was obtained in the model solution of Problem 3.20 by 
simpler means. However, the current, more lengthy derivation not only gives a clearer physical picture 
of the London dispersion force but also paves a way toward generalizations of this result to more 
general models of the interacting atoms/molecules (see Problems 6.19-6.20) and to their interaction at 
non-zero temperatures (see Problem 7.6). 

 Finally, let me note that one more popular form of the final result may be obtained by expressing 
it via the static atomic polarizability , which may be defined by the relation37  

0at  
~̂

,ˆ    Ed . 

According to Eq. (**), in our simple oscillator model  = q2/m0
2, so Eq. (****) becomes 
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 . 

However, I believe that this form conceals the resonant nature of the London dispersion force, which is 
so manifest in the above calculation.  

 

36 To my personal taste, this “miraculous” cancellation of the two divergences, which allows one to pursue the 
limit 1  2 without mathematical complications, is one of the most beautiful results of quantum mechanics. 
37 See, e.g., EM Eq. (3.48). 
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 Problem 5.21. An external force pulse F(t), of a finite time duration T, is exerted on a 1D 
harmonic oscillator, initially in its ground state. Use the Heisenberg-picture equations of motion to 
calculate: 

 (i) the expectation values of the oscillator’s coordinate and momentum and their uncertainties, at 
an arbitrary moment, 
 (ii) its total energy after the end of the pulse.  

 Solution: By using the system’s Hamiltonian, which is a straightforward generalization of Eq. 
(5.62) of the lecture notes, 

 xtF
xm

m

p
H ˆ

2

ˆ

2

ˆˆ
22

0
2




 , 

in the Heisenberg equations of motion (4.199), we get 

          xptFxp
m

Hppipx
m

Hxxi ˆ,ˆˆ,ˆ
2

ˆ,ˆˆ,ˆ,ˆ
2

1ˆ,ˆˆ 2
2
02 

 . 

(Here and below, the index H is just implied.) The right-hand side of the first of these equations, and the 
first term in the second of them, were already spelled out in Sec. 5.2 of the lecture notes, while the last 
term in the second equation is just the product of the c-number function F(t) by the basic commutator  
(4.238). As a result, we get the operator equations 

)(ˆˆ,
ˆ

ˆ 2
0 tFxmp

m

p
x   , 

which have the same form as the classical equations of motion of the corresponding observables.  

 Due to the linearity of these equations, they are satisfied by the following linear superpositions: 

               tPtptptXtxtx  )(ˆˆ,)(ˆˆ 00 .    (*) 

Here the upper index (0) marks the solution for F(t) = 0, which satisfies Eqs. (5.139) and the initial 
conditions, while X and P are the c-number additions due to the external force F(t), which satisfy the 
similar classical equations of motion: 

     )(, 2
0 tFXmP

m

P
X   ,    (**)  

with zero initial conditions: X(0) = P(0) = 0, where t = 0 is the moment when the force pulse starts.  

 (i) For addressing this task, we do not need an explicit solution of Eqs. (**). Indeed, according to 
the basic Eq. (4.191), the expectation value of any variable is the average of its Heisenberg operator 
over the quantum ensemble of initial states (not over time!) – in our current case, of the harmonic 
oscillator’s ground state. Per Eqs. (5.92)-(5.93), for the operators  0x̂  and  0p̂  (in any picture of 
quantum dynamics), these averages vanish, so Eqs. (*) give very simple results: 

       tPtptXtx  , . 

 Now we may readily calculate the requested variances: 

             ,ˆˆˆ~̂ 20222 xtXtxxtxtx   
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             .ˆˆˆ~̂ 20222 ptPtpptptp   

However, the resulting averages were calculated in Sec. 5.5 for an arbitrary Fock state n of the oscillator 
– see Eqs. (5.95) and (5.97). In particular, for the ground state (n = 0), those formulas give 

            ,
22

ˆ~̂,
22

ˆ~̂ 0
2
02

0

202

0

2
0202  




mx
mptp

m

x
xtx   

so the requested uncertainties are not affected by the classical force F(t): 

    ,
2

~̂,
2

~̂
2/1

0
2/1

2

2/1

0

2/1
2 

















 





m
tpp

m
txx  

and correspond to the smallest product xp = /2 allowed by Heisenberg’s uncertainty relation (1.35). 

 (ii) Now let us use Eq. (*) to calculate the Heisenberg “value” of our Hamiltonian at t > T  , i.e. 
after the end of the force pulse F(t): 

                   

            .for  ,ˆˆ
1
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ˆ
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ˆ

2
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ˆˆ
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2202
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2022
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2

ttXtxmtPtp
m
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m
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m

tptxm

m

tp
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
























T



 

After using the results of Task (i), for the expectation value of this Hamiltonian, i.e. the system’s energy, 
we get simply 

FEHE 
2

ˆ 0 , 

where EF is the classical energy acquired by the oscillator by the end of the force’s pulse :  

   
22

22
0

2 TT Xm

m

P
EF


 . 

(Obviously, this energy does not change at t > T when F(t) = 0.),  

 The calculation of EF from Eqs. (**) is a task of classical mechanics, but for the reader’s benefit, 
I will still give its solution here.38 The easiest way to solve this classical system of linear differential 
equations is to form the complex variable (t)  X(t) + iP(t)/m0;39 for it, the system is reduced to just 
one equation: 

 
0

0 


m

tF
ii  . 

Its solution may be obtained, for example, by the substitution (t)  C(t)exp{–i0t}.40 For the new 
variable C(t), the equation is reduced to the form 

38 For a ready solution for X(t), see, e.g., CM Eqs. (5.27) and (5.34) with  = 0, so 0’ = 0. 
39 This is of course just a dimensional version of the variable (5.101): (t)  2x0(t). Note that  differs from 
the oscillation amplitude A (participating, e.g., in Eq. (5.104) of the lecture notes), which is just its modulus.
40 This is just a simple version of the well-known method of variation of constants: with C(t) = const, this (t) is 
the solution of the corresponding homogeneous equation. 
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   titF
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i
CtF

m

i
tiC 0

00
0 exp)(  i.e.),(exp 


   , 

which may be readily integrated:  

    const.exp)(
0

0
0

  dt't'it'F
m

i
tC

t




 

With our initial condition Z(0) = 0 (giving C(0) = 0), this relation yields 

     

      
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


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



(***) 

 Note that these formulas are valid both during the pulse action (for t < T) and after it (for t >T ), 
but in the latter case, the integrals are only contributed by the interval 0 < t’ < T :  

            .for  ,expexp)( 0

0

0
0

ttidt't'tit'F
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i
t   TTT

T




 

Hence, after the end of the pulse, the classical components of the coordinate and momentum perform 
purely sinusoidal oscillations: 

            
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



 

 Now by using Eqs. (***) for t = T and the replacement t’  t (just for the notation simplicity), 
we get the final result:41 
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
 . 

 To summarize, all results of this solution are in full correspondence with the physical picture of 
the (Glauber) state of the oscillator, which may be described, at arbitrary t,42 as its ground state with its 
center being dragged, by the classical force pulse, into a definite point {X(t), P(t)/m0} on the phase 
plane – see Fig. 5.8 in the lecture notes. 

  

41 Alternatively, EF may be calculated by integrating over time, from t = 0 to t = T, of the instant power P(t) = 
F(t)V(t) =  F(t)P(t)/m of the external force, using the last of Eqs. (***). (See, e.g., the model solution of CM 
Problem 5.4.) 
42 The only reason why the problem did not address the oscillator’s energy at t < T  is that whether at F  0, the 
last term of the Hamiltonian (which describes the interaction with the force’s source) should be included in the 
calculation, is a matter of convention. 
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 Problem 5.22. Use Eqs. (5.144)-(5.145) of the lecture notes to calculate the uncertainties x and 
p for a harmonic oscillator in its squeezed ground state, and in particular, to prove Eqs. (5.143) for the 
case  = 0. 

 Solution: Let us represent the squeezed annihilation operator (5.144) in the following form, more 
convenient for calculations: 

         ,sinh,cosh  whereˆˆˆ ,
† reraab i     (*) 

where r and   are the real c-numbers describing the complex parameter  = rei of the operator’s 
eigenstate (5.145). Since the parameter  is real, the Hermitian conjugate of Eq. (*) is 

                aab ˆˆˆ *††   .     (**) 

Solving the system of two linear equations (*) and (**), with the account of the identity 2 – *  
cosh2r – sinh2 r = 1, we get the following reciprocal relations:  

bbabba ˆˆˆ,ˆˆˆ *†††   . 

 Now, using Eqs. (5.66) of the lecture notes,  
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we may express these Hermitian operators via the squeezed creation-annihilation operators: 

        
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
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
 . 

Let us use the first of these expressions to calculate the expectation values of the coordinate and its 
square in some state : 
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xx

   (***) 

According to Eqs. (5.144)-(5.145) of the lecture notes, for the general squeezed state, 

   **†*  ˆ  so,ˆ   bb . 

However, our task is to discuss only the specific ground squeezed state , with  = 0. For this state, the 
last relations are reduced to  

     0ˆ,0ˆ †  bb  . 
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With these relations, the first of Eqs. (***) immediately gives x = 0,43 while in the second of these 
expressions, only one average on the right-hand side survives, giving 

   .ˆˆ
2

†*
2
02  bb

x
x   

 In order to evaluate this expression, let us first use the fact that 2 – * = 1 to verify that the 
squeezed creation-annihilation operators satisfy the same commutation relation as the usual creation-
annihilation operators – see Eq. (5.68): 

  Iaaaaaaaaaabb ˆˆ,ˆˆ,ˆˆ,ˆˆˆ,ˆˆˆ,ˆ †*†*†*††† 22 
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  . 

This relation may be rewritten as a convenient operator identity 

      Ibbbb ˆˆˆˆˆ ††  ;          (****) 

plugging it into the last expression for x2, we get  

       
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2
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2
02 x

Ibb
x

x . 

According to its definition (5.142b), the squeezing operator Ŝ is unitary, and hence the squeezed 

ground states are normalized to 1: 

10ˆ00ˆˆ0 †  ISS  , 

so, finally,  

    *

2

2
02 x

x , 

and we may use the general Eqs. (1.33)-(1.34) to calculate 

        2/1220
2/1

0
2/122 coscoshsinh2sinhcosh

22
*  rrrr

xx
xxx  . 

 This general result depends on the phase , which may be time-dependent (reflecting the rotation 
of the squeezed state’s image on the phase plane, as shown in Fig. 5.8), but for the particular instants 
when  is equal to 0 (plus any multiple of ), i.e. cos = 1, it takes the minimum value stated in the first 
of Eqs. (5.143): 
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x
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x

rrrr
x
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2

sinhcosh
2

coshsinh2sinhcosh
2

002/1220 . 

 The momentum’s uncertainty may be calculated absolutely similarly, giving  

  2/12200 coscoshsinh2sinhcosh
2




 rrrr
xm

p  , 

43 This result could be readily anticipated from the physical sense of the squeezed ground state – see, e.g., its 
image in Fig. 5.8 of the lecture notes. 
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and, in particular, the second of Eqs. (5.143) for the same case when cos  = 1. 

 

 Problem 5.23. Calculate the energy of a harmonic oscillator in the squeezed ground state . 

 Solution: Let us re-use the expressions  

bbabba ˆˆˆ,ˆˆˆ *†††   , 

discussed in the solution of the previous problem. Plugging them into Eq. (5.73) of the lecture notes, let 
us calculate the average N, which determines the state’s energy E  H = 0(N + ½), in a squeezed 
state : 
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†*†††
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
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
 

  (*) 

Our task is to discuss only the special, ground squeezed state  with  = 0. As was discussed in the 
previous problem’s solution, it  has the following properties: 

               0ˆ hence and,0ˆ †  bb  .     

Due to these properties, all terms in the last form of Eq. (*), besides the second one, are equal to zero, so 

             †* ˆˆbbN  . 

 Applying to this expression the relations derived in the solution of the previous problem,  

     1  and,ˆˆˆˆˆ ††  Ibbbb ;           

we, finally, get 
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sinh 2

0 rE  . 

 Note that this result is independent of the parameter . Actually, this fact could be predicted 
from the physical sense of that parameter as the angle that only determines the squeezing direction – see 
Fig. 5.8 of the lecture notes. Also note that at r  0 (no squeezing), E  0/2, which is the correct 
energy of the Fock/Glauber ground state. However, at r >> 1, E is much larger than 0/2, so the 
adjective “ground” in the name of this squeezed state should not be taken too literally – it is just the 
lowest-energy state of all squeezed states with the same r. The same is true for the term squeezed 
vacuum which is frequently used for a set of field oscillators (see Sec. 9.1) in their ground squeezed 
states ; actually, such a “vacuum” may have a lot of energy in it! 

 Problem 5.24.* Prove that the squeezed ground state described by Eqs. (5.142) and (5.144)-
(5.145) of the lecture notes may be sustained by a sinusoidal modulation of a harmonic oscillator’s 
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parameter, and calculate the squeezing factor r as a function of the parameter modulation depth, 
assuming that the depth is small and the oscillator’s damping is negligible. 

 Solution: The analysis of a dissipation-free classical harmonic oscillator of frequency 0, with 
one of its parameters weakly modulated with frequency 2  20, gives44 the following equation of 
motion of the complex amplitude a of the oscillations, defined by the relation x(t) = Re[a(t)exp{–it}]: 

      *imaaia   ,     (*) 

where    – 0 is the detuning, and m is proportional to the parameter modulation depth. (Eq. (*) is 
strictly valid only if m and    are much smaller than .) A straightforward analysis of this linear 
differential equation shows that the parametric excitation, i.e. an exponential growth of  a(t) , takes 
place if m exceeds the critical value 

cm ; 

because of this, let us focus on the case m < mc. 

 Due to the similarity of linear equations of motion of observables in classical mechanics and the 
corresponding Heisenberg operators in quantum mechanics (see Sec. 5.2 of the lecture notes), we may 
mimic Eq. (*) as the so-called RWA equation of the parametric oscillator: 

            aimaiaaimaia ˆˆˆ hence andˆˆˆ ††
 ,

†    . 

Note that these †â and â are not exactly the creation-annihilation operators defined by Eqs. (5.65) of the 
lecture notes in two aspects: first, they are not necessarily properly normalized (which does not matter 
for this linear system), and second, they include additional factors exp{it}; however, the latter 
difference also does not affect the forthcoming calculation. 

 Now, transferring to the mixed operator b̂  defined by Eq. (5.144) of the lecture notes and its 
Hermitian conjugate, in the form used in the solutions of the two previous problems,   

  reraabaab i sinh,cosh  where,ˆˆˆˆˆˆ *††
,

†   ,  (**) 

we get the following equation of motion of the operator b̂ : 

           †* ˆ2ˆˆ 22*2 bmibmib   ,  (***) 

and its Hermitian conjugate for the operator .
†b̂  As this formula shows, this system may indeed sustain 

a time-independent45 squeezed state, provided that the second square bracket vanishes. Upon the 
substitution of the above definitions of the parameters  and  , we see that this condition: 

  ,0coshsinh2sinhcosh 222    ii errerrm  

is equivalent to two requirements: e2i = 1, i.e. ei = 1,46 and 

44 See, e.g., CM Eq. (5.78) with m  /4 and  = 0. 
45 Again, besides its rotation, on the phase plane, with a constant frequency close to  and 0  – see Fig. 5.8. 
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
m

r 2tanh . 

 The last result shows that in the absence of the parameter modulation (m = 0), r vanishes, so 

according to Eq. (**), the operators â and b̂  (and hence their eigenstates) coincide, and the ground 
squeezed state is just the usual ground state – as it should. On the other hand, as m approaches its critical 
value mc =   ,  the squeezing factor r tends to infinity, i.e. the squeezing becomes infinitely strong. 
According to the solution of the previous problem, this also means that in this limit, the energy of the 
ground squeezed state tends to infinity. 

 

 Problem 5.25. Use Eqs. (5.148) of the lecture notes to prove that at negligible spin effects, the 

operators jL̂  and 2L̂ commute with the Hamiltonian of a particle placed in any central potential field. 

 Solution: The Hamiltonian in question may be represented as 

          .ˆˆ  and  ,ˆˆ  where,ˆ
2

ˆ
ˆ

2

ˆˆ
3

1

22
3

1

222
22





j

j
j

j pprrrf
m

p
U

m

p
H r   (*) 

Let us first calculate the commutators of jL̂  with 2ˆj'r  and 2ˆ j'p , for arbitrary j and j’. For the first of them, 

we may use Eq. (5.148) of the lecture notes, rewritten as  

 



3

1

ˆˆˆˆˆ
j"

jj'j"j"jj'j'j riLrrL  . 

Using this relation twice, we get 

          

   

 

.ˆˆ2ˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆ

3

1

3

1

3

1

3

1

3

1

222



































j"
jj'j"j'j"

j"
jj'j"j'j"jj'j'

j"
jj'j"j"jj'j'

j"
jj'j"j'j"jj'j'j'jj'

jj'j'j'
j"

jj'j"j"jj'jj'j'j'j'jjj'j'jj'j

rrirriLrrriLrr

rriLrrrLr

LrrrriLrLrrrrLLrrLrL













 (**) 

 Now we may use this result to calculate 

    












3

1,

3

1

2
'

3

1

22 .ˆˆ2ˆ,ˆˆ,ˆˆ,ˆ
j"j'

jj'j"j"j'
j'

jj
j'

j'jj rrirLrLrL   

According to the definition of the Levi-Civita symbol, three terms of the last sum, with j’ = j”, equal 
zero, while the other six terms form three pairs of terms that differ only by the replacements j’  j”, 
and thus are equal and opposite. As a result, 

     .0ˆ,ˆ  so,0ˆ,ˆ 22  rfLrL jj  

46 In the duality of the solution for the angle : 1 = 0 and 2 =  (plus any multiples of 2), we may readily 
recognize two possible (and equivalent) phases of the degenerate parametric excitation – see, e.g., CM Sec. 5.5. 
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Since all three operators jL̂  commute with the function  2r̂f , so do operators 2ˆ
jL , and hence the 

operator 2L̂  that is defined as their sum – see Eq. (5.150). 

 Next, due to the full similarity of the first and the second of Eqs. (5.149), 

    ,ˆˆ,ˆ,ˆˆ,ˆ
3

1

3

1




j"

jj'j"j"j'j
j"

jj'j"j"j'j pipLrirL    

we may immediately reuse Eq. (**), just replacing rj’ with pj’: 

  



3

1

2 ,ˆˆ2ˆ,ˆ
j"

jj'j"j'j"j'j ppipL   

so the summation over all j’ yields a similar result: 

    



3

1,

3

1

22 .0ˆˆ2ˆ,ˆˆ,ˆ
j"j'

jj'j"j'j"
j'

j'jj ppipLpL   

Again, since all three operators jL̂  commute with 2p̂ , so do operators 2ˆ
jL , and hence the operator 2L̂ . 

 Combining these results with Eq. (*), we, finally, get 

              .0ˆ,ˆˆ,ˆ
2

1ˆ,ˆ,0ˆ,ˆˆ,ˆ
2

1ˆ,ˆ 2222222  rfLpL
m

HLrfLpL
m

HL jjj  

 According to Eq. (4.199) of the lecture notes, these equalities guarantee that the Heisenberg-
picture operators of Lj and L2 do not change in time during the particle’s motion in the central field; this 
quantum-mechanical fact corresponds to the classical-mechanical fact of conservation of these 
observables in such a field. 

  

 Problem 5.26. Use Eqs. (5.149)-(5.150) and (5.153) of the lecture notes to prove Eqs. (5.155).  

Solution: Let us spell out the following operator product: 

   .ˆ,ˆˆˆˆˆˆˆˆˆ)ˆˆ)(ˆˆ(ˆˆ 2222
yxyxxyyxyxyxyx LLiLLLLLLiLLLiLLiLLL   

But according to the last of Eqs. (5.149) of the lecture notes, the last commutator equals zLi ˆ , so we get 
the following equality: 
            zyx LLLLL ˆˆˆˆˆ 22  .     (*) 

Now, from the definition of the operator 2L̂ given by Eq. (5.150), we may write 

.ˆˆˆˆ 2222
zyx LLLL   

Plugging the last relation into Eq. (*), we get the first of Eqs. (5.155). The second of these relations 
(which was already used in Sec. 5.6 of the lecture notes) may be proved by the absolutely similar 

transformation of the reversed product, LL ˆˆ .  
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 Problem 5.27. Derive Eq. (5.164) of the lecture notes by using any of the prior formulas.  

Solution: According to Eqs. (5.159) of the lecture notes and their discussion, the action of the 

ladder operators upon the common eigenkets l, m of operators 2L̂  and zL̂ may be described as 

   1,,ˆ )(   mlLmlL m ,     (*) 

where, at that stage of reasoning, L
(m) were some c-number coefficients.47 Let us calculate them, 

assuming that these eigenstates are normalized: l, ml, m = 1. For that, first of all, let us notice that we 
are speaking essentially about finding just one rather than two coefficient sets. Indeed, we may use the 
general rule bra-ket rule (4.25) to write 

  *†
,ˆ1,1,ˆ, mlLmlmlLml   . 

Since, by their definition (5.153), the ladder operators are the Hermitian conjugates of each other, this 
equality takes the following form: 

*
,ˆ1,1,ˆ, mlLmlmlLml   . 

By using Eq. (*) and the state normalization condition, the last equality yields 

 *)()1( mm LL 


  ,     (**) 

so the problem is indeed reduced to finding just one of these two coefficient sets – say, L+
(m). 

 This may be done, for example, by using the second of Eqs. (5.155) (whose proof was the 
subject of the previous problem) for writing a relation similar to the initial form of Eq. (5.163), but for 
an eigenstate with an arbitrary m: 

 mlLLmlLmlLmlL zz ,ˆˆ,ˆ,ˆ,ˆ 22
  . 

Now using the eigenvalues calculated in Sec. 5.6 to evaluate the first three terms, and the definition (*) 
of the coefficients L

(m) in the last term, we get 

   mlLLmmmlLLmlmmlmmlll mmm ,11,ˆ,,,)1( )()1(2)(2222



   . 

For all existing eigenstates (with m  l), this equality may be true only if the c-number factors in its 
first and last forms are equal. Together with Eq. (**), this gives us the final answer: 

  2/1)1()( )1()1(  
 mmllLL mm  . 

The other two frequently used forms of the same result are 

      2/12/1)( 1)1()1( mlmlmmllL m   ; 

47 Note that per Eq. (*), the coefficients L
(m) are the only nonvanishing elements of the ladder operator matrices 

in the basis of the l, m states with a fixed orbital quantum number l:  

  mm
m

mm Lm'lLmlL ,1'
)'(

', ,ˆ,   
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the first of these forms, together with Eq. (*), gives Eq. (5.164) of the lecture notes, which is valid to an 
arbitrary phase multiplier. 

 As a sanity check, L+
(m) turns into zero at m = +l (thus making the next state l, l + 1 properly 

impossible), while L–
(m) does the same at m = –l, thus terminating the state ladder on both sides – see 

Fig. 5.11.  

 

 Problem 5.28. Derive the expression L2 = 2l(l + 1) from basic statistics, by assuming that all 
(2l + 1) values Lz = m of a system with a fixed integer number l have equal probability, and that the 
system is isotropic. Explain why this statistical picture cannot be used for proof of Eq. (5.163). 

 Solution: In this statistical model, the probability of each value of m of the set (5.162), 

,lml   

and hence of having Lz = m, is Wm = 1/(2l + 1), so according to the general Eq. (1.37), the average 
value of Lz

2 is 

  










 


l

lm

l

lm
mz

l

lm
mz m

l
mWLWL .

12
2

2
222 

  

The last sum equals l(l + 1)(2l +1)/3,48 so 
 

.
3

12
2 


ll
Lz


 

If the system we are considering is isotropic, this formula should be also valid for the averages Lx
2 and 

Ly
2, and we get 

       ,13 222222  llLLLLL zzyx       

i.e. exactly the value given by Eq. (5.163). 

 As it follows from the discussion of Eq. (5.163) in the lecture notes, this naïve statistical picture 
catches a glimpse of the angular momentum’s uncertainty responsible for the difference between the 
quantum-mechanical factor l(l + 1) and the classically expected value (mmax)

2 = l2. However, the 
importance of its result should not be exaggerated. Indeed, the actual quantum-mechanical average (i.e. 
the expectation value) of L2 equals 2l(l + 1) for any distribution of a system with fixed l between its 
possible states of Lz = m, in particular in the case when the system has a definite value of m, i.e. is 
described by just a single l, m ket. 

 

 Problem 5.29. In the basis of the common eigenstates of the operators zL̂  and 2L̂ , described by 

kets l, m: 

 (i) calculate the matrix elements 21 ,ˆ, mlLml x  and 2
2

1 ,ˆ, mlLml x , 

 (ii) spell out your results for the diagonal matrix elements (with m1 = m2) and their y-axis 
counterparts, and 

48 See, e.g., MA Eq. (2.6a). 
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 (iii) calculate the diagonal matrix elements mlLLml yx ,ˆˆ,  and mlLLml xy ,ˆˆ, . 

 Solutions:  

 (i) The definition (5.153) of the ladder operators yields the reciprocal relations 

             
i

LL
L

LL
L yx 2

ˆˆ
ˆ,

2

ˆˆ
ˆ  




 ,    (*) 

so by using Eq. (5.164) of the lecture notes (whose proof was the subject of the previous problem), we 

may calculate the matrix elements of the operator xL̂ in two equivalent forms: 

       
    1,1, 12

2/1
22

12

2/1
22

212121

))(1())(1(
2

,ˆ,
2

1
,ˆ,

2

1
,ˆ,

 

 

mmmm mlmlmlml

mlLmlmlLmlmlLml x


  

           .)1)(()1)((
2 1,1, 21

2/1
11

21

2/1
11   mmmm mlmlmlml 

 (**) 

 For the calculation of the matrix elements of 2ˆ
xL , it is instrumental to represent this operator as 

the product xx LL ˆˆ , and then act by the first of them (a Hermitian operator!) upon the bra-vector, and with 

the second one, upon the ket-vector, using Eq. (**) twice – each time in a more convenient form: 

    
    1,))(1(1,))(1(

2

)1)((1,)1)((1,
2

,ˆˆ,,ˆ,

2
2/1

222
2/1

22

2/1
111

2/1
111

212
2

1







mlmlmlmlmlml

mlmlmlmlmlml

mlLLmlmlLml xxx




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 
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))(1)(1)((
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2211
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


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

























mm

mm

mm

mlmlmlml

mlmlmlml

mlmlmlml

mlmlmlml








 

These expressions show that operator 2ˆ
xL  “connects” only the states whose magnetic quantum 

numbers either do not differ at all or differ by 2, in a clear analogy with the operator 2x̂  in a harmonic 
oscillator – see Eq. (5.94). 

(ii) For the diagonal matrix elements (with m1 = m2  m), these general formulas yield:  

    .1
2

)1)(()1)((
4

,ˆ,

,0,ˆ,

2
22

2 mllmlmlmlmlmlLml

mlLml

x

x




  
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Carrying out absolutely similar calculations for the operator yL̂  and its square, we get similar results: 

          
    ,)1)(()1)((

2

))(1())(1(
2

,ˆ,
2

1
,ˆ,

2

1
,ˆ,

1,1,

1,1,

21

2/1
11

21

2/1
11

12

2/1
22

12

2/1
22

212121









 

mmmm

mmmm

mlmlmlml
i

mlmlmlml
i

mlLml
i

mlLml
i

mlLml y








 (***) 

  .1
2

,ˆ,,0,ˆ, 2
2

2 mllmlLmlmlLml yy 


 

 (iii) By using Eqs. (**) and (***) in the same way as for the calculation of the matrix elements 

of 2ˆ
xL  and 2ˆ

yL , for the mixed products of the component operators, we get 

      m
i

mlLLmlm
i

mlLLml xyyx
22

2
,ˆˆ,,

2
,ˆˆ,   .   (****) 

 As a sanity check, let us verify this result by using Eq. (5.158) to calculate the diagonal matrix 
elements of the commutator given by the last of Eqs. (5.149): 

  mimlmmlimlLmlimlLLml zyx
2,,,ˆ,,ˆ,ˆ,   . 

This is exactly the result following from the subtraction of two Eqs. (****) from each other. 

 Problem 5.30. For the state described by the common eigenket  l, m of the operators zL̂  and 2L̂  

in a reference frame {x, y, z}, calculate the expectation values Lz’ and   2
z'L  in the reference frame 

whose z’-axis forms angle  with the z-axis. 

 Solutions: Basic trigonometry tells us that if a c-number geometric vector L 
has Cartesian components Lx, Ly, Lz in a certain reference frame {x, y, z}, its 
projection to the z’-axis equals49 

 cossinsincossin zyxz' LLLL  , 

where the angles  and  are defined as at the usual introduction of the spherical 
coordinates – see the figure on the right. As was discussed in Sec. 1.2 of the lecture 
notes, all quantum-mechanical vector operators, by definition, follow the same 
geometric relations as the c-number geometric vectors, so we may write 

           cosˆsinsinˆcossinˆˆ
zyxz' LLLL  .       (*) 

 To find z'L , it is sufficient to calculate the expectation value of the right-hand side of Eq. (*): 

 cos,ˆ,sinsin,ˆ,cossin,ˆ,,ˆ, mlLmlmlLmlmlLmlmlLmlL zyxz'z'  , 

49 This formula may be readily derived by representing Lz’ as the scalar product Lnz’, with L = nxLx + nyLy + nzLz 

and nz’ = nxsincos + ny sinsin  + nz cos. (The last relation follows either from MA Eq. (10.7) with r  nz’, 
i.e. with r = 1, or just directly from the figure, taking into account that the length of the unit vector n’ equals 1.) 

z

x

y





z'n

sin
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and take into account that according to the solution of the previous problem, the first two matrix 
elements on the right-hand side of this expression equal zero, while per Eq. (5.158) of the lecture notes, 
the last of them is equal to m. Hence,  

cosmLz'  . 

 Now using Eq. (*) again, we may write (being careful not to swap non-commuting operators): 

   cosˆsinsinˆcossinˆcosˆsinsinˆcossinˆˆˆˆ2
' zyxzyxz'z'z LLLLLLLLL   

         
 

    .sincossinˆˆˆˆcoscossinˆˆˆˆ

cossinsinˆˆˆˆcosˆsinsinˆcossinˆ 222222222





yzzyxzzx

xyyxzyx

LLLLLLLL

LLLLLLL




 

The expectation values of the first two operators participating in the last expression were calculated in 
the previous problem: 

  2
2

22 1
2

mllLL yx 


, 

while that of the zzz LLL ˆˆˆ2   may be readily calculated using the fact that, according to Eq.  (5.158) of 

the lecture notes,  l, m is an eigenket of the operator zL̂ , with the eigenvalue m: 

222 ,ˆ,,ˆ,,ˆˆ, mmlLmlmmlmLmlmlLLmlL zzzzz   . 

 The expectation values of all other operator combinations vanish, as it follows from the other 
results of the previous problem and (in the last two cases) from the same Eq. (5.158): 

0
22

,ˆˆ,,ˆˆ, 22  m
i

m
i

mlLLmlmlLLmlLLLL xyyxxyyx  ,

0,ˆ,,ˆ,,ˆˆ,,ˆˆ,  mlLmlmlLmlmmlLLmlmlLLmlLLLL xxxzzxxzzx  , 

0,ˆ,,ˆ,,ˆˆ,,ˆˆ,  mlLmlmmlLmlmmlLLmlmlLLmlLLLL yyyzzyyzzy  , 

so finally we get 

     
 

.cossin
2

1

cossinsin1
2

cossin1
2

222
2

2

222222
2

222
2

2
'




















m
mll

mmllmllLz






 

 Note that the angle  shown in the figure above, i.e. the direction of the axes x and y of the initial 
reference frame, as well as the direction of the axes x’ and y’ of the “primed” reference frame (at fixed 
axes z and z’) do not affect the result. In hindsight, this looks very natural and means that the above 
solution might be simplified by taking, for example,  = 0 from the very beginning. 
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 Problem 5.31. Write down the matrices of the following angular momentum operators: 

LLLL zyx
ˆ  and ,ˆ,ˆ,ˆ , in the z-basis of the {l, m} states with l = 1. 

 Solution: Since, according to Eqs. (5.153), (5.158), and (5.164) of the lecture notes, the action of 
all these operators on the ket- (or bra-) vectors of the {l, m} states does not change the orbital quantum 
number l, their matrices consist of the elements with the same value of l (in our particular case, l = 1): 

m'lAmlAmm' ,1ˆ,1  . 

Since for l = 1, there are 3 possible values of the quantum number m (+1, 0, and –1), so these are 33 

matrices. Of them, the matrix of the operator zL̂  is the simplest one, because according to Eq. (5.158) of 

the lecture notes, it has only diagonal elements equal to m, so by numbering the states in the order 
accepted above, we may write 




















100

000

001

L z
. 

 Next, according to Eq. (5.164),  

           2/1
1 11 with ,   mmllLLL m

,mm'
m'

mm'  , 

so in our case l = 1, the only two nonvanishing matrix elements of each operator have the following 
magnitudes: 

   
        
         .21021,20121

,20121,21021

2/1

0,1

2/1

1,0

2/1

1,0

2/1

0,1













LL

LL
 (*) 

 Note that the elements may be multiplied by phase factors exp{i}, but their phases  need to be 
related to keep the operators of observable momentum components,  

           ,
2

ˆˆ
ˆand

2

ˆˆ
ˆ

i

LL
L

LL
L yx

 



     (**) 

Hermitian, i.e. to have Eqs. (4.65) of the lecture notes satisfied for their matrix elements. An elementary 
calculation using Eqs. (**) shows that this requires  

           ***
0,11,01,00,1''   and  i.e.,   LLLLLL mmmm . 

This requirement is satisfied, for example, for the simplest choice  = 0. In this case, we may represent 
our result as 

.

010

001

000

2L,

000

100

010

2L
































    

Finally, using Eqs. (**) (which have to be obeyed by each of the matrix elements as well), we get 
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.

00

0

00

2
L,

010

101

010

2
L






































i

ii

i

yx


 

 

 Problem 5.32. Calculate the angular factor of the orbital wavefunction of a particle with a 
definite value of L2, equal to 62, and the largest possible definite value of Lx. What is this value?  

 Solution: Let us introduce a new set of Cartesian coordinates {x’, y’, z’}, 
with the same origin as the initial one {x, y, z}, but rotated relative to it as the figure 
on the right shows: 
        rr'xz'zy'yx'    so,,, .  (*) 

In this reference frame, the state we are looking for has the same fixed value of L2, 
and the largest definite value of Lz’. According to Eqs. (5.158) and (5.163) of the 
lecture notes, such state is described by the ket  l’, m’ with m’ = l’ = 2, and corresponds to Lz’ = m’ = 
2 and L2 = 2l’(l’ + 1) = 62. But according to the last of Eqs. (3.176), the angular wavefunction 
corresponding to such a state is 

'i'e 


 22
2/1

sin
32

15






 , 

where the primed angles are related to the primed Cartesian coordinates (*) in the usual way: 

     
r'

z'
'

r'

y'
''

r'

x'
''   cos,sinsin,cossin .   (**) 

To use these relations, let us express   in terms of trigonometric functions of the single angle ’: 

   

 .cossinsin2sinsincossin
32

15

cossin2sincossin
32

15
2sin2cossin

32

15

22222
2/1

222
2/1

2
2/1

'''i''''

''i''''i''



































 

Now plugging Eqs. (**) into this result, then using Eq. (*) to replace the coordinates back to the initial 
Cartesian ones, and, finally, to the initial (in our notation, non-primed) spherical angles, we get 

   

 .cossinsin2cossinsin
32

15

2
1

32

15
2

1

32

15

222
2/1

22
2

2/1
22

2

2/1







i

iyzzy
r

ix'y'y'x'
r'
























 

 Naturally, this coordinate replacement does not change the value Lx = Lz’ = 2.  

 

 Problem 5.33. For the state with the wavefunction  = Cxye–r, with a real positive , calculate: 

(i) the expectation values of the observables Lx, Ly, Lz, and L2, and 
(ii) the normalization constant C. 

x

x'
y

z y'

z'
0
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 Solutions:  

 (i) Rewriting the given wavefunction in the spherical coordinates: 

,
4

sin
2

2sin
sincossinsin

22
222222

i

ee
eCreCreCr

ii
rrr


 


 

  

and comparing the result with the top and bottom lines of Eq. (3.176), we see that 

                ,,
2

1
)( 2

2
2

2
 YYrR ,    (*) 

where  

     reCrir  





 2

2/1

15
2)( R .     (**) 

 As Eq. (*) shows, the state is a linear superposition, with equal and opposite weights (and hence 
equal probabilities W+ = W– = ½), of two angularly-orthogonal states: one with l = 2 and m = 2, and 
another one with l = 2 and m = –2. Hence, according to Eq. (5.158), the expectation value of Lz is 

    022   WWLz  , 

while according to Eq. (5.163), that of L2 is  

2222 6)12(2)12(2    WWL . 

 Finally, by using Eq. (5.164) of the lecture notes, it is straightforward to check that in the linear 
superposition (*), the expectation values of L, and hence of both Lx = (L+ – L–)/2 and Ly = (Lx – Ly)/2i, 
are equal to zero. 

 (ii) Since all spherical harmonics are already normalized (see Eq. (3.173) of the lecture notes), so 
is the whole angular factor of the wavefunction (*), and it is sufficient to require the normalization of its 
radial part – cf. Eq. (3.194): 

    12

0

* 


drrrr RR . 

Per Eq. (**), this equality gives the following condition for the constant C:  




  







0

6
7

0

62

2

1

15

4

15

4 2 


  dedrerC r . 

This dimensionless integral50 equals 6!  720, so we finally get 

2/7
2/12/17

3

2
720

2

1

15

4 
































C . 

(Just as a reminder, any normalization constant is defined up to a phase multiplier ei with any real .) 

Problem 5.34. An angular state of a spinless particle is described by the following ket-vector: 

50 See, e.g., MA Eq. (6.7d) with n = 6. 
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 1,30,3
2

1
 mlml . 

Calculate the expectation values of the x- and y-components of its angular momentum. Is the result 
sensitive to a possible phase shift between the component eigenkets? 

 Solution: Let us start with calculating the expectation values of the ladder operators: 

 1,3ˆ1,30,3ˆ1,31,3ˆ0,30,3ˆ0,3
2

1ˆ
  LLLLLL  . 

Per Eq. (5.164) of the lecture notes, the diagonal matrix elements vanish, while each of the off-diagonal 
terms contributes to only one expectation value: 

  


3)1()1(
2

0,3ˆ1,3
2

1 2/1
0,3   mlmmllLL , 

   


3)1()1(
2

1,3ˆ0,3
2

1 2/1
1,3   mlmmllLL , 

so 

    0
2

1
,3

2

1
  LL

i
LLLL yx  . 

However, this result is valid only if the phase shift between the two components of the linear 
superposition is exactly zero. For an arbitrary phase shift, for example 

   1,30,3
2

1
  so,1,30,3

2

1   ii ee  , 

the result becomes: 
,3,3  ii eLeL   

  

so 

 sin3,cos3   yx LL  

– the formulas to be compared with the solutions of Problems 19 and 4.17.  

 

Problem 5.35. A particle is in a quantum state  with the orbital wavefunction proportional to 
the spherical harmonic ).,(1

1 Y  Find the angular dependence of the wavefunctions corresponding to 
the following ket-vectors: 

  (i) xL̂ , (ii) yL̂ , (iii) zL̂ ,    (iv) LL ˆˆ ,  and  (v) 2L̂ . 

Solution: According to the discussion of Sec. 5.6, the given ket  is the shared eigenket  l, m 
of the operators 2L̂  and zL̂ , with l  = 1 and m = +1, i.e.    l =1, m = 1  1, 1. Hence the operators 

2L̂  and zL̂ , acting upon the ket-vector of the state, do not change the angular dependence of its 

wavefunction, which is proportional to sin exp{i} – see, e.g., the last line of Eq. (3.175) of the lecture 

notes. The same is true for the ladder operator product LL ˆˆ because, per Eq. (5.164), its right operand 
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changes the initial state to 1, 0 (multiplied by a c-number coefficient), but the left operand, acting next, 
returns the ket to its initial form 1, 1. 

The results of the action of the two remaining operators, xL̂  and yL̂ , may be most simply 

obtained by expressing them via the ladder operators L̂ . From Eq. (5.153) we readily get 

     LL
i

LLLL yx
ˆˆ

2

1ˆ,ˆˆ
2

1ˆ . 

According to the same Eq. (5.164) (see also Fig. 5.11), 

,0,1const1,1ˆ,01,1ˆ   LL  

so the wavefunctions corresponding to xL̂  and yL̂  are both proportional to the spherical 

harmonic with l = 1 and m = 0, i.e. to Y1
0(, )  cos, albeit with different coefficients. 

 

 Problem 5.36. A charged spinless 2D particle of mass m is trapped in the potential well U(x, y) = 
m0

2(x2 +y2)/2. Calculate its energy spectrum in the presence of a uniform magnetic field B normal to 
the [x, y]-plane of the particle’s motion 

 Solution: Due to the evident axial symmetry of the problem, it may be most simply solved by the 
selection of the vector-potential not in the Landau form (3.44), but in the axially symmetric form 

,
22

1 


B
nρA  B  

where   {x, y} is the 2D radius vector. (Indeed, using the expression for the curl of a vector in the 
cylindrical coordinates,51 it easy to check that this expression does satisfy the vector-potential’s 
definition, A = B, with B = nzB = const.) The Cartesian components of this vector are 

xAyA yx 2
,

2

BB
 , 

so the 2D form of the Hamiltonian (3.26), with the due replacement q  U(x, y), is 

 22
2
0

2
2

2222
ˆ yxx

q
i

y
y

q
i

x
H yx 



























 




mBB

m 


nn . 

 Squaring the brackets and using the cyclotron frequency definition (3.48) but with a definite 
sign: c  –qB/m (in order for the vector c = nzc to have the correct direction corresponding to that of 
classical Lorentz force FL = qvB), we get 

 ,
222

ˆ 22
2

2
c

2

2

2

22

yx
y

x
x

yi
yx

H 































 mm

m





 

where  is defined as follows: 

51 See, e.g., MA Eq. (10.5). 
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      2
c

2
0

2

4

1  .     (*) 

But according to Eq. (5.152) of the lecture notes, the factor following the  sign inside the square 

brackets is just the coordinate  representation of the operator zL̂ , so we may write 

zLHH ˆ
2

ˆˆ c
osc


 . 

 The first component of this Hamiltonian, 

       22
2

2222
2

2

2

2

22

osc ˆˆ
2

ˆˆ
2

1

22
ˆ yxppyx

yx
H yx 
















 m

m

m

m


. 

is just that of an effective 2D (planar) harmonic oscillator, with the frequency re-normalized by the field 
– see Eq. (*). Its energy spectrum is given by Eq. (3.124) with d = 2: 

             ,2,1,0with  ,1osc  yx nnnnE  .   (**) 

 The second component of the Hamiltonian also has a simple physical sense: in the classical limit, 
this is just the energy 

B mzz L
q

LE
m

B

22
c

mag


 

of the classical orbital magnetic moment m = qL/2m in the external field B.52 Using the commutation 

relations (5.149), it is straightforward to verify that the operator zL̂  commutes with the operators 

 22 ˆˆ yx pp   and  22 ˆˆ yx  , and hence with the operator oscĤ , so these two operators share common 

eigenfunctions. As we may conclude from Sec. 2.9 (see, e.g., Fig. 2.35), the change of n is associated 
with a substantial change of the radial structure of these eigenfunctions. On the other hand, as Eq. 
(5.152) shows, in this axially-symmetric system, the angular momentum operator cannot change the 
radial structure, affecting only the angular phase shift of the wavefunctions, and has the eigenvalues m, 
with an integer magnetic quantum number m – see, e.g., Eqs. (3.129) or (5.158).53 As a result, the total 
energy of the system may take the following values: 

       mnmnE mn 2
1

42
1 c

2/12
c2

0
c

,











 







 .  (***) 

 The solid lines in the figure below show the few lowest of these energy levels as functions of the 
ratio c/20, i.e. of the normalized magnetic field, with their colors coding the quantum numbers n: 
black for n = 0, red for n = 1, and blue for n = 2, while the dashed lines show their high-field trends. The 
reader should agree that the spectrum evolution is very spectacular, with some energy levels first going 
down and then up as the field is increased, and levels re-grouping in that process. The spectrum of 
possible magnetic quantum numbers m is also nontrivial, with the step between the adjacent values 
equal to 2 rather than 1. 

52 See, e.g., EM Eq. (5.95). 
53 Note that anticipating the appearance of this magnetic quantum number with its traditional notation m, I again 
(just as in the last sections of Chapter 3) used a fancy font to denote the particle’s mass m. 
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 Let us start the interpretation of these results 
from the field-free limit when the energy spectrum is 
reduced to the n-sequence (**). The ground energy 
level, with n = 0, corresponds to the only possible 
combination of the partial quantum numbers, nx = ny = 
0, and hence is degenerate. Its eigenfunction is the 
product of two 1D wavefunctions of the type (2.275): 

   

.
2

exp
1

2
exp

1

2
0

2

0
2/1

2
0

22

0
2/100g
















 


xx

x

yx

x
yx







 

As the last form of Eq. (5.152) clearly shows, the 

operator zL̂  gives zero when acting on such an axially 
symmetric wavefunction, i.e. it is an eigenfunction of 
this operator with m = 0. Hence the action of the 
magnetic field on the ground state is reduced to the 
effective frequency re-normalization (*), gradually 
increasing its eigenenergy. 

 The next (first excited) energy level, with n = 1, corresponds to two different eigenstates, with 
{nx = 1, ny = 0} and {nx = 0, ny = 1}, whose eigenfunctions may be represented as the products 
1(x)0(y) and 0(x)1(y), respectively, where the component wavefunctions are described by Eq. 
(2.284). As that formula, together with the second of Eqs. (2.282) show, they are proportional to 
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Of these two wavefunctions, we may readily form two linear combinations 

 ie
x










 2

0

2

1 2
exp , 

which are eigenfunctions of zL̂  with the eigenvalues  corresponding to m = 1. As Eq. (***) shows, 

even a low magnetic field lifts this degeneracy, inducing equal and opposite shifts linear in c:54 

2
c

mag


E , 

so the difference between the adjacent values of m is indeed 2 rather than 1.  

This result (m = 2) persists for higher values of n as well. For example, in the opposite high-
field limit, when   c/2, Eq. (***) tends to Landau’s result (3.50):55 

54 The linear decrease of the eigenenergy E1,–1 with the growing field, described by this formula with the minus 
sign, competes with its quadratic increase due to the frequency renormalization (*), resulting in the non-
monotonic function shown in the figure above. 
55 This result is shown with the dashed straight lines in the figure above. 
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    ...,1,0with  ,
2

1
c 






  NNEN  , 

with the integer N equal to (n  m)/2, where the sign before m is determined by that of the product qB.  
This correspondence means, in particular, that for a fixed n, the smallest step of the magnetic quantum 
number m is 2, in order to keep N integer. 

As a sanity check, in the absence of the magnetic field, the nth energy level of the 2D oscillator is 
(n + 1)-degenerate, with any of the component quantum numbers nx and ny taking values 0, 1, …n. The 
applied magnetic field lifts this degeneracy, so there should be g = n + 1 possible different values of m. 
The n + 1 steps, of the size m = 2 each, make the magnetic quantum number cover the range from –n to 
+n without making N negative. This zero-centered spectrum of m, which might be expected for this 
axially symmetric system, remains the same as in spherically symmetric systems – see Eq. (3.162). 

 

 Problem 5.37. Solve the previous problem for a spinless 3D particle placed (in addition to a 
uniform magnetic field B) into a spherically-symmetric potential well U(r) = m0

2r2/2. 

 Solution: Directing the axis z along the applied magnetic field, let us select its vector potential 
just as was done in the (very similar) previous problem,  

ρA  B
2

1
, 

where   {x, y} is the 2D radius vector. The Cartesian components of this vector are 

xAyA yx 2
,

2

BB
 , 

so Eq. (3.27), with the due replacement q  U(r), takes the form  
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. 

 Let us represent this Hamiltonian as a sum: 

zyx HHH ˆˆˆ
,  , 

where yxH ,
ˆ is the Hamiltonian discussed in the solution of the previous problem, 
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with the energy spectrum given by Eq. (***) of that solution: 
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while zĤ is the Hamiltonian of a 1D harmonic oscillator: 

2
2
0

2

22

22
ˆ z

z
H z

m

m








, 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                 Page 296 

with eigenenergies Ez = 0(nz + ½), where nz = 0, 1, 2,.... These two Hamiltonians describe two 
independent systems defined in different Hilbert spaces, so their eigenvalues (i.e. the system’s energy 
components) just add up. As a result, the full energy spectrum of the system is 

             





 










2

1

2
1

4 0
c

2/12
c2

0, zz nmnEEE mn 


 


 .  (*) 

 In the limit of vanishing magnetic field (c  0), this result tends to Eq. (3.124) of the lecture 
notes, with d = 3, for an isotropic 3D oscillator  

  ,...2,1,0with  ,
2

3

2

1
1 000 






 






  zz nnn'n'nnE    

 In the opposite limit 0 << c, the relative smallness of the coefficient 0 in the last term of Eq. 
(*) may be compensated by (possibly, very large) values of the quantum number nz, so for energies of 
the order of c, the result may be approximately represented as the sum, 

,
2

1
c zENE 






    

of the discrete Landau levels (3.50), with N  (n  m)/2  0, and a quasi-continuous energy Ez of the 
essentially classical harmonic oscillations along the z-axis.56  

 Problem 5.38. Calculate the spectrum of rotational energies of an axially symmetric rigid 
macroscopic body. 

 Solution: According to classical mechanics,57 the rotational energy of an axially symmetric rigid 
body, frequently called the symmetric top,58 is related to the principal-axis components of its angular 
momentum as 

3
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22

22 I
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LL
E zyx 


 , 

where I3 is the principal moment of inertia for rotation about the axis of symmetry (taken here for the z-
axis), and I1  Ix = Iy is that for rotation about any axis normal to z. According to the correspondence 
principle, in quantum mechanics, the rotation may be described by the similar Hamiltonian: 

3
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22
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ˆ

2

ˆˆ
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LL
H zyx 


 . 

 According to Eq. (5.150) of the lecture notes, this Hamiltonian may be rewritten as 

56 Note that the last displayed formula also describes the spectrum of a 3D particle moving in a 2D quadratic 
potential U(x, y) = m0

2(x2 +y2)/2; in this case, Ez is a fully continuous energy 2kz
2/2m of the free motion in the z-

direction. 
57 See, e.g., CM Sec. 4.2, in particular, Eqs. (4.25)-(4.26). 
58 Note that the set of symmetric tops, with two equal principal moments of inertia, is not limited to the axially-
symmetric bodies; for example, any uniform cylinder with an equilateral-triangle base (see, e.g., CM Fig. 4.3) 
also belongs to this class. As a result, the energy spectrum calculated in this solution is even more general than the 
problem’s assignment specifies. 
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Since, according to Eq. (5.151), the operator 2L̂  commutes with the operator zL̂ , and hence with its 

square, they share the eigenstates described by the ket-vectors  l, m that were discussed in Sec. 5.6 of 
the lecture notes. As a result, we may use the corresponding eigenvalues given by Eqs. (5.158) and 
(5.163) to immediately write the corresponding eigenvalues of our Hamiltonian, i.e. the energy spectrum 
of the system: 

 
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Note that the second term of this expression may be either positive (for bodies stretched along 
the symmetry axis z, and hence having with I1 > I3 – see CM Eq. (4.24) of the lecture notes), or equal 
zero (for a particular case of a spherical top, with all principal moment of inertia equal), or even 
negative (at I1 < I3). However, due to the condition –l  m  +l, even in the latter case, all energies El,m 
are still non-negative. 

Note also that this calculation implies that the body is “macroscopic” in the sense that its rotation 
about the z-axis by any angle different from a 2-multiple leads to a physically distinguishable position. 
As a result, the above result may be only partially valid for such microscopic objects as axially 
symmetric (e.g., diatomic) molecules; for their discussion, see Chapter 8. 

 

 Problem 5.39. Simplify the double commutator   j'j rLr ˆ,ˆ,ˆ 2 . 

 Solution: Using Eq. (5.150) of the lecture notes, we may write 

                










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
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3

1
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1

22 ˆ,ˆˆ,ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ
j"

j'j"j"j
j"

j'j"jj'jjj' rLLrrLrrLrA .  (*) 

Let us start with spelling out the internal commutator in this expression. The calculations may be  
shortened a bit using the easily provable operator identity 

            CDBDCBDCB ˆˆ,ˆˆ,ˆˆˆ,ˆˆ  .     (**) 

Indeed, taking j"LCB ˆˆˆ   and j'rD ˆˆ  , we get 

      j"j'j"j'j"j"j'j"j" LrLrLLrLL ˆˆ,ˆˆ,ˆˆˆ,ˆˆ  . 

Now by applying Eq. (5.148), in the form 

            



3

1

ˆˆ,ˆ
j'''

j"j'j'''j'''j'j" rirL  ,     (***) 

to both commutators on the right-hand side, we get 

   j"j'''j'''j"
j'''

j"j'j'''j"
j'''

j"j'j'''j'''
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j"j'j'''j'''j"j'j"j" LrrLiLririLrLL ˆˆˆˆˆˆˆˆˆ,ˆˆ
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 With this, the external commutator in Eq. (*) becomes 

            jj"j'''jj'''j"
j'''

j"j'''j'j"j'''jj'''j"j
j'''

j"j'j'''j'j"j"j rLrrrLiLrrrLrirLLr ˆ,ˆˆˆ,ˆˆˆˆ,ˆˆˆ,ˆˆ,ˆˆ,ˆ
3

1

3

1

 


  . 

(Note the swap of the indices j’ and j’’’ in the Levi-Civita symbol in the last expression, which 
compensates for the sign reversal due to the swap of operands in both commutators.) Now we may apply 

the identity (**) again to both commutators on the right-hand side: in the first case, with j"LB ˆˆ  , 

j'''rC ˆˆ  , and jrD ˆˆ  , and in the second case, with  j'''rB ˆˆ  , j"LC ˆˆ  , and jrD ˆˆ  . This gives 

           

    ,ˆ,ˆˆˆˆ,ˆ

ˆˆ,ˆˆ,ˆˆˆˆ,ˆˆ,ˆˆˆ,ˆˆ,ˆ
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1
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
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







 

because the Cartesian coordinate operators commute regardless of their indices.  

 Let us apply to the commutator on the right-hand side of the last expression the basic Eq. (***) 
again, now in the form 

  



3

1'

ˆˆ,ˆ
'j''

j"jj""j""jj" rirL  . 

The result is 

     j""j'''j"jj""
j''''j'''

j"j'''j'j"'jj""j""j'''j'''j"jj""j""
j''''j'''

j"j'''j'j'j"j"j rrrirrriirLLr ˆˆ2ˆˆˆˆˆ,ˆˆ,ˆ
3

1,

2
3

1,

 


  , 

so the double commutator in question is reduced to 

     



3

1,,

2 ˆˆ2ˆ
j''''j'''j"

j""j'''j"jj""j"j'''j'jj' rrA  .    (****) 

 Generally, the Levi-Civita product sums over a similar index (in our case, j”) may be calculated 
using the so-called “contracted epsilon identity”,59 but in our simple case, it is easier to use a more 
pedestrian way.  

 (i) If j’ = j, then the “productive” values of the indices j’’’ and j’’’’ (meaning those giving 
nonvanishing contributions to the sum) are equal to each other for any j”, so the Levi-Civita index 
product in the sum (****) equals (–1) in both terms with j”  j. In the remaining two terms, with j” = j, 
the “productive” common indices can take both values not equal to j (and hence to j’), and the terms 
cancel. The total result may be conveniently represented as  

 222 ˆˆ2ˆ
jjj rrA   . 

 (ii) If  j = j’  1,60  the sum in Eq. (****) has not two but just one nonvanishing term because the 
Levi-Civita symbols kill the terms with both j” = j’ and j” = j = j’  1. In the only remaining term of the 

59 See, e.g., MA Eq. (13.3b). 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                 Page 299 

sum,  j” = j’  1, and hence, by its definition as the complementary one to j’ and j”, the “productive” 
value of j’’’ is equal to j’  1 = j, while such value of j’’’’, by its definition as the complementary one to 
j and j”, equals j’. As a result, Eq. (****) is reduced to   

      j'jrrrrA j'jj'jj'j'j'j'j'j'jj'   for  ,ˆˆ2ˆˆ2ˆ 2
1111

2    . 

 These results may be summarized as 

 j'jjj'jj' rrrA ˆˆˆ2ˆ 22   . 

By the way, the reader may have noticed an interesting analogy between this result and the well-known 
classical expression for the contribution of an elementary mass dm of a rigid body to its inertia tensor:61 

   j'jjj'jj' rrrdmdI  2 . 

  

 Problem 5.40. Prove the following commutation relation:  

    jjj rLLrrLL ˆˆˆˆ2ˆ,ˆ,ˆ 22222   . 

 Solution: We may start from the following by-product of the model solution of the previous 
problem (with the number of primes in each j-index reduced by one, for the notation simplicity): 

     j'j"j"j'
j"

jj'j"j'j"j"j'
j"

j'jj"jj' LrrLiLrrLirL ˆˆˆˆˆˆˆˆˆ,ˆ
3

1

3

1

2  


  . 

Since the Levi-Civita symbol vanishes if any two of the indices j, j’, and j” coincide, we get only two 
non-zero contributions to the full inner commutator 

           21121221

3

1,

3

1

22 ˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆˆ,ˆ




  jjjjjjjj
j"j'

j'j"j"j'jj'j"
j'

jj'j LrrLLrrLiLrrLirLrL   , (*) 

where the sums (j + 1) and (j + 2) are understood by modulo 3, i.e. the sums (3 + 1) and (2 + 2) are taken 
for 1, and (3 + 2) for 2. Now using Eq. (5.148) of the lecture notes to write 

    ,ˆˆˆˆˆ  and,ˆˆˆˆˆ
21121221 jjjjjjjjjj riLrrLriLrrL         

we may rewrite Eq. (*) in a shorter form: 

           jjjjjj riLrLrirL ˆˆˆˆˆ2ˆ,ˆ
2112

2    .    (**) 

 Plugging this expression for the internal commutator into the left-hand side of the identity to be 
proved, and taking into account that per Eq. (5.151), the operator of L2 commutes with the operators of 
all Cartesian components Lj, we get 

60 If j’ + 1 = 4, such a sum means 1, and if j’ – 1 = 0, the difference means 3. (In math speak, we define the 
combinations j’  1 “modulo 3”.) 
61 See, e.g., CM Eq. (4.16). 
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            jjjjjjjjjjj rLiLrLLrLiriLrLrLirLL ˆ,ˆˆˆ,ˆˆˆ,ˆ2ˆˆˆˆˆ,ˆ2ˆ,ˆ,ˆ 2
21

2
12

2
2112

222    . 

Now using Eq. (**) again for the first two commutators (with the corresponding replacements of the 
index  j), we get 

           
   .ˆˆˆˆ2ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ4      

ˆ,ˆˆˆˆˆˆˆ2ˆˆˆˆˆˆ22ˆ,ˆ,ˆ
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212222121111

2

2
21221211

22

LrrLLriLLrLLrLriLLrLLr

rLiLriLrLriLriLrLriirLL

jjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjj












 

Adding to and subtracting from the right-hand side of this relation the following expression: 

 2211
222 ˆˆˆˆˆˆˆ4ˆˆ4   jjjjjjjj LLLLLLrLr  , 

we get 

         222
212121

222 ˆˆˆˆ2ˆˆˆˆˆˆˆˆˆˆˆ4ˆ,ˆ,ˆ LrrLLLrLriLrLriLrrLL jjjjjjjjjjjjjj    . 

With the commutation relation (5.148) applied to each term in the square brackets, 

jjjjjjjjjjjjjj rLLrrLriLrrLriLr ˆˆˆˆ,ˆˆˆˆˆ,ˆˆˆˆˆ 212121    , 

this expression is reduced to   

      
   .ˆˆˆˆ2ˆˆˆˆˆˆˆˆ4

ˆˆˆˆ2ˆˆˆˆˆˆˆˆˆ4ˆ,ˆ,ˆ

222
2211

2

222
2211

222

LrrLLrLLrLrL

LrrLLrLLrLLrLrLL

jjjjjjjjjj

jjjjjjjjjjjj












 

But according to Eq. (5.147), the sum in the first parentheses equals zero: 

  0ˆˆˆˆˆˆˆˆˆˆˆ 2211   prrLrjjjjjj LrLrLr , 

so we indeed get  

    22222 ˆˆˆˆ2ˆ,ˆ,ˆ LrrLrLL jjj   . 

 

 Problem 5.41. Use the commutation relation proved in the previous problem and Eq. (5.148) of 
the lecture notes to prove the orbital electric-dipole transition selection rules mentioned in Sec. 5.6. 

 Solution: First, let us calculate the matrix elements of both sides of the identity proved in the 
previous problem, 

                    jjj rLLrrLL ˆˆˆˆ2ˆ,ˆ,ˆ 22222   ,    (*) 

in the basis of the {l, m} states discussed in Sec. 5.6 of the lecture notes, i.e. the common eigenstates of 

the operators 2L̂  and zL̂  . For the left-hand side, we get 

       m'l'LrLmlm'l'rLLmlm'l'rLLml jjj ,ˆˆ,ˆ,,ˆ,ˆˆ,,ˆ,ˆ,ˆ, 222222  . 
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According to Eq. (5.163) of the lecture notes, the action of the rightmost operator 2L̂ on the rightmost 
ket-vector gives the same ket but multiplied by 2l’(l’ + 1), while the action of the similar (Hermitian!) 
operator in the leftmost position on the leftmost bra-vector gives the same vector but multiplied by 2l(l 
+ 1). As a result, we may continue as follows: 

         
       .,ˆˆˆˆ,11

,ˆ,ˆ,11,ˆ,ˆ,ˆ,

222

2222

m'l'LrrLmll'l'll

m'l'rLmll'l'llm'l'rLLml

jj

jj








 

Now a similar simplification of the last bracket gives 

        .,ˆ,11,ˆ,ˆ,ˆ, 2422 m'l'rmll'l'llm'l'rLLml jj    

 The matrix elements of the right-hand side of Eq. (*) may be calculated in a similar way: 

   
    .11,ˆ,2

,ˆˆ,,ˆˆ,2,ˆˆˆˆ2,

4

222222





lll'l'm'l'rml

m'l'rLmlm'l'Lrmlm'l'rLLrml

j

jjjj




 

Due to the identity (*), these matrix elements have to be equal, giving the result 

             11211',  where,0,,ˆ, 2  lll'l'l'l'llllfl'lfm'l'rml j . 

 This means that the matrix element of the jth Cartesian coordinate has to vanish unless the 
function f(l, l’) equals zero. Rewriting this function as 

                111111, 22222  l'll'lll'l'll'll'll'lf , 

and taking into account that l and l’ cannot be negative, we see that f(l, l’) equals zero only if either l = l’ 
= 0 (when the first square bracket of the last expression vanishes), or if (l – l’)2 = 1, i.e. if 

            1 ll' .       

Since, according to Eq. (3.174), the angular wavefunction of the state with l = 0 (and hence m = 0) is a 
constant, the matrix elements 

  drmlrml jj ˆ0,0ˆ0,0 , 

corresponding to the first case (l = l’ = 0), vanish due to symmetry, the above equality l’ = l  1 gives 
the necessary condition to have at least some matrix element(s) m'l'rml j ,ˆ,  different from zero. 

 In order to get the second necessary condition, let us calculate the similar matrix elements of 
both parts of Eq. (5.148), written for the operator of L3   Lz,  

                  



3

1
33 ˆˆ,ˆ

j'
jj'j'j rirL  .     (**) 

For the left-hand side, we may write 
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  l',m'Lrmll',m'rLmll',m'rLml jjj 333
ˆˆ,ˆˆ,ˆ,ˆ,  . 

Per Eq. (5.158), the action of the rightmost operator zLL ˆˆ
3  on the right ket-vector gives the same 

vector but multiplied by m’, while the action of the similar (Hermitian!) operator in the leftmost 
position on the ket-vector gives the same vector but multiplied by m, so 

        l',m'rmlm'ml',m'rLml jj ˆ,ˆ,ˆ, 3   .    (***) 

The similar matrix element of the right-hand side of Eq. (**) is just  

l',m'rmlil',m'riml j'
j'

jj'
j'

jj'j' ˆ,ˆ,
3

1
3

3

1
3 



   , 

so according to Eq. (**), 

      l',m'rmlil',m'rmlm'm j'
j'

jj'j ˆ,ˆ,
3

1
3



  .   (****) 

 First, let us consider the case when the index j is not equal to 3. In this case, the sum on the right-
hand side has only one nonzero term: 

  .3,for  ,ˆ,ˆ, 3 jj'l',m'rmlil',m'rmlm'm j'jj'j    

Multiplying this equation by a similar one but written for the complementary index: 

  ,3,for  ,ˆ,ˆ, 3 j'jl',m'rmlil',m'rmlm'm jj'jj'    

and taking into account that by the Levi-Civita symbol’s definition, 3jj’3j’j = –1, we get 

   0ˆ,ˆ,12  l',m'rmll',m'rmlm'm j'j . 

From here, the second necessary condition to have at least some matrix element(s) m'l'rml j ,ˆ, with j 

 3,  different from zero is (m – m’)2 = 1, i.e.  

1 mm' . 

 Finally, let us consider the case j = 3. In this case, the commutator (**) equals zero, so Eq. (***)  
yields 

  0ˆ, 3  l',m'rmlm'm . 

From here, we may conclude that this particular matrix element may be different from zero only if 

m'm  , 

thus completing the proof of the selection rules formulated in Sec. 5.6.  

 As will be discussed in Sec. 9.3, these rules, applied to the emission/absorption of electric-dipole 
radiation coupled to the orbital motion of a quantum system, express the conservation of the total 
angular momentum of the system, including that of the emitted/absorbed photon. 
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 Note that these selection rules may be also obtained in a purely wave-mechanical way by using 
the following recurrence relations for the spherical harmonics (which are given here just for the reader’s 
reference): 

    
       

    

    
       

     .,
1212

1
,

3212

21
,sin

,,
1212

,
3212

11
,cos

1
1

2/1

1
1

2/1

1

2/1

1

2/1





ieY
ll

mlml
Y

ll

mlml
Y

Y
ll

mlml
Y

ll

mlml
Y

m
l

m
l

m
l

m
l

m
l

m
l





































































 

  

 Problem 5.42. Express the commutators listed in Eq. (5.179) of the lecture notes,  zLJ ˆ,ˆ 2  and 

 zSJ ˆ,ˆ 2 , via jL̂  and jŜ . 

 Solution:  By using Eq. (5.181) and then the second of Eqs. (5.176), we may transform the first 
commutator as 

           zyyzxxzzzyyxxzzz LLSLLSLSLSLSLLLSLLJ ˆ,ˆˆ2ˆ,ˆˆ2ˆ,ˆˆˆˆˆˆ2ˆ,ˆˆ2ˆ,ˆˆ2ˆˆˆ,ˆ 222  SLSL . 

Now using the first of Eqs. (5.176), we get 

   xyyxz LSLSiLJ ˆˆˆˆ2ˆ,ˆ 2   . 

Acting absolutely similarly, we can obtain 

   xyyxz LSLSiSJ ˆˆˆˆ2ˆ,ˆ 2   . 

We see that indeed, neither of these commutators vanishes – though their sum, equal to  zJJ ˆ,ˆ 2 , does. 

 

Problem 5.43. Find the operator T̂  describing a quantum state’s rotation by angle  about a 

certain axis, by using the similarity of this operation with the shift of a Cartesian coordinate, discussed 
in Sec. 5.5 of the lecture notes. Then use this operator to calculate the probabilities of measurements of 
spin-½ components of particles with z-polarized spin, by a Stern-Gerlach instrument turned by angle   
within the [ z, x] plane, where y is the axis of particle propagation – see Fig. 4.1.62  

Solution: In the course of our discussion of the Glauber states in Sec. 5.5, we proved that the 
operator defined by Eq. (5.111), 







 X

p
i x

X


ˆ
expT̂ , 

provides the wavefunction’s translation by the distance X along the x-axis. From Sec. 5.6, we know that 
at a planar rotation about the z-axis, the product Lzφ plays the same role as the product pxx at the linear 
motion along axis x. Hence, the operator 

62 Note that the last task is just a particular case of Problem 4.18 (see also Problem 1). 
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










 


zL

i
ˆ

expT̂  

rotates any orbital wavefunction by the angle  about the z-axis. It is straightforward to generalize this 
relation to the rotation by angle  about an arbitrary axis with the unit vector n:  







 
 



nL̂
expˆ iT . 

Since all the commutation properties of the spin operator Ŝ  are identical to those of L̂  (see Sec. 
5.7), the spin rotation should be described by a similar operator:  







 
 



nŜ
expˆ iT  

so for spin-½ particles, with  σS ˆ2/ˆ  , 

.
2

ˆexpˆ






 


 nσiT  

The last relation may be recast into a simpler form by the expansion of the exponent into the Taylor 
series, separating the odd- and even-numbered terms: 

.
2

ˆ
!

1

2
ˆ

2
ˆ

!

1

2
ˆexpˆ

2

12

2

2

m

mk

m

mk

i
k

ii
k

i 





 






 







  




 nσnσnσnσT  

Since, as we know from Chapter 4,  

          ,ˆˆσ̂σ̂σ̂ˆ 2222222 IInnnnnn zyxzzyxxx nσ  

we may write 

  ,ˆˆ 2 Im nσ    so      .
2

1
!

1
ˆ

2
1

!

1ˆˆ
122

k
m

mk

k
m

mk k
i

k
I 













 




 nσT  

But these sums are just the Taylor expansions of the functions cos(/2) and sin(/2), respectively, so  

2
sinˆ

2
cosˆˆ 

 nσ  iIT . 

 If the unit vector n of rotation is directed along the particle’s propagation axis (in our particular 
case, the y-axis), then yσ̂ˆ nσ , and the operator’s matrix in the z-basis becomes very simple: 

   
    









 


2/cos2/sin

2/sin2/cos




 , 

where  is now the angle between the final direction of the state’s rotation and its initial direction. If the 
latter direction is the z-axis, then  is just the polar angle  of the final direction. The rotation of a Stern-
Gerlach instrument from the z-direction by an angle  is evidently equivalent to the spin’s rotation by an 
equal but opposite angle. Hence the probabilities of the two outcomes of the SG measurements of the z-
polarized spin beam are 
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    
2

sin)(,
2

cos)( 22

21
22

11

    TWTW , 

– the same result as was obtained earlier in the solutions of Problems 1 and 4.18. 

  

 Problem 5.44. The rotation operator T̂  analyzed in the previous problem and the linear 

translation operator XT̂  discussed in Sec. 5.5 of the lecture notes have a similar structure: 

 














C
i

ˆ
expT̂ , 

where  is a real c-number scaling the translation and Ĉ  is a Hermitian operator that does not explicitly 
depend on time. 

 (i) Prove that such operators are unitary. 

 (ii) Prove that if the shift by , induced by the operator T̂ , leaves the Hamiltonian of some 

system unchanged for any , then C is a constant of motion for any initial state of the system. 

 (iii) Discuss what the last conclusion means for the particular operators XT̂  and T̂ . 

 Solutions:  

 (i) As was repeatedly discussed in the lecture notes, the exponent of an operator is defined by its 
Taylor expansion. In our current case, such expansion is 

  k
k

k

k

k

k

Ci
k

C
i

k

C
i ˆ

!

1ˆ

!

1ˆ
expˆ

00



























 







 


T . 

The Hermitian conjugate of this expression is  

              k

k

k
kk

k

k
k Ci

k
Ci

k
ˆ

!

1ˆ
!

1ˆ
00

†
*

*† 
































 




T ,   (*) 

because the Hermitian conjugation of a c-number is reduced to its complex conjugation, the ratio / is 

real, and since the operator Ĉ  is Hermitian, i.e. CC ˆˆ †  , so are all operators kĈ , with k = 0, 1, 2, 
(Indeed, by applying the relation  

  ††† ˆˆˆˆ ABBA  , 

whose proof was the subject of Problem 4.1(iii), to the operators 1ˆˆ  kCA  and CB ˆˆ  , we get 

       ††††† 111 ˆˆˆˆˆˆˆ   kkkk CCCCCCC . 

Repeating this operation (k – 1) more times, we get   kk CC ˆˆ †
 .) 

 Now returning to Eq. (*), we may see that its last form is just the Taylor expansion of the 
following operator: 
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k
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1ˆ
exp

11






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


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
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


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



 
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. 

Thus we have proved that 
†

† ˆ
exp 

ˆ
exp  that  i.e.,

ˆ
expˆ









































 C
i

C
i

C
iT . 

 Let us apply to these two operators the general Eq. (5.117) of the lecture notes, with /ˆˆ CiA   

and IB ˆˆ  . Since the identity operator commutes with any other operator, Eq. (5.116) is valid with  = 
0, so Eq. (5.117) becomes 

II
C

i
C

i ˆˆˆ  i.e.,ˆ
ˆ

exp
ˆ

exp † 
















 


TT


, 

i.e. the translation operator T̂  is indeed unitary. 

 (ii) Let us spell out the commutator  T̂,Ĥ , using the Taylor expansion of the latter operator: 

                 ,
ˆ

!

1
,ˆ

ˆ
exp,ˆˆ,ˆ
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where 

          k
k

k CHi
k

ˆ,ˆ1

!

1









 .  

 According to Eq. (4.93) of the lecture notes, a Hamiltonian’s invariance under a unitary 
transform may be expressed as 

HUHU ˆˆˆˆ †  . 

Acting by the operator Û on both sides of this relation, and taking into account that HHIHUU ˆˆˆˆˆˆ †  , 
we see that this relation is equivalent to 

       0ˆ,ˆ  i.e.,ˆˆˆˆ  UHHUUH .     

Since we have proved that the operator T̂  is unitary, the commutator  T̂,Ĥ  equals zero (i.e. is a null 

operator) for any value of the parameter . But according to Eq. (**), this is only possible when each 
coefficient k in the Taylor expansion of this expression equals zero, including 1. This requirement 
gives 

           0ˆ,ˆ CH .      (***) 

 Since, by the problem’s conditions, the operator Ĉ  does not depend on time explicitly, 

0/ˆ  tC , we may use the key Eq. (4.199) of the lecture notes, together with Eq. (***), to calculate its 
full time derivative in the Heisenberg picture of quantum dynamics: 

  0ˆ,ˆ
ˆ

 HC
dt

Cd
i . 
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According to the basic relation of the Heisenberg picture, Eq. (4.191), this means that C does not 
depend on time, for any initial state of the system. 

 (iii) For the linear translation operator XT̂  defined by Eq. (5.111),  











Xp
iX

ˆ
expT̂ , 

the observable C is the linear momentum p (or rather its Cartesian component in the shift’s direction x). 
Hence, the invariance of the Hamiltonian of a system with respect to such a shift means the conservation 
of p during an arbitrary motion of the system – the result well-known in classical mechanics (where we 
speak about the invariance of the Hamiltonian function rather than the operator). Similarly, if the 
rotations of a system about some axis n, by an arbitrary angle , described by the operators  







 








 
  



nSnL ˆ
expˆand/or  

ˆ
expˆ ii TT  

do not alter the Hamiltonian of a system (in particular, this is valid for any system symmetric with 
respect to rotation about the axis n), then the expectation values of the components of the orbital/spin 
angular momenta along axis n are conserved. For the orbital momentum vector L, this conclusion is also 
well known in classical mechanics (see, e.g., CM Sec. 1.4), and it is only natural that the same fact holds 
for the spin vector S, because its operator is defined by similar commutation relations – cf. Eqs. (5.168) 
and (5.176). 

 

 Problem 5.45. A particle with spin s is in a state with definite quantum numbers l and j. Prove 
that the observable LS also has a definite value and calculate it. 

 Solution: According to Eq. (5.177) of the lecture notes, in any state with a definite value of l, the 
variable L2 has a  definite value equal to 
         122  llL  .      

(This is true even if the state does not have a definite value of ml,63 because such a state may be always 
represented as a linear superposition of states with different ml but the same l .) 

 Similarly (and because the spin s of a particle is always fixed), Eqs. (5.169) and (5.175) show 
that for the specified state, the observables J2 and S2 also have definite values, respectively: 

   1  and,1 2222  ssSjjJ  . 

Hence, according to Eq. (5.181) of the lecture notes, 

       222 ˆˆˆˆˆ2 SLJ SL , 

in our state, the scalar product LS also has a definite value: 

63 As it is the case, for example, for the base states {j, mj} of the coupled representation – see, e.g., Fig. 
5.12 and Eq. (5.183). 
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      111
2

2

 sslljj


SL . 

 

 Problem 5.46. For a spin-½ particle in a state with definite quantum numbers l, ml, and ms, 
calculate the expectation value of the observable J2 and the probabilities of all its possible values. 
Interpret your results in terms of the Clebsch-Gordan coefficients (5.190). 

 Solution: Averaging the first form of Eq. (5.181) of the lecture notes, we may write 

zzyyxx SLSLSLSLSLJ 2222 22222  SL . 

According to the second of Eqs. (5.177), a state with a definite quantum number l is an eigenstate of the 

operator 2L̂ , so the first term on the right-hand side of the last expression is equal to the corresponding 
eigenvalue, 2l(l + 1). Since the spin quantum number s of a particle is always definite (fixed), Eq. 
(5.169) allows us to make a similar conclusion about the second term: S2 = 2s(s + 1) = 2½( ½ + 1) = 
(3/4) 2.  

 Next, the fact that not only the squares of the vectors L and S but also their z-components, Lz = 
ml and Sz = ms, have definite values in the given quantum state means that these vectors are 
uncoupled,64 so we may write LxSx = LxSx, etc., where the first averaging is over the Hilbert space of 
the orbital states, while the second one is over that of the spin states. But as we know from Sec. 4.5 of 
the lecture notes (see, e.g., Eq. (4.134), which is valid, in the nomenclature of Sec. 4.7, for ms = +½), in 
a state with a definite ms, the averages Sx and Sy equal zero, so the only nonvanishing product of the 
component averages is LzSz = (ml)(ms). Thus, we get 

                       



  sl mmllJ 2

4

3
122  .    (*) 

 Now, according to Eq. (5.189) of the lecture notes, in the quantum-statistical ensemble with a 
definite l (and s = ½), the quantum number j, and hence the variable J2 = 2j(j + 1), may take only two 
values each: 

                



 







 





   2

12

4

1
1

2

1
1

2

1
1,

2

1 2222 l
lllljjJlj  . (**) 

Hence there are only two nonvanishing probabilities, W+ and W– = 1 – W+, to calculate, and the general 
Eq. (1.37) takes the form 

   22222222 1   JJWJJWJWJWJWJ , 

so 

22

22

22

22

1  and,








 









JJ

JJ
WW

JJ

JJ
W . 

Plugging into these expressions the relations (*) and (**), we get 

64 More strictly, in the terms of Sec. 5.7 of the lecture notes, such a state is a member of the uncoupled-
representation basis – see, e.g., Fig. 5.12 and the first line of Eq. (5.182). 
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12

2½½
  i.e.,

12

2
,

12

21













  l

mml
W

l

mml
W

l

mml
W slslsl . 

 Finally, note that using the relation proved in Sec. 5.7, ml = mj – ms, and the fact that for spin-½ 
particles, (ms)

2 = (½)2 = ¼, we may recast the last formula in the form 















 .½for  ,½

,½for  ,½

12

1

12

½2

sj

sjsj

mml

mml

ll

mml
W


 

Comparing this formula with Eqs. (5.190), we see that W are just the squared moduli of the Clebsch-
Gordan coefficients – as they should be. So, if we need only the moduli of these coefficients (as we do 
for most applications), this solution presents a simple alternative way to calculate them. 

 

 Problem 5.47. Derive general recurrence relations for the Clebsch-Gordan coefficients for a 
particle with spin s. 

 Hint: By using the similarity of the commutation relations discussed in Sec. 5.7, write the 
relations similar to Eqs. (5.164) of the lecture notes, for other components of the angular momentum, 
and then apply them to Eq. (5.170).  

Solution: The definition (5.170) of the total momentum means that the ladder operators of its 
components, defined similarly to Eq. (5.153),  are related simply as 

  SLJ ˆˆˆ . 

Let us act by these operators on the corresponding sides of Eq. (5.183), keeping in mind that the 
brackets ml, ms  j, mj in that relation are just the c-numbers (the Clebsch-Gordan coefficients) and 
hence are not affected by the operator action: 

           sl

sl

jslj mmSLmjmmmjJ
mm

,ˆˆ,,,ˆ
,

   ,   (*) 

where in both representations, the common quantum numbers l and s are just implied.  

In order to spell out the left-hand and right-hand sides of this equality, let us recall that Eq. 
(5.164) of the lecture notes could be derived directly from the commutation relations (5.176), without 
any appeal to the wave-mechanics form of the orbital angular momentum operator. (See the solution of 
Problem 27.) Since, according to Eqs. (5.168) and (5.174), the commutation relations for the operators 

Ŝ  and Ĵ are similar to those of L̂ , we may repeat all the arguments to get similar formulas for the 
similarly defined ladder operators. In the notation of Sec. 5.6, Eq. (5.164) takes the for 

    slllsl mmmlmlmmL ,11,ˆ 2/1   , 

so in the same uncoupled-representation basis, we get65 

65 For the most important case of spin-½ (s = ½, and ms = ½ ), Eq. (**) is much simplified:  

½,½,ˆ,0½,ˆ½,ˆ   slslslsl mmmmSmmSmmS  . 
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              1,1,ˆ 2/1  slsssl mmmsmsmmS  ,   (**) 

while for the coupled-representation eigenstates, 

    1,1,ˆ 2/1  jjjj mjmjmjmjJ  . 

 Plugging these expressions into Eq. (*), with the temporary notation replacements ml  l and 
ms  s (the reason for it will be clear in just a moment), we get: 

       

   
.

1,1

,11
,1,1

2/1

2/1

2/1

, 














 

slss

slll

sl

jsljjj

ss

ll
mj,mjmjmj






 


  

Now let us inner-multiply both sides of this relation by the bra-vector ml, ms . Since the vectors of any 
basis (including that of the uncoupled representation) are assumed to be orthonormal, the first term in 
the figure brackets gives a nonzero result only for l = ml   1 and s = ms, while the second term, for l 
= ml  and s = ms  1. As a result, the summation on that side is reduced to just two terms, and we get    

            
   

   
.

,11

,11
1,1

2/1

2/1

2/1


















jslss

jslll

jsljj

mj,mmmsms

mj,mmmlml
mj,mmmjmj




  (***) 

The red and blue arrows in the figure on the right show the sets 
of the uncoupled-representation states related by Eqs. (***) with, 
respectively, the upper and lower signs, on the rectangular lattice 
similar to the one that was shown in Fig. 5.14 of the lecture notes – in 
that case, for s = ½. These relations enable one to derive explicit 
formulas for the Clebsch-Gordan coefficients, similar to Eqs. (5.190), 
for an arbitrary spin s, starting from one of the two particular “corner” 
states with ml = l and ms = s, which may be represented by single 
ket-vectors in both the uncoupled and coupled representations.  

 Problem 5.48. Use the recurrence relations derived in the previous problem to prove Eqs. (5.190) 
of the lecture notes for the spin-½ Clebsch-Gordan coefficients. 

 Solution: Eqs. (5.190) is the set of four expressions corresponding to two independent signs in 
the relations ms = ½ and j – l  =  ½; as an example, let us consider the case 

                       ½, ½  ljms .     (*) 

For our case s = ½,  the rectangular diagram on the [ml, ms] 
plane has the form shown in Fig. 5.14 of the lecture notes – 
see its simplified version in the figure on the right. If we apply 
the recurrence relations derived in the solution of the previous 
problem, with the lower signs, to an arbitrary point {ml, +½} 
of the upper row, we may expect one of the c-number 

This means that the ladder operators of the proper sign just flip the spin orientation. The orbital quantum number 

ml aside, this is exactly the result we could get for the ladder operators yx SiSS ˆˆˆ   directly from Eqs. (4.128). 

lm 1lm

sm

1lm

1sm

1sm

lm 1lm

½sm

½sm
1lm
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coefficients on the right-hand side of these relations (corresponding to the dashed arrow on the diagram) 
to vanish, giving a direct recurrence relation between two adjacent Clebsch-Gordan coefficients of the 
upper row – in the figure above, corresponding to the points connected by the solid arrow. 

 Indeed, let us use Eq. (***) of the solution with the proper (lower) sign in each term. For the 
selected values (*) of ms and j, making the replacement mj  ml + ½ + 1,66 it yields 

   

         ,½,½1½201½,½½11

½,½½2

2/12/1

2/1





llllll

llll

ml,mml,mmlml

ml,mmlml
(**) 

so the coefficient before the last bracket (whose ket-vector would describe an impossible state with ms = 
½ + 1 > s) vanishes as it has to, and we get a direct, simple recurrence relation 

     1½,½½1
2

1
½,½½

2/1












 ll
l

l
ll ml,m

ml

ml
ml,m ,  (***) 

which is valid for all ml that give positive factors (l – ml), (l + ml + 1), and (l + ml + 2), i.e. for any point 
of the rectangular diagram, besides its rightmost points. As was discussed in the lecture notes, in the 
rightmost upper point, the only Clebsch-Gordan coefficient should equal 1: 

1½,½½  lll, , 

so applying Eq. (***) sequentially to the points further and further left in that upper row, we get: 

    ,
12

2
½,½½

12

2
½,½½1:1for  

2/12/1






















l

l
lll,

l

l
ll,llml  

    ,
2

12

12

2
½,½½1

2

12
1½,½½2:2for  

2/12/1







 










 


l

l

l

l
ll,l

l

l
ll,llml  

etc., with both the numerator and denominator decreasing by 1 in each next fraction. Continuing this 
sequence to an arbitrary ml, we finally get 

2/12/1

12

1

2

1

3

2

12

22

2

12

12

2
½,½½ 





































l

ml

ml

ml

ml

ml

l

l

l

l

l

l
ml,m l

l

l

l

l
ll  , 

because all intermediate factors in the numerator and denominator cancel. Now rewriting this result in 
terms of mj = ml + ½, we obtain 

2/1

12

½
,½½½ 













l

ml
ml,m j

jj , 

i.e. the shorthand of the first line of Eqs. (5.190), for the proper (upper) sign of the difference (j – l).  

 The proofs of the relations for other signs of ms and (j – l) are completely similar. 

66 The last replacement presented a difficulty for some of my students, because it apparently contradicts the 
general equality (5.187): mj = ml + ms  in our case, mj = ml + ½. However, it is necessary exactly to have that 
general equality satisfied for each state in the initial recurrent relations (with the proper lower signs), and hence in 
our result. 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                 Page 312 

 

 Problem 5.49. A spin-½ particle is in a state with definite values of L2, J2, and Jz. Find all 
possible values of the observables S2, Sz, and Lz, the probability of each listed value, and the expectation 
value for each of these observables. 

Solution: Evidently, such a state is a common eigenstate of the operators zJJL ˆ and ,ˆ,ˆ 22 , with 
definite values of the corresponding quantum numbers l,  j, and mj, such that 

            jz mJjjJllL     and,1,1 2222 . 

According to Eqs. (5.175), (5.177), and (5.189) of the lecture notes, these numbers should satisfy the 
following conditions: 

jmjljl j  ,½,0 . 

 As was discussed in Sec. 5.7 of the lecture notes (see, e.g., Fig. 5.12), this state is one of the 
basis states of the coupled representation, which may be represented by the ket-vector  j, mj, where the 
definite quantum numbers l and s are implied. Using Eqs. (5.190) of the lecture notes, any such ket may 
be may be expressed via the kets ml, ms of the uncoupled representation: 

    

.½,½
12

½

½,½
12

½
,½

2/1

2/1



























sjl
j

sjl
j

j

mmm
l

ml

mmm
l

ml
mlj


   (*) 

 Now we are ready to start answering the posed questions. First of all, according to the second of 
Eqs. (5.169), for the fixed s = ½, the observable S2 may have only one value, S2 = 2s(s + ½) = (3/4)2, 
so its probability is 100%, and 

 22

4

3
S , 

regardless of the quantum state of the particle.  

 Next, due to the first of Eqs. (5.169), the possible values of Sz are ms = /2, and for the state 
(*), their probabilities are given by the squares of the corresponding Clebsch-Gordan coefficients: 

    
12

½
,

12

½









  l

ml
W

l

ml
W jj 

,    (**) 

giving the expectation value 

            
1212

½

212

½

2 












l

m

l

ml

l

ml
S jjj

z


,   (***) 

where the sign, as in Eq. (*), is determined by that in the relation j = l  ½. In any orbital s-state (l = 0), 
this result is reduced to the obvious formula Sz = mj = /2 because in this case, the total orbital 
moment J is due to the particle’s spin S alone.  

 Finally, the observable Lz may take values ml. According to Eq. (*), for fixed j and mj, the sign 
in the relation ml = mj  ½ is always opposite to that in relation ms =  ½. This means that the 
probabilities (**) also describe those of these two possible values ml: 
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and the expectation value of the observable Lz is 





















 










 

12

1
1

12

½

2

1

12

½

2

1

l
m

l

ml
m

l

ml
mL j
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j
jz 


 . 

 Alternatively, the last formula may be obtained by averaging the operator equality (5.171):  

zjzzz SmSJL   , 

and plugging Eq. (***) for Sz into it. 

 

 Problem 5.50. Re-solve the Landau-level problem discussed in Sec. 3.2 of the lecture notes, now 
for a spin-½ particle. Discuss the result for the particular case of an electron. 

 Solution: The problem may be described by the Hamiltonian which is the sum of that of the 
orbital 2D motion (see Eq. (3.26) of the lecture notes, with  = 0 and /z = 0) and the Pauli 
Hamiltonian (4.163), describing the interaction between its spin and the field: 
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Since the orbital and spin states are defined in different Hilbert spaces and, in this case, do not interact, 
the total eigenenergy of the system is just a sum of the independent contributions from these two parts of 
the Hamiltonian – the first one given by Eq. (3.50), and another one, by Eq. (4.167): 

...,2,1,0with  ,
22

1
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 . 

 This expression shows that the spin-field interaction splits each Landau level into two sub-levels 
with different spin orientations. However, as was discussed in Sec. 4.6, for an electron, the frequencies 
c  eB/me and    B  =  geeB/2me  are very close because its g-factor ge is very close to 2, so 
that the above result may be very closely approximated as  

                         





 

2

1

2

1
c nE  ,     

i.e. the energy values are integer multiples of c. In this picture, besides the ground-state energy Eg = 0, 
each other energy level is doubly degenerate, with its two states having not only different spin directions 
but also adjacent values of the orbital quantum number n. 

 

 Problem 5.51. In the Heisenberg picture of quantum dynamics, find an explicit relation between 
the operators of velocity dtd /ˆˆ rv   and acceleration dtd /ˆˆ va   of a non-relativistic particle with an 
electric charge q, moving in an arbitrary external electromagnetic field. Compare the result with the 
corresponding classical expression. 

 Hint: For the orbital motion’s description, you may use Eq. (3.26) of the lecture notes. 
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 Solution: The Hamiltonian of the particle in the field may be composed as the sum of the orbital 
Hamiltonian (3.26) and the Pauli Hamiltonian (4.163) corresponding to the magnetic field B = A: 

   ASAP ˆˆˆˆˆ
2

1ˆ 2
 qq

m
H . 

Here the operator signs over the scalar and vector potentials are spelled out as reminders that the 
potentials are generally functions of not only time but also of the particle’s position, which, in this 
calculation, should be treated as an operator. Hence the potentials should be also treated as linear 
operators (commuting with r̂ ), even if the quantum properties of the electromagnetic field itself are 
negligible – as they are considered to be in this course before Chapter 9. 

 The orbital operators Pr ˆ  andˆ are defined in a Hilbert space different from that of the spin 

operator Ŝ , and hence commute with it. On the other hand, similar Cartesian components of the orbital 
operators do not commute. However, the commutation relation (4.238), valid for an arbitrary jth 
component, 
           ipr jj ˆ,ˆ ,     (*) 

is not affected by the addition, to the kinetic momentum operator p̂ , of the field part  rA ˆˆq  because the 

latter commutes with the coordinate operator r̂ , so  

            iPr jj ˆ,ˆ .     (**) 

As a result, the equation of motion of the coordinate operator components is given by Eq. (5.29) of the 
lecture notes even in the field. In the vector form,  

         
m

q
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d APpr
v

ˆˆˆˆ
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
 ,     (***) 

so our Hamiltonian may be rewritten in the form 67 
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H . 

Plugging these two expressions into the general Eq. (4.199), we may calculate the acceleration operator: 
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 Due to the similarity of Eqs. (*) and (**), the Cartesian components of the first term may be 
calculated exactly as it was done in Sec. 5.2 of the lecture notes, giving the vector version of Eq. (5.35) 
with the replacement 

     rrr ˆˆˆ
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ˆ
ˆ ĵ

jj
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qU
r

E

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


  , 

where ̂ˆ E  is the vector operator of the electric field. Calculating the jth Cartesian component of 
the second commutator, 

67 Note also that Eq. (***) allows us to rewrite Eq. (3.28) in a very simple and natural form:  vj ˆ* . 
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we should remember that the jth component of the vector potential A may be (and most typically is) a 
function of all Cartesian coordinates rj’, and as a result, the Cartesian components of the velocity 
operator (***) do not commute: 
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where, in the last expression, the derivatives act only upon the components of the vector potential A, but 
not upon the wavefunction these operators act upon. But the last combination of two derivatives is just 
the j”th component of the magnetic field B = A, multiplied by the proper Levi-Civita symbol,68 so  
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Applying the last relation twice, we get 
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But per the same Eq. (5.18), the last double sum is just the jth Cartesian component of the vector 

operator  vv ˆˆ ˆˆ  BB . As a result, merging three such scalar expressions into the vector form, we 
finally get 
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 Perhaps the most important feature of this result is that the operators of the particle’s velocity 
and acceleration (and hence its orbital motion) are not affected by the particle’s spin. (This conclusion is 
valid only if the relativistic effect of the spin-orbit interaction69 is ignored – as they are in the Pauli 
Hamiltonian). Also, note that Eq. (****) formally coincides with the well-known formula for the 
Lorentz-force-induced acceleration in classical electromagnetism, rewritten in the form 
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68 See, e.g., Eq. (5.18) of the lecture notes. 
69 See, e.g., Secs. 6.3 and 9.7. 
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However, making the transition to quantum mechanics from the first form of this classical formula for 

FL would give a wrong result because, as we have just seen, the operators v̂  and B̂  do not commute. 

 

 Problem 5.52. One byproduct of the solution of Problem 47 was the following relation for the 
spin operators (valid for any spin s): 

    2/11ˆ1 ssss msmsmSm    . 

Use this result to spell out the matrices Sx, Sy, Sz, and S2 of a particle with s = 1, in the z-basis – defined 
as the basis in which the matrix Sz is diagonal. 

 Solution: According to Eqs. (5.169) of the lecture notes, the matrices Sz and S2 are diagonal in 
the basis of the states with definite quantum numbers ms. For s = 1, this is a three-function basis with ms 
= +1, 0, and –1. In this basis, these relations (with s = 1 and hence s(s + 1) = 2) give 
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while the formula given in the assignment yields 
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Since the operators Ŝ are defined via the Cartesian component operators as yx SiSS ˆˆˆ  , for the 

component matrices we get  
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 Note that the calculated matrices are fully similar to those calculated in the solution of Problem 
31 for the orbital momentum with the definite quantum number l = 1. (This similarity is natural due to 
that of the commutation relations valid for these operators.) Note also that finding the eigenvalues of a 
matrix similar to Sx (without the front factor) was one of the tasks of Problem 4.23. 

 

 Problem 5.53.* For a particle with an arbitrary spin s, find the quantum numbers mj and j that are 
necessary to describe, in the coupled-representation basis: 

 (i) all states with a definite quantum number l, and 
 (ii) a state with definite values of not only l but also ml and ms. 

Give an interpretation of your results in terms of a classical vector diagram – see, e.g., Fig. 5.13 of the 
lecture notes. 
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 Solutions: For arbitrary l and s, the 
“rectangular diagram” of the basis states (see Fig. 
5.14 of the lecture notes), looks as shown in the 
figure on the right.70 Here each point corresponds to 
one of Nm = (2l + 1)(2s + 1) basis states of the 
uncoupled representation, each with definite quantum 
numbers ml and ms, while each tilted straight line 
connects the states contributing to the basis states of 
the coupled representation, with definite quantum 
numbers j and mj = ml + ms.  

 (i) The diagram immediately shows that for the set of quantum numbers ms and ml, following 
from Eqs. (5.169) and (5.177), namely –s  ms  +s and –l  ml  +l, the range of possible numbers mj is  

slmsl j  , 

but the range of possible numbers j is a bit less evident. To calculate it, we may use the fact that in order 
to have a unique set of linearly independent relations (5.183), 

jsl
mm

slj mjmmmmmj
sl

,,,,
,
 , 

the number of the basis ket vectors (and hence the basis states) in both representations should be equal. 
Let us count the number of states of the coupled representation, starting from the top right corner of the 
above diagram. Evidently, there is only one such state corresponding to the single uncoupled-
representation state with quantum numbers ml = +l and ms = +s, i.e. that with mj = (mj)max  (ml + ms)max 
= l + s. Per the last of Eqs. (5.175) of the lecture notes, –j  mj  j, the quantum number j has to be 
exactly equal to this maximum value of mj, so 

      slj max .   (*) 

 According to the same relation –j  mj  j, the full 
set of the basis states of the coupled representation should 
include n(jmax) =2(mj)max + 1 = 2l + 2s +1 states 
corresponding to j  = jmax – see the rightmost vertical line in 
the figure on the right, in which we will gradually plot the 
number of the coupled-representation basis states as a 
function of j. 

 Moving down to the next value, mj = l + s – 1, the 
rectangular diagram above shows two {ml, ms} states, both 
with mj  ml + ms = (mj)max – 1  l + s – 1,  which need, for 
their linear representation, two different {j, mj} states. 
Since both these states have the same mj, they cannot be 
described by the same j = jmax. Hence we need one more 

70 For clarity, I had to draw the diagram for certain values of l and s, but none of the expressions below uses these 
particular values, besides the assumed restriction s  l; the opposite case will be discussed below. Also, note that 
all the formulas below are valid whether s is an integer or a half-integer – e.g., as in Fig. 5.14 of the lecture notes. 
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value of j; repeating the discussion above, we see that this value has to be equal to the current value of 
mj, i.e. to l + s – 1, i.e. is less than jmax = l + s by 1. The overall number of mj-states, corresponding to 
this new value j = jmax – 1 is n(jmax – 1) = 2(l + s – 1) + 1  2l +2s – 1, i.e. by 2 less than n( jmax) – see the 
second vertical line from the right in the state counting diagram above. 

 Repeating this process again and again, we may move to the left on both diagrams by unit steps, 
each time reducing mj by one and getting one more new value of j, which is also less than the smallest 
previous value by one, and has the number of mj-states lower by 2 – see the figure above. This process 
breaks only after 2s steps, when on the rectangular diagram, the tilted line of equal mj hits the lower 
right corner – with ml = l, ms = –s, i.e. with mj  ml + ms = l –  s, and the value of j equal to 

                 02maxmin  slsjj ,     (**) 

responsible for n(jmin) = 2l – 2s – 1 states with different values of mj. (See the dashed line in the first 
figure above.) 

 Let us count the total number Nj of the basis states of the coupled representation, which 
correspond to the already covered values of j, within the interval jmin  j  jmax. From the number-of-state 
diagram above, we get  
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This is just the sum of (2s + 1) terms equal to 1, plus a difference between two standard arithmetic 
progressions, so using the well-known formula for the progression,71 we get 
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But this number is exactly equal to Nm; hence we have reached the state number equality in both 
representations without involving lower values of j. (The states on the left of the dashed tilted line on the 
rectangular diagram are covered by the already counted values of j; for example, the left bottom corner 
state with mj = –s – l  –jmax is obviously described by j = jmax.)  

 Hence Eqs. (*) and (**) indeed give the boundaries of the range of j for all N  Nm = Nj states of 
the system in the case s  l; in the opposite case l  s, it is sufficient to repeat all the above arguments 
after transposing the rectangular diagram, getting the same result besides the reversal s  l, so jmin = s – 
l is again non-negative. Both cases may be summarized as follows: 

      sljsl  .     (***) 

 (ii) If the quantum numbers ml and ms are fixed, and hence the sum mj  ml + ms is fixed as well, 
we may repeat all the process of motion from the top right corner of the rectangular diagram, which was 
discussed above. However, if mj is positive and larger than  l – s , i.e. the point {ml, ms} is located to the 
right of the dashed tilted line on the diagram, we may stop the process as soon as we have reached this 
point, because the state in question has been, by construction, covered by the already accounted values 
of j. Similarly, if mj is negative, and its magnitude is larger than  l – s , we may repeat the process by 

71 See, e.g., MA Eq. (2.5). 
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starting from the lower left corner, and again stop it when the tilted line of fixed mj has reached the 
given point {ml, ms}. Summarizing these cases, we get the following range of j: 

                 sljmmsl sl  ,max .    (****) 

 The above results of Tasks (i) and (ii) may be readily interpreted using the classical vector 
diagrams, such as those shown in Fig. 5.13 of the lecture notes. As a reminder, on such diagrams, the 
products ml,  ms, and mj are associated with the z-components, Lz, Sz, and Jz, of the angular momenta 
vectors L, S, and J, respectively, while l, s, and j, with the lengths L, S, and J of these vectors, i.e. 
the differences between l and [l(l + 1)]1/2, etc. (which are of a purely quantum origin) are ignored.  

 In case (i), when the z-components of the 
angular momentum vectors are not fixed, the largest 
length of the vector J  L + S corresponds to the 
parallel alignment of the vectors L and S: Jmax = L + S, 
while its smallest value, to their antiparallel alignment: 
Jmax = L – S(see the figure on the right), in full 
agreement with the quantum Eq. (***). 

 In case (ii), when Lz and Sz are fixed (in addition to 
definite L and S), the classical picture (see the figure on the right) 
shows an additional limitation imposed at J from below: Jmin = 
Lz + Sz, provided that Lz + Sz > L – S, in agreement with 
the left inequality in Eq. (****). Note, however, that in the 
classical picture, the exact parallel alignment of the vectors L and 
S necessary to reach the maximum value Jmax = L + S, implied by 
the right part of Eq. (****), is possible only at a certain exact 
proportion between their z-components and lengths: Sz/Lz = S/L. In quantum mechanics, there is no such 
exact restriction – the fact that again emphasizes the limitations of the classical vector model. Only in 
the limit l, s  , the asymptotic correspondence to classical mechanics is achieved, by the Clebsch-
Gordan coefficients ml, msj, mj tending to zero everywhere at the rectangular diagram besides very 
close to its diagonal, i.e. at ms/ml  s/l, approaching the classical restriction. 

  

 Problem 5.54. For a particle with spin s, find the range of the quantum numbers j necessary to 
describe, in the coupled-representation basis, all states with definite quantum numbers l and ml.  

 Solution: Two similar tasks, but either without 
the fixation of ml or with the simultaneous fixation of 
both ml and ms, were analyzed in the solution of the 
previous problem, by using the rectangular state 
diagram – see the figure on the right, again for the 
case s < l. 

 For the first of those tasks, a simple procedure 
of simultaneously listing the values of j, and counting 
the coupled-representation basis states, by moving the 
tilted line of fixed mj  ml + ms sequentially, in unit 
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steps, from the top right corner of the diagram (where mj = l + s) toward the dashed line passing through 
the lower right corner (where mj = l – s), showed that by the time the dashed line has been reached, the 
state number has already reached that, Nm = (2l + 1)(2s + 1), of the uncoupled representation basis. This 
means that the range of the values of j, accumulated by that point, namely 

      sljsl  ,     (*) 

would not be further expanded, and the counting may be stopped.  

 In the second of those tasks, the process could be stopped even earlier, and hence the range of j 
is reduced in comparison with Eq. (*), if the fixed point {ml, ms} is on the right of the dashed line in the 
figure above, i.e. if ml + ms > l – s. The generalization of this argumentation to all possible signs of the 
combinations (l – s) and (ml + ms) gave the following condition of the reduction: 

      slmm sl  .     (**) 

 Now proceeding to our current task, we see that the set of the uncoupled-representation states 
with fixed ml, located on one vertical line of the rectangular diagram, contains all the numbers ms within 
the range [–s, +s], so the set always has at least one state that does not satisfy Eq. (**). (For example, if 
(l – s) > 0, we may use the rectangular diagram drawn above to see that each vertical line has at least 
one point that is not on the right side of the dashed line.) As a result, the state counting process cannot 
be stopped before the dashed line has been reached, and the range of necessary quantum numbers j is 
given by Eq. (*).  

 Note that the same conclusion is valid if ms, rather than ml, is fixed.  

 

 Problem 5.55. A particle of mass m, with electric charge q and spin s, free to move along a 
planar circle of radius R, is placed into a constant uniform magnetic field B directed normally to the 
circle’s plane. Calculate the energy spectrum of the system. Explore and interpret the particular form the 
result takes when the particle is an electron with the g-factor ge  2. 

 Solution: Directing the z-axis parallel to the field, i.e. normally to the circle’s plane, we may 
describe the problem by a Hamiltonian which is the sum of the rotor’s kinetic energy in the presence of 
the magnetic field (see Eq. (3.131) of the lecture notes, with the convenient, axially symmetric choice 
(3.132) of the vector potential), and the Pauli Hamiltonian (4.163) of the interaction between the 
particle’s spin and the field: 

z
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


, 

where  is the gyromagnetic ratio of the particle.  

 As the Hamiltonian shows, in this system, the orbital and spin degrees of freedom both interact 

with the external magnetic field, but not with each other. Moreover, each of the involved operators zL̂  

and zŜ  commutes with this Hamiltonian, and hence their eigenstates (in the corresponding Hilbert 
spaces) are eigenstates of the total Hamiltonian as well. As a result, the total energy of the system is just 
the sum of the independent contributions from these two parts of the Hamiltonian, with the observables 
Sz and Lz quantized independently in accordance with Eqs. (5.169) and (5.177): 
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This expression shows that each orbital level (with a particular magnetic quantum number ml) is split 
into (2s + 1) equidistant spin sub-levels numbered by the spin magnetic number ms. 

 For an electron, q = –e,  = e  qge/2me  –e/me, ms = ½, so Eq. (*) may be well approximated 
as 
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. 

 The first term of the last expression is the electron’s quantized kinetic energy in the absence of a 
magnetic field, while the next two terms describe the field’s effects. The second term, linear in B and 
hence dominating in weak fields (with the magnetic flux   R2B   through the circle’s area much 

smaller than the “normal” field quantum 0’  2/e), may be interpreted as a result of the field’s 
interaction with the pre-existing magnetic moment  of the system, with the normal (z-) component 

   zzlz SL
m

e
m

m

e
m 2

2
1

2 ee




. 

This double contribution of the electron’s spin to the magnetic moment, and hence to its interaction with 
the external magnetic field, is responsible for all the intricacies of the Zeeman effect – see Sec. 6.4 of 
the lecture notes. 

 Finally, the last term of Eq. (*), quadratic in B and hence dominating at  >> 0’, describes the 
essentially classical (and hence independent of both quantum numbers) effect of the orbital 
diamagnetism of the system, i.e. the energy of the field’s interaction with the magnetic moment it has 
induced. 72 

 Note also a close similarity between this problem and Problem 50. 

 

72 See, e.g., EM Sec. 5.5 – in particular the model solution of EM Problem 5.18(i), with the appropriate 
replacement x2 + y2  R2. 
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Chapter 6. Perturbative Approaches 

 Problem 6.1. Use Eq. (6.14) of the lecture notes to prove the following general form of the 
Hellmann-Feynman theorem:73   

          n
H

n
En

 




 ˆ

, 

where  is an arbitrary c-number parameter. 

 Solution: In the basic Eq. (6.1), let us take  

 0
0

)1(

0

)0(
ˆ

ˆˆˆ , 
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 
H

HHH , 

where 0 is arbitrary but the difference ( – 0) is small. In the first approximation in this difference, the 
eigenenergy perturbation may be also expressed by the linear term of the Taylor series: 
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nn

E
EEE . 

Plugging these relations into Eq. (6.14), with n(0) being the eigenstate n at  = 0, we get the Hellmann-
Feynman theorem at this particular value of  (which, again, is arbitrary). 

 As was discussed in the solution of Problem 3.43, this theorem may be used, for example, for the 
proof of the first of Eqs. (3.211).  

 

 Problem 6.2. Establish a relation between Eq. (6.16) of the lecture notes and the result of the 
classical theory of weakly anharmonic (“nonlinear”) oscillations at negligible damping. 

 Hint: You may like to use N. Bohr’s reasoning that was discussed in Problem 1.1. 

 Solution: Following N. Bohr’s arguments, let us use Eqs. (2.262) and (6.16) to calculate the 
frequency of quantum transitions between the adjacent high energy levels of the anharmonic oscillator 
(n >> 1):  
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Since the correction to the frequency 0 is already proportional to the small parameter , we may 
combine this result with the expression for the effective real amplitude A of the coordinate’s sinusoidal 
oscillations, defined as  

2
2

2
x

A
 , 

by using the unperturbed expression (5.95). This gives A2 = x0
2(2n + 1), so we may write 

73 As a reminder, proof of its wave-mechanics form was the task of Problem 1.7. 
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 On the other hand, the classical theory of weakly nonlinear oscillations at negligible damping, 
described by the differential equation74 
                3

cl
2
0 xxx   ,     (**) 

gives the following approximate (but at cl  0, asymptotically correct) expression for the oscillation 
frequency as a function of the amplitude A of nearly-sinusoidal oscillations x(t):75 
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  .     (***) 

 In order to reveal the relation between the coefficients cl and , let us write the classical 
Lagrangian function corresponding to the Hamiltonian (6.2) with  = 0: 
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The corresponding Lagrange equation of motion is 
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

. 

The comparison of this equation and Eq. (**) shows that they coincide if cl = –4/m. But with this 
substitution, Eq. (***) exactly coincides with Eq. (*). 

So, in the limit n  , the quantum and classical theories yield the same result – as they should 
by the correspondence principle. 

 

 Problem 6.3. An additional weak time-independent force F is exerted on a 1D particle that had 
been placed into a hard-wall potential well 

 








     otherwise.     ,

,0for               ,0 ax
xU  

Calculate, sketch, and discuss the 1st-order perturbation of its ground-state wavefunction. 

 Solution: The unperturbed wavefunctions and energy levels of the problem have been calculated 
in Sec. 1.7 of the lecture notes – see Eqs. (1.84)-(1.85); in the notation of Sec. 6.1: 
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74 See, e.g., CM Eq. (5.43) with  = 0, f0 = 0, and   0, so    – 0  ( – 0)
2/20. (The index “cl” is 

attached to the constant    just to avoid any chance of confusion with that participating in Eq. (6.2) of the lecture 
notes of this, QM course.) 
75 See, e.g., CM Eq. (5.49). 
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The 1st-order perturbation of the ground-state wavefunction may be calculated using the coordinate 
representation of Eq. (6.18) with n = 1 and the notation change n’  n: 

                 
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where  1
,1 nH  are the matrix elements (6.8) of the perturbation Hamiltonian   FxH 1ˆ : 
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 The last integral may be re-written using MA Eq. (3.3c): 
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Now the integrals I may be worked out by parts, 
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As a result, Eq. (*) yields 
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 The numerical fraction under the sum is a rapidly decreasing function of n: its first value, for n = 
2, is 2/27  0.0741, while the next nonvanishing value, for 
n = 4, is already 4/512  0.0012. So, a very good 
approximation of the result is given by the first term alone: 
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 The red line in the figure on the right shows this 
function, while the exact result (**) is shown with the blue 
line. These lines virtually overlap, showing how good the 
approximation (***) is. The dashed line in the same figure 0 0.2 0.4 0.6 0.8

0.1

0

0.1

 0
g

 1
g

ax /



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                 Page 325 

shows (not to scale!) the unperturbed ground-state wavefunction    .0
1

0
g    Sketching its sum with the 

small perturbation, we may see that the external force F shifts the total wavefunction in its direction (if 
F > 0, then to the right) – as it should. (A good additional exercise for the reader: use the above results 
to calculate the resulting shift of the expectation value x from its unperturbed value a/2.) 

One more additional exercise: calculate the corresponding shift of the ground state energy, in the 
first nonvanishing approximation. 

 

 Problem 6.4. A time-independent force F =  (nxy+nyx), where  is a small constant, is applied to 
a 3D isotropic harmonic oscillator of mass m and frequency 0, located at the origin. Calculate, in the 
first order of the perturbation theory, the effect of the force upon the ground-state energy of the 
oscillator and its lowest excited energy level. How small should the constant  be for your results to be 
quantitatively correct? 

 Solution: Any potential force F = F(r) may be described by an additional potential energy U(r), 
such that F = –U. In our particular case, independent integrations of the force F along each of the three 
coordinates yield the results 
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which are compatible only if f3(x, y) = –xy + const, and f1(y, z) = f2(x, z) = const. Dropping this 
inconsequential constant, we may use the resulting U as the perturbation Hamiltonian: 

         xyH 1ˆ .      (*) 

 As was discussed at the beginning of Sec. 3.5 of the lecture notes, unperturbed eigenstates of the 
3D isotropic harmonic oscillator may be described by the products of the eigenfunctions of 1D similar 
harmonic oscillators: 
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with each of the indices {k, l, m} taking independent integer values 0, 1, 2, …. The corresponding 
unperturbed energies are  
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so there is only one ground state with the wavefunction 000 and energy E0 = (3/2)0, and three lowest 
excited states with the wavefunctions 100, 010, and 001, all three with the same energy E1 = (5/2)0.  

 According to Eq. (2.275), the (non-degenerate) ground state of the oscillator is described by an 
even function of all its arguments: 
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so the first-order shift (6.14) of its energy, 
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vanishes for the perturbation (*), which is an odd function of x and y. Similarly, all diagonal matrix 
elements (6.8) for the lowest excited states also vanish because each of 100, 010, and 001 is an odd 
function of one coordinate, but an even function of the other two coordinates. For example, according to 
Eqs. (2.282) and (2.284), 
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and similarly for two other eigenstates. However, since the excited eigenstates are degenerate, the off-
diagonal matrix elements are also important, and one pair of these elements (not involving the 
eigenfunction 001) is different from zero. For example, 
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These are two standard Gaussian integrals76 equal, respectively, to 1/2/2 and 1/2, so 
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x
H


  

and absolutely similarly for H(1)
010,100.  

 Hence the characteristic equation (6.26) for the states {100} and {010} has the form 

     

     

 

  0
2/

2/
1

0

0
1

11
010,010

1
010,100

1
100,010

11
100,100 









Em

mE

EHH

HEH







, 

and has two roots 

       

0

1

2 

m

E


 .     (**) 

76 See, e.g., MA Eq. (6.9). 
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Their difference describes lifting the degeneracy of these two states, while the state {001} is not 
involved in the interaction, and its energy is not changed. 

 The above calculation is asymptotically exact if the energy correction (**) is much smaller than 
the basic level spacing 0: 

2
00

0

2  if i.e.,
2





m

m
 


. 

Note the Planck constant has dropped from this condition, so it has a classical character. This happens 
because the perturbation (*) is a quadratic form of the coordinates, just as the unperturbed potential 
energy of the oscillator, 

   222
2
00

2
zyx

m
U 


, 

so the relation of their magnitudes does not depend on the oscillator’s quantum length scale x0. This fact 
also enables an easy exact solution of this problem, similar to that of Problem 3.20. The reader is 
recommended to carry out this solution and compare its result with Eq. (**). 

  

 Problem 6.5. A 1D particle of mass m is localized in a very short potential well that may be 
approximated with a delta function: 

    0. with  ,  WW xxU   

Calculate the change of its ground state energy by an additional weak time-independent force F, in the 
first nonvanishing approximation of the perturbation theory. Discuss the limits of validity of this result, 
taking into account that at F  0, the localized state of the particle is metastable. 

 Solution: As was discussed at the beginning of Sec. 2.6 of the lecture notes (see also Sec. 6.6), 
the unperturbed Hamiltonian of this system has just one localized state – with a negative energy 

 
2

222
0

g 22 

 Wm

m
E 


, 

and an exponentially decaying wavefunction  

 
2

2/10
g   where,



Wm
e x     . 

 Treating the force F as a perturbation, with 

          FxH 1ˆ ,      (*) 

we immediately see from Eq. (6.14) that the first-order correction to the ground state energy vanishes, 
because the function under the corresponding integral is odd: 

              0ˆgˆg 0
g

10
g

0101
g

*
 









 dxxeFdxHHE x . 

Hence, we need to proceed to the 2nd order perturbation (6.20), which includes all unperturbed states: 
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        
 

   
 


0

00
0

21
02

0
2

g
n n

n

EE

H
EE .     (**) 

At this point, we need to notice that the unperturbed system has a continuum of positive-energy 
eigenstates, with energies 

 

m

k
E n

n 2

22
0 
 . 

As was discussed in Sec. 6.6 of the lecture notes, the only consequential states of this set, with 
eigenfunctions 

              xk
l nn sin
2

2/1
0 






 , 

where l >> 1/, 1/kn is the length of the artificial normalization segment, are not affected by the delta-
functional potential of the well. The matrix elements we need,  

             

 
,

22
2ˆgˆ

222

2/1
0

g
100101

0

*

n

n
nn

k

k

l
FdxHHnH








 



 

  

were also calculated in Sec. 6.6. (The factor-of-two difference between the above expression and Eq. 

(6.130) is due to the similar difference between the operator  1Ĥ given by Eq. (*), and the operator Â  
defined by Eq. (6.123) of the lecture notes.) As a result, Eq. (**) yields 

 
 

     
 





0

522

2

2

32

0
00

0

21
02

g

64

n n

n

n n

n

k

k

l

mF

EE

H
E






. 

In the limit l  , the distance between the adjacent values of kn becomes much less than , so using 
the density of the final states (see Eq. (1.93) and also Sec. 6.6): 

             ,
2
l

dk

dn

n

  

the sum over n may be well approximated by the corresponding integral:77 

       

   
,

326464
42

2

0
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2

2

32

0
522

2

2

32
2

g I
mF

dk
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dn

k
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l

mF
dn

k

k

l

mF
E n

nn

n

n

n
















 


 (***) 

where 

  




 nkd
I 


 



with  ,
10

52

2

 

 The dimensionless integral I may be worked out, for example, by reducing it to a table one by 
integration over a parameter – the trick so simple and so frequently used that, as an exception, I will 

77 This cancellation of the artificial length l is a necessary condition of the correctness of such a normalization 
procedure. 
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demonstrate it here – despite all my focus on physics rather than math. Let us define the following 
function: 

 
 






0
421 

 d
J . 

Then, on one hand, we may write  

    14

1
our   so,

1
4

1

1

0
52

2

0
42 



















 





 d

dJ
I

d
d

d

dJ
. 

On the other hand, introducing a new integration variable   1/2, so d = –1/2d and 2 = 2,  J() 
may be readily reduced to a well-known table integral78: 

 
   

,
32

5

642

531

211

2/12/1

0
42

2/1

0
42

















  





 dd
J  

so 
2/3

64

5  
d

dJ
, 

and, finally, the integral we need is 

256

5

64

5

4

1

4

1
1


  






 d

dJ
I . 

With this, Eq. (***) yields the following final result for the ground-state energy’s shift: 

             
42

2

42

2
2

g 8

5

256

532




 

mFmF
E  .    

 As was discussed in Sec. 6.1 of the lecture notes, the necessary condition of the perturbation 
theory’s validity is that this shift is much smaller than the unperturbed energy. In our case, this 
condition, apart from numerical factors of the order of 1, reads 

         








1
 where,   i.e., giving, g

2222

42

2

 xExF
m

F

m

mF 


. (****)  

The physics of the last condition is very clear: the potential work of the force F moving the particle 
within the localization region, of the effective width x = 1/, has to be much smaller than the 
unperturbed energy of the localized state. 

 Now let us discuss whether this condition is affected by one 
more feature of this system: as the figure on the right shows, for any F 
 0, the localized state is separated from the continuum of states with E 
> Ufull(x) by a triangular potential barrier of the height  Eg  and the 
width t =  Eg/F , so the state is metastable, with a finite lifetime . The 
calculation of this lifetime, within the modified WKB approximation, 
was the subject of Problem 2.18, and the result was 

78 See, e.g., MA Eq. (6.5b) with n = 4. 

g

    FxxxU  Wfull

gE

/1x

FEt /g

x0
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












F

m

m 4

32

2

3

3

2
exp



 W
W

 . 

As was discussed in Sec. 2.5 of the lecture notes, the very notion of the energy of such a metastable state 
lifetime is well defined only if its lifetime is much longer than the attempt time’s scale ta ~ / Eg  = 
23/mW 2. This condition is satisfied if the above exponent is much larger than 1, i.e. if 

4

32



Wm
F  . 

But given the above relation between W and , this is the same condition as given by Eq. (****).79 
Hence, the ground state’s metastability does not affect the above result for its energy – within the range 
(****) of validity of the perturbative approach to the problem.  

 Note also the ground-state energy shift calculated above is quadratic rather than exponential in 
F, and hence (in our small-force approximation) is much larger than the energy’s uncertainty /. 

 

 Problem 6.6. Use Eq. (6.16) of the lecture notes to calculate the eigenvalues of the operator 2L̂ ,  
in the limit  m   l >> 1, by purely wave-mechanical means.  

 Hint: You may like to use the following substitution: () = f()/sin1/2. 

 Solution: According to Eqs. (5.146) and (5.166) of the lecture notes, in the coordinate 

representation, the eigenproblem for the operator 2L̂  may be reduced to solving the following equation, 
















 

 2
2

2
2

sin
sin

sin

1
L

m

d

d

d

d





 , 

for the polar-angle factor () of the eigenfunction. Here L2 is the (at this stage, unknown) eigenvalue 
of the operator, and m is the “magnetic” quantum number. 

  Plugging in the substitution suggested in the Hint, and multiplying all terms by (sin1/2)/2, we 
get the following differential equation for the new function f(): 

             
2

2

2

2

2

2

  and
4

1

sin

4/1
  where,



Lm
uffu

d

fd












 





.  (*) 

The structure of this equation is the same as of the Schrödinger equation for a 1D particle, with the 
function u() playing the role of the effective potential energy. At m2 >> 1, this function has a deep 
minimum at   /2, so the lowest-energy wavefunctions of the system are localized near this minimum. 
To calculate these eigenfunctions (and corresponding eigenvalues ), we may approximate the effective 
potential energy by Taylor-expanding the function u() with respect to the small deviation 

 ~
cossin   so,

2

~ 22  , 

 and keeping only the leading terms of this expansion:  

79 Note that this condition may be also written in another, very intuitive form: t  >> x – see the figure above. 
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 In this approximation, Eq. (*) takes the form 

,
2

1~

4

1

3

2~

4

1 24222
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
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
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
 

so it is similar to the Schrödinger equation,80 


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
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
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
, 

of the anharmonic oscillator described by the Hamiltonian (6.2), and fully coincides with it if we take 

           

,
2

1
  and,

3

2

4
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3

2
,0

,2   so,
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2
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22
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2
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





  (**) 

where the approximations are justified by our initial assumption m2 >> 1. According to Eq. (6.16) of the 
lecture notes, with x0  (/mefef)

1/2, in the 1st-order of the perturbation theory, the energy spectrum of 
such an oscillator is 

     122
4

3

2

1 2
2
ef

2
ef

2

efef
10

ef 





  nn

m
nEEE nn 

 
 , 

with n taking values 0, 1, 2,… Plugging into this expression the effective oscillator’s parameters (**), 
we get a surprisingly simple result: 

  12
2

1 222
ef  nmnmnnmnmmmE , 

Now taking the sum  m  + n, which can take integer values  m ,  m  + 1,  m  + 2, , for a new quantum 
number l, we get the result, 
              1222  llL   ,     (***) 

which coincides with Eq. (5.163).  

 The above derivation of this formula is valid only if the height, ef(n + ½) =  m (2n + 1), of the 
nth energy level of the effective oscillator, over the bottom of the potential well u(), is much smaller 
than its depth ~m2, i.e. only if  

mn ,1 , 

so l   m  + n is relatively close to  m : l –  m   <<  m . As was shown in Sec. 5.6 of the lecture notes, 
operator methods allow a derivation of Eq. (***) more easily, and for arbitrary m and l. However, the 
above calculation has its value, at least because it illuminates, from one more standpoint, the notorious 
difference between the square of the largest eigenvalue of the observable Lz, equal to 2(m2)max = 2l2, 

80 Let me hope that the subscript “ef” excludes any possibility of confusion between the effective mass and the 
magnetic quantum number. 
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and that of L2, equal to 2l(l + 1)  2l2, which was repeatedly discussed in the lecture notes. Indeed, in 
the picture developed above, this difference is due to the nonvanishing spread, even at n = 0 (i.e. at  m   
= l  mmax), of the function f(), and hence of the probability to find the system near the point  = /2.81 
As a result of this spread, the angular momentum vector L is never definitely directed along the z-axis, 
so the expectation values of Lx

2 and Ly
2 do not vanish even at m = l, making L2 = Lx

2 + Ly
2 + Lz

2 larger 
than Lz

2.  

 

 Problem 6.7. In the lowest nonvanishing order of the perturbation theory, calculate the shift of 
the ground-state energy of an electrically charged spherical rotor (i.e. a particle of mass m, free to move 
over a spherical surface of radius R) due to a weak uniform time-independent electric field E. 

 Solution: As was discussed in Sec. 6.2 of the lecture notes, in the coordinate representation with 
the z-axis directed along the applied field,  the field-induced perturbation Hamiltonian is proportional to 
the cosine of the polar angle , and is independent of the azimuthal angle : 

         cosˆ 1 RqzqH EE  ,     (*) 

where q is the rotor’s electric charge. On the other hand, as was discussed in Sec. 3.6 of the lecture 
notes, the unperturbed ground-state wavefunction of the rotor is independent of both angles: 
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As a result, the 1st-order correction (6.14) to the ground-state energy vanishes: 
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. 

 In the expression for the 2nd-order correction, which follows from Eq. (6.20), 
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where, per Eq. (3.163) with l = 0, Eg
(0) = 0. Since, according to Eq. (3.175), Y0

0(, ) = const, cos is 
proportional to another spherical harmonic: 

  


 cos
4

3
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2/1
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1 





Y , 

and the spherical harmonics are orthogonal in the sense of Eq. (3.173), the only nonvanishing 
contribution to the sum in Eq. (**) comes from the wavefunction n

(0) that is equal to the same Y1
0(, ), 

corresponding to the eigenenergy (3.163) with l = 1: 

 
2

2
0

1 R
E

m


 . 

81 Besides analytical results, this spread is clearly visible on the rightmost and leftmost plots in Fig. 3.20 of the 
lecture notes. 
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With these substitutions, Eq. (**) yields 
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 Note that this energy shift is negative, as it should be for the 2nd-order correction to the ground 
state energy of any system – see the discussion in Sec. 6.1 of the lecture notes. 

  

 Problem 6.8. Use the perturbation theory to evaluate the effect of a time-independent uniform 
electric field E on the ground-state energy Eg of a hydrogen atom. In particular: 

 (i) calculate the 2nd-order shift of Eg, neglecting the extended unperturbed states with E > 0, and 
bring the result to the simplest analytical form you can, 
 (ii) find the lower and the upper bounds on the shift, and 
 (iii) discuss the simplest experimental manifestation of this quadratic Stark effect. 

 Solutions:  

 (i) The perturbation Hamiltonian is the same as in the previous problem: 

 coscosˆ )1( rerqH EE  . 

As was shown in Sec. 6.2 of the lecture notes, in this case, the diagonal element of the perturbation 
matrix (6.8), corresponding to the ground state of the atom (with the quantum numbers n = 1, l = 0, and 
m = 0), equals zero – see Eq. (6.34). Hence, according to Eq. (6.14), the 1st-order correction to the 
ground-state energy vanishes. To calculate its shift Eg in the 2nd order, we may use Eq. (6.20) of the 
lecture notes. For the hydrogen atom, neglecting the extended unperturbed states with E > 0, the 
summation index n’ on the right-hand side of that relation should be understood as a shorthand for the 
set of quantum numbers n, l, and m (with 0  l  n –1, and –l  m  +l), so we may write 
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where the unperturbed state vectors are denoted with the sets of their quantum numbers. Neglecting the 
small fine-structure effects discussed in Sec. 6.3, for the unperturbed eigenenergies, we may use Eq. 
(3.201) with E0 = EH, where EH is the Hartree energy (1.13), 
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so the first fraction in Eq. (*) is 
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Plugging this expression, using Eqs. (3.171), (3.200) for the unperturbed wavefunctions of the atom, and 
taking into account that for n = 1 and l = m = 0, Pl

m(cos) = 1 and eim = 1, we may write 
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This expression may be simplified because the integral over  equals 2 for m = 0 and vanishes for all 
other m, so the sum over m gives just one term: 
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where Pl() = Pl
0() are the Legendre polynomials (3.165). Since per Eq. (3.167), the polynomials are 

orthonormal, and according to the second of Eqs. (3.166),  in the last integral may be considered P1(), 
the sum over l also reduces to just one term, with l = 1,82 giving  
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(In accordance with a general remark made in Sec. 6.1 of the lecture notes, the 2nd-order correction to 
the ground state energy is negative.) 

 (ii) For finding the lower and upper bounds of the shift, we may notice that since the fraction 
under the sum changes only within a narrow interval, 

H
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Eq. (*) may be used to get the following bounds for the energy shift magnitude: 
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82 Such disappearance of all terms with m  0 and l  1 is one of the manifestations of the general quantum-
transition selection rules, which were repeatedly discussed in this course – see, e.g., Problem 5.35. 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                 Page 335 

This sum would not change if we add to it similar terms with n = 1 (and hence with l = m = 0) and with l 
 1 (and any n and m), because, as was discussed above, these matrix elements equal zero. Hence we 
may write 



mln

rmlnmlnr

,,
possible all

0,0,1cos,,,,cos0,0,1  . 

But due to the completeness of the unperturbed state set, we may apply to this sum the closure condition 
(4.44), getting the following simple expression: 
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Now using Eq. (3.208), variable replacements   2r/rB,   cos, and a table integral over ,83 we get 
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so, finally, the 2nd-order correction is confined to a relatively narrow interval 
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 Just for the reader’s reference, the exact theory84 gives a value, 
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indeed within the interval (**). 

 (iii) The above result means that if the temperature is not extremely high, so an atom is reliably 
in its ground state, the change of its energy in the electric field is negative and proportional to E2. This 
fact may be expressed in the following traditional form: 

2

2EE . 

The most significant manifestation of this effect is that, according to the theory of electric polarization,85 
the coefficient in the last formula is just the atomic (or “molecular”) polarizability, which relates the 
induced dipole moment d of an atom/molecule to the applied field,86  

,
22

  so
2E 




E
E

d
d E  

83 See, e.g., MA Eq. (6.7d) with n = 4. 
84 See, e.g., A. Dalgarno and J. Lewis, Proc. Roy. Soc. A233, 70 (1956). This result may be also obtained using 
the 2nd-order perturbation theory but with the account of contributions from all extended states with E > 0 –  
which turn out to be relatively small. 
85 See, e.g., EM Sec. 3.1, in particular, Eqs. (3.15b) and (3.48). (In that part of my series, following tradition, the 
electric dipole moment is denoted as p, rather than d as in this part.) 
86 Alternatively, d may be calculated as the expectation value of qr = –er, using the 1st-order approximation 
(6.18) for the state perturbations – giving the same result. 
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and hence determines the electric susceptibility e (and the dielectric constant   1 +e) of a medium 
(e.g., of a gas) with a relatively low volumic density n of such atoms/molecules, making their interaction 
negligible: 87 
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e 1,





 nn

 . 

According to Eq. (1.13), the Hartree energy may be represented as EH = e2/40rB, so e2rB
2/EH = 40rB

3, 
and Eq.  (***) may be rewritten as 
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This means that the atomic polarizability of the hydrogen atom, in its ground state, is 

      3B0
3

B0 651.14
2

9
4 rr    

– the result to be compared with  = 40R
3 for a sphere of a hypothetical material that perfectly screens 

out the external electric field.88 (Good metals do that, but only if R is much larger than rB – see, e.g., EM 
Sec. 2.1.)  

 

 Problem 6.9. A particle of mass m, with electric charge q, is in its ground s-state with a given 
energy Eg < 0, being localized by a very-short-range, spherically symmetric potential well. Calculate its 
static electric polarizability. 

 Solution: As was discussed in the solution of the previous problem, the electric polarizability  
is directly related to the quadratic shift of the ground-state energy of the system, caused by a weak 
external electric field E: 
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2

g

EE . 

(The linear shift, given by Eq. (6.14) of the lecture notes, 
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evidently vanishes for our perturbation Hamiltonian (6.29), 

  cosˆ 1 rqzqH EE  , 

due to the spherical symmetry of the ground-state wavefunction g(r) = g(r).)  

 As Eq. (6.20) shows, to calculate Eg = Eg
(2), we need to evaluate all matrix elements  
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87 See, e.g., EM Eqs. (3.44) and (3.50). 
88 See, e.g., EM Eq. (3.11). 
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Since, according to Eqs. (3.166) and (3.171), cos may be represented as P1
0(cos)  Y1

0(, ), and all 
spherical harmonics are orthogonal in the sense of Eq. (3.173), in our case only the wavefunctions with l 
= 1 and m = 0, 
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 give nonvanishing matrix elements of the perturbation Hamiltonian: 
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 The radial eigenfunctions of the states with l = 1 and m = 0 in a spherically symmetric region 
with U(r) = 0 have been already discussed in Sec. 3.6 (where they have been valid for r < R) – see Eq. 
(3.186) 
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For the normalization of these functions, let us introduce (just as it was done in the course repeatedly, 
starting from Sec. 1.7) an auxiliary, sufficiently large volume, to which these wavefunctions would be 
confined. It is convenient, in our current case, to take it in the form of a sphere of a radius R >> 1/k0, 
where k0 is the characteristic scale of the wave numbers k – still to be determined. Then the 
normalization (3.194) of  wavefunctions with k ~ k0, i.e. kR >> 1, requires  
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so we may take89  
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Note that the confinement makes the spectrum of the wave vectors k discrete; at kR >> 1, the distance 
between the eigenvalues is constant: 
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 Now proceeding to the ground-state wavefunction g: as was discussed in the model solution of 
Problem 3.28, it has the form 
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89 Just as a reminder, we may multiply the wavefunction by exp{i}, where  is any real constant, but since Eq. 
(6.20) includes only the matrix element moduli, the phase factor is inconsequential, and the choice  = 0 is the 
most convenient one. 
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in our current limit of a very small well (R’  0), this form may be used for any r  0, so the 
normalization condition, 
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after an elementary integration, yields  Cg 2 = /2, and (again ignoring the phase factor) we may take 
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Now we can, finally, calculate the nonvanishing matrix elements (**): 
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 Next, note that according to the solution of Problem 3.28, the unperturbed eigenenergy of the 
state (*) is just 2k2/2m. With this, and the above expressions for Eg and Hgn

(1), Eq. (6.20) of the lecture 
notes for the ground state energy takes the following form: 

 
 

     
 





0

522

4

2

22

0
0

g
0

21

2
gg 3

32

nn n

gn

k

k

R

mq

EE

H
EE






E
, 

where k and n are related by Eq. (***). Since our result for Eg
(2) is only valid for kR >> 1, i.e. n >> 1, we 

may transfer from the summation to integration over n and then to that over k, with dk = (/R)dn, i.e. dn 
= (R/)dk: 
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with   k/.90 The last integral may be readily worked out by recasting its numerator as a sum of three 
terms proportional to different powers of the sum (1 + 2): 

       112111 222224   , 

and hence representing the integral as a sum of three terms, all proportional to integrals of the same type 
MA Eq. (6.5b), but with different n (equal to 3, 4, and 5, respectively): 

90 Note that the auxiliary bounding radius R >> 1/k0 ~ 1/  has dropped out of the result, thus satisfying a 
necessary condition of the self-consistency of this state-counting procedure. 
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As a result, for the energy shift by the electric field, we get91 
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so the electric polarizability of the system is 
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 The first of the expressions for  shows that the larger the unperturbed  Eg , the smaller the 
electric field effect. This is natural because the stronger the particle’s confinement (the larger  Eg ), the 
smaller the effective radius ref  1/   Eg –1/2 of the ground-state wavefunction g, and hence the 
smaller the effective potential energy difference E ~ qEref created by the external field for the localized 
particle. 

 

 Problem 6.10. In some atoms, the effect of nuclear charge screening by electrons on the motion 
of each of them may be reasonably well approximated by the replacement of the Coulomb potential 
(3.190), U = –C/r, with the so-called Hulthén potential 
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Assuming that the effective screening radius a is much larger than r0  2/mC, use the perturbation 
theory to calculate the energy spectrum of a single particle of mass m, moving in this potential, in the 
lowest order needed to lift the l-degeneracy of the energy levels.  

 Solution: As was discussed in Sec. 3.7 of the lecture notes, the radial extension of the 
eigenfunctions of an electron in a hydrogen-like atom/ion scales as n2r0, where n is the principal 
quantum number. Hence, if n is not too high (n2 << a/r0), we may treat the difference between the 
Hulthén and Coulomb potentials as a small perturbation: 
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and limit the Taylor expansion of the function in the square brackets, in the small parameter   r/a:  
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to its two leading terms,92 so 

91 Note that this expression may be represented in a form similar to Eq. (***) of the model solution of the 
previous problem: Eg = –(qEref)

2/8Eg, , where ref  1/ is the particle localization radius. 
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 With this perturbation, Eq. (6.14) of the lecture notes takes the form  

   
2

,,

2
11

,, 12212

,,ˆ,,

2

1
,,ˆ,,

a

rC

a

C

a

mlnrmln

a
CmlnHmlnE mln

mln 







 , 

where {n, l, m} are the unperturbed states of the Bohr atom. Now using Eq. (3.210) of the lecture notes, 
we immediately get 
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 This expression describes the sought-after effect of lifting the energy level degeneracy, with 
higher values of the orbital quantum number l giving higher energy – the effect already mentioned in 
Sec. 3.7 and pertinent to virtually any realistic perturbation of the Coulomb potential – see, for example, 
Sec. 6.3, in particular, Eqs. (6.51) and (6.60), and Fig. 6.4. 

 

 Problem 6.11. In the lowest nonvanishing order of the perturbation theory, calculate the 
correction to energies of the ground state and all lowest excited states of a hydrogen-like atom/ion, due 
to the electron’s penetration into the nucleus, by modeling the latter as a spinless, uniformly charged 
sphere of radius R << rB/Z. 

 Solution: The electrostatic potential  inside a uniformly charged sphere of radius R, with the 
total charge Q = Ze, may be readily calculated either using the Gauss law or solving the corresponding 
Poisson equation. The result is93 
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The constant in this expression is selected so that at r = R, the potential coincides with the usual form of 
the Coulomb potential outside the sphere (which is the same as that of the point charge Ze): 
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tending to zero at r  . Since the potential (*) has already been taken into account in the solution of 
the basic Bohr atom problem (see, e.g., Sec. 3.6 of the lecture notes), the perturbation Hamiltonian of 
our current problem is due to their difference: 
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92 If we kept just the first term, the resulting (constant) shift C/2a of the energy levels would not lift the l-
degeneracy. 
93 See, e.g., EM Eq. (1.51). 
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 Since the spatial extension scale of the unperturbed wavefunctions (0)(r) of the atom/ion is 
given by the radius r0 = rB/Z << R, in the first order in the parameter R/r0 << 1 (in actual atoms, as small 
as ~10–5) we may approximate this potential with a 3D delta function: 
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As a result, the matrix elements (6.8) of the perturbation may be calculated as 

                            00ˆˆ 0030101 **
n"n'n"n'n'n" rdHH  W  rr ,   (**) 

where each of the indices n’ and n” encodes the whole appropriate set of quantum numbers – in the case 
of the hydrogen-like atom, n, l, and m – see Sec. 3.7 of the lecture notes. 

 For the ground state (n = 1, l = m = 0), Eqs. (3.174), (3.200), and (3.208) yield 
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Since this state is non-degenerate, the 1st-order correction to its energy may be calculated using the 
simple Eq. (6.14): 
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where the energy scale E0 and the spatial scale r0 are defined by Eqs. (3.192) with C = Ze2/40. For the 
generic hydrogen atom, with Z = 1, E0 is just the Hartree energy EH  27.2 eV, while r0 is the Bohr 
radius rB – see Eqs. (1.13).  

 Generally, for the four lowest excited states (all with n = 2, but with either l = m = 0 or l = 1 and 
m = 0, 1) we should be more accurate because in the absence of perturbation, they are degenerate, so 
the perturbation that may lift their degeneracy should be treated using the approach discussed in the last 
part of Sec. 6.1 of the lecture notes. However, according to the second of Eqs. (3.209), all 2p-states with 
l = 1 have (0)(0) = 0, so within the approximation (**), all the matrix elements involving these states 
vanish. According to the first of Eqs. (3.209), this is not true for the 2s-state (with n = 2 and l = 0): 
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so this perturbation causes the shift of the 2s-state’s energy by 
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i.e. by the magnitude, 8 times lower than the ground state’s shift. For actual atoms, with their small R, 
both shifts are very small, of the order of 10–10EH ~ 10–9 eV. 94 

 

 Problem 6.12. A particle of mass m is placed inside a hard-wall ellipsoid whose surface is 
described by the equation 
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Calculate its ground-state energy in the 1st order in the small parameter , and interpret the result. 

 Solution: The system may be described by the following potential: 
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Let us introduce new coordinates 
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In them, the particle’s motion region is just a sphere of radius a: 
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and the stationary Schrödinger equation inside this volume is 
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In the first order in the small parameter, 1/(1 + )2  1 – 2, so we may rewrite this equation as  
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where the prime sign is now dropped for the notation brevity. 

 This is just the standard Schrödinger equation for a particle that moves freely inside a sphere of 

radius a, besides the perturbation described by the Hamiltonian  .ˆ 1H  Its solution, in the 0th 
approximation (i.e. for  = 0), was discussed at the end of Sec. 3.6 of the lecture notes. In particular, the 
ground-state’s wavefunction g

(0) is spherically symmetric, and the corresponding energy is 
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Plugging the perturbation  1Ĥ into the coordinate representation of Eq. (6.14), 

94 A calculation in the next approximation in R/r0 << 1 (highly recommended to the reader as an additional 
exercise) shows that the 2p-states’ energy shift is even smaller by an additional factor of ~10–3(R/r0)

2 ~ 10–10. 
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and assuming that the wavefunction is normalized, 
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 The simplest way to calculate this integral is to notice that due to the spherical symmetry of the 
wavefunction g(0), the integral would not change if we replaced z with either x or y, so 
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But according to Eq. (*) with  = 0, the expression in the square brackets is just Eg
(0)g

(0), so 
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Now using Eqs. (**) and (***), we finally get 
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 The simplicity of this relation between Eg
(1) and Eg

(0), and its independence of the exact form of 
the wavefunction g

(0), suggest that there is some deep reason behind it. To reveal it, let us note that 
according to basic geometry, the volume of our axially symmetric ellipsoid is  
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Let us calculate the radius R of an exact sphere with the same volume: 
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Per Eq. (**), the ground-state energy of the particle inside a spherical surface with this radius would be 
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i.e., to the first order in the small parameter , the same energy as we have calculated.  

 This coincidence implies that Eg may depend only on the volume inside the deformed spherical 
surface rather than on the type of its deformation, provided that this deformation is relatively small. 
Indeed, a quantum particle placed inside a closed surface exerts certain forces on it even in the ground 
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state.95 For a spherical surface, these forces have to be isotropic and hence may be described by the 
scalar pressure  

V

E




P . 

Rewriting this expression as  
dVdE P , 

we see that it gives dE = 0 for any small deformation that keeps the volume constant. 

 

Problem 6.13. Prove that the relativistic correction operator (6.48) indeed has only diagonal 
matrix elements in the basis of unperturbed Bohr atom states (3.200). 

Solution: In an expression similar to Eq. (6.49) of the lecture notes, but with two arbitrary 
stationary states {n, l, m} and (n’, l’, m’}, let us act by the first of the two similar (Hermitian) operators 

 rUH ˆˆ )0(   upon the bra-vector, and by the second one, on the ket-vector. Since these vectors describe 

the eigenstates of )0(Ĥ , and the corresponding eigenvalues depend only on the principal quantum 
number n, we get 
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The operators of the spherically-symmetric functions U(r) and U2(r) can act only on the radial factors 
Rn,l(r) of the wavefunctions n,l,m. As a result, due to the orthogonality of all angular factors, both long 

brackets with either m  m’ or l  l’ (or both) vanish, and so does the first term. 

 

 Problem 6.14. Calculate the lowest-order relativistic correction to the ground-state energy of a 
1D harmonic oscillator.  

 Solution:  The perturbation Hamiltonian for this problem is the same as in Eq. (6.47) of the 
lecture notes:  

  4
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H  , 

besides that in our current case, p̂  should be understood as a 1D operator, so it may be expressed via 
the creation–annihilation operators – see Eq. (5.66): 
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Since the energy levels of the unperturbed oscillator are non-degenerate, the first-order correction to the 
ground state energy may be calculated using Eq. (6.14) of the lecture notes: 

95 See, e.g., the model solution of Problem 1.11. 
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 The long bracket I may be calculated either as n  x4  n was calculated in the model solution of 
Problem 5.12(ii) (i.e. using Eq. (5.93) of the lecture notes) or even simpler – using the fact that 
according to Eqs. (5.89), 
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As a result, if, in the last form of the expression 

0ˆˆˆˆˆˆˆˆˆˆˆˆ00ˆˆˆˆ0
2

2
2

2
22

†††††††† 






















 





   aaaaaaaaaaaaaaaaI , 

we act by the operators in the first parentheses upon the bra-vector, and by those in the second 
parentheses, upon the ket-vector, two of each four terms vanish, giving 
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 According to Eqs. (5.89), the first and the last terms in the parentheses of the last expression 
yield zero contributions to the expectation value because they have different powers of the creation and 
annihilation operators, so their sequential action on, say, the ket-vector gives a non-ground ket-vector, 
orthogonal to the ground-state bra-vector. The remaining two terms may be calculated directly, by using 
the same Eqs. (5.89): 
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so, finally, Eq. (*) yields 

   
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2
01

g 32

3

mc
E


 . 

 As usual in the stationary perturbation theory, this expression is quantitatively valid only if this 
correction is much smaller than the unperturbed ground-state energy Eg

(0) = 0/2, i.e. if 0 << mc2. 
Since, according to Eq. (5.97), 0 also gives the scale of the kinetic energy T of the particle in this 
state, this requirement is essentially the same as was discussed in Sec. 6.3 of the lecture notes: T << mc2. 

 

  Problem 6.15. Use the perturbation theory to calculate the contribution to the magnetic 
susceptibility m of a dilute gas, that is due to the orbital motion of a single electron inside each gas 
particle. Spell out your result for a spherically symmetric ground state of the electron, and give an 
estimate of the magnitude of this orbital susceptibility. 

 Solution: According to basic electrodynamics,96 the magnetic energy u per unit volume of a 
linear, isotropic medium may be expressed as 

96 See, e.g., EM Sec. 5.5, in particular, Eqs. (5.112) and (5.140). 
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2

2B
u , 

where B  is the applied magnetic field, while  is the magnetic permeability, which is related to the 
magnetic susceptibility as  = 0(1 + m).  For a dilute gas, the susceptibility is small in comparison 
with 1; in this case, we may separate the energy density u into a sum of the energy B2/20 of the 
magnetic field in free space and a small correction um proportional to m: 
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On the other hand, for a medium of non-interacting particles with a spatial density n, um should be equal 
to nEm, where Em is the change of the energy of one particle due to its magnetization. Comparing these 
two formulas, we see that in this case the susceptibility may be calculated as97 

        n
E
2

m0
m

2

B


  .     (*) 

 In order to calculate the single electron energy contribution from its orbital motion in a 
spherically symmetric confining potential, we may use the Hamiltonian (6.63), neglecting the term 
linear in the field,98 but keeping the term quadratic in the vector-potential A. By using Eq. (6.64), we 
may represent this term it in the convenient form 

 22
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B
rA B , 

where x and y are the Cartesian coordinates perpendicular to the field’s direction (taken for the z-axis). 

If the field is not too high, this Hamiltonian may be used as  1Ĥ in the formulas of the perturbation 
theory. For the electron in its ground state 0 (which is always non-degenerate), we may immediately use 
Eq. (6.14) to get 

0ˆˆ0
8

22

e

22

m yx
m

e
E 

B
, 

so Eq. (*) yields 

0ˆˆ0
4

22

e

2
0

m yx
m

ne



 . 

We see that such m is always negative – the effect that is called the orbital (or “Larmor”) 
diamagnetism. For the motion in a central field, in which the ground state’s wavefunction is spherically 

97 An alternative way to get the same Eq. (*) is to combine the expression Em = –mB/2 for the energy of 
interaction between the magnetic field B and the magnetic dipole m it has induced, the definition of m as M/H, 
where the magnetization M of a dilute medium may be calculated as M = nm, and the fact that if  m  << 1, then 
H  0B – see, e.g., EM Sec. 5.5. (In quantum mechanics, m, M, and Em in these relations have to be understood 
either as the operators of these observables or as their expectation values, i.e. their averages over the ensemble of 
the corresponding quantum states.) 
98 That term, while contributing to the energy level splitting by the field, i.e. the Zeeman effect (see Sec. 6.4), 
gives zero contribution to the energy of s-states with no spontaneous angular momentum, in particular, of the 
spherically symmetric ground state. 
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symmetric (see Sec. 3.6), this expression may be further simplified by noting that the averages of all 
Cartesian components squared have to be equal, so 

       2

e

2
0

m
2222

6
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 Remarkably, this formula coincides with the one calculated using a reasonable classical model – 
see, e.g., EM Problem 5.18(i). It gives a good semi-quantitative description of experimental data for 
gases, and even for liquids and solids of some multi-electron atoms (especially those with filled electron 
shells, whose net spontaneous orbital and spin momenta vanish), by assuming that the contributions of 
all atom’s electrons add up independently.  

 In order to estimate the magnitude of the effect described by Eq. (**), note that according to the 
definition of the electromagnetic constants 0 and 0, the latter of them equals 1/0c

2, where c is the 
speed of light in free space, so our result for the susceptibility (which is dimensionless by its definition) 
may be rewritten as 

2
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where   e2/40c  1/137 << 1 is the fine structure constant (6.62), and rB is the Bohr radius (1.10). 
Since rB

2 gives a fair scale of r2 in atoms and (not very large) molecules, we may write the following 
crude estimate: 
            3

B
3

B
2

m ~ nrnr  .     (***) 

 This estimate shows that the orbital diamagnetism is so weak that it corresponds to pushing out 
of the atom only a tiny part of the order of 2 ~ 10–4 of the magnetic field lines – while a perfect 
diamagnetic (for example, a bulk superconductor) would push out all of them. Note that an 
uncompensated net spin of atoms/molecules may give them, due to the spin’s polarization by the field, a 
different, paramagnetic contribution to the magnetic susceptibility – see, e.g., EM Sec. 5.5 and  Problem 
5.18(ii). At sufficiently low temperatures, this spin paramagnetism may be much higher than the orbital 
diamagnetism (**) – see, e.g., SM Problems 2.4 and 3.10. 

 

 Problem 6.16. A certain energy level degeneracy is not lifted in the 1st order of the stationary 
perturbation theory. Calculate its lifting in the 2nd

 order of the theory. Apply the result to a planar rotor 
of mass m and radius R, with electric charge q, placed into a weak, uniform, time-independent electric 
field E. 

Solution: If all first-order matrix elements Hn’n” connecting the states that correspond to some 
degenerate energy level, i.e. participating in Eqs. (6.24)-(6.26) of the lecture notes, vanish in the first 
order of the perturbation theory, we need to calculate them in the second order. For that, it is sufficient 
to repeat the calculation that was used to derive Eq. (6.19) starting from the exact system of equations 
(6.7) and the expansions (6.9)-(6.10). If all H(1)

n’n” = 0, then according to Eq. (6.14), E(1)
n = 0 as well, 

and the balance of the terms O(2) in Eq. (6.7) gives us a system of equations similar to Eq. (6.24), but 
with the very natural replacement 

         11021 ˆ n"Hn'HH n'n"n'n"  , 
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where n”(1) is the state n” calculated in the first order. It is described by Eq. (6.18), so renaming the 
quantum numbers in that formula (n   n”, n’  n), we get 
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(In the particular case n’ = n”, this expression is reduced to Eq. (6.20) of the lecture notes.) 

The basic properties of the unperturbed (E = 0) planar rotor were discussed in Sec. 3.5 of the 
lecture notes. In the coordinate representation, the rotor’s Hamiltonian (3.126) is 
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its eigenfunctions (3.129) are99 
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and the energy spectrum (3.130) is 
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All these energy values, besides the ground state (m = 0), are doubly degenerate: 

   00
mm EE  . 

 This degeneracy is lifted by the perturbation created by the applied electric field, 

       cosˆ 1 RqxqH EE  ,     (**) 

where E is the electric field’s component within the rotor’s plane, and the x-axis is directed along that 
component. However, calculating the first-order matrix elements (6.8) of the perturbation (with the 
natural notation replacement n  m):  
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we see that they connect only the states with the quantum numbers m different by 1, while the 
difference between these numbers for each degenerate state couple is 2 m > 1. Hence, the level 
degeneracy is not lifted in the first order of the theory.100 

99 See also Eq. (5.146). The mth unperturbed eigenfunction corresponds to the eigenvalue (Lz)m = m – see Eq. 
(5.158). 
100 Note that this fact is not generally true for the rotor in a substantial additional magnetic field. Indeed, as Eq. 
(3.134) and Fig. 3.18 of the lecture notes show, if the magnetic flux  piercing rotor’s area is exactly a half-
multiple of the flux quantum 0’  2/q, the lowest unperturbed energy levels Em = E1(m – ½)2 = E1/4 are equal 
for the states with m = 1, for example, m = 1 and m = 0. This degeneracy is lifted by the electric field already in 
the first order of the perturbation theory. Note also the analogy between this problem and the 1D band theory (see 
Sec. 2.7 of the lecture notes), where the role of the magnetic field is played by the quasimomentum q, and each 
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 Proceeding to its second order, let us spell out Eq. (*) for the two states of each degenerate pair, 
i.e. for n’ = m’ and n” = m’: 
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This expression yields nonvanishing diagonal matrix elements for any m’ (with the sum contributed by 
two terms, with m = m’  1): 
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but off-diagonal matrix elements only for m’ = 1 (with the sum limited to only one term, with m = 0): 
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 Hence all the energy levels Em’ with m’  1 are just shifted by the amount given by Eq. (***), 
but for the states with m’ = 1, we get a system of two linear equations whose matrix consists of two 
equal off-diagonal elements (****) and two equal diagonal elements (***): 
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Solving the corresponding characteristic equation that replaces the similar Eq. (6.26): 
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we get two roots,  = 2/3  1, showing that in the second order of the perturbation theory, the double 
degeneracy of this level is indeed lifted: 
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This expression is quantitatively valid only at qER/2 << E1  2/2mR2, i.e. in sufficiently low 
applied electric fields. 

 

Problem 6.17.* The Hamiltonian of a quantum system is slowly changed over time. 

 (i) Develop a theory of quantum transitions in the system, and spell out its result in the 1st 
approximation in the speed of the change.  
 (ii) Use this approximation to calculate the probability that a finite-time pulse of a slowly 
changing force F(t) drives a 1D harmonic oscillator, initially in its ground state, into an excited state. 

Fourier harmonic of the periodic potential U(x), with amplitude Ul, acts similarly to the sinusoidal perturbation 
(**). Indeed, the weak-potential limit explored in Sec. 2.7(ii) of the lecture notes is just a particular case of the 1st-
order perturbation theory in small Ul. 
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 (iii) Compare the last result with the exact one. 

Solutions:  

(i) Let us solve the Schrödinger equation (4.158),  

 H
t

i ˆ



 , 

for a system described by a Hamiltonian ,Ĥ  which is slowly changed in time. In the 0th approximation in 
the speed of the change, when the evolution is fully adiabatic, its general solution may be represented as 
the sum 
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where 
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the energies En(t) are defined, at each moment t, by the pseudo-stationary Schrödinger equation 

      ,ˆ nEnH n       (*) 

and while an are constant c-numbers. (The physical sense of each an is the probability amplitude of our 
system being, at time t, in the instant state n defined by that equation for the same t.) If the Hamiltonian 
changes in time, so are En and n, and the 0th approximation is not the exact solution of the genuine 
Schrödinger equation, but we may look for such a solution in the same form, with En, n, and n still 
defined by the above expressions at each particular instant, but with the probability amplitudes an also 
being some slow functions of time.  

 Plugging this form into the time-dependent Schrödinger equation, we get 
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According to the above definitions of En, n, and n, the right-hand side of this relation cancels with the 
second term on its left-hand side, and the equation, rewritten for the index n’, reduces to 
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Now inner-multiplying the left-hand side by n  exp{–in} with an arbitrary n, and using the 
orthonormality of the kets n at any instant t, we get the following equation for the time evolution of the 
coefficients an: 
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nn'
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 .     

 In order to spell out the inner product on the right-hand side of this expression, let us take the 
partial time derivative of Eq. (*), also rewritten for the same index n’: 

'nEn'E'nHn'H n'n' 
  ˆˆ , 
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where the dot over the Hamiltonian operator means its differentiation over its explicit time dependence. 
Inner-multiplying both parts of this equation by n, we get 

n'HnH'nEnn'En'nHnH nn'nn'n'n'nn'
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

 ˆˆ  where,ˆˆ  . 

Both En’ and its time derivative are just (time-dependent) c-numbers and may be taken out of the 
corresponding long brackets, so acting by the Hamiltonian (a Hermitian operator!) in the second term 
upon the bra-vector on its left, we may reduce this relation to 

'nnEn'nE'nnEH n'nnnn' 
 ˆ . 

 For any n’  n, the first term on the right-hand side vanishes due to the same orthonormality of 
the set n, and we get 

nn'
EE

H
'nn

n'n

nn' 


 for  ,
̂

 . 

On the other hand, for n’ = n, we may differentiate over time the normalization condition n  n = 1, 
getting 

             0Re2
*  nnnnnnnnnn  .   (**) 

This equality means that nn   is always purely imaginary, i.e. equal to i(t), with some real (t). But 

we may always select the phase of the ket  n, defined by Eq. (*), arbitrarily for any time instant. In 
other words, we may make the replacement  n   n exp{i(t)} with arbitrary real (t). At such a 
replacement, the inner product we are discussing changes as  
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Hence, with the proper choice of the function (t), we may always make the product nn   real,101  so 

Eq. (**) yields  
0nn  . 

As a result, we get 
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 So far, this is an exact result, equivalent to the initial Schrödinger equation. (In this aspect, Eq. 
(***) is similar to Eqs. (6.84) of the “usual” perturbation theory, though these two relations are based on 
different approaches, each of them being more convenient in its own domain of applications.) Now let 
us reduce Eq. (***) to an approximate form for the case when at t < 0 the system was definitely in its 
ground state (n’ = 0). Then, in the 1st approximation in the Hamiltonian’s change speed, on the right-
hand side of Eqs. (***), we may take a0 = 1, and all other an’ = 0, so  

101 It would be, however, an error to say that n itself may be made real in any representation. For example, in the 
coordinate representation, the corresponding wavefunction n  rn cannot be made real in many cases – see, for 
example, the wavefunctions (3.129) with m  0, or more generally any eigenstate with a nonvanishing density j of 
probability current – see Eq. (1.49). 
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 (ii) For a 1D harmonic oscillator under the effect of an additional force F(t),  
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As Eq. (5.92) of the lecture notes shows, in the harmonic oscillator, only one of these matrix elements, 
namely x10 = x0/2, is different from zero, so in the 1st approximation in speed, only the first excited 
state (n = 1) has a non-zero probability amplitude an = a1. Taking into account also that for the harmonic  
oscillator, even biased by an additional force, E1 – E0 = 0 = const, we get 
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so, taking into account that x0  (/m0)
1/2 = const,  the probability of finding the oscillator in the first 

excited state at time t is 
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For a finite-time pulse of force, we may always select a time interval [0, t] so broad that F(t) = 0 outside 
it, and it makes sense to work out the involved integral by parts: 
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so we may rewrite the expression for the final value of W1 in a more convenient form:  
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By construction of the 1st approximation, this result is only valid if W1 << 1. 

 (iii) For this particular system (the harmonic oscillator, initially in its ground state), the exact 
solution, valid for any W1, is also possible. Indeed, as was discussed in the model solution of Problem 
5.21, if the oscillator was in the ground state (which is one of the Glauber states) initially, then even at 
an arbitrary time t, it remains in the Glauber state (5.107) with the time-dependent central point  
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i.e. with the dimensionless complex amplitude (defined by Eq. (5.102) of the lecture notes)  
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 According to this formula, after the end of the pulse (formally, at t = +), the Poisson 
distribution parameter n defined by Eq. (5.137) is  
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where I is the same integral as in Eq. (****). Now we may use Eq. (5.135) of the lecture notes to 
calculate the probability of the oscillator’s transfer, by the pulse, into the first excited Fock state: 
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In the limit of small I, this (exact) result reduces to Eq. (****), thus confirming its correctness.102 

  

 Problem 6.18.* Use the single-particle model to calculate the complex electric permittivity  () 
of a dilute gas of similar atoms, due to their induced electric polarization by a weak external ac field, for 
a field frequency  very close to one of the quantum transition frequencies nn’. Based on the result, 
calculate and estimate the absorption cross-section of each atom. 

Hint: In the single-particle model, the atom’s properties are determined by Z similar, non-
interacting electrons, each moving in a similar static attracting potential, generally different from the 
Coulomb one, because it is contributed not only by the nucleus but also by other electrons. 

Solution: According to the complex electric permittivity’s definition,103 in the approximation of 
non-interacting atoms, it may be calculated as 
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where n is the number of atoms per unit volume,104 and d is the complex amplitude of the time-
dependent expectation value of the electric dipole moment of one atom,  

titi ededd 

*  , 

induced by the applied weak classical ac field105  

102 According to the same Eq. (5.135), the probability of exciting the nth Fock state, in the same limit I  0 (i.e. 
n  0), scales as Wn  nn   I 2n, explaining why all Wn with n > 1 vanish in the 1st approximation in  I 2. 
103 See, e.g., EM Secs. 3.3 and 7.2 (where the electric dipole moment is denoted as p). Note that generally, E(t) 
and d(t) are vectors with different directions, not necessarily proportional to each other – see, e.g., EM Secs. 
3.1-3.2. Dielectric properties of a medium may be described by a scalar, field-independent function () only if 
these vectors are essentially parallel (which is true for any disordered matter) and proportional to each other 
(which is always true for sufficiently low fields, in the absence of spontaneous polarization). Since the problem 
assignment asks for such a scalar function, we may safely assume that these conditions are satisfied. 
104 This fancy font for n  is used here to avoid confusion with the quantum state number n. 
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In the single-particle model, d may be calculated as Zqx, where q = –e is the single electron charge, Z is 
the number of electrons per atom, and x is the electron’s coordinate along the applied field’s direction, 
so in the Schrödinger picture, its expectation value in the time-dependent quantum state (t) may be 
calculated as  
               txtZqd  ˆ .     (*) 

 According to the analysis in Sec. 6.5 of the lecture notes, if the field’s frequency  is very close 
to that of a quantum transition between two eigenstates, in the expansion of the bra- and ket-vectors of 
the state  into a series over eigenstate vectors, we may keep only the corresponding two terms. At 
weak applied fields and not extremely high temperatures, the atoms spend most of the time in their 
ground state (due to unavoidable energy relaxation – see Chapter 7 for its discussion), so one of the 
involved states, with the probability amplitude very close to 1, has to be the ground state of the system. 
As a result, by using Eq. (6.82), we may approximate the state vectors as 
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where the coefficient a(t) is proportional to the applied field, and hence small.106 Plugging this 
expression into Eq. (*) and keeping only the terms proportional to a (and hence to E), we get 
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where n0  (En – E0)/, while x0n and xn0 are time-independent matrix elements of the Hermitian 
operator of the coordinate: 

**
00 0ˆˆ0 nn xxnnxx  . 

Generally, the time evolution of the probability amplitude a(t) of the excited state n has to be 
found from the system of equations (6.88), with the Hamiltonian’s amplitude 

xqA ˆˆ
 E , 

corresponding to the perturbation (6.29), with z duly replaced with x. However, in our resonant case 
when   n0, we may reuse the approximate solution of the system, expressed by the first term of Eq. 
(6.90), with n’ = 0 and Ann’ = An0 = –qExn0. As a result, we get 

105 Note that these relations between d(t) and E(t) and their complex amplitudes differ (by a factor of 2) from the 
usual relations accepted in this series, e.g., x(t) = Re[ x exp{–it}], etc. This notation, accepted here just to better 
correspond to Eq. (6.86) of the lecture notes, does not change the d/E ratio of our interest. 
106 Here I assume that  a(t)  << 1 – the relation that should be used to derive the qualitative condition of the 
electric field’s smallness necessary for the result’s validity. 
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This means that the complex amplitude of the only frequency component we are interested in (changing 
in time as exp{–it}, i.e. with the same frequency as the field, and hence giving a nonvanishing average 
contribution to the electric permittivity)107 is 
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 (As a parenthetic remark: note that this result enables the calculation of the average energy of the 
field-atom interaction: 

       
**

0

2

0
2

4
Re

4

1

2

1
 

EEEE
n

nxZq
dttdU





. 

This formula shows that the resulting average force UF exerted on the atom by a standing-wave 
field pushes it to the field’s maximum at  < n0, and to its minimum in the opposite case.108) 

 Finally, summing the contributions from all excited states n, we get the following formal result: 
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though it is strictly valid only in a close vicinity of each transition frequency n0 – namely, at  – n0 
<< n0. It describes odd-resonant, diverging responses of the system near each quantum transition 
frequency n0. 

In the particular case when the atom may be modeled by a 1D harmonic oscillator of an 
eigenfrequency 0, we may use Eq. (5.92) to get  xn0 2 = (/2m0)n0, and hence the function (), at 
positive frequencies, has only one such singularity (pole): 
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Remarkably, this result coincides exactly with the one of classical theory for a set of nZ similar 
harmonic oscillators, with  negligible damping, per unit volume,109 illustrating again that the harmonic 
oscillator is “the most classical” of all spatially-confined quantum systems, due to the linearity of its 

107 Re-examining the analysis of Sec. 6.5, we may see that the second term in this result, having a different 
frequency, is the artifact of the zero initial conditions assumed at the sharp turning on of the interaction 
Hamiltonian – see Eq. (6.86). In real systems with unavoidable nonvanishing (if very small) dissipation, this 
component decays with time, and the whole atomic response retains only one frequency (), representing the 
quantum version of the classical forced oscillations – see, e.g.,  CM Sec. 5.1. 
108 A discussion of the physics of this force, for a particular case of a free classical particle, may be found, e.g. in 
the model solution of EM Problem 7.5. 
109 See, e.g., EM Eq. (7.32) with n replaced with nZ,  = 0 and   0. 
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Heisenberg equations of motion. (Due to this property, Eq. (***) might be obtained much simpler – just 
using the fact that due to the linearity of Eqs. (5.36) with U = m0

2x2/2 – qEx, the expectation value of 
the coordinate of the oscillator follows the classical equations of motion.) 

 Now returning to the general quantum-mechanical result (**), valid for an arbitrary confining 
potential, we may notice that it has a structure similar to Eq. (***), and may be rewritten in the form 
inspired by it: 
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Due to the analogy with Eq. (***), the coefficient fn is called the oscillator strength of the atomic 
excitation from its ground state to the nth energy level. According to Eq. (***), for a harmonic oscillator 
only one such of these coefficients, f1 = 1, is different from zero. For an arbitrary confining potential, 
this is not true, but the sum of all fn still equals 1 – see the solution of Problem 5.13. 

 The above results may leave the impression that the complex electric permittivity is a purely real 
function of frequency. However, the Kramers-Kronig dispersion relations, based on very general 
causality arguments, and hence valid for the results of the quantum-mechanical analysis as well, show 
that the real and imaginary parts of the function () = ’() + i”() are always related.110 In 
particular, each pole of ’() at a certain frequency corresponds to a proportional delta function of the 
imaginary part ”() of this function, which characterizes energy loss in the medium:111  
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For our particular case, this correspondence yields the following result (for  > 0): 
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describing a series of infinitely narrow resonance peaks of the media’s absorption at each quantum 
transition frequency.  

 This result may look mysterious because at our current description of the system by a 
Hamiltonian, it should not, apparently, have any energy loss. Indeed, this result, of the same class as the 
Golden Rule discussed in Secs. 6.6-6.7 of the lecture notes,112 is one of the non-trivial (and hence most 
beautiful :-) results of quantum mechanics, which essentially preempts the analysis of open quantum 
systems. Such analysis, to be discussed in Chapter 7, describes the system’s energy loss by its coupling 
to the environment, and in particular, shows that as the coupling tends to zero, the finite-width peaks of 
the dissipative functions similar to ”() become infinitely narrow but retain their “areas”, i.e. the delta 
functions’ weights given by Eq. (****). 

110 See, e.g., EM Sec. 7.2. 
111 See, e.g., EM Eqs. (7.55)-(7.56) 
112 Actually, all the essential physics of the relation between the reversible and irreversible quantum dynamics is 
described already by the simple metastable state model discussed at the end of Sec. 2.5, and the reader having 
conceptual issues with this relation may be referred there for an additional thoughtful review. 
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 The result (****) may be readily re-calculated into the absorption cross-section  of one atom, 
which may be defined by the following (hopefully, self-explanatory) relation for the time-averaged 
power of the incident wave per unit area of its front:113 

Pn
P 
dz

d
, 

where z is the direction of the wave propagation. Namely, basic macroscopic electrodynamics tells us 
that the same power gradient of a monochromatic wave of frequency  may be calculated as114  
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where k”() is the imaginary part of the complex wave number k() =  [()()]1/2. For a non-
magnetic medium (with () = 0), with relatively weak absorption (”() << ’() = 0), we may 
Taylor-expand this expression for k: 
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thus getting  
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Now comparing the two above expressions for the power loss per unit length, we get  
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so by using Eq. (****), with q = –e, we finally get115 
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where   (e2/40)/c  1/137 is the fine-structure constant. 

 Since the square of the coordinate matrix element is typically of the order of the “physical” 
cross-section 0 of the atom, this result shows that the frequency-averaged cross-section, 
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is of the order of Z0, i.e. is much smaller than 0 for not-too-heavy atoms. This relation gives one 
more illustration of the fine-structure constant  as a measure of the electromagnetic interaction 
weakness on the quantum-mechanical energy scale. 
. 

113 This expression implies incoherent addition of the energies absorbed by each atom, which is a good 
approximation for gases, with random interatomic distances. 
114 See, e.g., EM Sec. 7.9, in particular, Eqs. (7.215)-(7.216).  
115 In a slightly different form, this result was first obtained by H. Kramers and W. Heisenberg as early as 1925. 
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 Problem 6.19. Use the solution of the previous problem to generalize the expression for the 
London dispersion force between two atoms (whose calculation in the harmonic oscillator model was 
the subject of Problems 3.20 and 5.20) to the single-particle model with an arbitrary energy spectrum. 

 Solution: The result obtained in Problem 5.20 for a spherically symmetric harmonic oscillator 
model of each atom, 
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may be readily generalized to modeling each atom by a set of such oscillators, with eigenfrequencies n 
and relative numbers  fn: 
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. 

 Now using the fact that according to the model solution of Problem 5.20, this formula is based 
on the same resonance response as was discussed in the solution of the previous problem, we may 
generalize it further to describe the long-range interaction between two arbitrary (but still isotropic) 
single-particle systems: 

             
   ,42

3

0, 0000
622

0

4


 


n'n n'nn'n

n'n ff

rm

q
U




   (*) 

where the frequency sets n0  (En – E0)/ and n’0  (En’ – E0)/ describe the excitation spectra of the  
counterpart atoms, and fn and fn’ are the oscillator strengths of the corresponding transitions: 
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(Due to the assumed isotropy, the matrix elements xn0 are the same for all coordinates.)  

 For a typical atom, the lowest energy differences (En – E0) and (En’ – E0), giving the largest 
contributions to the sum in Eq. (*), are of the order of the Hartree energy EH – see Eq. (1.13). Plugging 
such values into Eq. (*), and also taking m = me and ignoring numerical factors of the order of 1, we get 
the following crude estimate of the London dispersion force’s potential:  
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r

r
EU . 

 Formula (*) was the main result obtained in 1930 by F. London. Its main restriction is that it 
assumes the instant propagation of the dipole’s electric field by the inter-atomic distance r. This 
assumption (which was clearly made in the model solutions of Problems 3.20 and 5.20) is valid only if 
kn0r << 1, where the wave number kn0 equals n0/c in vacuum, and may be moderately higher in a dense 
medium. Since the typical frequencies n0 for atoms and molecules are rather high (~1016 s-1), noticeable 
deviations from London’s result may start already from r ~ 1 μm. The later extensions of this theory to 
arbitrary values of kn0r, notably by H. Casimir and D. Polder in 1948, and by E. Lifshitz in 1956,116 have 
shown a remarkable (and rather counter-intuitive!) connection between the London dispersion force and 
the fundamental Casimir effect – for its discussion, see Sec. 9.1 of the lecture notes. 

116 For a comprehensive review of this topic see, e.g., I. Dzyaloshinskii et al., Sov. Phys. Uspekhi 4, 153 (1961). 
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 Problem 6.20. Use the solution of the previous problem to calculate the potential energy of the 
interaction of two hydrogen atoms, both in their ground state, separated by distance r >> rB. 

 Solution: For the effective potential energy of the far-range interaction of two similar atoms, we 
may use the solution of the previous problem, with fn = fn’ and n0 = n’0: 
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For a hydrogen atom, q = –e, and m = me, so according to the Eq. (1.9) of the lecture notes, (q2/40)
2 = 

(e2/40)
2 = (2/me)EH, where EH  27.2 eV is the Hartree energy unit, and we may rewrite U is a form 

more convenient for our purposes: 
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 Due to the ground state’s isotropy, we may replace117 the matrix elements xn0 with the 
elements118  
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Since cos  P1(cos), Eq. (3.170) of the lecture notes shows119 that all integrals I vanish beside one, 
with l = 1 and m = 0:120 
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As a result, Eq. (*) is reduced to  
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where, according to Eq. (1.8),43 

117 One has to resist the possible temptation to add, to Eq. (*), similar contributions from other Cartesian 
components. Indeed, that relation already takes their contributions into account – see the solutions of Problems 
3.20 and 5.20. 
118 Note that due to the traditional choice of the principal quantum numbers n, taken equal to 1 rather than 0 for 
the ground state, in atom-related problems, the index “0” in the general formulas of the perturbation theory has to 
be understood as the set { n = 1, l = 0, m = 0}.  
119 This fact may be even more obvious from the explicit form of the lowest-order spherical harmonics – see Eqs. 
(3.174)-(3.176). 
120 This is just one more manifestation of the selection rules for the orbital electric-dipole transitions, l = 1, m = 
0, 1, which were repeatedly discussed in this course – see in particular Problem 5.35. 
43 Alternatively, see Eq. (3.201) with C = e2/40. 
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For the first (and the largest) term of the sum, with n = 2, In may be readily calculated by using Eqs. 
(3.208)-(3.209) with r0 = rB and a well-known integral121: 
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so the first term of the sum in Eq. (**) equals (215/2/39/2)4/(1 – 1/22) = 232/320  3.69. 

 In order to calculate In for higher values of n, we would need to use the heavy artillery of Eqs. 
(3.195)-(3.197), but since the radial wavefunctions Rn,l  in the integrals In are normalized in the sense of 
Eq. (3.194), and the scale of the spatial extension of the product Rn,1R1,0 is [n/(n + 1)] rB, all these 
integrals are proportional to rB, while decreasing fast with n – compare, for example, the blue-line plots 
for Rn,1 with n = 2 and n = 3 in Fig. 3.22. As a result, the whole sum in Eq. (**) is not much larger than 
its  first term, and hence, taking into account the front coefficient (2/3), the interaction energy may be 
fairly estimated as 
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
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

r

r
EU . 

 Since our calculations are based on a perturbative approach, this result is only valid if U  << 
EH, i.e. if r >> rB. (On shorter distances between the atoms, the much stronger covalent bonding takes 
over – see its discussion in Sec. 2.6 of the lecture notes.) 

 

Problem 6.21. In a certain quantum system, distances between the three 
lowest energy levels are slightly different – see the figure on the right (  << 
1,2). Assuming that the involved matrix elements of the perturbation 
Hamiltonian are known and are all proportional to the external ac field’s 
amplitude, find the time necessary to populate the first excited level almost 
completely (with a given precision   << 1), by using the Rabi oscillation 
effect, if at t = 0, the system is in its ground state. Spell out your result for a 
weakly anharmonic 1D oscillator.  

 Solution: Since   1 – (W1)max << 1, the undesirable population of the second excited level, W2 < 
, is small, so we may first calculate W1 ignoring the probability amplitude a2, i.e. exactly as it was done 
in the two-level approximation in Sec. 6.5 of the lecture notes. For the precise tuning of the external 

121 See, e.g., MA (6.7d) with n = 4. 
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excitation frequency,  =1 (which is necessary to approach (W1)max = 1), i.e. for   10 = 0, Eq. 
(6.99) with A = A10 gives  =  A10 /, and we may use Eq. (6.100) ) of the lecture notes to write 

         


1010
1   where,sinsin)(

A
ti

tA
itb   ,    

so from the first of Eqs. (6.96), also with  = 0, we get 

        .sin1 tita       (*) 

 Now, neglecting the effect of the small amplitude a2(t) of the second excited state on the function 
a1(t), we may plug Eq. (*) into the first of Eqs. (6.94) written for n = 2, n’ = 1, and hence with  = 21  
 – 2 = – , and A = A21;122 
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Its integration is elementary, and (with the initial condition a2(0) = 0) yields 
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According to Eq. (*), the occupation W1(t) =  a1(t) 2 =  sint 2 of the 1st excited state reaches its 
maximum periodically, at the moments 
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where the sign depends on whether the integer m is even (+) or odd (–). At these moments, 
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From here, the 2nd level’s occupation at these moments is 
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 Generally, the frequencies  and  are incommensurate, so the sine function in this result may 
take any values between –1 and +1. We are interested in the smallest possible W2, which is achieved in 
the latter case: 
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From the requirement for this expression to be not larger than the given  << 1, and the assumed 
proportionality of both  A10 and  A21 to the same ac excitation amplitude, the smallest (in that 
amplitude) occupancy inversion time is achieved at    <<  : 

122 At   0, the direct excitation of the second-level state from the initial one is negligible in comparison with 
the nearly resonant excitation of that level from the first excited state, which we are calculating. 
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 This time tends to infinity at   0 (the perfect inversion requirement) and/or   0 (equidistant 
energy levels, such as in a harmonic oscillator). For a slightly anharmonic 1D oscillator, excited by an 
external classical force F(t), the perturbation Hamiltonian is 

xtFtH ˆ)()(ˆ )1(  , 

and the matrix element ratio that participates in Eq. (***) may be readily calculated from Eq. (5.92): 
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while the detuning  may be evaluated using Eqs. (6.16) and (6.23): 
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where  and  are the anharmonicity coefficients defined by Eq. (6.2). Evidently, the smaller the 
coefficients (or rather the magnitude of their combination on the right-hand side of the last expression) 
the larger the shortest population inversion time (***). This trend will be used in Sec. 8.5 of the lecture 
notes to explain why adding external (linear) circuit elements to Josephson-junction qubits, while 
having a beneficial effect of decreasing their relative coupling to the environment and hence increasing 
the dephasing time, creates a problem of the quantum computing speed reduction. 

 

 Problem 6.22.* Analyze the possibility of a slow transfer of a system 
from one of its energy levels to another one (in the figure on the right, from 
level  1 to level 3), by using the scheme shown in that figure, in which the 
monochromatic external excitation amplitudes A+ and A– may be slowly 
changed at will. 

 Solution: Assuming, for the sake of simplicity, the exact tuning of the excitation frequencies,123  

,, 3212 EEEE      

and ignoring, for now, the slow change of the amplitudes A+ and A– with time, we may write the 
following obvious generalization of Eqs. (6.97), with  = 0, for this system: 

       2331221 ,, ** bAbibAbAbibAbi    .   (*) 

 Looking for the partial solution of this system of three homogeneous linear differential equations 
in the usual form exp{t}, we get the following characteristic equation: 

123 A more detailed analysis shows that the procedure discussed below is more tolerant to the common detuning  
 E2 – (E1 + +) = E2 – (E3 + –) than to the relative detuning   (E1 + +) – (E3 + –) – see, e.g., Fig. 10 in 
the review by N. Vitanov et al., Rev. Mod. Phys. 89, 015006 (2017). 
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This equation has 3 roots: two of them corresponding to the Rabi oscillation’s half-frequency:124  
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and one more root 0 = 0. The mathematical origin of the last result is clearly visible from the 
comparison of the first and the last equations (*): it shows that if b2  0, then  


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b 31
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, 

i.e. that the system of equations has the following integral of motion: 

         const31   CbAbA .     (***)  

Physically, the origin of this relation is that in this three-level system, the probability amplitudes b1 and 
b3 may change only due to b2, and at fixed A, these changes are proportional.  

 It is intuitively clear that Eqs. (*)-(***) hold even if the excitation amplitudes A+ and A– are 
changed in time sufficiently slowly (“adiabatically”) – much slower than the Rabi frequency . As a 
result, they may be used to describe the following counter-intuitive operation. First, starting with one of 
the energy levels being fully populated (say, b1 = 1) but two other energy levels 2 and 3 empty (b2 = b3 = 
0), let us turn on the external field of the frequency –, i.e. make A–* equal to some A0  0, thus making 
the last two of Eqs. (*) valid – so far, with A+ = 0. (Such Rabi-connected, but unoccupied states are 
frequently called dark.) However, since b2 = 0, Eq. (***) is still not valid. Indeed, as the first of Eqs. (*) 
shows, the state corresponding to the energy level E1 is still fully uncoupled from the (now, Rabi-
coupled) “dark” quantum states of the levels E2 and E3. 

 Now let us slowly increase the amplitude A+ of the external field of the frequency +, 
simultaneously decreasing A–, so the Rabi frequency (**) would stay constant, equal to A0/; in this 
case, Eq. (***), now valid, may be conveniently rewritten as 

        
00

31 sin,cos  whereconst,sincos
A

A

A

A
cbb    .  (****) 

At some, rather small, value of A+ (which depends on the rate of its increase), the Rabi effect makes the 
probability amplitude b2 sufficiently different from zero to make Eq. (****) valid, thus establishing the 
integration constant c. Since at this moment, b1 is still very close to 1, and A– to A0, i.e. the angle   to 0, 
this constant c is close to 1. According to Eq. (****), as this slow process is continued, with the 
parameter   being changed from 0 to /2, the variable  b3 , and hence the occupancy W3 =  b3 2 of the 
level E3 gradually increases, while W1 =  b1 2 decreases. Finally, at some small value A– << A0, i.e. at  
 /2, when Eq. (****) is still valid, it yields b3  – 1, and b1  0, i.e. W3  1, while W1  0. At this 

124 This expression for  is an obvious generalization of Eq. (6.99) of the lecture notes, with  = 0. 
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point, a full turn-off of the field of the frequency  – completely isolates the now-occupied state on level 
E3 from the other two states (which now form another pair of Rabi-coupled “dark” states, with W1,2 << 
1). After that, the excitation of frequency + may be turned off without any effect on these (zero) 
occupancies. 

 So, using the Rabi coupling of two initially empty (“dark”) states first, and only then turning on 
the coupling of this pair with the initially occupied state, we may perform a virtually complete adiabatic 
transfer of the system from one energy level to another one.125 In contrast to the direct -pulse of Rabi-
oscillations between the initial and final levels, this procedure does not require exact timing. Due to this 
advantage, the STIRAP process, initially just a quantum curiosity, is now finding more and more 
applications in atomic, molecular, and solid-state physics and chemistry – see, e.g., the already cited 
review by Vitanov et al. 

 

 Problem 6.23. A weak external force pulse F(t), of a finite time duration, is applied to the 
particle in a system with a discrete energy spectrum, which initially was in its ground state.  

 (i) Derive, in the lowest nonvanishing order of the perturbation theory, a formula for the 
probability that the pulse drives the particle into its nth excited state.  
 (ii) Specify this formula for a 1D harmonic oscillator and compare the result with the exact 
solution of the problem. 
 (iii) Spell out the perturbative result for the Gaussian-shaped waveform F(t) = F0exp{–t2/2} and 
analyze its dependence on the scale   of the pulse duration. 

 Solutions:  

 (i) The general approach to such problems is given by the set of (exact!) Eqs. (6.84) of the 
lecture notes. As was argued at the derivation of Eq. (6.90) (for a specific time dependence of the 
perturbation), in the lowest order of the perturbation theory we may leave, on the right-hand sides of 
these equations, only the terms whose probability amplitudes an’ are initially different from zero. In our 
current problem, this is only the ground-state amplitude a0 = 1, so the right-hand side of each Eq. (6.84), 
with n’ = 0, is reduced to just one term: 

                  .01
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ti n
nn etHai
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As was repeatedly discussed in this course, a weak, coordinate-independent force F(t) may be described 
by the following perturbation: 

     xtFtH ˆˆ 1  , 
so Eq. (*) takes the form 
             ,0
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where xn0 are the matrix elements of the coordinate operator in the unperturbed brackets – see Eq. (6.8). 
This equation may be readily integrated, with zero initial conditions an(–) = 0, to give 

125 Because of its counter-intuitive nature, this STIRAP (Stimulated Raman Adiabatic Passage) procedure was 
invented, by U. Gaubatz et al., only in 1988, i.e. only after four decades of studies of various Rabi-oscillation 
effects by many research groups. It is even more curious that the opposite, more apparent time sequence of the 
external ac field changes gives worse transfer results, in particular because of its higher sensitivity to 
unintentional (but unavoidable) coupling to the environment – to be discussed in Chapter 7. 
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Hence the probability of finding the system, at a moment t > 0, in its nth excited state is 
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If the pulse has a finite duration, the final value of Wn is described by this formula with the upper limit 
taken at any time after the pulse’s end. 126 

 (ii) As Eq. (5.92) of the lecture notes shows, for a 1D harmonic oscillator, all xn0 equal zero, with 
just one exception:  
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so Eq. (**) yields the result that was already obtained in the model solution of Problem 17 (by 
somewhat different means): 
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Just as in that solution, due to our initial assumptions, Eq. (***) is only valid if W1(+) << 1, i.e. if 

      0

2
2 mI  .     (****)  

As was discussed in the model solution of  the same Problem 17, for this particular system (the 
harmonic oscillator, initially in the ground state), the exact solution valid for any W1 is also possible: 
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if the condition (****) is satisfied, this formula duly reduces to the perturbative result (***). 

 (iii) For the particular pulse shape given in the assignment, I is a standard Gaussian integral, 
which may be readily worked out as was discussed in Sec. 2.2 of the lecture notes – see Eqs. (2.21)-
(2.23): 
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so, finally, the probability (***) of the oscillator’s excitation is  

126 The integral converges for any pulse of finite duration, i.e. if F(t)  0 at t  . 
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According to this formula, at fixed other parameters, the excitation is most effective at opt = 
2/0, i.e. if the pulse’s duration is of the order of the oscillator’s period. This is natural because a much 
shorter pulse does not give the system enough time to accomplish the interstate quantum transition, 
while a very long pulse is just an adiabatic change of an oscillator’s parameter (namely, of its 
equilibrium position X0(t) = F(t)/m0

2) and, according to the discussion at the beginning of Sec. 6.5 of 
the lecture notes (and in the solution of Problem 17), leaves the system in its initial quantum state with a 
nearly 100% probability. 

 

 Problem 6.24. A spatially uniform but time-dependent external electric field E(t) is applied, 
starting from t = 0, to a charged planar rotor, initially in its ground state.  

 (i) Calculate, in the lowest nonvanishing order in the field’s strength, the probability that by a 
certain time t > 0, the rotor is in its mth excited state.  
 (ii) Spell out and analyze your results for a constant-magnitude field rotating, with a constant 
angular velocity , within the rotor’s plane. 
 (iii) Do the same for a monochromatic field of frequency , with a fixed direction. 

 Solutions:  

 (i) Acting exactly as in Sec. 6.5 of the lecture notes (see also the model solution of the previous 
problem), let us solve Eq. (6.84) of the lecture notes, with the appropriate notation replacement n  m, 
in the first perturbation order by taking, on its right-hand side, all probability amplitudes am’(t) equal 
zero except for that of the ground state: a0(t) = 1 for all t. The resulting (approximate) equation of 
motion is 

             0for  ,with  ,exp 0
00

1
0 


 m

EE
titHai m

mmmm


  ,  (*) 

where  1
0mH  are the matrix elements of the perturbation created by the field, in the unperturbed-state 

basis of the rotor.  

 Now let us specify these matrix elements. The perturbation Hamiltonian created by a uniform 
electric plane is a natural generalization of Eq. (6.29): 

               ttqRtytxqtqtH yxyx EEEE  sincosˆ 1  Eρ , 

where [x, y] is the rotor’s plane, and  is the polar angle within it.127 In the basis of the stationary states 
of the rotor, with the wavefunctions given by Eq. (3.129) with the evident normalization  Cm 2 = 1/2: 

    
 

.,..2,1,0with  ,
2

1
2/1

 meim
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


 ,   (**) 

the matrix elements participating in Eq. (*) are  

127 For the 2D model of the rotor, the field’s component normal to this plane, does not have any effect on its 
dynamics. (Formally, you may say that its contribution to the perturbation Hamiltonian is zEz(t), where z = 0.) 
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Per this expression, only the matrix elements with m = 1 are different from zero:128 

        .
2

1
0,1 tit

qR
tH yx EE   

so, solving the simple Eq. (*), we see that the weak pulse may drive the system only into its two lowest 
excited states, with the same energy E+1 = E–1 = 2/2mR2: 
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 (ii) This result shows that the probabilities of excitation of these two degenerate states are not 
always equal. The best example is that of a field rapidly rotating within the rotor’s plane – for example, 
in the positive direction (counterclockwise): 

        0for  ,sin,cos 00  ttttt yx  EEEE , 

where E0, , and  are constants, so 
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Plugging this expression into Eq. (***), we get 
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. 

 This expression shows that, as might be expected from the discussion in Sec. 6.5 of the lecture 
notes and in particular Eq. (6.90), both probabilities oscillate in time, generally with comparable if 
quantitatively different amplitudes. However, if the external field frequency  is very close to that (10) 
of the potential interlevel transitions, the oscillations of the probability W+1 are much larger than those 

128 This is again one of the manifestations of the selection rules in quantum transitions. Note that according to our 
calculation, in axially symmetric 2D systems the rules require a change of the magnetic quantum number m by 1, 
while in the spherically-symmetric 3D systems, they require a similar change of the orbital quantum number l, 
while the magnetic number may either change by 1 or stay constant – see the footnote at the end of Sec. 5.6, and 
also Problem 5.41. 
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of its counterpart, W–1.129 This is very natural because the time-dependent wavefunction corresponding 
to Eq. (**) with m = +1, 
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, 

describes a de Broglie wave propagating in the same (counterclockwise) direction as the field. (In the 
case of the opposite, clockwise direction of the field’s rotation, the probability of the opposite state, with 
m = –1, is similarly enhanced.) 

 This effect may be partly interpreted classically, by saying that the rotor’s angular momentum Lz 
picks up a part of the angular momentum of the rotating field. 

 (iii) For an ac field with a fixed direction,  

        0for  ,cossin,coscos 0000  ttttt yx  EEEE , 

where 0 is the angle between the field’s direction and the x-axis, the result is different: 
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so Eq. (***) yields 
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 This bulky result (which does not benefit much from its further processing) shows that the 
probabilities of the excitation of both states are equal, and do not depend on the field’s inclination angle 
0. Both these features may be explained by the fact that the “linearly-polarized” field of a fixed 
direction may be always represented as the sum of two rotating fields (if we speak about waves, by two 
circularly-polarized waves) with equal amplitudes, regardless of the angle 0. In particular, at   10, 
both probabilities exhibit the same resonant behavior as in the rotating field case. 

  

 Problem 6.25. A heavy relativistic particle, with electric charge q = Ze, flies by a hydrogen atom, 
initially in its ground state, with an impact parameter b within the range rB << b <<  rB/, where  is the 
fine structure constant (6.62). Calculate the total probability of the atom’s transition into one of its 
lowest excited states. 

 Solution: Due to the large mass of the flying-by particle, we may neglect the effects of its 
Coulomb interaction with the atom, as well as quantum-mechanical uncertainty, on its motion. In the 

129 In exploring this resonance behavior, we should not forget that our perturbative result is only valid if both 
probabilities W1 are much smaller than 1. 
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absence of these effects, the motion is classical and uniform (acceleration-free), so the electric and 
magnetic fields felt by the atom may be readily calculated. Such calculation yields130  
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 Here the y-axis is directed along the particle’s velocity u, z is the 
direction from the nearest-approach point toward the atom (see the figure on the 
right), time t (as measured in the reference frame of the hydrogen atom) is 
referred to the instant of the nearest approach, and   (1 – u2/c2)–1/2  1 is the 
relativistic Lorentz parameter. Note that Eqs. (*) are exactly valid only at the 
center of the atom (from which the impact parameter is measured), but given the 
condition rB << b, we may use them at all essential distances r ~ rB of the 
electron from the center. 

 Since, according to Eqs. (1.13) of the lecture notes, the effective speed v ~ 0rB (where 0  
EH/) of the electron inside the atom is of the order of c << c, Eqs. (*) show that the magnetic 
component –evB of the Lorentz force acting on the atom’s electron is much smaller than its electric 
component –eE. Hence we may include only the latter force into the Hamiltonian of the particle-electron 
interaction:  

              cossinsinˆ
int tterztytetetH zyzy EEEE  rE , 

where  and  are the spherical angles of the atom’s electron.  

 Now acting exactly as in the solutions of the two previous problems, in the 1st order of the 
perturbation theory, we get the following total probability (reached at t >> b/u) of the transition from 
the ground state (with the quantum numbers n = 1, l = 0, and m = 0) into the lowest excited states (with 
n = 2, and either l = 0 and m = 0, or l = 1 and m = –1, 0, or +1): 
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where n = 2, l, and m are the quantum numbers of the final state, while  
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  As Eqs. (*) show, for a relativistic particle with u ~ c, the field’s pulse it induces at the atom’s 
location, and hence the interaction Hamiltonian as the function of time, have the duration t of the order 
of b/u, i.e. either of the order or even shorter than b/c. The second of the conditions given in the 
assignment, b << rB/, means that this t is much smaller than rB/c. On the other hand, the exponent in 
Eq. (**) changes with frequency 12 ~ EH/, so their product satisfies the condition 

130 See, e.g., EM Sec. 9.5, in particular, Eqs. (9.139)-(9.140), with the axis notation replacement x  y  z  x.  
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Hence the exponent in Eq. (**) cannot change significantly during the particle’ passage, and we may 
take it from under the integral over time, getting 
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Since, according to Eq. (*), Ey(t) is an odd function of time, the integral of the first term in its symmetric 
(infinite) limits vanishes, and we are left with 
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 The integral I is readily reduced to a table one:131 

 
    ub

qd

ub

q

btu

dt
b

q
dttI z

2

41

2

44 00
2/32

0
2/32222

0 













 








E . 

Now we can make use of Eq. (3.200) of the lecture notes to spell out the needed matrix elements: 
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 Together with Eqs. (3.174)-(3.175), this expression shows, first of all, that the matrix element for 
the final 2s state (with l = 0, m = 0) vanishes because of the integral over the polar angle : 
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For two of the three 2p states (with l = 1, and m = 1), whose spherical harmonics are proportional to 
ei, the matrix elements vanish because of the integral over the azimuthal angle, and only for the 2p 
state with m = 0, the matrix element is different from zero: 
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Both these integrals were (easily :-) calculated in the solution of Problem 20: 
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131 See, e.g., MA Eq. (6.5c). 
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where 0  EH/.  

 As was discussed above, this result was derived for 12t ~ 0b/u  << 1 and rB << b, so the two 
last fractions inside the last parentheses are much smaller than 1, meaning that for not extremely high 
values of Z and , the excitation probability is very low. (If the product Z is so high that our result 
yields W of the order of 1 or higher, it should be revised, because the approximation leading to Eq. (**) 
is only valid if it yields W << 1 – see Eq. (6.89) of the lecture notes.) 

 

 Problem 6.26. Develop a general theory of quantum excitations of the higher levels of a discrete-
spectrum system, initially in the ground state, by a weak time-dependent perturbation, up to the 2nd 
order. Spell out and discuss the result for the case of monochromatic excitation, at a nearly perfect 
tuning of its frequency  to the half of a certain quantum transition frequency n0  (En – E0)/ . 

 Solution: Let us start from the general system of (exact) equations (6.84) for the state probability 
amplitudes an: 

            


 n'n
nn'nn'

n'
nnn'n

EE
titHaai


   with  ,exp1

' ,  (*) 

where En are the energy levels of the system in the absence of perturbation, and look for its solution in 
the form of an expansion similar to Eqs. (6.9)-(6.10) of the lecture notes: 

              kk
nnnnn tatatatata  with  ...,210 , 

where the small parameter  is the scale of the perturbation Hamiltonian   tH 1ˆ . If by the beginning of 
the perturbation (the instant that we may take for t = 0), the system was definitely in its ground state (n = 
0),  then we may take an

(0)(0) = n,0. Plugging these values into the right-hand side of Eqs. (*) with n  0, 
in the 1st order of the theory, we get the simplified equation 

       ,exp 0
1
0

1 titHai nnn   

with an easy solution:132 

                       0for  ,exp
1

0

0
1
0

1   n'dtt'it'H
i

ta
t

nnn 


.   (**) 

The resulting occupancy of the nth energy level is 

        211 tatW nn   

 If for some reason we need a more exact result (say, if the resulting Wn
(1) vanishes for a certain 

state we are interested in), we may pursue the 2nd-order approximation by plugging Eq. (**), rewritten 
for index n’,  into the right-hand side of Eqs. (*). This gives us the equation, 

                      ,expexp
1

exp
0 0

0
1
0'

11

0

12  



n'

t

n'n'nnnn'nn'nn'
n'

n'n dt't'it'HtitH
i

titHaai 


  

whose solution may be also expressed in the integral form:  

132 Note that this approximation was already used in the model solutions of the three previous problems. 
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                          



0 0

0
1
0

0

1
'2

2 expexp
1

n'

t

n'n'

t'

nn'nnn t"it"Hdt"t'it'Hdt'ta 


.  (***) 

This probability amplitude determines the occupation of the levels whose excitation is not described in 
the 1st order: 

        222 tatW nn  . 

 In the particular case of the monochromatic (sinusoidal) excitation described by Eq. (6.86) of the 
lecture notes, 












 ,0for     ,ˆˆ

,0for                            ,0
)(ˆ

†
)1(

teAeA

t
tH

titi 
 

both integrals in Eq. (***) may be readily worked out. The result is bulky but becomes compact in the 
case of a nearly perfect tuning mentioned in the assignment, i.e. when   2 – n0  0: 
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2
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   so,1

1 2

2

0' 0

0
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 
 







. 

 This expression (strictly valid only if Wn
(2) << 1) formally diverges at   

0, i.e. describes a resonant excitation of the nth state, which is possible even if the 
“direct” matrix element An0 vanishes, and even if the excitation frequency  itself 
is not in resonance with any of the quantum transition frequencies n’0, so as a 
result, no other states are strongly excited – see the sketch in the figure on the 
right.133 This is an example of what is usually, especially in quantum optics, 
called the two-photon excitation.   

 Another possible case of the two-photon (and more generally, multi-photon) excitation takes 

place when the perturbation Hamiltonian  1Ĥ  is a nonlinear function of the applied field. (At the 
perturbative treatment of this case, it may be unnecessary to go beyond the 1st-order result (**) because 
the time dependence of the perturbation may contain higher harmonics of the field’s frequency.)  

 

 Problem 6.27. A particle of mass m is initially in a localized ground state, with energy Eg < 0, of 
a very-short-range, spherically symmetric potential well. Calculate the rate of its delocalization by an 
applied classical force F(t) = nF0cost with a time-independent direction n. 

 Solution: This is essentially a generalization of the 1D problem solved in Sec. 6.6 of the lecture 
notes, and may be solved similarly, with due respect to its 3D aspects. First, the wavefunction of the 
initial (ground) state is different – see the solution of Problem 9: 

 
0

2
  where,

exp

2 g

222/1

0 








 E

mr

r 

 

. 

133 Note that this situation differs from that considered in Problem 21, where the involved energy levels are nearly 
equidistant, and the excitation of the second of them is conditioned by a high occupation of the first one.  





0E

1E

nE


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Second, the perturbative Hamiltonian now includes a scalar product: 

    tFtH cosˆˆˆ
0

1 rnrF  . 

Since the state is spherically symmetric, it is beneficial to direct the z-axis along the (time-independent) 
direction n of the force, and thus reduce the perturbation Hamiltonian to the simple form (6.86): 

  0for  ,
2

cos

2
ˆwithˆˆcosˆˆ 00

0
1   ,

†   t
rFzF

AeAeAtzFH titi 
  , 

where  is the usual polar angle. Finally, we need to find the extended final-state wavefunctions n 
describing the escaped (delocalized) particle,134 that would have non-zero values of the matrix elements 

     rrr nnn ddrre
F

rdAA r 

  cos
22

ˆ
0

2/1

03
00

*  








  

that determine the Golden Rule rate (6.111) of transitions from the ground state with n’ = 0. Since cos 
is proportional to only one of the spherical harmonics (namely, Y1

0(, ) – see Eq. (3.175) of the lecture 
notes), and all such harmonics are orthogonal, this integral does not vanish only for the final-state 
wavefunctions proportional to cos and independent of . 

 There are two natural ways to construct such wavefunctions. One is to use the solution of the 
problem solved at the end of Sec. 3.6, giving such functions in the form Eq. (3.187) with l = 1: 

     cos1 rkjC nnn r , 

where j1() is a spherical Bessel function, and kn is related to the final-state energy as 

         
m

k
E n

n 2

22
 .      (*) 

However, let me leave using this approach for the next, similar problem, and use this occasion to 
illustrate an alternative approach based on plane de Broglie waves n(r)  exp{iknr}, where the 
magnitude of vector kn satisfies the same Eq. (*). Indeed, since the localizing potential U(r) differs from 
zero only at the origin, such wavefunctions are legitimate solutions of the Schrödinger equation at r  0. 
Moreover, the spherically symmetric potential U(r), proportional to Y0

0(, ) = const, does not alter 
those of the waves that give nonvanishing contributions to An0. The normalization coefficient may be 
found, as usual (see, e.g., Sec. 1.7), by requiring the particle to be confined within an artificial, very 
large volume V >> 1/kn

3, 1/3. Then the normalized wavefunctions are 

      zkykxki
V

i
V

r zyxnn  exp
1

exp
1

2/12/1
rk , 

and our matrix elements may be rewritten as 

    
rd

r

r
zkykxkiz
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F
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V

zyxn
3

2/1

0
0
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22 














. 

134 Of course, such states exist only for energies En > 0, and hence the “ionization” is an effect with a low-
frequency threshold:  = 0 if  < min   Eg /. 
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 Perhaps the easiest way to calculate the integral in this expression is to notice that it is equal to 
I/(ikz), where I is a similar integral but without the factor z before the exponent: 

        
rd

r

r
ird

r

r
zkykxkiI

V

n

V

zyx
33 exp
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exp 








rk . 

Indeed, the integral I is evidently independent of the direction of the vector kn, and we may take this 
direction for a new axis z’ (independent of the direction z of the applied force!), and calculate it in these 
new spherical coordinates {r, ’, ’}:135 
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where kn
2 = kx

2 + ky
2 + kz

2. From here,  
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 Since this matrix element depends not only on the magnitude but also on the direction of the 
vector kn, we should use the state number counting rule (1.90) with caution, first applying it to the states 
with vectors kn within a small solid angle d << 4, with a virtually constant angle :  

 
 ddkk

V
dN nnn

2
32

. 

Combined with the derivative of Eq. (*), dEn = (2/m)kndkn, this relation gives the following 
“directional” (angle-differential) density of  states: 

   
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so the Golden Rule (6.111) yields136 
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. 

 This partial rate is the probability of the particle’s delocalization in unit time, with the condition 
that its final wave vector kn is within the elementary solid angle d. Note that the angular distribution of 

135 Since the function under integral decays at distances r ~ -1 << V1/3, the integration volume restriction may be 
ignored here. 
136 Note that the artificial binding volume V has canceled – the condition necessary for the legitimacy of this 
normalization procedure. 
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the delocalized particles vanishes in all directions normal to that of the applied force (with  = /2). The 
total rate may now be calculated by the summation of such partial rates over the whole solid angle: 
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. 

 In order to discuss the frequency dependence of this rate, it is useful to notice that due to the 
energy conservation (formally expressed by Eq. (6.93) of the lecture notes – see also Fig. 6.10),  
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our result may be rewritten in a simpler form: 
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 Per this formula, the rate first increases when  exceeds its threshold value min    Eg /, and 
then (beyond  = (8/5)min) decreases again, vanishing at   . This behavior is qualitatively similar 
to, but quantitatively different from that in the 1D case – cf. Eq. (6.133) of the lecture notes. 

 

 Problem 6.28. Calculate the rate of ionization of a hydrogen atom, initially in its ground state, by 
a classical, linearly polarized electromagnetic wave with a frequency   within the range 

.
B

2
Be r

c

rm
 

 

Recast your result in terms of the cross-section of electromagnetic wave absorption. Discuss briefly 
what changes of the theory would be necessary if each of the above two conditions had been violated. 

Solution: Due to the second of the conditions specified in the assignment, the electromagnetic 
wavelength,  = 2c/, is much larger than the Bohr radius rB, i.e. the linear scale of the atom’s 
wavefunction extension. In this limit, the spatial variation of the field may be ignored, so following Eq. 
(6.29) of the lecture notes, with q = –e, the perturbation Hamiltonian may be taken in the form 

,ˆ
2

1ˆˆwith  ˆˆcosˆˆ
00

)1( †
,

† zeAAeAeAtzeH titi EE     

where E0 is the wave field’s amplitude, and the z-axis is directed along the electric field’s polarization.  

 The first of the given conditions ensures that the electron’s final state energy, 

,
2

H   
E

EE n'n  

is much higher than the Hartree energy EH  27 eV. This condition allows us to neglect the atom’s effect 
on the final state’s wavefunctions, and take them in the form of free-particle de Broglie waves.137 It is 

137 Note that the previous, conceptually very similar problem could be solved analytically without imposing such 
a condition because the very short-range binding potential U(r), considered in it, does not disturb the relevant 
final states, corresponding to l = 1, with any energy En > 0. 
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possible to take these wavefunctions in the form of plane waves, n(r)  exp{iknr}, with the magnitude 
of wave vector kn related to the final state energy En > 0 as  

         ,
2 e

22

n
n E

m

k



      (*) 

but then the matrix elements An0 that participate in the Golden Rule (6.111) would depend not only on 
the magnitude of vector kn (i.e., on the final state energy En) but also on the direction of this vector, 
making that formula directly applicable only to each subset of final states within a small solid angle d, 
with a definite angle   between the vectors kn and nz. Though this technical difficulty may be readily 
overcome (see the solution of the previous problem), let me use here an alternative approach, which was 
only mentioned in that solution.  

 Let us look at the angular structure of the matrix elements, in the coordinate representation: 

rdAA nn
3

00
ˆ*  . 

While according to Eqs. (3.174), (3.200), and (3.208) of the lecture note (with r0 = rB), the initial, 
ground-state wavefunction 0 is spherically symmetric,  
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the perturbation operator does have an angular dependence, and according to Eq. (3.175), may be 
represented as 
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Since the spherical harmonics are orthogonal, the angular factor of the matrix element integral does not 
vanish only if the final state is also proportional to the same spherical harmonic – with the quantum 
numbers l = 1 and m = 0. As we know from the problem solved in the end of Sec. 3.6 of the lecture 
notes, for a free particle with energy En, such a function is 

),,()( 0
11  YrkjC nnn   

where the wave number kn satisfies the same Eq. (*), and the spherical Bessel function j1 is rather simple 
– see Eq. (3.186): 

.
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The normalization coefficient Cn may be readily calculated by introducing an auxiliary confining sphere 
of a sufficiently large radius R >> 1/kn, and imposing some boundary condition, say n(R) = 0, on its 
surface. In this case, the second term in the expression for j1() dominates the normalization integral: 
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(where at the second step, the spherical harmonics’ orthonormality was used), so we may take 
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 Now, by assuming that this R is much larger than rB as well (as we certainly may, due to the 
artificial character of R), we can calculate the required matrix element by ignoring that upper bound: 
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where the angular integral equals 1 again. It may look like that due to the first of the conditions given in 
the assignment, kn >> 1/rB, in the radial integral I, we can again keep only the second, more slowly 
decaying part of j1(knr). However, due to the exponential cut-off at r ~ rB, this is not so; indeed: 
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 These are two well-known integrals,138 equal to 1/2 and 2/3, correspondingly, so 
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We see that the contributions from both terms are comparable even in the limit kn >> rB
–1 pursued at the 

last step. As a result, we get 
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 What remains is to calculate the density of the final states. For knR >>1, the boundary condition 
j1(knR) = 0 yields knR  n + const, so dn/dkn = R/. Combining this relation with the derivative of Eq. 
(*), dEn = (2/me)kndkn, we get 
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With that, the Golden Rule (6.111) yields139 
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(Notice that the artificial confinement radius R has canceled, as it had to.)  

138 See, e.g., MA Eq. (6.7d) with n = 1 and n = 2. Since the functions under the integrals are analytical, these 
formulas are valid even for complex , provided that Re > 0, so the integrals converge at their upper limits. 
139 The reader is highly encouraged to re-derive this result by using the alternative plane-wave approach 
employed in the previous problem, as an additional exercise.  
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 In order to get a better feeling of the intensity of the ionization process, it is useful to consider it 
as the electromagnetic wave’s absorption (with the corresponding emission of one photoelectron per 
each absorbed photon) and borrow the notion of its total cross-section  from the scattering theory. 
Creatively adjusting Eq. (3.59) of the lecture notes, we may define this notion as   

,
/areaunit per  photons offlux incident 

secondper  atomby  absorbed photons ofnumber  average




S


  

where S is the Pointing vector’s magnitude, i.e. the plane electromagnetic wave’s power per unit area of 
its front. For plane waves in vacuum:140 
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Using our result for , the cross-section may be represented in the form 
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where kEM = /c is the electromagnetic wave’s wave number, and  

2202
BB m 1088.0  r  

is the effective “Bohr” cross-section area of the hydrogen atom. (As a reminder, rB  40
2/e2me.) 

 Since the strong conditions given in the assignment (and used in the solution) may be recast as 

,1 BBEM rkrk n  

we see that within our frequency range, the cross-section of the ionization process is much smaller than 
B. By the way, it is useful to estimate how broad this frequency range is. The ratio of the upper and 
lower bounds for , by the order of magnitude, is 
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where  is the fine structure constant (6.62). So, the specified frequency range is broad, but not too 
broad: if we want to keep both inequalities strong indeed, it is about one order of magnitude – in the 
electromagnetic wavelength, from ~10 nm to ~100 nm.141 In the middle of the range (at kEMrB ~ 0.1, knrB 
~ 10), we get  ~ 210-5B ~ 210–25 m2.142 This number means that if a sample has n ~ 0.51028 
hydrogen atoms per m3 (the number typical for the organic condensed matter), the penetration length   
= 1/n of such radiation,143 limited by the hydrogen photo-ionization, is about 10-3m, i.e. 1 mm.  

140 See, e.g., EM Sec. 7.1. 
141 Electromagnetic waves in this range are usually called extreme ultraviolet radiation – EUV (or XUV). 
142 Note that this  of the inelastic photoionization process is still much larger than the electron’s cross-section T 
= (8/3)B4  0.6710-29 m2 of the elastic (“Thomson”) scattering of electromagnetic waves – see, e.g., EM Sec. 
8.3, in particular Eq. (8.41). 
143 Let me hope that the reader has met the used expression,   = 1/n, earlier. If not: it may be readily obtained 
from the requirement that the expression for the decay –dS of the incident radiation in a layer of thickness dx << 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                 Page 379 

 Moreover, as may be readily proved by reviewing the above calculations, for hydrogen-like 
atoms/ions with an atomic number Z > 1, our result is valid with the replacement   Z5. Though this 
model is rather crude for other atoms, such scaling still hints that the EUV penetration length into any 
condensed matter is very small. This is true indeed, causing many problems with practical applications 
of such radiation, including high-resolution photolithography – the main process used for integrated 
circuit patterning. (For one, no refractive optics is available for the EUV, due to such high 
absorption.)144 

 Returning to the last assignment of the problem, in order to overcome the given lower frequency 
bound, we would need to modify the final-state wavefunctions to account for their interaction with the 
1/r-type potential profile of the hydrogen nuclei. (This may be done by studying the solutions of Eq. 
(3.193) of the lecture notes, with l = 1, for   > 0.) On the other hand, at frequencies higher than the 
specified upper bound of the frequency range, we would need to take into account the spatial 
dependence of the electromagnetic field. Any of the changes would make the calculations rather 
involved. 

  
Problem 6.29.* Use the quantum-mechanical Golden Rule to derive the general expression for 

the electric current I through a weak tunnel junction between two conductors, biased with dc voltage V, 
via the matrix elements that describe the tunneling, by treating the conductors as degenerate Fermi gases 
of electrons with negligible direct interaction. Simplify the result in the low-voltage limit. 

 Hint: The electric current flowing through a weak tunnel junction is so low that it does not 
substantially perturb the electron states inside each conductor. 

Solution: In thermal equilibrium (which is not perturbed by weak tunnel current), the Fermi gas 
of non-interacting electrons in each conductor may be described by a dense (quasi-continuous) set of 
energy levels En, occupied by electrons in accordance with the Fermi distribution f(En), which drops 
from 1 to 0 on the scale ~kBT as soon as the energy is increased above some value EF, called the Fermi 
energy.145 

The figure on the right shows (very schematically) the energy 
diagram of a tunnel junction biased by a time-independent (dc) voltage V, 
which creates the Fermi levels’ difference EF – E’F = –eV. Hence each 
energy level En’ in one conductor (referred to its Fermi level) becomes 
aligned with the level En = En’ + eV of another conductor. If level En’ is 
fully occupied, and level En is completely empty, the Golden Rule (6.137) 
for the rate of electron tunneling from left to right reads 
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, calculated from the definition of the cross-section, –dS = SdN = Sndx, coincides with the one, –dS = Sdx/, 
following from the exponential decay law, S  exp{–x/}, where x is the direction of radiation’s propagation. 
Note that similar (though not always identical) expressions are valid for the particle’s mean free path – see, e.g., 
SM Chapter 6. 
144 See, e.g., V. Bakshi, EUV Lithography, 2nd ed., SPIE (2018). 
145 For a detailed discussion of the Fermi distribution and the Fermi gas see, e.g., SM Secs. 2.8 and 3.3; for our 
current purposes, the particular form of the function f(E) is not important. 
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where Tnn’ is the matrix element of the electrode interaction, describing the tunneling barrier’s 
transparency, and R is the density of states in the right electrode (which should take into account the 
two-fold spin degeneracy of each orbital energy level). The electric current due to this rate would be just 
–e(En’). However, to account for an incomplete occupancy of the initial and final states of the electron, 
this expression has to be multiplied by f(En’)[1 – f(En)] = f(En’)[1 – f(En’ + eV)]. (The second multiplier 
reflects the Pauli principle for Fermi particles: if a state is already occupied by an electron, tunneling of 
an additional electron into the same state is forbidden.) Thus the electric current from the left (L) 
conductor into the right (R) one may be calculated as a sum over a quasi-continuous set of the levels En’, 
with the density L(En’): 
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 We should also take into account the back current I due to the reciprocal tunneling from the 
right into the left conductor, which differs from I only by the occupancy factors.  As a result, for the 
net current we get 
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 This expression is broadly used in the theory of tunnel junctions. It may be readily simplified in 
the limit when eV is small in comparison with the scale of the energy dependence of the matrix elements 
Tnn’ and the densities of states (but not necessarily with the thermal excitation scale kBT), so [f(En’) – 
f(En’ + eV)]  –df/dEEn’=EF eV, and 
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where the averaging is over all states on the Fermi surface (which is dominated by the states with the 
group velocity virtually normal to the junction plane). 

 In tunnel junctions between most conductors (say, semiconductors or normal metals), this Ohm’s 
law works very well at applied voltages up to several hundred mV. However, in some cases, this is not 
so. For example, in superconductors, the effective density of single-electron states is strongly suppressed 
within the so-called superconducting energy gap  ~ kBTc, where Tc is the critical temperature, near the 
Fermi energy. As a result, the I-V curves of tunnel junctions between superconductors may be strongly 
nonlinear on the scale of just a few meV, with the current rising sharply as the voltage reaches the 
threshold value Vt = (L+R)/e.146 

 

146 Historically, the experimental observation of this threshold in 1960 by I. Giaever (which brought him a Nobel 
Prize in Physics) was a key confirmation of the BCS theory of superconductivity developed in 1956-57 by J. 
Bardeen, L. Cooper, and R. Schrieffer. 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                 Page 381 

Problem 6.30.* Generalize the result of the previous problem to the case when a weak tunnel 
junction is biased with voltage V(t) = V0 + Acost, with  generally comparable with eV0 and eA. 

 Solution: Since weak tunneling does not perturb the electron states inside conductors, they 
remain stationary, i.e. their time dependence is reduced to exp{–iEnt/}, if the energy En of each state is 
referred to a fixed level inside the same conductor. However, if the voltage V(t) between two conductors 
is changed in time, we should count their energies from the same reference level, for example, the Fermi 
level of one of the conductors – say the “left” one (see the figure in the previous problem). Then for the 
states in that electrode, we may still use the same time dependence, exp{-iE’nt/}, but that in the “right” 
conductor should be appropriately generalized. 

 To do that, let us recall that the simple complex-exponential (i.e. sinusoidal) dependence results 
from applying the Schrödinger equation (1.25)147 to the situation when the wavefunction may be 
factored into its spatial and temporal parts – see Eq. (1.57): 

 rr nnn tat )(),(  . 

We can perform such a partition in our current case as well because the stationary eigenfunctions n(r) 
do not depend on the energy reference level. However, the Hamiltonian of the right electrode now 
acquires a time-dependent component: 
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so the equation for the complex amplitudes an(t) is now more general than Eq. (1.61a): 
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This simple equation may be easily integrated for an arbitrary time dependence V(t), giving 
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 If the voltage is constant in time (say, A = 0), this result is reduced to the usual exponential 
dependence: 
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In this case, the requirement for the matrix element Tnn’  a*n(t)an’(t) to be time-independent leads to the 
level-alignment condition En – eV = En’  that was already used in the solution of the previous problem. 
However, for the voltage V(t) = V0 + Acost, Eq. (*) yields a more general result: 
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Using the integral representation of the Bessel functions Jk() of the first kind with integer indices,148 the 
last exponent may be represented as a simple Fourier series:149 

147 The absolutely similar separation follows from the bra-ket form, Eq. (4.158), of the Schrödinger equation. 
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Let us use this representation to rewrite the above result for an(t) as 
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Translated into plain English, this formula tells us that from the point of view of the left conductor 
(where our energy reference is now located), each eigenstate of the right conductor is reproduced at an 
infinite set of energies separated by equal intervals E = , each with an amplitude multiplier of 
Jk(eA/). Since within the region of validity of the Golden Rule, these states may be treated as 
independent (incoherent) ones, the tunneling currents into/from each state of this set just add up. Hence, 
repeating all calculations of the previous problem, and taking into account that the component of Tnn’2 
 a*n(t)an’(t) corresponding to the kth term of the sum is now proportional to Jk

2(eA/), we may 
express the final result via that in the dc case (at A = 0):  
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 This famous Tien-Gordon formula150 shows that in the presence of an ac signal of amplitude A, 
the dc I-V curve may be represented as a sum of the original I-V curves (measured at A = 0), shifted 
along the dc voltage by intervals k/e, with their currents weight by Jk

2(eA/). (Since at large k, these 
factors decrease faster than 1/k, the sum is always finite.) This result is especially spectacular if the 
original current (in the absence of ac voltage) is negligible until a certain threshold Vt where it makes a 
finite jump, as it does in the case of tunnel junctions between two superconductors – see the discussion 
in the end of the previous problem’s solution. In this case, the external electromagnetic radiation creates 
similar jumps (“current steps”) at lower voltages Vt – k/e. This effect, called photon-assisted 
tunneling, may be interpreted as follows: the kth term of the sum (**) describes either absorption or 
emission of k quanta of the external radiation responsible for the ac part of the voltage V(t). Let me hope 
that the reader appreciates how smartly quantum mechanics manages to smuggle in the notion of 
electromagnetic field quanta even when we try to describe the field in a completely classical way. 

 Let me finish by offering the reader two additional tasks: 

(i) Use the properties of the Bessel functions to show that if the frequency  is reduced so much 
that the voltage interval /e becomes much smaller than the voltage scale of the original I-V curve’s 
nonlinearity, the Tien-Gordon formula (**) is reduced to the classical result 

 0,cos),( 00 tAVIAVI  , 

148 See, e.g., MA Eq. (6.15a). 
149 Such an expansion is of course possible for any periodic function of time, but for the exponent of a sinusoidal 
argument, it has especially simple coefficients. 
150 It was derived in 1963 by P. Tien and J. Gordon to explain the spectacular (and initially very surprising) 
effects of microwave irradiation on tunnel junctions between two superconductors, observed a year earlier by A. 
Dayem and R. Martin.  
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where the top bar means, as usual, time averaging – in our case, over the ac signal’s period. 

 (ii) Explain why the Tien-Gordon formula differs from the solution of a similar problem for a 
Josephson junction – see Problem 1.8. 

 

Problem 6.31.* Use the quantum-mechanical Golden Rule to derive the Landau-Zener formula 
(2.257).  

 Solution:151 As was discussed in Sec. 2.8 of the lecture notes, the Landau-Zener formula, which 
may be conveniently rewritten in the form (2.259), 
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may be interpreted as the expression for the probability of the 
system’s transfer to another branch of the anticrossing 
diagram (reproduced in the figure on the right), provided that 
it is dragged through the anticrossing with a constant “energy 
speed” 

 n'n EE
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d
u  , 

 where En and En’ are the unperturbed energies of the two 
states in the absence of their coupling described by the matrix 
coefficient Unn’. Note again that the Landau-Zener tunneling 
(indicated schematically with the solid straight arrow in the 
figure on the right) corresponds to the conservation of the initial unperturbed state n’, while its change, 
n’  n (shown with the dashed, curved arrow) corresponds to an adiabatic motion of the system along 
the same branch of the anticrossing diagram. 

 Of course, there is no explicit continuum of final states in this situation; however, from the point 
of view of the initial state (with the energy En’), the second energy level En passes by the reference level 
with the “velocity” u, and on average may be considered as forming a pseudo-continuum of states. As 
was briefly discussed in Sec. 6.6, a formal way to describe this fact is to replace the density of states n 
with the Dirac delta function (En – En’). In our current case, it is equal to (ut), so the  Golden Rule 
gives a time-dependent transition rate 

           )(
2 2

utUt nn' 


 .     (*) 

 Now let us write the probability decay equation (6.113) (essentially the definition of the rate ): 
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where Wn’ is the probability of the particle to remain in the initial state n’, i.e. in our case, the probability 
of the Landau-Zener tunneling – see the figure above. This equation may be readily solved for an 
arbitrary function (t), provided that its difference from zero has a limited time duration: 

151 See, e.g., M. Amin et al., Phys. Rev. A 79, 022107 (2009) and references therein. 
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For our particular case (*), and Wn’(t < 0) = 1, the integration immediately yields 
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thus giving us the Landau-Zener formula. 

 Actually, this result is highly nontrivial. Indeed, the standard derivation of the Golden Rule (see 
Sec. 6.6) is based on ignoring the coherence of the partial final states with close but different energies 
En. At the Landau-Zener transition, the role of all these fixed-energy states is played by a single state n 
at different moments of time, with the coherence of its increments effectively destroyed by the linear 
change of its eigenenergy in time. So, this is a spectacular example of a powerful theory working 
beyond its anticipated limits. 
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Chapter 7. Open Quantum Systems 

 Problem 7.1. Calculate the density matrix of a two-level system whose Hamiltonian is described, 
in a certain basis, by the following matrix: 

zzyyxx ccc σσσH  σc , 

where k are the Pauli matrices and cj are c-numbers, in thermodynamic equilibrium at temperature T. 

Solution: According to Eq. (7.24) of the lecture notes, in thermodynamic equilibrium, the density 
operator is diagonal in the energy eigenstate basis:  









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
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

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n

n

B

n
nnn'nnn' Tk

E
Z

Tk

E

Z
WWw

B

exp,exp
1

with  , . 

The eigenenergies of a two-level system are given by Eq. (5.6): 

  0  where,
2/1222  zyx cccccbE . 

As a result, the statistical sum is 

,expexp
BB 






 








 


Tk

cb

Tk

cb
Z  

so the state probabilities are 

         
 

      1/2exp

1

}/exp{}/exp{

}/exp{

BBB

B





 TkcTkcbTkcb

Tkcb
W


,  (*) 

and in particular, do not depend on the average energy b. 

 Now we have to transfer the density operator from the basis of the energy eigenstates (let us call 
them + and –}) to the z-basis of the states (say,  and ), in which the Hamiltonian matrix is given. This 
may be done by using Eq. (4.93) valid for any operator and any two bases {a} and {u}. For the case 
when in the {a} basis, wnn’ is diagonal (wnn’| in a = Wnn,n’), that general expression is reduced to 

,†††
222111

2,1
in j'jj'j

n
nj'njnujj' UWUUWUUWUw  



 

where U is the unitary matrix of transform between the bases, with its elements given by Eqs. (4.83)- 
(4.84): 

,,
*†

n'j'j'n'n'j'njjn auuaUauU   

so 

.
**

222111in ' auWauauWauw j'jj'jujj   

 With the stationary basis states a1,2 denoted as {+, –}, and the z-basis states u1,2, as {, }, the 
last relation gives the density matrix 
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while the transfer matrix coefficients are given by Eqs. (7.207): 
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where  and   are the angular variables discussed in Sec. 5.1,152 in which the c-number vector c is 
represented in the usual spherical-coordinate form 

 ,cos,sinsin,cossin cc  

while c  cx  icy, so we get153 
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with W given by Eq. (*). (As a sanity check, if cx = cy = 0, i.e. c = cz and c = 0, the matrix becomes 
diagonal, as it should.)  

 This result emphasizes once again that even in thermal equilibrium, the density matrix is 
diagonal only in a certain (stationary) basis, but not in others.   

 

 Problem 7.2. In the usual z-basis, spell out the density matrix of a spin-½ with gyromagnetic 
ratio : 

 (i) in a pure state with the spin definitely directed along the z-axis, 
 (ii) in a pure state with the spin definitely directed  along the x-axis, 
 (iii) in thermal equilibrium at temperature T, in a magnetic field directed along the z-axis, and 
 (iv) in thermal equilibrium at temperature T, in a magnetic field directed along the x-axis. 

 Solutions: 

 (i) In this case, the probability of the -state is 100%, so the basis of the states wj in which the 
density matrix is diagonal coincides with the z-basis. Hence we may use Eq. (7.18a) of the lecture notes 
to write 

152 See also the model solutions of Problems 4.27 and 5.4. 
153 As a reminder, the unitary matrix elements Ujj’, and hence the off-diagonal elements of the w-matrix, are 
defined to an arbitrary phase multiplier exp{ij}. 
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
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





00

01
w . 

 (ii) In this case, the density matrix is diagonal in a different (x-) basis, so we need to use Eq. 
(7.18b),  
      j'jjj' UUw 11

* ,      (*) 

where Ujj’  xj  zj’ is the unitary matrix of the transform from the x-basis to the z-basis, and the x-basis’ 
w1,1 is taken for 1,154 with all other matrix elements equal to zero. As we know from Sec. 4.4 of the 
lecture notes, this matrix may be taken in the form 

            










11

11

2

1†UU ,     (**) 

As a result, in the z-basis we get 











11

11

2

1
 w . 

 (iii) In thermal equilibrium, the density matrix is diagonal in the basis of the stationary states n of 
the system, i.e. in the eigenbasis of its Hamiltonian – see Eq. (7.23)-(7.24) of the lecture notes: 


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exp  and    ,exp
1

with  , , 

where En are the eigenvalues of the system’s energy. As was discussed in Sec. 4.4 of the lecture notes, 
for a spin-½ particle with the gyromagnetic ratio  in the magnetic field B, the energy (referred to its 
field-free value) has two eigenvalues,  

B
22,1


E , 

so the two-term statistical sum and the 22 density matrix may be readily spelled out: 


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
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Tk
e

Tk
eeZ

BB 2
exp  where,

2
cosh2

BB  
, 

                






















e

e

ee 0

01
w .     (***) 

 In our current case of the field directed along axis z, the stationary states basis coincides with the 
z-basis, i.e. the last formula gives the final answer to the posed question. In the limit of low 
temperatures, kBT/B  0, we have e–/e+ 0, and Eq. (***) is reduced to the result of Task (i), 
showing that the system is definitely in the pure -state. 

 (iv) In the case of the magnetic field directed along axis x, Eq. (***) is valid in the x-basis, and 
we may apply the general rule (4.93), with the unitary matrix (**), to the statistical operator, to calculate 
each element of the density matrix in the z-basis:  

154 In the original Eq. (7.18b), describing a general quantum system, this state had the number j” 
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A straightforward calculation yields 
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. 

 This result shows that the diagonal elements of the density matrix, i.e., the probabilities of 
finding the spin oriented in both directions of axis z, are equal to 50% each. This is exactly what we 
could expect for the particle in an x-oriented field, with a zero-average z-component. The result for the 
off-diagonal elements is somewhat less trivial. It shows that these elements, equal to each other, are 
always smaller than the diagonal ones, approaching them only in the low-temperature limit kBT /B  
0, when the density matrix is reduced to the one calculated in Task (ii).  

Note that all these results may be obtained, in the corresponding limits, from the solution of 
Problem 1, with the vector c equal to –B/2.   

 

Problem 7.3. Calculate the Wigner function of a harmonic oscillator, with mass m and frequency 
0, in thermodynamic equilibrium at temperature T. Discuss the relation between the result and the 
Gibbs distribution. 

Solution: In Sec. 7.2 of the lecture notes, the following result for the density matrix of the system 
was derived – see Eq. (7.44), 
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where the statistical sum Z is given by Eq. (7.25): 
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Let us use Eq. (7.50) to recalculate this matrix into the Wigner function 
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Leaving the normalization coefficient alone for a while, let us spell out the exponent in Eq. (*) as a 
function of the new variables: 
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 The Fourier transform in the Wigner function’s definition affects only the second exponent in the 
last expression and is a standard Gaussian integral: 
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This integral may be worked out either as usual, by complementing the exponent to a full square, or just 
reusing the results of an absolutely similar integration performed in Sec. 2.2. The final result is 
proportional to 
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so the Wigner function as a whole is 
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where H(X, P) is the classical Hamiltonian function of the oscillator, of the arguments X and P: 
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and E is its average energy – see Eq. (7.26) of the lecture notes: 
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 So, we have proved Eq. (7.62) and simultaneously found the coefficient C participating in it. 
What remains is to calculate the normalization coefficient A. The easiest way to do this is to require that 
the integration of W over X and P gives 1. This procedure readily yields  

TkE
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B2
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2
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
  , 

so, finally, 

155 Note that this parameter (essentially the correlation length of the oscillator) has a temperature dependence 
opposite to  x2  (the coordinate’s variance – see Eq. (7.48) of the lecture notes): it decreases with the growth of 
temperature, at kBT >> 0 approaching its value (7.37) for a free particle, with the qualitatively similar 
temperature behavior. Its discussion may be found in Sec. 7.2 of the lecture notes, just after Eq. (7.37). 
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We see that the Wigner function looks much simpler than the corresponding density matrix (*) 
per se while carrying all the information contained in the latter. A very interesting feature of this result 
is that it’s the functional dependence on H(X, P) coincides with that of the Gibbs distribution (7.25), but 
with the energy normalized to E rather than kBT. (The two coincide only in the high-temperature limit 
kBT >> 0.)   

 

 Problem 7.4. Calculate the Wigner function of a harmonic oscillator, with mass m and frequency 
0: 
 (i) in the ground state, 
 (ii) in the first excited stationary state (n = 1), 
 (iii) in the Glauber state with an arbitrary dimensionless complex amplitude , and  
 (iv) in the so-called cat state:156 a linear superposition of two Glauber states with equal and 
opposite values of .  

 In the last case, explore and interpret the behavior of the function near the origin at    >>1. 

 Solutions:   

 (i) With the solution of the previous problem on hand, the easiest way to calculate the Wigner 
function in the ground state is to use that solution in the low-temperature limit (kBT << 0, E  E0  
0/2): 
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This is the function plotted on panel (a) of Fig. 7.3 in the lecture notes.  

 Alternatively, this result may be readily obtained by the direct integration of the factorable 
density matrix of this pure quantum state – see Eq. (7.63) of the lecture notes: 
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with the function 0 given by Eq. (2.275): 

.
2

exp
2

0

4/1

0
0



















xmm 



  

 (ii) Since here we are also discussing a pure state, we may also use Eq. (7.63), now in the form 
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156 This state is frequently used to discuss the well-known Schrödinger cat paradox – see Sec. 10.1 of the lecture 
notes. 
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where 1(x) is the wavefunction of the oscillator in its first excited stationary (Fock) state. This function 
is given by Eqs. (2.282) and (2.284) with n = 1: 
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where x0  (/m0)
1/2, so 
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After the usual completion of the expression under the exponent to the full square, 
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 As was discussed in Sec. 2.2 of the lecture notes, since the functions under these integrals are 

analytical, and tend to zero at X
~

  , the purely imaginary shift between Z and X
~

does not affect 
them, so the second integral vanishes (because the function under it is antisymmetric), while the first 

and the third ones are reduced, by substitution    02/
~

xX , to the table integrals157 

2
,

2/1
222/12    









 dede . 

As a result, we finally get   

157 See, e.g., MA Eq. (6.9c). 
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is the normalized distance from the center of the [X, P] plane. This function, whose plot is shown on 
panel (b) of Fig. 7.3 of the lecture notes, is negative at  < 1/2, illustrating the impossibility of 
interpreting the Wigner function as the probability density – see the conclusion of Sec. 7.2. 

 (iii) According to Eqs. (5.107) of the lecture notes, the wavefunction of the Glauber state with a 
dimensionless complex amplitude   (5.102) may be obtained from the ground-state wavefunction 0(x) 
by the shift of its argument by 2x0 Re, and its multiplication by a phase exponent corresponding to a 
monochromatic wave with the momentum 2 m0x0 Im. These changes result in similar shifts of the 
arguments of the ground-state Wigner function by the listed amounts, so it becomes 
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where x0  (/m0)
1/2. According to this formula, the Wigner function is just a Gaussian function of both 

X and P, similar to that of the ground state (see Fig. 7.3a of the lecture notes) but with its center shifted 
to the point (5.102): 
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. 

 (iv) By definition, the cat state’s vector is 

 ,cat   C  

where C is the normalization coefficient that may be calculated, for example, by using the Fock-state 
expansion (5.134). Assuming that each of the component Glauber-state vectors is already normalized, 
we get 
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because the last sum is just the Taylor expansion of the function exp{– |  2}. Since the cat state is pure, 
we may again use Eq. (7.63), with  

           ,0,0,cat xxCxxCx      

where the function (x, t) is given by Eq. (5.107) with X and P from Eq. (5.102): 
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 The remaining calculation is conceptually straightforward but, in the general case, somewhat 
bulky. To make it more transparent, let us, first, assume that the parameter  is real:  

,
22 0x

Aa
  

where A is the amplitude of the classical oscillations best mimicking the Glauber state (see Fig. 5.8 in 
the lecture notes). Now let us use normalized variables defined similarly to Eqs. (5.63): 
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In these variables, Eq. (7.63), for our case of real , may be recast as 
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(Note that in the most interesting case when a >> 1, the normalization factor  C 2 is just ½.) 

Let us spell out the wavefunction product participating in Eq. (**): 

             

       

       
.

2

~
  where,

0000

00002

0000

2

catcat
*




































aaaa

aaaa
C

aaaaC

 

The integral (**) of the first two terms in the square brackets gives the sum of two Wigner functions of 
the Glauber states, such as the one that was already calculated in Task (iii), but with their centers at the 
points  = a, i.e. x = x0a  A, and of a renormalized magnitude:  
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This expression describes two uneventful Gaussian peaks, which are well separated if a >> 1. The sum 
of the remaining two terms, describing the quantum interference of these states, 
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 is much more interesting. Indeed, after plugging in the explicit expression for 0 and spelling out the 
squares of the parentheses, the contents of the square brackets in the last expression are reduced to 
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Already from here, we may see that the interference term of the Wigner function is noticeable only at  
~ 1, i.e. at x ~ x0, i.e., in the case a >> 1, in the region well separated from the two Glauber-state peaks 
(***). By working out two similar Gaussian integrals, we get 
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Here, the origin-centered Gaussian peak, of a height twice larger than that of the Glauber-state peaks 
(***), serves as the envelope for the oscillating function 
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which describes the mutual interference of the two Glauber components forming the cat state. The figure 
below shows the color-coded contour plot of the full Wigner function for the particular case a = 5.  

 

 

 

 

  

 

 

 

 The reader should agree that this pattern is rather spectacular; this is why the Wigner function, 
even with its drawback discussed in Sec. 7.2 of the lecture notes, remains a popular way of visualization 
(and hence comprehension) of elaborate quantum states. 

 To complete our solution, we should consider the case when the complex parameter   is 
complex:  =    ei, with   0. Since, as was discussed in Sec. 5.5 (see especially Fig. 5.8), the phase 
shift   just rotates the Glauber state by the same angle on the phase plane, it is clear that this shift 
causes only a similar rigid rotation of the whole Wigner function’s pattern (see, e.g., the figure above), 
without any change of its structure. 

  One more popular modification of the cat state is the relative phase shift of its Glauber 
components, for example: 
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Reviewing the above calculation, we can see that this modification just shifts the interference pattern 
inside the Wigner function’s central peak: 

   aa 2cos2cos , 
without changing its envelope. 

 

 Problem 7.5. Prove that the von Neumann equation (7.66) is valid for any Hamiltonian system 
isolated from the environment, even if its Hamiltonian operator is an arbitrary function of time. 

 Solution: This case may be described by Eq. (7.68) with   0ˆ
int tH : 

 ,ˆˆˆ es HHH   

where sĤ  depends only on the variables of our system s (and possibly time), while eĤ depends only 

from the environment’s variables {}, which are defined in a different Hilbert spaces. In this case, the 
particular form of the environment’s Hamiltonian does not affect the system of our interest (s) at all, so 

for simplicity, we may take   0ˆ eH . With the same purpose, in the basic expansion (7.2), let us use 

the stationary states of the environment, incorporating their simple time dependence (4.161) into the 

coefficients jk, so that js and ke  do not depend on time. Then our Hamiltonian does not affect ke :   

             k
kj

jjk
kj

kjjk esHesHH  
,,

ˆˆˆ  .   (*) 

Since the state basis {s} may be assumed to be a full one, the expression in the last parentheses may be 
always represented as a linear superposition of these states, with the coefficients being just the matrix 
elements of our Hamiltonian in that basis: 

,ˆˆ
j"

j"
j"jj"

j"
jj"j sHssHssH    

so Eq. (*) may be rewritten as   

kj"
kj"j

j"jjk esHH  
,,

ˆ  , 

where the coefficients jk and Hj”j are generally some functions of time.  

 Let us use the last relation to the spell out the right-hand side of Eq. (4.158) of the Schrödinger-
picture dynamics, while using Eq. (7.2) with j  j’ and k  k’ on its left-hand side: 

.
,,,

kj"
kj"j

j"jjk
k'j'

k'j'j'k' esHesi     

Now requiring the corresponding coefficients of these two expansions in both the s-space and the e-
space to coincide and swapping the indices j and j”, we get the following set of differential equations: 

.
j"

jj"j"kjk Hi   

Let us plug the last relation and its complex conjugate for the coefficient j’k ,158 
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 
j
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j"

j'j"j"kj'k HHi ,****   

into the time derivative of the second of Eqs. (7.6) multiplied by i: 

   .****
'  

j"
j"j'j"kjkj'kjj"j"k

k
j'kjkj'kjkjj HHiwi    

 On the other hand, spelling out the corresponding matrix element of the right-hand side of Eq. 
(7.66), and then using the definition (7.6) again twice, each time for the corresponding indices, we get 

        
j"k

j"j'j"kjkj'kj"kjj"
j"

j"j'jj"j"j'jj"jj'jj' HHHwwHHwwHwH **ˆˆˆˆˆ,ˆ  . 

 Comparing the last expressions of these two calculations, we see that they coincide. Since the 
indices j and j’ are arbitrary, this means that all matrix elements of the operators on both sides of Eq. 
(7.68), and hence the operators as such, indeed coincide, thus confirming the validity of the von 
Neumann equation for an arbitrary Hamiltonian system. 

 For simple systems of this kind (for example, those discussed in the first 6 chapters of this 
course) this fact is not very important, because most problems of their dynamics may be addressed more 
easily using the approaches discussed in Sec. 4.6 of the lecture notes, without involving the density 
matrix concept. However, the von Neumann equation is very instrumental for the derivation of 
simplified equation of evolution of systems weakly coupled with environment – see Sec. 7.6 of the 
notes. 

 

Problem 7.6.* A harmonic oscillator is weakly coupled to an Ohmic environment that is in 
thermal equilibrium at temperature T. 

(i) Use the rotating-wave approximation to write the reduced equations of motion for the 
Heisenberg operators of the complex amplitude of oscillations. 

(ii) Calculate the expectation values of the correlators of the fluctuation force operators 
participating in these equations, and express them via the average number ne of thermally-induced 
excitations in equilibrium, given by Eq. (7.225) of the lecture notes. 

 Solutions:  

(i) Differentiating the definitions (5.65) of the creation-annihilation operators over time, then 
using the Heisenberg equations (7.144) of motion of an oscillator with Ohmic damping, and then 
applying the reciprocal relations (5.66), we get the following equations of motion of these operators:  
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where   /2m is the damping constant. At negligible coupling to the environment (i.e., at  = 0), these 
equations are reduced to Eqs. (5.140) with just the first terms on their right-hand sides, and hence have 
the oscillating solutions (5.141). In this case, the following operators: 
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remain constant in time. Obviously, in the classical limit (e.g., for the Glauber states with   >> 1), 
these operators correspond to the complex amplitude of the oscillations and its complex conjugate, so 
even in the quantum case, they may be interpreted as the Heisenberg operators of these amplitudes.  

 Coupling with the environment results in the amplitudes changing in time. The exact equations 
of this motion, which may be obtained by plugging Eqs. (*) into Eqs. (**) differentiated over time,  
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are coupled and their analytical solution is rather cumbersome.  

 However, we may notice that all right-hand-side terms of these equations are proportional to the 
coupling to the environment, i.e. if the coupling is weak, the time evolution of the operators (**) is slow. 
Hence, using the basic idea of the rotating-wave approximation (RWA) discussed in Sec. 6.5,159 we may 
average these right-hand sides over a relatively long time interval t, thus eliminating the rapidly 
oscillating terms because they have a small effect on the amplitude evolution. This first-order 
approximation yields the following “reduced” (or “RWA”) Heisenberg-Langevin equations:160 

           tftf ††† ˆˆˆ,ˆˆˆ    ,    (***) 

where the reduced force operator is defined as 
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, 

and  tf †ˆ  is its Hermitian adjoint. Evidently, the first terms on the right-hand sides of Eqs. (***), which 

dominate if  is large enough to neglect fluctuations, try to decrease the amplitudes exponentially, as 
exp{-t}, while the second terms, representing the fluctuation force, disturb such deterministic decay. In 

particular, these terms do not allow the operators ̂  and †̂ to approach zero, because that would 
violate their commutation relation 

Îˆ,ˆ † 



  , 

which follows from the combination of Eq. (**) above and Eq. (5.68) of the lecture notes. 

159 See also a detailed discussion of the van der Pol method (i.e. the RWA’s classical version) in CM Sec. 5.3. 

160 Actually, such equations are also valid in more general situations when the operator  tF̂
~

 describes not only 

the fluctuations but also external forces with frequencies close enough to the frequency 0 of the oscillator. 
Quantum-mechanical solutions of several other problems (such as parametric excitation, see CM Sec. 5.6) may be 
also obtained using straightforward generalizations of these equations. 
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Note that since the Langevin operator  tF̂
~

 is a random function of time, i.e. is not periodic, the 

averaging interval t should be chosen more carefully than in the deterministic case.161 On one hand, it 
should be much longer than 2/0, to suppress the high-frequency components of the product under the 
integral. On the other hand, to describe the amplitude evolution correctly, t should be much shorter 
than the decay time constant 1/: 
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 12

0

 t .      

Such choice is of course possible only if the Q-factor Q  0/2 of the oscillator is much higher than 1, 
which is therefore a necessary condition of applicability of the rotating-wave approximation.  

 (ii) Let us calculate the statistical properties of the effective low-frequency forces  tf̂  and 

 tf †ˆ . Their statistical averages (in the language of mathematical statistics, their first moments), are 

proportional to those of the “parent force”  tF̂
~

 and hence are equal to zero – see the discussion of Eq. 
(7.92) in the lecture notes. Thus, let us start from the calculation of the following second moment of the 
forces, based on their anticommutator: 
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With the account of Eqs. (7. 110)-(7.111), the double integral in this relation is 
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 The averaging time t that satisfies the above strong 
conditions is much longer than the correlation time c of the 
environment force fluctuations (i.e. the characteristic time of 
decay of its correlation function KF), so only a relatively narrow 
area on the [ t’, t”] plane, shown schematically by the bold line 
segment in the figure on the right, gives a noticeable contribution 
into this double integral. (Note that at  t1 – t2 > t, the segment 
disappears, i.e. the integral vanishes.) Hence the internal integral 
may be formally taken in the infinite limits of the difference t” – 
t’, and we may use the first form of Eq. (7.112) to get  
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161 If the right-hand side is 2/ – periodic (where   is close to, but not necessarily exactly equal to 0 – see CM 
Secs. 5.3-5.6), then a perfect averaging out of fast components may be achieved by taking t equal to that period. 
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On the amplitude evolution’s time scale ~1/, the function D() may be well approximated with a delta 
function C() with the “weight” 
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so we may write 
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 Now the fluctuation-dissipation theorem (7.134) may be used to recast this result as  
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so at the Ohmic dissipation (7.138),  
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Performing an absolutely similar calculation for the commutator of the two fluctuating force operators, 
with the only difference of using the Green-Kubo formula Eq. (7.109) rather than the fluctuation-
dissipation theorem (7.134), we get 

             2121 2ˆ,ˆ † tttftf 



  . 

Now we may combine these two results to calculate the required correlation functions: 
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Comparing these formulas with Eq. (7.225), 
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we, finally, get a very elegant couple of relations,162 
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162 To the best of my knowledge, they were first derived by M. Lax in 1966. 
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 The equations expressed by Eqs. (***) and (****), frequently with the addition of other terms 
describing other forces acting upon the oscillator, is broadly used in quantum optics and electronics. 

 The physical reason why the noise source approximation by the delta-correlated functions in the 
RWA equations gives a sufficient accuracy (i.e. the equations correct to the first order in Hint) is very 
simple. As was discussed in Sec. 7.5, of the whole broad spectrum of the fluctuations (in our case, 
coming from a thermally-equilibrium environment), a high-Q oscillator is substantially affected only by 
the Fourier components very close to its resonance frequency, and we make no substantial error when 
we replace the genuine spectral density SF() with a frequency-independent value equal to SF(0). But, 
as was discussed in Sec. 7.4, a random process with a constant spectral density is delta-correlated. This 
argumentation may be used for a faster calculation of the average anticommutator of the “values” of the 
fluctuation force operators at different times; however, for the calculation of their commutator, we still 
need an integration similar to the one described above, by using the (more subtle) Green-Kubo formula. 

 

Problem 7.7. Calculate the average potential energy of the long-range electrostatic interaction 
between two similar isotropic 3D harmonic oscillators, each with the electric dipole moment d = qs, 
where s is the oscillator’s displacement from its equilibrium position, at arbitrary temperature T. 

 Solution: For T = 0, this interaction (in the zero-temperature limit, called the London dispersion 
force) was calculated by two different methods (both due to F. London) in the solutions of Problems 
3.20 and 5.20. Reviewing the latter solution,163 we see that the calculations are completely valid for T  
0 as well, up to the following result, 

         1
2
1

2
21

2

3
0

2

2

21 h.c.ˆˆ
4

3~̂ †ˆ 









 aa

r

q

m

q




dE ,   (*) 

and the similar result, with swapped indices 1 and 2, for the second component,  
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of the average interaction between the oscillators,  
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provided that the averaging on the right-hand sides of Eqs. (*) and (**) (where the creation-annihilation 
operators are in the Schrödinger picture) is understood not only in the quantum-mechanical but also in 
the statistical ensemble sense. According to Eq. (5.70) of the lecture notes, each of these averages is just 
that of the Hamiltonian of the corresponding oscillator, i.e. its average energy E, divided by its ground-
state energy k/2, so for the system in thermal equilibrium at temperature T, we may use Eq. (7.26) to 
immediately obtain the required answer: 
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163 The reader is challenged to generalize the solution of Problem 3.20 to the case T > 0 as well. 
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 At low temperatures, coth(1,2/2kBT)  1, so this result naturally tends to that spelled out in the 
solution of Problem 5.20; in the most important case of two similar oscillators of frequency 0  1 = 
2, 
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On the other hand, in the classical limit (kBT >> 1,2), when coth(1,2/2kBT)  2kBT/1,2, Eq. (***) 
reduces to 
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so for similar oscillators, 
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 Note that the last expression differs from Eq. (****) by a not-quite-trivial replacement 0/4  
kBT (instead of the more usual  0/2  kBT), because of the resonant behavior of both terms in the 
general result (***). One more remark: this solution neglects the oscillator damping, apparently 
requiring 1,2 << 1 – 2, but the direct solution of the same problem for nonvanishing  (see, e.g., SM 
Problem 5.19) shows that the above results are much more robust, requiring only 1,2 << 1,2. 

 

 Problem 7.8. A semi-infinite string with mass  per unit length is attached to a wall and stretched 
with a constant force (tension) T. Calculate the spectral density of the transverse force exerted on the 
wall, in thermal equilibrium at temperature T. 

 Solution: Classical mechanics says that the string may support transverse waves with two 
independent polarizations – for example, two mutually perpendicular linear polarizations.164 If the 
waves are small, their dynamics are independent, so to calculate one Cartesian coordinate of the 
transverse force (say, along the x-axis, normal to the string’s direction z), we may analyze waves x(z, t) 
of the string’s displacements within the [ x, z ] plane.  

 According to the discussion in Sec. 7.4 of the lecture notes, in order to use Eq. (7.134) of the 
lecture notes for the spectral density of the transverse force, 
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it is sufficient to calculate the generalized susceptibility () defined by Eq. (7.124),  

  ,  xF   

164 See, e.g., CM Sec. 6.4. Note that thanks to the fluctuation-dissipation theorem, much of this solution just 
reproduces the classical analysis discussed in that part of the series. 
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i.e. the ratio of complex amplitudes of two classical processes: externally imposed classical 1D 
oscillations x(0, t) of the sting’s support point, and the resulting 
transverse force Fx exerted on the point by the string. 

  From the system’s geometry (see the figure on the right), with 
the wall’s position taken for z = 0, in the small oscillation limit (dx/dz 
 0), this component of the force is  

                    0tansin 
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Very similarly, the net force exerted on a small internal segment [z – dz/2, z + dz/2] of the string by its 
adjacent (right and left) segments is  
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Since the mass of the segment is dz, the 2nd Newton law for its motion in the x-direction gives us the 
following equation: 
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 This is the well-known 1D wave equation, with the general solution 
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where v  (T/)1/2 > 0 is the wave velocity, and f  and f are some functions of a single argument, 
which are determined by the initial and boundary conditions. If the wave on the string is excited, as in 
our case, only by the motion of its end located at z = 0, the wave may travel only to the right: 

          0at ,
1

,  so,),( 





 



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
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





  

 z
v

z
t

t

f

v
tz

z

x

v

z
tftzx .  (***) 

Plugging these expressions, for z = +0, into Eq. (**), we get  

       t
t

x

v
t

t

f

v
t

z

x
tFx ,0,0












  TT
T . 

 Comparing this relation with Eq. (7.137) of the lecture notes, we see that the effect of the string 
(which carries the induced wave (***), together with the associated energy, away from the wall) is 
equivalent to kinematic friction, with the drag coefficient165 

  2/1 T
T


v

. 

This means that we may immediately use Eq. (7.138),  

     2/1Im T , 

165 Note that in our case, this coefficient is just the wave impedance Z of the string – see, e,g., CM Eq. (6.48). 

z

x
T
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in Eq. (*), which yields the required answer: 

   
Tk

SF
B

2/1

2
coth

2



 

T . 

 Note that this is one more good example of a dissipative environment that may be described by a 
time-independent Hamiltonian. (Another example is the two-tunnel-barrier system discussed in Sec. 2.5 
of the lecture notes.) Such models give a good opportunity to explore some challenging issues of the 
theory of open systems, by using reliable theoretical methods developed for Hamiltonian systems. 

 

 Problem 7.9.* Calculate the low-frequency spectral density of small fluctuations of the voltage V 
across a Josephson junction shunted with an Ohmic conductor and biased with a dc external current  

cII  . 

 Hint: You may use Eqs. (1.73)-(1.74) of the lecture notes to describe the junction’s dynamics, 
and assume that the shunting conductor remains in thermal equilibrium. 

 Solution: In the Heisenberg-Langevin approach, we may use Eqs. (1.73)-(1.74) for the 
Heisenberg operators of the corresponding observables: 

  ,
ˆ

2
ˆ,ˆsinˆ

c dt

d

e
VItI

 
  

while taking 
   tIItI G

ˆˆ  , 

where IG is the current flowing through the shunt – see the figure on the 
right.  As we know from Sec. 7.4 (see in particular Eq. (7.92) and its 
discussion), we may represent this current as the sum of its average 
component and the fluctuations that may be calculated in the absence of the 
voltage:166  

     tIVGtIItI GG

~ˆ~ˆˆ  , 

where G is the Ohmic conductance of the shunt, so the resulting Heisenberg equation of motion of the 
Josephson phase  is 

       tII
dt

d

e

G
I

~ˆ

2
ˆsinc 

 
.     (*) 

 Since we have been asked to analyze only small fluctuations, we may look for the solution of 

this equation in the form  ~̂ˆ 0  , where 0  is the solution of the fluctuation-free classical equation 

            I
dt

d

e

G
I 


2

sinc


,      

166 Note that the statistical averaging in the first form of this relation is only over the degrees of freedom of the 
environment (i.e. the shunting conductor), so from the point of view of the Josephson junction as such, the voltage 
in its second form is still an operator. Also, the sign before the fluctuating term is a matter of convention and is 
taken negative here just for the compactness of the following calculations. 

I

sincI tV G

I

GI

GI
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while the operator ̂~ describes small fluctuations of the phase, obeying the linearized version of Eq. (*): 

 tI
dt

d

e

G
I

~̂~̂

2
~̂cosc 

 
. 

The solutions of these two differential equations may be made less bulky by introducing normalized 
variables: current i  I/Ic and time   t/(G/2eIc).167 In these dimensionless variables, 

       τii ~̂~̂cos~̂,sin 000   
 ,    (**) 

where (in this solution only!) the dot means the differentiation over   rather than t. 

 The first (classical but nonlinear) equation168 may be readily solved analytically, because the 
separation of  variables leads to a table integral:169 

 


 0

0

0

0

cos
 that  so,

cos 






ii

d
d

d
. 

 However, for our purposes, the explicit form of the function 0(t) is less important than the 
following expression for its time derivative, and hence for the unperturbed part of the voltage V  d/dt 
 d/d  across the junction  (see the figure above): 

    c

2/12
2

0   i.e.  ,1for  ,01  where,
constcos

IIv
v

v



 i

i
i


 , 

where the inconsequential constant depends on the selected origin of time; for what follows, it is 
convenient to take it equal to zero. This result shows that 0  is a periodic (but, generally, not a 

sinusoidal!) function of , with the normalized frequency v  approaching zero at 1i . (This is just the 
same Josephson oscillations of frequency (1.75) that were briefly discussed at the end of Sec. 1.6 of the 
lecture notes, besides that in our current case of a constant external current, they are the simultaneous, 
self-consistent oscillations of the supercurrent Icsin and the voltage V.) For our calculation, we will 
need the Fourier expansion of this periodic function and its time derivative, 

     







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 
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
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
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2

000 cos
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2

1
with  ,,

i

dkv
vdevevikvev vikvikvik

k
k

k
k

k  . 

This is also a table integral,170 giving 

  ,k
k vvv  i  

so, in particular, v0 = v  – hence the notation. 

167 Let me hope that the use of different fonts makes the difference between the normalized current (i) and the 
imaginary unity (i) sufficiently clear. 
168 This well-known equation (see, e.g., CM Sec. 5.4) at i < 1 has the stationary solution 0 = sin–1 i . The 
calculation of the phase and voltage fluctuations, in this case, is recommended to the reader as a (simple) 
additional exercise. The answers are: at   0, S()  SI()/Ic

2cos20; SV()  (/2e)2S()  0. 
169 See, e.g., MA Eq. (6.3c). 
170 See, e.g., Eq. 2.5.16-22 in the manual by A. Prudnikov et al., cited in MA Sec. 16. 
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 Now solving the second of Eqs. (**) by the standard method of variable coefficients (fully 
applicable to linear equations for operators), we readily get 

              
     








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

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
 "d"f'd
'f

'
f 0cosexp where,~̂

~̂i
.   

This result may be recast in a form more convenient for calculations. Indeed, differentiating the first of 
Eqs. (**) over , we get 









 d
d

d

d
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0
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0
000 cos  so,0cos  i.e.,0cos 







 . 

Integrating this elementary differential equation, we see that the above function f() is just   , give or 
take a time-independent multiplier – which is not important for the final result. As a result, we get, 
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i
. 

The last formula describes the (normalized) fluctuations of the voltage V, i.e. exactly the subject of our 
interest. With the above explicit forms of 0  and the Fourier expansion of 0 , it becomes 

                   

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
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
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2
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 Now introducing the Fourier expansions of the (normalized) voltage and current fluctuations, 
similar to Eq. (7.115) of the lecture notes, 

    

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 dedev ii ii ˆ~̂,ˆ~̂ , 

we may readily perform the integration in Eq. (***) explicitly. Requiring the complex amplitudes of all 
harmonics in both parts of the resulting equation to be equal, we get 
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ii
i

i
. 

 The first of these expressions describes the so-called mixing of the current fluctuations with 
harmonics of the Josephson oscillations, due to the nonlinearity of the Josephson supercurrent.171 
According to Eq. (7.114) of the lecture notes, it means that the symmetrized spectral densities of the 
voltage and current fluctuations are related as follows: 

   vkSzS
k

kv  




 i

2
. 

This is a very informative result, in particular (at vn ) describing the fluctuation-induced broadening 
of the Josephson oscillation harmonics. For our purposes, however, we need only its low-frequency 

171 For a brief discussion of this (essentially, classical, or rather mathematical) effect see, e.g., CM Sec. 6.7. 
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limit,   0. In this limit, thanks to the identity    vv  
ii

1  following from the above formula 
for v , the result simplifies and includes only three (essentially, two) terms: 
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The front factor in the last expression is just the square of the dc differential (“dynamic”) resistance 
IdVdR /d  of the system, in our normalized units: 
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so returning to the initial dimensional units, we finally get 

           ,
2
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2
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d 

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
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where  

V
e

v
G

eI



22 c
J   

is the dimensional frequency of the Josephson oscillations – see Eq. (1.75). The first term inside the 
square brackets of Eq. (****) describes the simple and very natural transform of low-frequency 
fluctuations of the current in the shunt into voltage fluctuations at the same frequency, at the differential 

resistance of the system: IRV
~~

d . The second term is much less trivial: it describes the intensity of the 

fluctuations induced by high-frequency (  J) current fluctuations and transformed to nearly zero 
frequencies due to their mixing with the Josephson self-oscillations.  

 Since the current fluctuations of the conductance G, remaining in thermal equilibrium with 
temperature T, obey the fluctuation-dissipation theorem (7.134) with Im()/ = G:172 

      
Tk

GSI
B2

coth
2



 

 ,     

their spectral density at frequency J does not vanish even at low temperatures: 

  JB
J

J at  ,
2





 


 TkGSI , 

and represents purely quantum fluctuations – see the discussion following Eq. (7.152) of the lecture 
notes. Eq. (****) is exactly the theoretical formula (derived in 1972) that was later used by R. Koch et 
al. for comparison with their experimental results.173 The good agreement of the data with this theory 
gave firm evidence of the reality of the quantum fluctuations in an Ohmic environment, without any 
explicit oscillator at their frequency ~J. 

 

172 See the footnote just before Eq. (7.139) of the lecture notes. 
173 For the reference, see Chapter 7 of the lecture notes. 
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 Problem 7.10. Prove that in the interaction picture of quantum dynamics, the expectation value 
of an arbitrary observable A may be indeed calculated using Eq. (7.167) of the lecture notes.  

Solution: The basic Eq. (7.5) may be represented as 

             



 †ˆ0ˆˆˆTr)( uwuAtA ,      

where û  is the full evolution operator that obeys Eq. (4.157b). By using Eqs. (4.209)-(4.210) of the 
interaction picture, we may express this expectation value via products of the partial evolution operators 

0û  and Iû , and their Hermitian conjugates, and then group the operands as follows: 

     



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
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


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0II00I0 ˆˆ0ˆˆˆˆTrˆˆ0ˆˆˆˆTr)( uuwuuAuuwuuAtA I . 

From Chapter 4, we know that the trace of a product of two operators does not depend on their order, so 
in the last relation, we may swap the parentheses and then regroup the terms as follows: 
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II00II00 ˆ)0(ˆˆˆˆˆTrˆ)0(ˆˆˆˆˆTr)( uwuuAuuwuuAutA .   

But according to Eqs. (4.214) and (7.166), this relation is nothing other but Eq. (7.167): 

 )(ˆ)(Tr)( II twtAtA  . 

 

Problem 7.11. Show that the quantum-mechanical Golden Rule (6.149) and the master equation 
(7.196) give the same results for the rate of spontaneous quantum transitions n’  n in a system with a 
discrete energy spectrum, which is weakly coupled to a low-temperature heat bath (with kBT << nn’).  

Hint: You may establish the relation between the function ”(nn’) that participates in Eq. 
(7.196) and the density of states n that participates in the Golden Rule, by considering the particular 
case of sinusoidal classical oscillations in the system of interest. 

Solution: Let us consider a system coupled with the environment via the interaction Hamiltonian 
(7.90), in the particular case when its variable x performs sinusoidal classical oscillations, x = x0cost  
(x0/2)(exp{–it} + exp{it}), with a frequency    nn’ >> kBT/. In this low-temperature limit, the 
occupation of the corresponding excited levels (n) of the environment is negligible, and we may apply to 
the induced quantum transitions in it the Golden Rule in the form of Eq. (6.111), with Ann’ = (x0/2)Fnn’: 

nnn'n
nn' Fx

Fx
 22

0

2

0

22

2


 . 

The quantum transitions at this rate, transferring to the environment the energy  each, result in the 
average power flow from the system: 

.
2

Γ
22

0 nnn'Fx   P  

 On the other hand, the same power may be expressed by Eq. (7.127): 
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
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x
P  

Comparing these two expressions, we find the connection we have been looking for: 

     nnn'nn' F"  2
)(  . 

 Since this expression includes only the characteristics of the environment, it should be valid for 
any process in the system of our interest – either classical or quantum. With this substitution, Eq. 
(7.196) applied to the spontaneous energy-reducing transition, i.e. to the case En'  > En, and taken in the 
low-temperature limit, 

 )(
2 2

nn'nn'nn' "x 


  , 

 reads 

        nnn'nn'nn' Fx  222


  . 

However, this is exactly Eq. (6.149), taking into account the notation replacements A  x and B  F, 
which follow from the comparison of the interaction Hamiltonians (6.145) and (7.90).  

 

  Problem 7.12. A spin-½ with gyromagnetic ratio  had been placed into a constant magnetic 
field with magnitude B >> kBT/, and let relax into its ground state. Then the direction of the field was 
suddenly changed by /2 and kept constant after that. Taking into account the spin’s weak coupling to a 
dissipative environment: 

(i) calculate the time evolution of the spin’s density matrix (in any basis you like), and 
(ii) calculate the time evolution of the spin vector’s expectation value S and sketch its 

trajectory. 

 Solutions:  

 (i) Let us direct the x-axis along the initial direction of the field, the z-axis, along its direction 
after the change, and work in the usual z-basis. Then the initial state of the system is described by the ket 
 given (to an arbitrary and inconsequential common phase factor) by the first of Eqs. (4.122) of the 
lecture notes: 

 ,
2

1
  

so in the usual expansion (5.1), 

   , 

we have  =  = 1/2. Hence, according to Eq. (7.20), each element of the initial 22 density matrix 
of the spin is equal to ½. The further evolution of the matrix is described by Eqs. (7.212) and (7.214), 
where (due to the given condition kBT << B) we may take w()  W+() = 1, w()  W–() = 0: 
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the moment of the field change it taken for t = 0, and   2c/ = –B – see Eq. (5.13). 

 (ii) The Cartesian components of the vector S may be expressed via this density matrix by 
using the basic Eq. (7.5):174 
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(As a sanity check, at T2  , i.e. at vanishing dephasing, the first two formulas tend to Eqs. (4.173)-
(4.174) with the corresponding initial conditions: Sx(0) = /2, Sy(0) = 0.) 

 These formulas describe an exponentially decaying spin precession about the z-axis, with a 
simultaneous relaxation of its z-component to its equilibrium value Sz() = /2 – generally with a 
different relaxation time. This means that the trajectory of the vector S in the angular momentum space 
is spiral-like. The figure below shows two projections of this trajectory for the ratio T2/T1 = 2 typical for 
optical two-level systems (where the second, low-frequency term on the right-hand side of Eq. (7.210) is 
usually negligible), and for a particular value of the product T1.175 

 

 

 

 

 

 

 

 

 

 
 Perhaps the only surprise for the reader may be that the end of the vector deviates from the Bloch 
sphere (where it always remains in closed, i.e. Hamiltonian two-level quantum systems).176 This fact is 
even more clearly visible in the figure below where the trajectory of S is plotted for the lower ratio 

174 See also Eq. (7.75). 
175 Admittedly, in most practical systems, the product T1 is much higher than the value of 30, which is used here 
just for the plot clarity. 
176 Actually, attracting the reader’s attention to this fact was the main goal of assigning this simple problem. 
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T2/T1 = 0.2. (This value is typical for nuclear spins in condensed matter, where the random “tumbling” 
motion of the surrounding molecules suppresses T2 more than T1.) 

 

 

 

 

 

 

 

 

 

 
 An alternative way to obtain the same results is to use the Bloch equations whose derivation is 
the task of the next problem. 

 

 Problem 7.13. A spin-½ with gyromagnetic ratio  is placed into the magnetic field 

  )(
~

0 tt BBB  with an arbitrary but small time-dependent component, and is also weakly coupled to 

a dissipative environment in thermal equilibrium at temperature T. Derive differential equations 
describing the time evolution of the expectation values of the spin’s Cartesian components. 

Solution: At the specified conditions, the Hamiltonians of the spin’s interaction with its 
environment and with the time-dependent component of the magnetic field may be both considered as 
small perturbations of the basic Pauli Hamiltonian given by Eq. (4.163) of the lecture notes:  

         
00

0 ˆˆˆ BzSH  Bm       

(where the z-axis is directed along the dc magnetic field), so the contributions by these perturbations to 
the right-hand sides of the differential equation of motion of the vector S may be calculated 
independently.  

 The contribution due to the environment coupling for such two-level systems as ours was 
discussed in Sec. 7.7 of the lecture notes. For the diagonal elements of the density matrix in the 
stationary-state basis  of the unperturbed Hamiltonian, they are described by the master equations 
(7.211): 

            
,
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where w++  W+ and w– –  W– have the physical sense of occupations of the corresponding energy levels 
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and  are the interlevel transition rates – see the figure on the right. In thermal equilibrium at 
temperature T, these rates are related by Eq. (7.197): 


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



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






TkB

exp . 

 The differential equations (*) are sufficient to derive one for the expectation value of the spin’s 
z-component, i.e. its component along the direction of the base field B0.177 Indeed, let us use the 
fundamental relation (7.5) between the expectation value of any observable and the density matrix, in 
the Schrödinger picture of quantum dynamics – in that all time evolution is delegated to the matrix: 
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(See also Eq. (7.75) of the lecture notes.) Solving this equation together with the normalization 
condition w++ + w– – = 1 for these two probabilities, we get 
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Now differentiating both sides of Eq. (**) over time, and using Eqs. (*) and the above expressions for 
w++ and w– –, we get the differential equation 

    zz SS  
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which is usually recast in the following equivalent form: 
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where 1/T1 is the effective spin relaxation rate:  
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has the physical sense of the thermal-equilibrium value of Sz. Note that at high temperatures, kBT >> , 
this value tends to zero because both energy levels of the system, in equilibrium, are equally occupied. 

 Making calculation similar to Eq. (**) for the Sx-component of spin, 

177 Please note that this choice of the z-axis (which is common for discussions of spin dynamics) differs from that 
used in Sec.  7.7 of the lecture notes, where that axis described the system’s coupling (7.70) with the environment. 
As a result, in Eqs. (7.209) and (7.210) for the time constants T1  1/( + ) and T2, we cannot take  = 0. In this 
solution, these constants are treated as certain known parameters. (In most practical applications, they are taken 
from experiment.) 
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we see that its dynamics is determined by the off-diagonal elements of the density matrix. For these 
elements, we may use the environment-related part of Eq. (7.214): 
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Differentiating both parts of Eq. (***) over time, and then using Eq. (****), we get the following 
expression for the environment’s contribution to the spin’s derivative: 
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Now using Eq. (***) again (backward), we get a very simple equation describing spin’s dephasing: 
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An absolutely similar calculation for the y-component of spin gives a similar result:  

.
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2
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T
S   

 On the other hand, as was discussed in Sec. 5.1 of the lecture notes, the contribution of the time-
dependent magnetic field into the spin dynamics may be merged with that of the base field B0, into one 
vector equation (5.22): 

 tB SS 
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 . 

Now merging all right-hand sides of the equations for the spin component derivatives, we finally get the 
so-called Bloch equations 
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whose dissipation-free form (5.23) was discussed at the end of Sec. 5.1 of the lecture notes. 

These equations are especially popular for the description of experiments with the sets of N >> 1 
similar (practically, non-interacting) nuclear spins in condensed matter samples, where they are 
commonly rewritten for the Cartesian components of the nuclear magnetization M = nS of the sample 
(where n  N/V is the spin density): 
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 Since at N >> 1, the quantum fluctuations of individual spins are effectively averaged out, in 
many cases, these equations may be treated as classical equations of motion of c-number variables – 
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somewhat similar to those describing the classical torque-induced precession of a symmetric top,178 but 
with a very specific damping – different for the longitudinal and transverse spin components. 

 Perhaps the most important application of these equations is the description of the environment-
induced broadening of the magnetic resonance, which was briefly discussed in Chapters 5 and 6 – see 

also the model solution of Problem 5.5. As was shown in that solution, in the simplest case when  tB
~

 
is a field with a constant magnitude B1, rotating in the plane perpendicular to the time-independent field 
B0 with the angular velocity ,179 this effect obeys Eqs. (6.94) of the lecture notes, with  A  = B1/2, 
which describe the Rabi oscillations of the level occupancy, with an oscillation amplitude exhibiting a 
resonance at   /  B1/2. At negligible coupling of the spin to its dissipative environment, the 
FWHM bandwidth  of this resonance is equal to 2B1, but as the above Bloch equations imply, the 
environment provides an additional broadening of the resonance by  ~ 1/T1,2 – see the next problem. 

 For the most important variety of this effect, the nuclear magnetic resonance (NMR), the nuclear 
spin interaction with the environment is typically very weak, with the times T1,2, in practical magnetic 
fields B0 of a few teslas,  in some cases exceeding a second, while the resonance frequency /2 may 
be of the order 100 MHz. As a result, the resonance may have a very small relative bandwidth, of the 
order of 10–8, so its detection allows experimental measurements of tiny local variations of B0.  This 
effect has many important applications in condensed matter physics, chemistry, and biomedicine.180   

Problem 7.14. Use the Bloch equations derived in the previous problem to analyze the magnetic 
resonance181 in a spin-½ which is weakly connected to a dissipative environment in thermal equilibrium. 
Use the result for a semi-quantitative discussion of the environmental broadening of arbitrary quantum 
transitions in systems with discrete energy spectra. 

 Hint: You may use the same rotating field model as in Problem 5.5. 

 Solution: With the magnetic field taken in the same form as in Problem 5.5, 

  zyx tt nnn 01 sincos BB  B , 

the Bloch equations take the form 
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where 0,1  –B0,1, and Se is the thermally-equilibrium value of Sz in the absence of the rotating field 
– see the solution of the previous problem: 

178 See, e.g., CM Sec. 4.5. 
179 Actually, the resonance takes place for any sinusoidal field of frequency   /; just the quantitative 
description of its effect far from the resonance may be somewhat different. 
180 See, e.g., the monograph by J. Keeler, cited in Sec. 6.5 of the lecture notes. 
181 See the discussion in Sec. 5.2 and the solution of Problem 5.5. 
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 These equations look simpler in the complex variables S  Sx  iSy:182 
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From their structure, and the model solution of Problem 5.5, we may guess that the equations may be 
further simplified by the transfer into a reference frame rotating with the field B1, which may be 
accomplished by taking S  S’  exp{it}. Indeed, when rewritten for these new variables, Eqs. (*) 
lose the explicit time dependence of their right-hand sides: 

   

 

  ,
2

,  where,

1

e1

0
2

1

T

SS
'S'SiS

T

'S
S'Si'S

z
z

z
















 
   (**) 

and have a stationary solution183 satisfying a simple system of three linear algebraic equations for three 
spin components: 
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Solving it, we readily get 
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 Let us analyze this result. (See the figure below.) If the rotating field is weak in the sense 1
2  

(B1)
2 << 1/T1T2, the magnetic resonance leads to a relatively small suppression of the spin’s z-

component: 

182 As a reminder, they are the expectation values of the spin-ladder operators and were already used in Eqs. 
(4.172)-(4.173) of the lecture notes and in the model solution of the (very similar) Problem 5.2. 
183 It is straightforward to use Eqs. (**) to verify that at T1,2 > 0, this stationary solution is stable. Note also that 
the existence of such a stationary state in the rotating reference frame is by no means surprising: as was discussed 
in Sec. 7.7 of the lecture notes, in the absence of the ac field (1 = 0), the spin precession decays (Sx,y  0) at 
times ~ T2, while Sz relaxes to the stationary value Se at times ~ T1. The rotating magnetic field, perceived 
constant in the rotating reference frame, just displaces these stationary values. This means that in the initial 
(“lab”) reference frame, the vector S rotates with the angular velocity , being “dragged” by the rotating field. 
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which peaks at the resonance frequency  = 
0, and has a FWHM184 of  =  = 2/T2, 
independent of the field’s amplitude. However, 
as the rotating field becomes stronger, it causes 
additional broadening of the resonance curve: 
in the opposite limit 1

2 >> 1/T1T2, to  = 
21(T1/T2)

1/2. Such additional broadening is 
typical for all Rabi oscillations (whose 
particular case the magnetic resonance is) – 
see, e.g., Eq. (6.101).  

 This resonance broadening is detrimental for most practical applications of the resonance 
(especially NMR) because their goal is the detection of small local variations of the field B0  0, i.e. 
of the resonance’s position on the frequency axis. On the other hand, the larger 1 the larger all possible 
signals used for resonance monitoring. (Conceptually, the simplest of them is the change of the spin’s 
average magnetic moment mz = Sz along the dc field’s direction, illustrated with Eq. (***) and the 
picture above.) As a result, for such “continuous-wave” (CW) methods, compromise values 1 ~ 
1/(T1T2)

1/2 are used. However, some refined field-pulsing techniques (see the literature recommended in 
Sec. 5.1 of the lecture notes) enable operation with higher rotating fields and hence higher output 
signals. 

 The analyzed effect of resonance broadening due to environment is much more general than the 
considered model. First of all, the external field’s rotation (“circular polarization”) assumed in this 
model is needed only to make the result (***) exact for an arbitrary frequency of the field. Indeed, a 
linearly-polarized ac field may be always represented as a sum of two fields that are circularly polarized 
in opposite directions, i.e. described by our model with equal but opposite values of . If the field 
amplitude and the environmental coupling are sufficiently small (1, 1/T1,2 << 0), the effects of these 
two rotating fields just add up, and at small detuning of one of them,    – 0  0, leading to the 
sharp resonance (***), the effect of its counterpart is negligible. 

 Second, as was discussed in Sec. 6.5 of the lecture notes, even if a quantum system has many 
discrete energy levels, its weak monochromatic perturbation with a frequency  close to one of the 
quantum transition frequencies nn’ causes substantial Rabi oscillations of occupations of only two 
involved energy levels, just as in a genuine two-level system as the spin ½. In the presence of weak 
coupling to the environment, the equations describing this effect, and hence their solutions are similar to 
those discussed above. This means, in particular, that the environment coupling modifies Eq. (**) in the 
solution of Problem 6.18 as 
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184 As a reminder: FWHM = Full Width at Half-Maximum – see, e.g., Sec. 2.5.  
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i.e. broadens each resonance just as it does in classical systems,185 even though the resonance’s half-
widths n depend on the strength and the type of environmental coupling. (For the case of 
electromagnetic coupling, such spectral linewidth will be calculated in Sec. 9.3.) From general 
electrodynamics, the electromagnetic energy’s dissipation, in particular the EM wave absorption, is 
described by the imaginary part of the complex dielectric constant (). As Eq. (****) shows, 
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i.e. the dissipation peaks near each quantum transition frequency nn’. (In Problem 6.18, only transitions 
from the ground state, with n’ = 0, were considered.) Note that in the limit n  0, the last expression 
tends to Eq. (****) of that problem’s solution, making the appeal to the Kramers-Kronig formula 
unnecessary. 

 

 Problem 7.15. Use the Bloch equations (see the solution of Problem 13) to analyze the dynamics 
of spin-½ with gyromagnetic ratio  under the effect of an external ac magnetic field with a relatively 
low frequency  and/or large amplitude Bmax (so that  Bmax  >> , 1/T1,2), assuming that the constants 
T1,2 are field-independent. 

 Solution: With the direction of the applied field taken for the z-axis, the Bloch equations, 
rewritten for the complex lateral components  

,yx SiSS 
 

read 

           
,,

1

e

2 T

tSS
S

T

S
StiS z

z


 




   (*) 

where, in our current case, the spin precession frequency (4.163) is a sinusoidal function of time: 

    ttt  sinmax B , 

so the quasi-equilibrium value of Sz (see the solution of Problem 13) changes in time as 

       







 



 t

TkTk

t
tS sintanh

2
tanh

2 B

max

B
e


.   (**) 

The two equations (*) are decoupled and thus may be analyzed separately. 

 Due to our problem’s strong condition, during the dominating part of the field oscillation period, 
the frequency (t) is much higher than  and than the spin relaxation rates 1/T1 and 1/T2. In this case, 
the only effect of the relatively small dephasing term in the first of Eqs. (*) is limiting the depth of the 
system’s memory of its initial conditions, making it possible to use the so-modified solution of Problem 
5.2 to write 

          tdt't'ttitS
t

 ~with  ,exp
2

 





, 

185 See, e.g., CM Eq. (5.17) and EM (7.32). 
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where the term  t~  describes a relatively slow phase diffusion due to the dephasing effect of the 
environment.186 

 The second of Eqs. (*) is a linear ordinary differential equation, and its solution may be 
expressed in a direct Duhamel integral form. Just for the benefit of the readers who have not yet 
encountered this general and very useful method of variable coefficients,187 we look for the solution in 
the form 

    ,exp
1 








T

t
tCtS z

 

because this exponent gives the solution of the corresponding homogeneous equation (with Se = 0). 
Plugging this solution into the full (inhomogeneous) Bloch equation for Sz, we get a simple equation 

   
1

e

11

e

1

exp  i.e.,exp
T

tS

T

t
C

T

tS

T

t
C

















  , 

which may be readily integrated, giving 

       dt't'S
T

t't

T
tSdt't'S

T

t'

T
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t

z

t

e
11

e
11

exp
1

  so,exp
1


 






 










 . 

 Solid lines on the two panels of the figure below show this result, with the account of Eq. (**), 
for small and large values of the ratio max/kBT, both for several representative values of the product 
T1, while the dashed lines show the function Se(t).  

 

 

 

 

 

 

 

 

 

 

 

The plots demonstrate that at relatively low frequencies,  << 1/T1, the expectation value of Sz 
faithfully follows its quasi-equilibrium value Se(t) (which is a square-wave-like function of time at 

186 The Bloch equations are insufficient for the full characterization of this diffusion but from the analysis in Secs. 
7.3-7.4, we may conclude that it obeys the diffusion equation (7.85) and that for the case of thermal fluctuations 
(kBT >> max), the corresponding diffusion coefficient is given by Eq. (7.142). 
187 This approach was already used in the model solution of Problem 9 – admittedly, without much explanation. 
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max >> kBT and sinusoidal in the opposite limit), while at high frequencies, it substantially lags behind 
the field variations. For example, in the low-field limit, max << kBT, when Se(t) changes sinusoidally,  

  t
Tk

tS sin
2 B

max
e





, 

the above Duhamel integral for Sz may be readily worked out for an arbitrary T1: 
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showing that at T1  , the lag of the function Sz(t) behind Se(t) reaches a quarter of the field period, 
and its amplitude drops as 1/T1. (The last conclusion is valid for any max/kBT  ratio.) 
 
 
 Problem 7.16. Derive Eq. (7.220) of the lecture notes from Eq. (7.222). 

 Solution: Spelling out both anticommutators in Eq. (7.222), we get 

  



 





 





  awaaawwaanawaaawwaanw ˆˆˆ2ˆˆˆˆˆˆˆˆˆ2ˆˆˆˆˆˆ1ˆ ††††††

ee . 

For the matrix elements in the (time-independent) basis of the Fock states n, this equation yields: 

          
 
























 






 


n'awann'aawnn'waann

n'awann'aawnn'waann
n'wnwnn'

ˆˆˆ2ˆˆˆˆˆˆ

ˆˆˆ2ˆˆˆˆˆˆ1
ˆ

†††

†††

e

e

 . (*) 

Let us simplify all bra-kets on the right-hand side of this equation by using Eqs. (5.89) and their 
Hermitian conjugates: 

    1ˆ,11ˆ,11ˆ,1ˆ 2/12/12/12/1 ††  nnannnann'n'n'an'n'n'a . 

 For the first term on the right-hand side of Eq. (*), acting by the creation and annihilation 
operators sequentially upon the immediately adjacent state vectors, we get 

nn'nwn'wnnnn'wannn'waan  ˆˆˆ1ˆˆˆ 2/12/12/1† . 

Similarly, the second term, 

nn'n'wn'wnn'n'n'awnn'n'aawn  ˆ1ˆˆ1ˆˆˆ 2/12/12/1 †† , 

is proportional to the same matrix element. However, the third term, with the density operator 
sandwiched between two creation and annihilation operators, is different, and may be calculated in a 
single shot: 

        11
2/12/12/12/1 111ˆ111ˆˆˆ †

 ,n'nwn'nn'wnn'nn'awan . 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                 Page 419 

 Performing absolutely similar transformations of the remaining three bra-kets, we arrive at the 
equation 

      
     




















1,1
2/12/1

e

11
2/12/1

e

211

1121

n'nnn'nn'

,n'nnn'nn'

nn'

wn'nwn'wnn

wn'nn'wnwn
w  , 

which differs from Eq. (7.220) only by a different grouping of the terms on its right-hand side.  

 

 Problem 7.17. For a harmonic oscillator with weak Ohmic dissipation, use Eq. (7.220) of the 
lecture notes to find the time evolution of the expectation value E of the oscillator’s energy for an 
arbitrary initial state, and compare the result with that following from the Heisenberg-Langevin 
approach. 

 Solution: Writing Eq. (7.220) for the diagonal elements Wn  wnn of the density matrix, i.e. for 
the probabilities to find the oscillator on its nth energy level,   

                ,11112 ee1e1e nnnn WnnnnWnnWnnW      

and plugging it into the expression for the expectation value of the oscillator’s energy (referred, for 
calculation convenience, to its ground-state level 0/2),  











1

0
1

0   so,
n

n
n

n WnE
dt

d
nWE   . 

we get  

        .11112 ee1e1e
1

0 nnn
n

WnnnnWnnWnnnE
dt

d
 
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








 n
nn

n
n

n

WnnnnnWnnWnnn   

 Let us replace the summation index n with (n – 1) in the first sum, and with (n + 1) in the second 
sum. This gives us 

            

          

    ,22
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
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










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



 (*) 

where Ee is the energy’s equilibrium value: 

e0
0

e0
0

e0e nWnWnE
n

n
n

n    








. 

Since this value is time-independent, Eq. (*) may be rewritten as  

,
~

  where,
~

2
~

eEEEEE
dt

d
   
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and has a simple solution, 

                 tEEEtEtEtE  2exp0  i..e.,2exp0
~~

ee   ,  (**) 

describing the exponential-law transient of the energy from its initial value to the equilibrium one.  

 It is remarkable that this very simple result188 is valid for an arbitrary initial distribution of the 
probabilities Wn (even though their time evolution may be rather involved – see Fig. 7.8 of the lecture 
notes), and for arbitrary phase shifts between the initial Fock states (because, according to Eq. (7.220) 
the off-diagonal elements of the density matrix of the oscillator do not affect the evolution of its 
diagonal elements.) 

 Now proceeding to the Heisenberg-Langevin approach to the same problem, we may start from  
Eq. (7.145) of the lecture notes: 

     )(
~̂

ˆˆˆ 2
0 tFxmxxm   .     (***) 

Looking for a solution of the corresponding homogeneous equation in the usual form exp{t}, we get 
the following well-known189 characteristic equation 

,02
0

2  
m

 

whose roots may be simplified in the low-damping limit: 

.
2 00   i

m
i  

This means that in the absence of the external force F(t), all linear operators ( †ˆ,ˆ,ˆ,ˆ aapx , etc.) of the 

system depend on time as exp{(i0 – )t}, so their Hermitian quadratic forms (such as the energy) are 
proportional to the modulus square of this function, i.e. to exp{-2t}. 

 Due to the linearity of Eq. (***), its solution may be represented as the sum of stationary 
fluctuations induced by the force described by its right-hand side, and the exponentially decaying 
oscillations due to the initial conditions. Since these two processes are independent of each other 
(mutually incoherent), their energies may be just added up: 

   tCEtE 2expe  . 

Selecting the constant C in this expression so that at t = 0, it coincides with the initial energy E(0), we 
get 

        tEtEtE  2exp12exp0 e   ,  

i.e. the same result as follows from the density matrix approach – cf. Eq. (**). We see that calculations 
using the Heisenberg-Langevin formalism are indeed much simpler – as is usual when it works, i.e. for 
linear systems. 

 

188 This is the same law as given by classical mechanics – see, e.g., CM Sec. 5.1, besides that in this limit, Ee = 0. 
189 See, e.g., the same CM Sec. 5.1. 
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Problem 7.18. Derive Eq. (7.234) of the lecture notes in an alternative way – by using an 
expression dual to Eq. (4.244). 

Solution: We need to calculate the diagonal matrix element of the operator   wxx ˆ,ˆ,ˆ  in the 
momentum representation. First, let us rewrite each component of this element by using (twice in each 
product) the closure condition (4.220) written for the eigenstates p of the momentum operator:      

            
 
 ,ˆ),(),(ˆˆ

ˆ),(),(ˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆ,ˆ

p"xp'p'pwp"p'wp'xpdp'pxp"dp"

pxp"p"p'wpp"wp"xp'dp"p'xpdp'

pxIxIwwIxxIwwIxIxppxxwwxxwwxxppwxxp









 (*) 

thus expressing it via the matrix elements of the coordinate operator in this representation. On the other 
hand, reproducing, for the momentum representation, the discussion that has led us from Eq. (4.240) to 
Eq. (4.245), we may readily get a formula dual to Eq. (4.244): 

                 p
p

ip''pxpdp' 



 ˆˆˆ ,    (**) 

where (p) is an arbitrary wavefunction in the momentum representation. In order to make calculations 
more compact, we may use the definition of the delta function to represent Eq. (**) in a shorthand form 

        p'p
p

i'pxp 



 ˆˆˆ .     (***) 

 This relation may look a bit intimidating because it apparently requires one to differentiate the 
delta function explicitly. However, the symmetric nature of the commutators to be evaluated eliminates 
the need to do that.190  Indeed, let us start by using Eq. (***) to spell out the inner integral (over p”) in 
the first term on the right-hand side of the last form of Eq. (*): 

 

.)(),(),()(

ˆ),(),(ˆ












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

pp"
p"

p"p'wpp"wp"p'
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dp"i

pxp"p"p'wpp"wp"xp'dp"


 

Differentiating the product (p’ – p”)w(p”- p) by parts, and noticing that the derivative of the delta 
function (p’ – p”) is nonvanishing only at p’  p”, we see that, after the forthcoming integration over 
p’, the terms with such derivatives cancel, so in this sense, the inner integral reduces to 

.),(),()( pp'w
p'

ipp"w
p"

p"p'dp"i







    

The inner integral (over p’) in the second term of Eq. (*) is similar, with the replacements p’  p, and p 
 p”, giving (also, in the sense of the forthcoming integration over p”): 

190 The reader who is reluctant to trust such high-riding is encouraged to reproduce the following calculation in a 
(longer) integral form, by using Eq. (**). 
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  ),(ˆ),(),(ˆ p"pw
p

ip"xp'p'pwp"p'wp'xpdp'



  .   

Now let us change the notation from p” to p’ in the second term of Eq. (*) and then merge both 
terms on its right-hand side: 
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so by repeating the same arguments as were used for the inner integrals, we get a simple result, 

              )(),(ˆ,ˆ,ˆ
2

2
22 pw
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









    ,  

which is equivalent to Eq. (7.234). (Its derivation described in Sec. 7.6 of the lecture notes is arguably 
more elegant.) 
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Chapter 8. Multiparticle Systems 

  Problem 8.1. Prove that Eq. (8.30) of the lecture notes indeed yields Eg
(1) = (5/4)EH.  

 Solution: According to Eq. (8.30), we need to calculate 
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Instead of calculating this 6D integral directly, we may notice that this is just the classical energy of the 
Coulomb interaction1 of two independent distributed electrostatic charges with similar spherically 
symmetric densities:  
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The (radially directed) electric field E induced by any one of these charges may be readily calculated by 
applying the Gauss law2 to a sphere of radius r : 
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where   2r’/r0. The last (dimensionless) integral may be readily worked out by parts; its indefinite 
form is exp{–}(–2 –2 – 2), so after the limit substitution, we get 
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 The second charge creates an absolutely similar field, so Etotal = 2E(r), and using the well-known 
expression for the electric field energy,3 the Coulomb energy of interaction of these two distributed 
charges may be calculated as 
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where   2r/r0 again. The last integral may be readily calculated by squaring the brackets and 
integrating each of the resulting terms by parts.4 The result equals 5/4, so using the fact that for helium 
(Z = 2), r0  rB/Z = rB/2, we finally get 

1 See, e.g., EM Eqs. (1.38) and (1.55). 
2 See, e.g., EM Eq. (1.16). 
3 See, e.g., EM Eq. (1.65). 
4 Alternatively, we may use, for most of them, the table integral MA (6.7d) with the corresponding values of n. 
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i.e. the result used in Sec. 8.2 of the lecture notes. 

 

 Problem 8.2. For a dilute gas of helium atoms in their ground state, with n atoms per unit 
volume, calculate its weak-field 

 (i) electric susceptibility e, and 
 (ii) magnetic susceptibility m, 

and compare the results. 

 Hint: You may use the results of the variational description of the helium atom’s ground state in 
Sec. 8.2 of the lecture notes, and the model solutions of Problems 6.8 and 6.15. 

 Solutions:  

 (i) As was discussed in the model solution of Problem 6.8, the atomic polarizability of the 
hydrogen atom, in its ground state, is  

                  3
B0 2

9
4 r  ,     (*) 

where rB is the Bohr radius (1.13). Rescaling this result for a hydrogen-like “atom” (or rather a positive 
ion) with  the nuclear charge Q = Ze and one bound electron, we get 

                  
4

3
B

0 2

9
4

Z

r
  .     (**) 

Indeed, Eq. (*) is just a representation of the following result of the solution of Problem 6.8: the ion’s 
energy change due to the applied electric field E is 

             
22

9 22
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B Ee
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r
E  ,     (***) 

where EH is the Hartree energy unit (1.9). As was discussed in Sec. 3.6 of the lecture notes, for the Bohr-
like atom/ion with Q = Ze, rB should be replaced with r0 = rB/Z, and EH, with E0 = EHZ2, so instead of 
Eq. (***) we get 
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immediately giving Eq. (**).   

 Now taking Z equal to its variational-optimized value (8.34), Zef = 2 – 5/16  27/16,5 adding the 
contributions from two electrons of the helium atom, and using the general formulas for the atomic 
susceptibility,6  = –E/(E2/2), and for the Hartree energy, EH = e2/40rB, we get 

5 As was mentioned in Sec. 8.2 of the lecture notes, this variational approach describes experimental results with 
an accuracy better than 1%. 
6 See, e.g., the model solution of Problem 6.8(iii). 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 425 

3
B4

3
B

0

He 11.1
)16/27(2

9
2

4
r

r





. 

 In a diluted gas (with a volumic density n << rB
-3), the atom interactions are negligible, so their 

induced electric dipole moments d = E  just add up. As a result, according to the basic electrostatics,7 
such a linear isotropic polarization may be readily recalculated into the electric susceptibility: 
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  (ii) As was discussed in Sec. 8.2 of the lecture notes, the ground state of the helium atom is a 
spin singlet, with a zero net spin: S = MS = 0. As a result, the atom does not have electron-spin 
paramagnetism, and its magnetic susceptibility is due to the orbital diamagnetism of the electrons.8 
Since, according to the discussion in Sec. 8.2 of the lecture notes, the orbital ground state of each 
electron is very close to that of a hydrogen-like atom, with the effective nuclear charge Zef = 2 – 5/16  
27/16, we may use the solution of Problem 6.15 for an arbitrary single-electron system, 
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(where   1/137 is the fine structure constant), by adding equal contributions to m from two electrons, 
to write 
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 This expectation value of r2, for a hydrogen-like atom/ion in its ground state, may be readily 
calculated by using Eq. (3.208):9 
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with   2r/r0. This is a well-known integral,10 equal to 4!  24, so  

2
0

2
1 3rr  , 

where, according to Eqs. (1.13) and (3.192), r0 = rB/Z. Now making the replacement Z  Zef = 27/16, 
we get 
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7 See, e.g., EM Sec. 3.3, in particular, Eqs. (3.44) and (3.50). 
8 Strictly speaking, we also should consider the (very weak) nuclear spin paramagnetism of the atom, but since 
protons are also spin-½ fermions, the ground state of the helium nucleus may be also considered as a spin singlet 
(despite the strong interaction of its protons), making its net spin equal to zero as well. 
9 As a reminder, the spherical harmonics and the radial wavefunctions (including R1,0) listed in Chapter 3 are 
already normalized – see Eqs. (3.173) and (3.194). 
10 See, e.g., MA Eq. (6.7d) with n = 4. 
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Now comparing the results for e and m, we see that of these two dimensionless parameters (for 
the same n), the magnitude of the latter one is much (by a factor of ~ -–2 ~ 104) smaller. This is very 
natural, since (as was repeatedly discussed in the EM part of this series) the orbital magnetism is a 
relativistic effect, which is very small for the effective velocities v ~ c/ ~ 10–2 c of the quantum motion 
of electrons inside atoms and molecules. 

 

Problem 8.3. Calculate the expectation values of the observables s1s2, S
2  (s1 + s2)

2, and Sz  s1z 
+ s2z, for the singlet and triplet states of the system of two spins-½, directly – without using the general 
Eq. (8.48). Compare the results with those for the system of two classical geometric vectors of length 
/2 each. 

Solution: Let us calculate the action of the scalar product operator on the ket-vectors of all states 
of the uncoupled-representation basis of the system, by first spelling them out and then returning to the 
shorthand notation. Starting from the state with both spins up: 
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As the reader should know quite well by now (see, e.g., Eq. (4.128) of the lecture notes), for each of the 
particles: 
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Since the operators of one spin do not affect the ket-vectors of its counterpart, we get  
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 So, the simple (factorable) triplet state  is indeed an eigenstate of the scalar product’s 
operator, with the eigenvalue (/2)2. An absolutely similar calculation for the opposite simple triplet 
state, , by taking into account that  
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yields a similar result: 
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also corresponding to the initial state. These two results are in agreement with the classical picture of 
two aligned vectors of length /2 each. 

 However, similar calculations for the oppositely directed spin states give quite different results: 
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showing that these states are not eigenstates of the scalar product’s operator. However, their two linear 
superpositions: the entangled triplet state (sign +) and the singlet state (sign –), defined by Eqs. (8.18) 
and (8.20), 
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are eigenstates of this operator: 
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though with rather different eigenvalues: 
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 Note that according to Eqs. (*)-(***), the product’s eigenvalue for the entangled triplet state is 
the same as for both factorable triplet states – the fact rather counter-intuitive for a linear superposition 
of two states with oppositely directed spins as s+. The same may be said about the result (***) for the 
singlet state, with its “unnaturally” high modulus; it is obviously in a sharp contradiction with the 
classical prediction s1s2 = –(/2)2 for two equal and antiparallel vectors of magnitude /2 each. 

 Let us now consider the total spin operator (8.47), 

          21 ˆˆˆ ssS  .      

By using the fact that the operators of the two partial spins are defined in different Hilbert spaces, and 
hence commute, we may readily calculate the operator of its square: 

                  21
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As we know from Chapter 4, squares of all single-particle spin-½ operators are proportional to the 
identity operator: 
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Hence in any state of the system, the expectation value of the operator (****) is 
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so by using Eqs. (*)-(***), we get the same Eq. (8.52), 
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which was obtained in Sec. 8.2 from the general relations (8.48) (valid for any spin), with the quantum 
number S = 1 for the triplet states and S = 0 for the singlet state – see also the “rectangular diagram” in 
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Fig. 8.2. (The counter-intuitive nature of this result for the entangled triplet state was already noted at its 
discussion in the lecture notes.) 

 However, for the z-component of the vector sum (8.47), the quantum-mechanical result coincides 
with what we could expect for classical geometric vectors. Indeed, for example, 

  0ˆˆˆˆˆ
2121  zzzzz ssssS , 

and similarly for the second component state, ; hence for both entangled states: 

0ˆ sS z . 

 This result is again in full agreement with the general theory of the spin addition because, as 
shown in Fig. 8.2, for both these states, the “magnetic” quantum number MS = (ms)1 + (ms)2 is equal to 
zero. An absolutely similar calculation shows that the factorable states  and  are also eigenstates of 

the operator zŜ , with the eigenvalues, respectively, + and –, corresponding to MS = 1 – also in 
concord with the second of Eqs. (8.48) for the net spin S = 1, and also with classical expectations. 

 

 Problem 8.4. Discuss the factors 1/2 that participate in Eqs. (8.18) and (8.20) of the lecture 
notes for the entangled states of the system of two spins-½, in terms of Clebsh-Gordan coefficients 
similar to those discussed in Sec. 5.7. 

Solution:  As was discussed in Sec. 8.2 of the lecture notes, the sum (8.47) of two spins has the 
same properties (8.48) as the sum (5.170) of the orbital and spin angular momenta of a single particle. 
Hence, for a system of two spins-½, we may repeat all the discussion of Sec. 5.7 with the following 
replacements: 
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where the index s in the magnetic quantum numbers m and M are just implied, to avoid an unnecessarily 
cluttered notation.  

 With these replacements, instead of the two state groups listed in Eq. (5.182), we get the 
following two possible bases, of four states each, available for the representation of an arbitrary state of 
the composite system of two spins-½: 

 - the uncoupled-representation basis: states  m1, m2, and 

 - the coupled-representation basis: states  S, M. 

In particular, as was discussed in Sec. 8.2, and confirmed by the direct calculation in the solution of the 
previous problem, the entangled states (8.18) and (8.20) belong to the coupled-representation basis, both 
with MS = 0, but with S = 1 for the triplet state, and S = 0 for the singlet state. 
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 Now we may use the replacements (*) to write the following analogs of Eqs. (5.190) for the 
Clebsh-Gordan coefficients of the two-particle system: 
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 These results are valid for states with any S and M of our list. In particular, for the factorable 
triplet state , with S = 1 and M = +1, these formulas are reduced to 
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while for the factorable triplet state , with S = 0 and M = –1,  
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– both very expectable results. Indeed, for the spins-½, states with m =  3/2 simply do not exist, while 
the two non-zero results mean simply that the factorable triplet states belong to both the coupled- and 
uncoupled representations: 
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as was already discussed in Sec. 8.2 of the lecture notes – see the top-right and bottom-left points in the 
“rectangular diagram” shown in Fig. 8.2. On the other hand, for the entangled states, both with M = 0, 
Eqs. (**) are reduced to 
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According to these relations, we may write 
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1
0,0,

2

1
0,1 , 

confirming once again the fact that the entangled states s belong to the coupled-representation basis, 
with the listed quantum numbers of the net spin. 

Thus the factors 1/2 that participate in the definitions (8.18) and (8.20) of these states may be 
considered just as particular cases of the Clebsh-Gordan coefficients. 

 

Problem 8.5.* Use the perturbation theory to calculate the so-called hyperfine splitting of the 
ground energy of the hydrogen atom,11 due to the interaction between the spins of its nucleus (proton) 
and electron. 

11 This effect was discovered by A. Michelson in 1881 and explained theoretically by W. Pauli in 1924, with the 
first quantitative calculation made in 1930 by E. Fermi. 
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Hint: The proton’s magnetic moment operator is described by the same Eq. (4.115) of the lecture 
notes as the electron, but with a positive gyromagnetic ratio p = gpe/2mp  2.675108 s-1T-1, whose 
magnitude is much smaller than that of the electron (e   1.7611011 s-1T-1), due to the much higher 
mass, mp  1.67310-27 kg  1,835 me. (The g-factor of the proton is also different, gp  5.586.12) 

 Solution: The perturbation Hamiltonian of the interaction between the magnetic dipole me of the 
electron and the magnetic field Bp induced by the proton’s magnetic moment, 

          p
p

pppp ˆ
2

ˆˆ ssm
m

e
g  , 

may be taken in the usual Pauli form – see Eq. (4.163) of the lecture notes): 
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Due to the proton’s relatively large mass, its position’s uncertainty (very small in comparison with the 
scale of the electron’s wavefunction spread, the Bohr radius rB) may be disregarded, so the relation 
between the operators of Bp and mp may be borrowed from the classical electrodynamics’ result for the 
field of an immobile point dipole:13 
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As a reminder, the delta-functional term in this expression provides a “coarse-grain” description of the 
field source – in our case, the proton. In our case, its use is legitimate due to the (very) strong relation rB 
>> ap, where ap ~ 10–15 m is the effective spread of the proton’s electric charge. 

Combining these formulas, we may use Eq. (6.14) of the lecture notes to write the following 1st-
order correction to the energy of the ground (and hence non-degenerate) state of the atom, denoted as 0: 
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Since the vectors of this state are spin-orbit factorable in the sense of Eq. (8.12), each average inside the 
square brackets of the last expression may be calculated separately for its orbital and spin components. 
For example, the first average is 
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(with the ground-state wavefunctions calculated in Sec. 3.6), where the integral over the orbital motion’s 
space may be taken by temporarily treating the electron and proton spin operators as c-number 
geometric 3D vectors se and sp – because such treatment is valid for any matrix element of these 
operators. 

12 The relatively large value of the proton’s g-factor results from the quark-gluon structure of this particle. (An 
exact calculation of gp remains a challenge for quantum chromodynamics.) 
13 See, e.g., EM Sec. 5.4.  
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 By selecting the x-axis, within the common plane of these two vectors, 
to bisect the angle 0 between them (see the figure on the right), and the z-axis 
normal to this plane, in the usual polar coordinates (in which the 2D 
component  of the radius vector r in the [x, y]-plane has the length  = rsin), 
we get 
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 The wavefunction 100(r) (describing the ground 1s electronic state of the atom) is spherically 
symmetric. With the account of this fact and the above expressions, the integration over the full solid 
angle of these terms gives exactly similar results, so their difference, on the right-hand side of Eq. (*),  
vanishes. As a result, the only contribution to the energy correction comes from the third, delta-
functional term: 
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(According to Eqs. (3.174) and (3.208), 100(0) 2 = 1/rB
3.)  

 Now proceeding to the spin factor in this result: since the proton is also a Fermi-particle with 
spin ½, the spin average in the above expression may be calculated exactly as in the solution of Problem 
3, giving (/2)2 for any triplet state, and –3(/2)2 for the singlet state, with the difference equal to 2. As 
a result, the ground state energy splits into two hyperfine sublevels, 14 with the triplet states’ energy 
higher than that of the singlet state by 
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 Plugging in the values of the involved constants, we get Ess  5.88410-6 eV, almost seven 
orders of magnitude smaller than the Hartree energy E0  27 eV, thus giving a posteriori justification of 
our perturbative treatment. Moreover, this splitting is much smaller than the fine structure of the energy 
due to the spin-orbit interaction (see Sec. 6.3 of the lecture notes) – hence the term hyperfine.15  

14 Note that according to the solution of the same Problem 8.3, all triplet states have the net spin S = 1, while the 
singlet state, S = 0. The change of S at a spontaneous quantum transition between the hyperfine sublevels may be 
interpreted by saying that the spin balance is carried away by the emitted circularly polarized photon with spin 1 – 
the notion to be discussed in Chapter 9. 
15 The splitting (**) affects each sub-level of the ground state’s fine structure. Note also that in more complex 
atoms and molecules, several other mechanisms, most notably including the interaction between the quadrupole 
electric moment of the nucleus (see, e.g., EM Sec. 8.9) with the electrons’ electric field gradient, make 
comparable contributions to the hyperfine structure of their energy levels. 
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 The hyperfine splitting of hydrogen levels is very important for astronomy because due to the 
cosmic microwave background radiation, the effective temperature of the hydrogen gas in space is at 
least ~3K, i.e. substantially higher than the minimum (Tss ~ Ess/kB ~ 0.1 K) necessary for the 
spontaneous thermal excitation of the higher (triplet) states. After such a thermal excitation, the 
hydrogen atom eventually returns to the genuine ground (singlet) state, emitting a microwave photon 
with the frequency ss = Ess/  0.89241010 s-1 (fss  ss/2  1,420.4 MHz)16 corresponding to the 
wavelength ss = c/fss  21.11 cm.  This famous 21-cm line, first observed in 1951 by E. Purcell and H. 
Even, gives radioastronomy one of the most important tools for measurements of the spatial distribution 
of the Universe’s most abundant atoms. (In particular, it was used to discover the spiral structure of our 
galaxy.) 

 Note also that the legal unit of time, the second, is currently defined in terms of the hyperfine 
splitting of the ground state of the cesium-133 atom, because of a high stability of the frequency of the 
corresponding transitions and its technically convenient value of 9.192 631 770 GHz. 

 

 Problem 8.6. In the simple case of just two similar spin-interacting particles, distinguishable by 
their spatial location, the famous Heisenberg model of ferromagnetism17 is reduced to the following 
Hamiltonian: 

 2121 ˆˆˆˆˆ ssss  BJH , 

where J is the spin interaction constant,   is the gyromagnetic ratio of each particle, and B is the 
external magnetic field. Find the stationary states and energies of this system for spin-½ particles.  

 Solution: According to the solution of Problem 3, all three triplet states (8.21), and the singlet 
state (8.18) are eigenstates of both terms of this Hamiltonian, and hence are stationary states of this 
system, with the following energies: 
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 If the magnetic field effect is negligibly small, this energy spectrum is reduced to just two levels: 
the triple-degenerate level Etriplet  –J(/2)2 and the singlet level Esinglet  3J(/2)2. So, the singlet and 
triplet spin states may naturally form even if two similar particles are distinguishable (in our current 
case, by their fixed spatial positions), due to their explicit interaction.  

 On the other hand, a substantial magnetic field, with B ~ J, lifts the triplet level’s degeneracy. 
(Note a substantial similarity of this effect with that for the excited states of the 4He atom, discussed at 
the end of Sec. 8.2 of the lecture notes.)  

16 These experimental values (measured to the 13th decimal place!) differ from the above theoretical value by ~ 
0.2%, due to quantum-electrodynamic effects ignored in the above treatment. 
17 It was suggested in 1926 independently by W. Heisenberg and P. Dirac. A discussion of thermal effects in this 
and other similar systems (especially the Ising model of ferromagnetism) may be found in SM Chapter 4. 
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 Problem 8.7. Two spins-½, with different gyromagnetic ratios 1 and 2, are placed in an external 
magnetic field B. In addition, the spins interact as in the Heisenberg model: 

21int ˆˆˆ ss  JH . 

Find the stationary states and energies of the system.  

 Solution: In the usual z-basis for each spin, with the z-axis directed along the applied magnetic 
field, the total Hamiltonian of the system has the following matrix: 

  zzzzyyxxJ 2211212121

2
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
 . 

By using this expression and the solution of Problem 3, we may readily calculate the effects of the 
Hamiltonian on each of the four states of the uncoupled-representation basis of the system: 
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 The first two of these formulas show that the factorable triplet states  and  are always 
stationary states of this system, with energies, respectively, 
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On the other hand, Eqs. (*) mean that the two remaining stationary states, which will be denoted (), 
generally are neither the factorable states  and , nor the simple entangled singlet and triplet states 
described by Eqs. (8.18) and (8.20), but rather different linear superpositions: 

  baba , . 

The coefficient pairs {a, b} in these relations may be found (to a common multiplier, which should be 
calculated from the normalization condition) as the eigenvectors of the following partial (22) matrix of 
the Hamiltonian, written in the basis of two uncoupled-representation states  and : 
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As usual, we should find the corresponding eigenvalues (i.e. the energy levels) first, as the roots E of 
the consistency equation (4.103); in our current case, it reads 
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A straightforward calculation yields: 
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 According to Eqs. (**) and (****), at very low magnetic fields (1,2B << J), the energy 

spectrum of the system is reduced to just two levels: a triplet level: E  E  E+  Etriplet  –J2/4, and 
a singlet level, E–  Esinglet  3J2/4. However, the field makes all four energies different. In particular, in 

the limit of very high fields, when (1  2)B >> J, these energies are 
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and may be interpreted as algebraic sums of individual spin energies in the magnetic field. Thus, at very 
high fields, the spin coupling is unimportant and the spins behave independently – as could be expected. 

 Returning to arbitrary field values: plugging the results (****), one by one, into the system of 
equations for the coefficients {a, b} that corresponds to the matrix (***), we get similar expressions 
for their ratios: 
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For either similar particles, i.e. for 1 – 2 = 0, or for any 1,2 but in the field’s absence, these formulas 
yield b+ = a+ and b– = –a, so the eigenstate (+) is the simple mixed triplet state s+ (see, e.g., Eq. (8.20) of 
the lecture notes), while the eigenstate (–) is the singlet state (8.18), in agreement with the previous 
problem’s solution. However, at 1  2, the magnetic field lifts the triplet’s degeneracy and makes the 
linear superpositions () different from the entangled states of the coupled-representation basis. In the 
limit of very large fields, (1 – 2)B >> J, the coefficient a+ becomes much smaller than b+, and the 
coefficient b– much smaller than a–, meaning that the eigenstate (+) tends to the state  of the 
uncoupled-representation basis, while the eigenstate (–) tends to the opposite state  of this basis.   

 

 Problem 8.8. Two similar spins-½ with a gyromagnetic ratio , localized at two points separated 
by distance a, interact via the field of their magnetic dipole moments. Calculate the stationary states and 
energies of the system. 

 Solution: In classical electrodynamics, the energy of interaction of two magnetic dipoles m1 and 
m2, separated by distance a, is18 

18 See, e.g., EM Eqs. (5.99)-(5.100). 
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where the z-axis is directed along the vector a connecting the dipole positions. In accordance with the 
correspondence principle, in quantum mechanics, the interaction is described by the Hamiltonian that is 
similarly expressed via the Cartesian components of the magnetic moment operators given by Eq. 
(4.115) of the lecture notes: 
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and kŝ  is the spin vector operator of the kth particle. For spins-½, in the standard z-basis, the operator is 

described by Eqs. (4.116)-(4.117), so the Hamiltonian matrix of the system is 
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where 1,2 are the Pauli matrices (4.105) acting on spin vectors of the corresponding particles. (Note that 
this Hamiltonian is substantially different from the Heisenberg model discussed in two previous 
problems.) 

  Using this expression and acting just as in Problem 3, we may readily calculate the result of this 
Hamiltonian’s action on each of the four states of the uncoupled-representation basis of the two-spin 
system. The result is 
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This means that the spin-aligned states  and  are stationary states of the system, with the same 
energy,  

.2 0EEE    

On the other hand, the spin-opposite states  and , while not mixing with the spin-aligned states, 
mix with each other as described by the following partial (22) matrix 

      







11

11
2H 0E .     (*) 

Solving the characteristic equation (4.103) for this matrix, 
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we get + = 2, - =0, giving us two more (non-degenerate) energy levels: 

02,42 000    EEEEE . 

 Now plugging these values, one by one, into any equation (4.102) used for the diagonalization of 
the matrix (*),  
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    ,01,01 2121   UUUU   

we get U1+ = U2+, U1– = –U2–, meaning that the eigenstates corresponding to the energy levels E are, 
respectively, the familiar entangled triplet and singlet – see Eqs. (8.18) and (8.20): 

 
2

1
s . 

 Hence, in this system, the energies of the triplet states are different even in the absence of the 
external magnetic field: the spin-aligned (factorable) triplet states have the energy (–2E0), which is 
lower than that (+4E0) of the entangled triplet state – and even than that (0) of the singlet state. This 
difference is in qualitative agreement with the classical trend of electric and magnetic moments to align 
due to their dipole interaction.19 

 

 Problem 8.9. Consider the permutation of two identical particles, each of spin s. How many 
different symmetric and antisymmetric spin states can the system have?  

 Solution: As was discussed in Section 5.7 of the lecture notes, each of the particles of spin s may 
have (2s + 1) different, linearly-independent spin states – for example, the states with definite and 
different “magnetic” quantum numbers ms on the interval –s  ms  +s – see, e.g., Eq. (5.169) of the 
lecture notes.  Thus, generally, for two such particles, there are (2s + 1)2 different direct products, 

        'mm ss   ,     (*) 

with arbitrary ms and ms’ of the above list. Of them, (2s + 1) products have ms = ms’, and hence are 
symmetric with respect to the particle permutations, while  

          1221212 2  ssss      

other states have ms  ms’. Of the latter states, we can form s(2s + 1) symmetric and the same number of 
antisymmetric combinations of the type 

        ssss m'm'mm  .     (**) 

 Since all these states are linearly-independent, they form a full system of (2s + 1)2 spin states, 
because the formation of the symmetric and antisymmetric independent linear combinations does not 
change that number. Hence, the total number of different symmetric states is 

      1211212s  sssssN , 

while the number of different antisymmetric states is only  

  sa 12 NssN  . 

 As the simplest example, for two spin-free particles (s = 0) we get Ns = 1, Na = 0 – fine because 
the only possible spin(-free) state of this system is symmetric with respect to the particle permutation. 
As the next simplest example, s = ½, our results yield Ns = (½ + 1)(2½ + 1) = 3 and Na = ½(2½ + 1) = 
1,  corresponding to the three triplet states (8.21) and the only singlet state (8.18).  

19 See, e.g., the solutions of EM Problems 3.7 and 6.15. 
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 Note, however, that for systems of two particles with s > ½, not all basis vectors of the coupled 

representation, i.e. not all simultaneous eigenkets of the operators 2Ŝ and zŜ  have the simple forms (*) 
or (**), so more complex linear superpositions may be needed – see, for example, the next problem.  

 

 Problem 8.10. For a system of two identical particles with s = 1:  

 (i) List all spin states forming the uncoupled-representation basis. 
 (ii) List all possible pairs {S, MS} of the quantum numbers describing the states of the coupled-
representation basis – see Eq. (8.48) of the lecture notes. 
 (iii)Which of the {S, MS} pairs describe the states symmetric, and which the states 
antisymmetric, with respect to the particle permutation?    

 Solutions: 

 (i) The state vectors of the uncoupled representation are given by Eq. (*) of the solution of the 
previous problem. In our current case, each of quantum numbers ms and ms’ may take one of the three 
values of the set {–1, 0, +1}. In the shorthand notation used in Secs. 8.1 and 8.2 of the lecture notes, 
their ket-vectors are  

.1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,1,1,1   

For what follows, it is helpful to represent these states as the points at the “rectangular diagram” shown 
in the figure below. (Its structure is similar to that for s = ½,  shown in Fig. 8.2 of the lecture notes.)  

 

 

 

 

 

 

 

 

 

 
 (ii) As was discussed in Sec. 5.7 of the lecture notes for the addition of the angular momentum 

operators L̂ and Ŝ , and reproduced in Sec. 8.2 for the addition of two spin operators 1ŝ  and 2ŝ , the kets 

of the coupled-representation basis, i.e. the common eigenkets of the operators  2
21

2 ˆˆˆ ss S and 

zzz ssS 21 ˆˆˆ  , are linear combinations of the uncoupled-representation kets with the fixed sum  
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and hence may be represented, on the rectangular diagram, by the straight lines of the slope (–1), that 
connect the corresponding {ms, ms’} points – see the figure above. Hence, the assignment of the 
numbers MS is elementary – see the labels in that figure. 

 For several coupled-representation states, the assignment of the quantum number S is also 
straightforward. For example, let us consider the top-right and bottom-left points of the rectangular 
diagram, representing the states with ms = ms’ = +1 and ms = ms’ = –1. Since each of the lines 
representing a coupled-representation state, which passes through one of these points, does not pass 
through any other point, the corresponding states belong also to the coupled-representation basis, with 
MS = 2. They, evidently have the largest possible value of MS, namely  MS max = 2. According to Eq. 
(8.48), this value serves as the corresponding number S, so we may write 

       1,12,2,1,12,2  'mmMS'mmMS ssSssS . (*) 

 Now going, from the corners, one step toward the center of the diagram, i.e. to the states with MS 
= 1, we may notice, first of all, that since there are two uncoupled-representation states for each of 
these values, there should be also two their linear superpositions giving different coupled-representation 
states, and they cannot have the same number S – otherwise they would not be linearly-independent. 
Next, as was discussed in Sec. 5.7 for the addition of L and S of a single particle, the quantum number 
characterizing the square of their sum (there, j, while in our current case, S) can change, at such step, 
only by 1. Hence the two coupled-representation states, for each of these MS, should have S = 1 and S = 
2. Since, due to the symmetry of the rectangular diagram with respect to the axis ms = ms’, the moduli of 
the weights of the two uncoupled-representation kets participating in each of such superpositions have 
to be equal, the only possible superpositions have (to an arbitrary phase multiplier) the familiar form: 

         

 

 ,1,00,1
2

1
1,

1

2

,1,00,1
2

1
1,

1

2























'mm'mmMS

'mm'mmMS

ssssS

ssssS

  (**) 

– cf. Eqs. (8.18) and (8.20) of the lecture notes. 

 Finding the similarly explicit forms for the three remaining coupled-representation states with 
MS = 0, corresponding to the three lines passing through the origin of the rectangular diagram, in a bit 
more complex,20 but this is not necessary to fulfill our task. Indeed, since all these kets have the same 
MS, they all should have different S, to be linearly independent. However, according to Eq. (8.50), 

20 This may be done, for example, using the Clebsh-Gordan coefficients for s1 = s2 = 1 – which, in turn, may be 
derived from the recurrence relations that were derived (for the L + S = J addition) in the solution of Problem 
5.41. Just for the reader’s reference: 

 
 
  .3/0,01,11,10,0

,2/1,11,10,1

,6/0,021,11,10,2






'mm'mm'mmMS

'mm'mmMS

'mm'mm'mmMS

ssssssS

ssssS

ssssssS

 

These expressions may be readily verified, for example, by combining Eq. (5.164) of the lecture notes, with l = 1, 
duly translated to the spin language, and Eq. (****) of the solution of Problem 8.3. This verification is highly 
recommended to the reader as an additional task. 
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spelled out for our case Smax = s1 + s2 = 2, the list of possible values of S is limited to S = 0, 1, and 2, thus 
giving us the final answer – see the labels in the figure above. 

 (iii) The two states (*) are evidently symmetric with respect to the particles’ permutation, and so 
are two of the four states (**), corresponding to S = 2. So, besides the three states with MS = 0, four 
states are symmetric, and two are antisymmetric. But according to the solution of the previous problem, 
for s = 1, we must have six symmetric and three antisymmetric states, so of the three states with MS = 0, 
two have to be symmetric and one antisymmetric. Since the net-spin-free state with S = 0 and MS = 0 has 
to be symmetric for any s, this means that the state with S = 1 and MS = 0 has to be antisymmetric, while 
the state with S = 2 and MS = 0, symmetric. This is indeed true – see the last footnote. 

 

 Problem 8.11. Represent the operators of the total kinetic energy and the total orbital angular 
momentum of a system of two particles, with masses m1 and m2, as combinations of the terms describing 
the center-of-mass motion and the relative motion. Use the results to calculate the energy spectrum of 
the so-called positronium – a metastable “atom”21 consisting of one electron and its positively charged 
antiparticle, the positron. 

 Solution: The operators in question are the sums of the single-particle operators defined by Eqs. 
(1.27) and (5.147) of the lecture notes: 

   221121
2

2
2

1

2
1

21 ˆˆˆˆˆˆˆ,
2

ˆ

2

ˆˆˆˆ prprLLL 
m

p

m

p
TTT . 

Following a clue from classical mechanics,22 let us introduce two new radius vector operators:   

             21
2211 ˆˆˆ  and  

ˆˆˆ rrr
rr

R 



M

mm
,    (*) 

where M  m1 + m2 is the total mass of the system. Considering these definitions as a system of two 
linear equations for the initial radius vector operators, we may readily solve it to get the following 
reciprocal relations: 

             .ˆˆˆ,ˆˆˆ 1
2

2
1 rRrrRr

M

m

M

m
     (**) 

 Now let us define two new momentum operators as 

           ,
ˆˆ

ˆ,ˆˆˆ 2112
21 M

mm pp
pppP


     (***) 

with the reciprocal relations 

     pPppPp ˆˆˆ,ˆˆˆ 2
2

1
1 

M

m

M

m
.    (****) 

By using the fact that the operators of different particles are defined in their own Hilbert spaces and 
hence commute, we may verify that the Cartesian components of the new operators satisfy the 

21 Its lifetime (either 0.124 ns or 138 ns, depending on the spin state) is limited by the weak interaction of the 
components, which leads to their mutual annihilation with the emission of several gamma-ray photons. 
22 See, e.g., CM Eq. (3.32). 
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Heisenberg commutation relations (2.14), while commuting with each other. For example (with the 
index x of the particle momentum operators just implied): 

   

       
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              ,0ˆ,ˆˆ,ˆˆˆ,ˆˆˆ,ˆ 22112121  pxpxppxxPx x  

with similar relations for two other Cartesian components. Hence, the operators (***) are the legitimate 
operators of the momenta corresponding to the radius vector operators (*).23  

 Now plugging Eqs. (**) and (****) into the operators of our current interest, we readily get  

   prPRL ˆˆˆˆˆ,
2

ˆ

2

ˆ
ˆ

22


m

p

M

P
T , 

where m is the same reduced mass that participates in classical dynamics of two-particle systems: 

21
21

21 ,  so,
111

  i.e., mmm
mmmM

mm
m  . 

Evidently, the uppercase operators (and the total mass M) describe the motion of the center of mass of 
the system of two particles, while the lowercase operators (and the reduced mass m) describe their 
mutual motion. If we are not interested in the motion of the atom as the whole, in the case of a purely 
Coulomb interaction of the electron and positron with equal and opposite charges e, i.e. neglecting the 
very small fine-structure effects discussed in Sec. 6.3, we may take the Hamiltonian of the system in the 
form 

r

e

m
UTH

0

22

42

ˆˆˆˆ

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p

, 

where m is the reduced mass (in this particular case, equal to me/2), so the energy spectrum is similar to 
that of the hydrogen atom, but with twice smaller mass. This change leaves the functional form of 
Bohr’s theory result (1.12) intact, but according to Eq. (1.13), reduces the effective value of the Hartree 
energy EH (and hence of all eigenenergies) by a factor of two: 

 
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
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E
En 

 
, 

so the ground-state energy of the positronium, i.e. its ionization energy, is –EH/4  –6.8 eV. 

23 Another, perhaps less convincing way to prove this fact is to plug Eqs. (**) into the coordinate-representation 

form of the particle momentum operators, 2,12,1ˆ ip  to get Eqs. (****) with RP iˆ , ,ˆ rp i  and 

then argue that the relation between the operators should not depend on their particular representation. 
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 Problem 8.12. Calculate the energy spectrum of the system of two identical spin-½ particles 
moving along the x-axis, which is described by the following Hamiltonian: 

 21
2
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22

ˆ
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ˆˆ xxxx
m

m
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p
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
 , 

and the degeneracy of each energy level.  

 Solution: Acting just as in the previous problem and using the Hamiltonian’s symmetry with 
respect to particle permutation, let us introduce the following two linear combinations of their 
coordinates x1 and x2: the distance x  x1 – x2 between the particles, and the coordinate X  (x1 + x2)/2 of 
their center of mass. Plugging the reciprocal relations, 

,
2

,
2 11

x
Xx

x
Xx   

into the given Hamiltonian, we see that it separates into two independent parts: 
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M  2m0 is the total mass of the system, m  m0/2 is the “reduced” mass of the relative motion, and 

2

ˆˆ
ˆ,ˆˆˆ 21

21

pp
pppP


 . 

(As we know from the solution of the previous problem, the operators so defined are the legitimate 
generalized momenta corresponding to the generalized coordinates X and x, respectively.)  

 So, the total Hamiltonian is the sum of the usual Hamiltonians of two independent 1D harmonic 
oscillators with frequencies given by Eq. (**). Hence the total energy of the system is just the sum of the 
oscillator energies: 

    ,...2,1,0,with ,
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2

1
, 
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

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  nNnNE nN  .   (***)  

Besides certain exact values of the parameter   (such as  = 6/5, when  = 2), the frequencies  and 
 are incommensurate, so the energy levels (***) are orbitally non-degenerate. In order to analyze their 
spin degeneracy, let us spell out the orbital wavefunction corresponding to a certain pair of the quantum 
numbers N and n: 

             21
21

21, 2
, xx

xx
xXxx nNnNnN 






 

  ,   (****) 

where N and n are the single-oscillator’s eigenfunctions. According to Eqs. (2.281) and (2.284) of the 
lecture notes (see also Fig. 2.35), these functions are symmetric if their index is even, and antisymmetric 
if it is odd. Since the first operand of the product in Eq. (****) is symmetric with respect to the particle 
permutation (x1  x2) for any N, the total orbital wavefunction’s parity depends only on n: 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 442 
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 Since the total (orbital plus spin) state vector of the system of two indistinguishable fermions has 
to be antisymmetric with respect to particle permutation, each energy level (***) with an even n may 
only house the spin singlet state (8.18), and hence is non-degenerate. On the other hand, each level with 
an odd n may correspond to any of the three triplet states (8.21) and hence is triple-degenerate.  

 

 Problem 8.13. Two particles with similar masses m and charges q are free to move along a planar 
circle of radius R. In the limit of very strong Coulomb interaction of the particles, find the lowest 
eigenenergies of the system, and sketch the system of its energy levels. Discuss possible effects of 
particle indistinguishability. 

 Solution: Per the discussion of single-particle rotation in Secs. 3.5 and 5.6 of the lecture notes, 
we may write the system’s Hamiltonian as follows: 
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Here r12 is the distance between the particles, which may be readily expressed via the difference, 

            21   ,      (*) 

of their angular coordinates 1,2 – see the figure on the right: 

2
sin212


Rr  . 

 Despite the apparent simplicity of the Hamiltonian, its general 
analysis is rather involved. However, in the strong interaction limit,  

2

2
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
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
, 

the lowest energy levels may be readily found analytically, using clues from the classical properties of 
the system. Indeed, classically, the lowest energy of the system corresponds to the particles pushed, by 
their Coulomb repulsion, to the opposite ends of the same diameter D = 2R, so the potential energy U of 
the system equals U0  q2/40D = q2/80R. This interaction, however, does not prevent the pair from 
its free joint rotation around the circle with an arbitrary angular velocity . If U0 is finite, one more 
contribution to the system’s energy may come from small oscillations of the particles near the 
equilibrium position r12 = 2D. In order to find the oscillation frequency, let us introduce, besides the 
difference angle  defined by Eq. (*), another independent linear combination of particles’ coordinates:  

       
2

21 



 ,      (**) 

characterizing their joint rotation – just as it was done in the two previous problems. Solving the system 
of equations (*) and (**) for 1,2, and plugging the result, 

R
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into the classical expression for the kinetic energy of the system, 
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where I  (2m)R2 is the total moment of inertia of the system, while I’  mefR
2 = (m/2)R2 is the “reduced 

moment of inertia”, similar to the “reduced mass” mef = m/2 in other two-body problems with equal 
masses of the components. Now we may Taylor-expand the potential energy near its minimum value: 
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to calculate the effective spring constant ef for small oscillations ~  of the angular distance . A 
straightforward calculation yields 
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so the total energy of the oscillations is 
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As we know from classical mechanics, the 0 so defined is the small oscillations’ frequency. 

 Now proceeding to quantum mechanics, Eqs. (*) and (**), and the replacement UU
~ allow us 

to rewrite the initial Hamiltonian in the form of the sum of two independent components:24 
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whose stationary energies may be calculated separately, and then added. The oscillation part, which was 
repeatedly discussed in this course, immediately yields 
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 The eigenfunctions of the rotational Hamiltonian, which has only a simple kinetic-energy 
component, have been also discussed several times, starting from Sec. 3.5:  

24 An alternative way to get these expressions is to use the solution of Problem 8.8, taking zz L̂ˆ nL  , where nz is 

the unit vector normal to the ring’s plane. 
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           
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 However, at this point, we need to be very careful, because now this wavefunction describes the 
joint rotation of a two-particle system, and their permutation properties are important. If the particles are 
distinguishable (either by their nature or by the state of some internal degrees of freedom), () should 
be invariant with respect to the system’s rotation by  = 2 (and its multiples), just as in the case of a 
single-particle rotor. This condition immediately gives the equality exp{im2} = 1, i.e. forces m to be an 
integer, giving the energy spectrum25 
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 The figure below shows the scheme of the system’s lowest energy levels for this case. Note the 
double rotational degeneracy of all levels (besides those with m = 0), and the level hierarchy due to the 
strong relation between the gaps between adjacent rotational and oscillational energies, 
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which is valid in our case of very strong particle interaction (U0 >> Erot). 

 

 

 

 

 

 

 

 

 

 

 

 If the particles are indistinguishable, the situation is more complicated. Indeed, let the 
background (spin plus vibrational) state of the system be symmetric with respect to the particle 
permutation. (This is true, for example, if the particles are spinless bosons, and the system is in an even 
vibrational state with n = 2n’, with integer n’, for example, in the ground state with n = 0.) Then the 
system’s rotation by just  results in an identical quantum state, so we have to require that the 
wavefunction (***) satisfies the condition (  ) = (), i.e. that exp{im} = 1. This requirement 
allows only even values of m, thus decimating the rotational energy spectrum (****).  

25 Let me hope that the difference between the fonts used for the “magnetic” quantum number (m) and the particle 
mass (m) is sufficient to avoid any confusion. 
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 On the other hand, in an odd vibrational state of the bosonic system, with n = 2n’ + 1, the 
oscillator’s wavefunction changes sign at the replacement   –. According to the definition of the 
angles  and  (see, e.g., the figure above), such replacement is equivalent, modulo 2, to the 
replacement     , so the sign change of the total wavefunction may be compensated by that of 
(), but only if exp{im} = –1, i.e. if m is odd. Hence, the rotational spectrum (****) is decimated 
again, but now by forbidding the energy levels with even m, notably including the pseudo-ground state 
with m = 0. 

This effect becomes even more involved in the case of two indistinguishable spin-½ fermions – 
e.g., electrons or protons. As was discussed in Sec. 8.2 of the lecture notes, in this case, the necessary 
antisymmetry of the system’s wavefunction to particle permutation may be achieved either via the spin 
asymmetry (in the singlet spin state with S = 0) or the orbital asymmetry, with a symmetric (triplet) spin 
state, with S = 1. For our system, this means, for example, that in the ground vibrational state (n = 0), 
there are two sets of spin-rotational states: spin-singlet states with m even, and spin-triplet states with m 
odd.  

Rather counter-intuitively, such symmetry effects may affect readily observable properties of 
real systems (for example, such important diatomic molecules as O2 and N2) even when they are 
imposed by nuclear spins, despite their extremely weak interaction with other degrees of freedom – see 
the next problem. 

 

 Problem 8.14. Low-energy spectra of many diatomic molecules may be well described by 
modeling the molecule as a system of two particles connected with a light and elastic but very stiff 
spring. Calculate the energy spectrum of a molecule within this model. Discuss possible effects of 
nuclear spins on spectra of the so-called homonuclear diatomic molecules formed by two similar atoms. 

 Solution: In the specified model, the system’s Hamiltonian is 
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where a is the equilibrium distance between the two atomic nuclei. By using the solution of Problem 11 
to transform the kinetic-energy part of the Hamiltonian, we may rewrite it as 
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where M  m1 + m2 is the total mass of the molecule,  
1
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21 11












mmM

mm
m , 

m is the reduced mass of the mutual motion of its components, and the momenta operators, 

,ˆˆˆ  and,ˆˆˆ
2

1
1

2
21 pppppP

M

m

M

m
  

commute in the usual (“canonical”) way with, respectively, the radius vector R of the center of mass of 
the molecule, and the distance radius vector r. 
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 As Eq. (*) shows, the system’s spectrum is a sum of two independent contributions: the kinetic 
energy of the molecule as a whole, with the mass M, free to move in space, and an “effective” single 
particle, with the reduced mass m, moving in the spherically symmetric potential U = (r – a)2/2. As we 
know well, the former motion is simple, giving a continuous energy spectrum (1.89), while the latter is 
generally complex, and is simplified only if the spring is rather stiff: 
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2
2
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
 .     (**) 

In this limit, we may separate the general 3D motion of the effective particle into its rotation at the fixed 
distance r = a, and small radial (1D) oscillations about this point, and use Eqs. (2.262) and (3.163) to 
write the total energy spectrum as the sum 
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where the wave vector k may take arbitrary values,26 while l and n are integer quantum numbers that 
take independent values from the similar sets: 0, 1, 2,….  

For most diatomic molecules, the rotational energy scale 2/ma2  is in the range from 10–5 to 10–2 
eV. (In the extreme case of the hydrogen molecule H2, with its very light nuclei, m1,2  1.710–27 kg and 
a small equilibrium distance a  0.074 nm  1.4 rB between them, 2/ma2  7.6 meV.) As a result, at 
room temperatures T ~ 300 K, with kBT ~ 25 meV, thermal fluctuations are sufficient to excite quite a 
few lower rotational levels with l > 0. On the other hand, the vibration frequencies 0/2 are between 
1012 and 1014 Hz, so even the lowest oscillation energies are in a much higher range from ~10–2 to ~1 
eV. (In the same ultimate case of H2, 0  0.54 eV.) As a result, at room temperatures, the vibrational 
levels with n > 0 are virtually not populated. The electronic state excitations have comparable or even 
higher energies, in the a-few-eV ballpark, because they do not involve the motion of relatively heavy 
particles such as nuclei. This hierarchy justifies the model explored in this problem, and in particular the 
stiff-spring condition (**).  

 This is essentially the whole story for heteronuclear molecules, such as CO, NO, or HCl, 
consisting of different and hence distinguishable atoms. On the other hand, for homonuclear molecules, 
such as H2, O2, or N2, the indistinguishability effects may be important even at room temperatures, 
because (as was discussed above) most molecules are in their ground electronic and vibrational states, 
and hence are either symmetric or antisymmetric with respect to atom permutation, depending on their 
total spin, including not only its electronic but also its nuclear component.  

 For example, the 16O nucleus (of the oxygen isotope most abundant at natural conditions) has its 
total spin equal to zero, while the total (orbital + spin) ground-state electronic wavefunction of the 
oxygen molecule is antisymmetric with respect to the nuclei permutation. As a result, just as was 
discussed in the solution of the previous problem, the rotational wavefunction has to be antisymmetric 
with respect to the replacement r  –r, i.e. to the simultaneous replacement    – , and    +  
(modulo 2), where  and  are the usual polar angles of the distance radius vector r. As we know from 
the properties of the spherical harmonics (see, e.g., Eqs. (3.168) and (3.171), or just Fig. 3.20 of the 

26 The quantum transitions used for most spectral measurements are unaffected by the translational motion, 
described by the first term in Eq. (***), so this component will be ignored in the forthcoming discussion. 
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lecture notes), this condition may be only fulfilled for odd values of the quantum number l. This means, 
rather counter-intuitively, that the ground state of the O2 molecule corresponds to l = 1, i.e. essentially, 
to its rotation: 

 
2

0
2

2

electronicgg




ma
EE . 

 Even more interesting (and historically, more important) are the properties of the nitrogen 
molecule N2, with the nitrogen atoms of the (dominating) isotope 14N. This nucleus has seven protons 
and seven neutrons, and its ground state has the net spin I = 1. At the same time, the ground orbital 
electronic state of the (covalent-bound) N2 molecule is symmetric with respect to the nuclei 
permutation.27 As a result, the lowest rotational energy of the molecule depends on the net spin I of the 
two nuclei. Since the operator of the total spin is a vector sum similar to those discussed in Secs. 5.7 and 
8.2 of the lecture notes: 

,1with  ,ˆˆˆ
2121  IIIII  

and obeys relations similar to those given by Eq. (8.48), we may use the solution of Problem 9, with s = 
1, to conclude that the nuclear spin system has six symmetric states (allowing only even values of l) and 
three antisymmetric states (allowing only odd values of l). Since for these molecules, at room 
temperature, kBT >> 2/ma2, many lower-energy rotational states are thermally excited, with the number 
of such states with even values of l twice larger than that for odd values of l.  

 The selection rules discussed in Sec. 5.6 of the lecture notes (see also the solution of Problem 
5.41) enable experimental determination of l’s parity by measuring which quantum (in particular, 
optical) transitions from such state to a fixed final state are allowed. In the late 1920s, i.e. before the 
experimental discovery of neutrons in 1932, the observation of this 2:1 ratio in experimental molecular 
spectra of N2 molecules (by L. Ornstein) helped to establish the fact that the spin I of the 14N nucleus is 
indeed equal to 1, and hence to discard the then-plausible model in which the nucleus would consist of 
14 protons and 7 electrons, also giving it the observed mass m  14mp and the net electric charge Q = 7e. 
(In that model, the ground-state value of I would be semi-integer, leading to a different statistics of I, 
and hence of l.)28 

 Problem 8.15. Two indistinguishable spin-½ particles are attracting each other at contact: 

    0,with ,, 2121  WW xxxxU   

but are otherwise free to move along the x-axis. Find the energy and the orbital wavefunction of the 
ground state of the system. 

 Solution: The system’s Hamiltonian is 
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, 

27 Let me emphasize that this orbital symmetry of the ground electronic state does not contradict its fundamental 
asymmetry with respect to the permutation of any two electrons, which is provided by the singlet spin factor – see, 
e.g., Eq. (8.12). Such radical difference between the two symmetries is possible because each electron in such an 
entangled state is a “common commodity” of both nuclei, and its number cannot be associated with that of a 
particular nucleus. 
28 The author is grateful to P. van Nieuwenhuizen for sharing this historic note. 
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so the corresponding Schrödinger equation is satisfied, at x1  x2, by exponential orbital wavefunctions 

              221121
expconst, xx    ,    (*) 

with any (real or complex) c-numbers 1,2, corresponding to the following kinetic energy: 

 2
2

2
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E


. 

 Since the potential energy U depends only on the distance x  x1 – x2  between the particles, it is 
natural to replace the variables by introducing, besides x, another independent linear combination of 
coordinates x1,2, namely the position X  (x1 + x2)/2 of their center of mass. Plugging the reciprocal 
relation between the old and new variables,29 

2
,
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into Eq. (*), we get (for x  0 only): 
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The potential energy is independent of the coordinate X, so the constant K cannot have any real part 

(otherwise the wavefunction would diverge at either X  + or X  –), i.e. has to be purely 
imaginary, K = iK. But that would give a positive contribution 2K2/4m to the energy, so the lowest-
energy eigenstates correspond to K = 0, physically meaning that in its ground state, the system as the 
whole is at rest (at a completely uncertain location X), so its wavefunction reduces to 
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.  (**) 

 Now we need to select the constants C  (or rather their ratio) and the signs of  to satisfy: 

– the boundary conditions  () = 0, 

– the symmetry of   2 with respect to the particle permutation x1  x2, i.e. to the 
replacement x  –x, and  

– the fermionic permutation rule – see Eq. (8.14) of the lecture notes. 

The first two requirements may be satisfied by assigning to  the opposite signs and taking C– = C+, 
i.e. by taking the wavefunction in one of the following two forms: 

29 This transformation of coordinate and momenta is, of course, just a particular case of that discussed in Problem 
11, for the particular case m1 = m2 = m, so the reduced mass mef equals m/2. However, due to this simple relation 
and the 1D character of particle motion in our current system, it is easier to carry out this transformation again 
more explicitly rather than to use the results of the more general solution of that problem. 
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where       0. 

 The first of the functions (***) is symmetric with respect to the permutation of our spin-½ 
particles, and hence is suitable for the description of their singlet spin state (8.21). Now using the fact 
that at x  0, for any of the functions (***), 2/x1

2 = 2/x2
2, we may recast the system’s 

Hamiltonian in the single-particle form: 
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The (easy) problem of finding the localized eigenstates of this Hamiltonian was solved at the beginning 
of Sec. 2.6 of the lecture notes: there is only one such state, given by the first of Eqs. (***), with  given 
by Eq. (2.161). With the due replacement m  mef = m/2, it is 

W
22

m
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giving the ground-state energy 
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. 

 On the other hand, for a triplet spin state, the orbital wavefunction had to be antisymmetric, i.e. 
have the second form listed in Eq. (***). However, this function is discontinuous at x = 0, and hence 
cannot be the solution of the Schrödinger equation – at least with our Hamiltonian. So, the system does 
not have a localized triplet eigenstate, and all acceptable triplet states are extended, i.e. have energies E 
 0, higher than the negative Eg found above for the singlet spin state. 

 

 Problem 8.16. Two indistinguishable spin-½  particles are confined to move around a circle of 
radius R, and interact only at a very short arc distance l = R(1 – 2)  R between them, so the 
interaction potential U may be well approximated with a delta function of . Find the ground state and 
its energy, for the cases of: 

 (i) the orbital (spin-independent) repulsion:  WÛ , 

 (ii) the spin-spin interaction:  21 ˆˆˆ ss  WU , 

both with W  > 0. Analyze the trends of your results in the limits W  0 and W  . 

 Solutions:  

 (i) The system’s Hamiltonian is  
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where 2,1L̂  are the single-particle operators of the angular momentum (or more exactly, of its only 

Cartesian component), in the coordinate representation equal to  
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2,1
2,1

ˆ
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 iL . 

Since at   0, the potential energy U vanishes, the two-particle Schrödinger equation corresponding to 
this Hamiltonian is satisfied by any product of the single-particle eigenfunctions given by Eq. (3.129) of 
the lecture notes: 
              221121

expconst,    i ,    (*a)  

with any c-numbers 1 and 2 – cf. Eq. (*) of the model solution of the previous problem. Similarly to 
that solution, since U depends only on the “distance angle”   1 – 2, it is natural to replace the 
variables by introducing, besides , the average angle   (1 + 2)/2 (essentially the angular position of 
the system’s center of mass), so the individual particle positions are 

.
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,
2 21
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Plugging these relations into Eq. (*a), we may recast it as 
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 NNi ,  (*b) 

where N scales the total angular momentum of the system, L  L1 + L2, in such a state: L = (1 + 2) = 
N. 

 For each spin state of the system, we need to form a correct linear superposition of such 
fundamental partial solutions, which would: 

 - satisfy the fermionic permutation rule – see the second of Eqs. (8.14) of the lecture notes, 
 - satisfy the proper boundary conditions at the interaction point  = 0, and  
 - be invariant to the physically indistinguishable translations 1,2  1,2 + 2. 

 Since we do not know a priori which spin state of the system has the lowest-energy (ground) 
state,30 we need to consider both options. In any of the triplet spin states described by Eqs. (8.21) of the 
lecture notes, the orbital wavefunction t(1, 2) has to be antisymmetric with respect to the particle 
permutation: 
           12t21t ,,   ,     (**) 

and since it also has to be continuous everywhere (even at the potential’s singularity point), the 
wavefunction has to vanish at  1  2, i.e. at   0. As a result, according to Eq. (2.75) applied to t 
as a function of any of its arguments, the orbital wavefunction of the triplet state is not affected by the 
interaction potential at all, and the eigenstates may be constructed as a linear superposition of the states 
(*) extended to all values of 1 and 2, from – to +. Since such extended states are linearly 
independent, the above periodicity-invariance condition has to apply to each of them, giving 1 = n1, 2 
= n2, with integer n1,2. For the lowest-energy eigenstates, we have to select the quantum numbers n1,2 
with the smallest  n1,2  (corresponding to the lowest magnitudes of the corresponding angular momenta 
L1,2 = n1,2 and hence of the kinetic energy), but the choice n1 = n2 = 0 would give (1, 2) = const and 

30 On the basis of the helium atom’s discussion in Sec. 8.2, and the solution of several prior problems of this 
chapter, we may guess this should be a singlet state, but it is prudent to verify this guess. 
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hence violate Eq. (**). The next-lowest quantum number sets are {n1 = 0, n2 = 1} and {n1 = 1, n2 = 0}, 
whose eigenstates may be readily combined to satisfy Eq. (**): 

    21t expexpconst  ii   . 

For each of these two states, each of the component wavefunctions corresponds to the angular orbital 
momentum L1,2 =  of one particle and L2,1 = 0 of its counterpart, and hence the total kinetic energies T 
= (L1

2 + L2
2) /2mR2 of these states may be found even without their formal calculation: 
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 On the contrary, in the singlet spin state, the orbital wavefunction s(1,2) has to be symmetric: 

            12s21s ,,   .     (***) 

Hence, the wavefunction does not necessarily vanish at the interaction point 1 = 2, i.e. at  = 0, and 
may be affected by the interaction potential U. Hence it is more natural to consider it a function of the 
combinational arguments  and  introduced above: 
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and try to compose the correct wavefunction from the partial functions (*b). According to Eq. (***), s 
as a function of  has to be symmetric for any : 

    ,, ss   

– see the figure on the right. As a result, its single-
side derivatives at the interaction point  = 0 should 
be equal but opposite: 
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Using this equality in Eq. (2.75) of the lecture notes, applied to s as a function of , and with the due 
replacement m  mef = m/2, we get the following boundary condition: 

     00 2  
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 s
s m

W


.    (****) 

This relation does not affect the dependence of s on , so if we want the lowest-energy wavefunction, 
we should compose it of the exponential functions (*b) with N = 0:31 

 


 ic exps . 

31 Physically, this means that we consider the system with zero total angular momentum – apparently, a natural 
requirement for the lowest-energy state. Note, however, that for the calculated triplet states , the equality L = 
0 is valid for each of the states, but not for each exponential component of such a state, which correspond to equal 
and opposite momenta L = . 

s

 0 2
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 Due to the cusp of the function s at  = 0 (see Eq. (****) and the figure above), and its 2-
periodicity, it is natural to limit this expansion to a 2-segment (say, [0, 2]) of the argument , where 
the function is smooth, extending it to other similar segments periodically. At this limited segment, the 
sum of just two terms, with  = ,  

          20for  ,cosexpexpconsts  ii , 

satisfies the symmetry condition (***) for any (not necessarily integer!) . Similarly to the triplet case, it 
is unnecessary to calculate the eigenenergy corresponding to this linear superposition explicitly, because 
each of its terms has the same angular momentum magnitude  L1,2  =  of each particle, so 

2

2
2

2

2
2,1

21s 2
2

mRmR

L
TTE

 . 

 The value of , and hence that of Es, may be found by plugging this s into the boundary 
condition (****). It gives us the following characteristic equation: 

                   cossin
2

W


m
 , 

which may be rewritten, more conveniently for 
analysis, as 

W
2

with  ,cot 


m
  . 

 Both sides of the last form of the equation are 
plotted, in the figure on the right, as functions of , for 
several values of the normalized interaction strength 
. Since the eigenenergy of the state scales as 2, the 
lowest-energy state corresponds to the smallest root of 
the characteristic equation, i.e. to the curve 
intersection point that is closest to the origin. As the figure shows, such smallest root is always confined 
to the segment 0 <  < ½, so for any , 

t2

2

s 2

1

4
0 E

mR
E 


. 

Thus, as could be expected, for any dimensionless interaction parameter  > 0, the spin-singlet state has 
its lowest energy lower than that of the spin-triplet states, i.e. it is the genuine ground state.32 

 If the interaction is weak,   0, then   0 as well, and we may find its asymptotic value by 
approximating sin with , and cos with 1, so cot  1/. With this approximation, our 
characteristic equation yields   (/)1/2, so33 

32 A thoughtful reader might ask: how do we know that all eigenstates of the system, in which the particle do 
interact, are limited to the spin singlet and triplet states, i.e. the states that may be factored according to Eq. 
(8.12)? An answer to this concern is that each of the 4 considered states (1 singlet and 3 triplet) are eigenstates of 
the problem. Since these states may be taken for the full basis in the 4-function Hilbert space of two spins-½, this 
problem cannot have other independent spin eigenstates. However, this fact was not clear a priori, and may not be 
true for other problems, so the caution of this (hypothetical :-) reader is justified. 

0 0.5 1 1.5
0

0.5

1

)



3.0 1 3

LHS
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0
1

22

2

s 
RmR

E
W


 

. 

On the other hand, in the limit of very strong particle repulsion (  ),  tends to ½, so the singlet 
state energy tends to  

  t2

2

maxs 2

1

4
E

mR
E 


. 

Since cos[( – )/2] = – sin(/2) , in this limit, the singlet state’s eigenfunction may be represented, for 
any value of   (– <  < +), as 

2
sinconsts


 , 

approaching zero at the interaction point  = 0. This fact explains why the state’s energy does not 
increase further as the interaction factor W is increased. 

 (ii) As was argued above, triplet spin states of the system are not affected by the delta-functional 
interaction U  () of the particles at all. This result does not depend on the particular form of the 
coefficient before the delta function, so even for the (local) spin-spin interaction, the result for Et 
remains the same as above: 

2

2

t 2mR
E


 . 

On the other hand, for the singlet state, we may use the result obtained in the solution of Problem 3, 
2

21 2
3 











ss , 

for the expectation value of the product s1s2 participating in the interaction U. Since, according to this 
solution, the singlet state is one of the eigenstates of the corresponding operator (the others being the 
three triplet states), its energy may be obtained from the results of part (i) of our current problem by the 
following simple replacement:  


22

2
3  i.e.,

2
3 
















WW , 

giving, in particular, the following asymptotic values: 

 











,for            ,4/1

0,for  ,0/2/3 2

2

2

s


 

mR
E  

so for any , Es < Et, i.e. the singlet state is the (non-degenerate) ground state of the system. 

 Finally, note that both interactions considered above correspond to the effective repulsion of the 
particles. For the opposite sign of W (particle attraction), the singlet ground states may be bound, i.e. 

localized at   0, having imaginary values of 1,2, and hence negative eigenenergies34 – cf. Problem 15. 

33 This result may be also obtained using the perturbation theory – the additional exercise highly recommended to 
the reader. 
34 Solving this (conceptually, very similar) problem may be one more useful exercise for the reader. 
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 Problem 8.17. Two particles of mass M, separated by two much lighter 
particles of mass m << M, are placed on a circle of radius R – see the figure on 
the right. The particles fully repulse each other at contact, but otherwise, each of 
them is free to move along the circle. Calculate the lower part of the system’s 
energy spectrum. 

 Solution:  Due to the strong hierarchy of the masses, we may solve the 
problem in two stages: first, analyze the “fast” (high-energy) motion of the 
lighter particles while considering the angular positions 1 and 2  of the heavier particles fixed, and 
then, with the account of the kinetic energy of that motion, analyze the “slow” motion of the heavier 
particles.35 

 At the first stage, due to the strong particle repulsion at contact, we may consider the motion of 
one lighter particle as free but confined to a fixed angular segment of length   2 – 1, with its 
wavefunction turning to zero at its ends. The Hamiltonian of this problem is the same as for the single-
particle planar rotor (see Sec. 3.5 of the lecture notes): 




 iRpL
mR

L
H z

z
m ˆˆwith  ,

2

ˆ
ˆ

2

2

, 

where  is the angular position of the light particle, referred, for example, to one of the boundaries of 
the segment – see the figure above. The solution of the corresponding Schrödinger eigenproblem, 

0with  ,
2 02

2

2

2

   



nnn
n E

d

d

mR


, 

is very simple (cf. Sec. 1.7 of the lecture notes): 

,...2,1,0,
2

,sin 2
22

22

 nn
mR

E
n

C nn 



 

. 

 At m  0, the separation of these energy levels is very large, so for our purposes, we are 
interested only in the ground state of this motion, with the energy E1 = 22/2mR22. Adding, to this 
energy, the similar ground-state energy of motion of the second light particle on its angular segment of 
the length (2 – ), we get the following total ground-state energy of the light particles: 

 
 

.
2

11

2 222

22

g 













mR

UE


 

 Since this energy is a function of  only, it plays the role of the potential energy for the slow 
motion of the heavier particles. The scale of the variable  is of the order of , so the quantization of that 
motion leads to additional energies of the order of 2/MR2, which is, at M >> m, much lower than the 
scale 2/mR2 of the function U(). This is why we are only interested in the shape of this function near 

35 This Born-Oppenheimer approximation is broadly used for the separation of electron and nuclear motion in 
theoretical analyses of molecular spectra and some other tasks. Due to the large ratio mp/me  1,835, generally, it 
works very well but sometimes may benefit from corrections – for example, in the description of the lightest 
atoms/ions such as hydrogen – see, e.g., L. Cattaneo et al., Nature Phys. 14, 733 (2018) and/or K. Krüget et al., 
Nature Chemistry 15, 326 (2023). 

M

M

m

m




 2



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 455 

its minimum, reached at the point 0 = . Near this point, we may take ,
~  and Taylor-expand 

this function, 
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
, 

with respect to small  /
~

, keeping only two leading terms of the series: 

            
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 In this approximation, the Hamiltonian describing the motion of the heavier particles is 

   2,1
2,1
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


R
iPU

M

P

M

P
H M 


  . 

This Hamiltonian may be partitioned, exactly as this was done in several previous problems starting 
from Problem 11, into a sum of that of the joint rotation of both particles, with the total mass 2M, around 
the circle, and the harmonic oscillator, with the reduced mass Mr  = M/2 and the effective spring constant 
, and hence the frequency  

  22/1

2/1

r
0

32

RmMM 
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


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
 . 

 Adding the results of the quantization of these independent subsystems, we get the requested 
energy spectrum:36 

 
 ,...2,1,0  and,...,2,1,0with ,
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UE mN
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Due to the given mass relation m << M,  the intervals between first rotational values are much narrower 
than those between the vibrational levels (and those, in turn, are much smaller than U0), so semi-
quantitatively, the spectrum looks just like the one sketched in the model solution of Problem 13.  

 Note also that if the particles are indistinguishable, the set of quantum numbers m may be 
decimated, because the period of the rotational wavefunction may change from 2 (as was assumed 
above) to   – depending on the type of the particles (bosons vs fermions) and the vibrational state’s 
symmetry – see the solutions of Problems 13 and 14. 

 

Problem 8.18. Two spin-½ particles are confined in a spherically symmetric potential well U0(r) 
= m0

2r2/2. In addition, they directly interact via a short-range potential Uint = W(r1 – r2). In the first 
approximation in small W, calculate the energies of  

(i) the ground state, and 
(ii) the lowest excited states of the system. 

36 Let me hope that the difference between the magnetic quantum number m and the lighter particle mass in this 
expression is absolutely clear from the context. 
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Solutions:  

(i) In the absence of the direct (explicit) particle-particle interaction, the ground state of the 
system is the spin singlet described by Eq. (8.24) of the lecture notes, 

   2g1gg rrr  s , 

whose spin factor is given by Eq. (8.18): 

   
2

1
s , 

while g(r) is the orbital ground-state wavefunction of a single particle in the potential U0(r). According 
to Eq. (3.125) with d = 3, this function may be represented in the Cartesian form37 

         zyx 000000g   rr , 

where 0 is the ground-state wavefunction (2.275) of a 1D harmonic oscillator: 
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The unperturbed energy of this spin-singlet state is just twice the energy of each particle, given by Eq. 
(3.124) with nj = 0 and d = 3: 

  .32 0g
0

g  E  

 The first-order correction to this value, due to the particle-particle interaction, may be found by 
using Eq. (6.14). Taking into account the spin independence of the perturbation potential Uint, we get 
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 (ii) As in the helium atom discussed in Sec. 8.2 of the lecture notes, at W = 0, the lowest excited 
states of the system are either spin singlets: 

        2e1g2g1e
2

1
e rrrrr    s  

or spin triplets: 

                      2e1g2g1e
2

1
e rrrrr    s ,   (*) 

37 Alternatively, as was discussed in Problem 3.27, the ground state and the lowest excited states of this isotropic 
3D harmonic oscillator may be described by the spherical-harmonic wavefunction (3.200). Solving our current 
problem in this representation is a good additional exercise, which is highly recommended to the reader. 
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where s+ is any of the kets participating in Eq. (8.21): 

 
2

1
or ,or ,either  s , 

while e(r) may be any of the orbital wavefunctions of the lowest excited state of a single particle: 

             rrrr 001010001100e or      ,or       ,either    zyx . 

Here 1 is the wavefunction of the lowest excited state of a 1D harmonic oscillator; according to Eqs. 
(2.282) and (2.284), 
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The unperturbed energy of all these states, corresponding to a single 0-excitation of just one of 
the component 1D oscillators, is the same: 

   
00

0
g

0
e 4    EE ; 

due to the triple orbital degeneracy of all these states and the additional triple spin degeneracy of the 
triplet states, this energy level’s total degeneracy is N = 3(1+3) = 12.  

 As was discussed in Sec. 6.1, the main effect of a stationary perturbation Uint is lifting this 
degeneracy. The N energy shifts En

(1) describing this effect may be found as the roots of Eq. (6.27). For 
spelling it out for our 12 states, we, generally, would need to calculate N2 = 144 matrix elements Hnn’ 

(1) 
defined by Eq. (6.8): 

 
n'nnn' UH eˆe int

1  . 

However, due to the high symmetry of our problem, this task is not as hard as it may look at first glance.  

 First, due to the spin independence of Uint, all matrix elements relating the spin-singlet and spin-
triplet states vanish because s  s = 0. Hence, the 1212 matrix H(1)

nn’ falls apart into two independent 
matrices: one with 33 = 9 elements, which inter-relates the spin-singlet states, and the second one with 
99 = 81 elements relating the spin-triplet states. Let us start with the first matrix: 
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         Here comes the second major simplification: all such integrals with n  n’, i.e. with different 
combinations of single-particle wavefunctions, vanish because the 1D functions (**) are asymmetric; for 
example, 
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and similarly for all other pairs of different indices. Only the diagonal matrix elements are different from 
zero; e.g., for e(r) = 1(x)0(y)0(z): 
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and similarly for two other combinations. The (equal) second and third integrals were already calculated 
in Task (i), so what remains is to calculate the first one by using the above formulas for 0 and 1: 
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and we get 
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Hence, for the spin-singlet excited states, the determinant in Eq. (6.27) has only three equal diagonal 
terms, i.e. the just-calculated expression gives the energy shift of these states. (By coincidence, it is 
equal to the ground-state energy shift calculated in the previous task.) 

 Finally, the last (but not least) simplification is that all matrix elements H(1)
nn’ for the spin-triplet 

excited states vanish because of the -functional character of our perturbation. Indeed, the internal 
integration over one of coordinates r1,2, leading to the replacement r2  r1  r, turns any of the orbital 
factors in Eq. (*) to zero identically. Hence, in the first order of the perturbation theory, the energy of 
these states does not change. 

 To summarize, the perturbation lifts the 12-fold degeneracy of the lowest excited energy level 
only partly, by separating the three spin-singlet states from the nine spin-triplet states by 
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This first-order perturbative result is quantitatively correct only if E(1) ~ W/x0
3 << E(0) ~ 0. 

 

 Problem 8.19. N indistinguishable spin-½ particles are placed into the spherically symmetric 
potential well U(r) = m0

2r2/2. Neglecting the explicit interaction of the particles, find the ground-state 
energy of the system. 

 Solution: As was discussed at the beginning of Sec. 8.3 of the lecture notes, solving such 
problems (for non-interacting particles only!), we may neglect the genuine structure of the spin states, 
and reduce the spin effects to the Pauli principle, with the spin degeneracy g = 2s +1 of each single-
particle orbital state. Per Eq. (3.124) of the lecture notes (with d = 3), the single-particle orbital energy 
spectrum in this potential is 
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As was discussed in the model solution of Problem 3.27, the orbital degeneracy of each level may be 
calculated as the number of different ways to distribute n indistinguishable “balls” (the partial quantum 
numbers contributing to integer n) between 3 distinct “boxes” (nx, ny, and nz):38 
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The spin-½ degeneracy g = 2s + 1 = 2 doubles this orbital degeneracy. Hence, if the given number N of 
particles coincides with any of the following special integers, 
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then in the ground state, exactly m single-particle levels (with n = 0, 1,…, m – 1) are completely filled, 
so the total energy is 
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Defining a new summation index as n’  n + 1, so that n = n’ – 1, we get 
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Now by using the well-known formulas for the summation of several first natural numbers, their 
squares, and their cubes,39 we obtain 
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As the easiest sanity check, for m = 1 (i.e. for only the lowest, ground-state level completely filled), 
these formulas yield Nm = 2, E(Nm) = 30, i.e. the evidently correct results. 

 In the case when N = Nm + N’, with 0 < N’ < 2(M(3)
m+1 – M(3)

m)  4(m + 1)(m + 2), additional N’ 
particles have to occupy the next level, with n = m, and n = m = 0(m + 3/2), so  
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 In the limit N >> 1, m is large as well, and these results may be approximated as 
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38 This is a particular case of a formula for k boxes: Mn
(k) = (n – 1 + k)!/n!(k – 1)! – see, e.g., MA Eq. (2.4). 

39 See, e.g., MA Eqs. (2.5b), (2.6a), and (2.6b). 
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Problem 8.20. Use the Hund rules to evaluate the quantum numbers L, S, and J in the ground 
states of carbon and nitrogen atoms. Write down the Russell-Saunders symbols for these states. 

 Solution: As the table in Fig. 3.24 of the lecture notes shows, the ground state of the carbon (C) 
atom has two electrons in the (completely filled) He shell, two electrons in the 2s orbital state (n = 2, l = 
0), and two electrons in the 2p sub-shell (n = 2, l = 1). As it follows from the discussion in Sec. 8.2 of 
the lecture notes, each pair of the s-state electrons has to be in the same orbital state and in the spin-
singlet state, with zero net orbital momentum and zero net spin, so they do not contribute to the net 
quantum numbers L, S, and J of the atom, and we need to discuss only the two 2p electrons, with l = 1. 
Due to the triple degeneracy (ml = +1, 0, –1) of their orbital states, and the double degeneracy (ms =  
½) of the spin states, the Pauli principle allows up to six electrons in this sub-shell, so we need to use the 
Hund rules to understand which exactly of these states our two electrons would take.  

 The highest Rule 1 of Hund’s hierarchy says that S has to take the largest value possible. Since, 
according to Eq. (8.48), S  max MS  = max(ms)1 + (ms)2, such a maximum, S = 1, is evidently achieved 
in a linear superposition of the triplet spin states. These states are symmetric with respect to the electron 
permutation; hence to satisfy the Pauli principle, the involved orbital states have to be different, i.e. their 
quantum numbers, (ml)1 and (ml)2, have to take different values from the available set {+1, 0, –1},40 so 
the quantum number L  max(ml)1 + (ml)2 can only take values 0 or 1. Now by using Rule 2, we have to 
select the highest of these values, L = 1. Finally, the Hund Rule 3 says that since this sub-shell is filled 
by less than half, then J =  L – S  = 0. As a result, the Russell-Saunders symbol (defined by Eq. (8.59) of 
the lecture notes) of this ground state is 3P0. 

 The atom of nitrogen (N) is different from that of carbon “only” by one more, third electron in 
the same sub-shell {n = 2, l = 1}, so again, non-zero contributions to the net quantum numbers  L, S, and 
J may be given only by the (now, three) electrons of this sub-shell, with three different orbital states. 
Indeed, if the electrons are in different orbital states, their magnetic spin numbers ms may take equal 
values without violating the Pauli principle. Such configurations: (ms)1 = (ms)2 = (ms)3  = ½, are 
evidently the best ones for the Hund Rule 1, providing the highest possible value S  max MS  = 
max(ms)1 + (ms)2 +  (ms)3 = 3/2, so 2S + 1 = 4. Any such spin state is fully symmetric with respect to the 
permutation of any two particles, so the orbital state of the system has to be a linear superposition fully 
antisymmetric with respect to such permutation, similar to the Slater determinant (8.60a), of all possible 
six states with different ml = {+1, 0, –1}. Since in this superposition, the coefficient moduli (and hence 
the spin orientation probabilities) are equal, then MS = (ms)1 + (ms)2 +  (ms)3 = 0. Translating what we 
know from Sec. 8.2 about the case of two spins-½, and from the solution of Problem 10 about two spins-
1, to the orbital-momentum language, we may conclude that such an antisymmetric state has to have L = 
0.41 Hence J = S = 3/2 (so the  Hund Rules 2 and 3 are redundant here). Thus, the Russell-Saunders 
symbol of the ground state of nitrogen is 4S3/2. 

 

 Problem 8.21. N >> 1 indistinguishable quantum particles, not interacting directly, are placed 
into a hard-wall rectangular box with sides ax, ay, and az. Calculate the ground-state energy of the 

40 For this case, as well as for the nitrogen atom discussed below, the physical origin of the first Hund rule is very 
clear: the Coulomb repulsion of the electrons forces them into different p-orbitals, thus maximizing their average 
distance from each other – see, e.g., the second row of Fig. 3.20.   
41 An explicit proof of this result, using the same approach as in Problem 8.3, and Eq. (5.164) of the lecture notes 
(with l = 1), is a good additional exercise, recommended to the reader.  
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system and the average forces it exerts on each face of the box.  Can we characterize the forces by 
certain pressure P? 
 Hint: Consider separately the cases of bosons and fermions. 

 Solution: Non-interacting bosons may occupy the same single-particle energy level , so the 
ground-state energy Eg of N of them is just Ng. Using Eq. (1.86) of the lecture notes, with nx = ny = nz = 
1, for g, we get 
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Just as was discussed in the model solution of Problem 1.11, this expression shows that the force-to-area 
ratios for each wall of the box are generally different. For example, for the faces normal to the x-axis, of 
area Ax = ayaz,  
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where V = axayaz is the box volume. Hence the exerted forces generally cannot be characterized by a 
unique pressure P (which by definition should be isotropic), and only for a cubic box, with ax = ay = az  
a, we may write 
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 In contrast, because of the Pauli principle, indistinguishable fermions cannot be in the same 
quantum state. Hence, to form the ground state with the lowest energy, we may place, in each single-
particle orbital state, only g fermions, where g = 2s + 1 is their spin degeneracy. (For electrons, as spin- 
½ particles, g = 2.)  Since, according to Eq. (1.90) of the lecture notes, the density of such states in the 
wave vector space is constant, the set of Norb  N/g >> 1 orbital states with the lowest possible energies 
form, in the k-space, a sphere42 of certain radius kF. This radius and the total ground energy of the 
system may be readily calculated by writing, for them, two very similar expressions and then 
transforming them by using Eqs. (1.90) and, in the second case, Eq. (1.89) as well:43 
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where, in our current case, V = axayaz. By expressing kF from the first of these formulas and plugging the 
result into the second one, we finally get 

42 This is exactly what is called the Fermi sphere – a particular case of the Fermi surface, for free particles. As a 
reminder, at particle motion in periodic potentials, the constant-energy surfaces (and hence the Fermi surfaces) 
may be non-spherical – see, e.g., Sec. 3.4 of the lecture notes. 
43 Due to its importance, this simple calculation is virtually repeated in SM Sec. 3.3, where it serves as a 
background for a discussion of fermion gas properties at non-zero temperatures. 
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where F is the so-called Fermi energy – the largest single-particle energy on the occupied levels: 
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This result shows that the energy of the system depends on each linear dimension of the box only via its 
volume V. Hence the average forces exerted on its walls may be characterized by an isotropic pressure:  
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for any ratio ax:ay:az of the cubic box – or even for any other shape of the particle-confining volume. 

 

 Problem 8.22. A system of three similar spins-½ is described by the Heisenberg Hamiltonian  

 133221 ˆˆˆˆˆˆˆ ssssss  JH , 

where J is a spin interaction constant (cf. Problems 6 and 7). Find the stationary states and energies of 
this system, and give an interpretation of your results.  

 Solution: The uncoupled-representation z-basis of the system has 23 = 8 states corresponding to 
the  and  orientations of each spin. Let us see what is the result of the Hamiltonian operator’s action 
upon each of these states. This is especially easy to do by using the intermediate results of the model 
solution of Problem 3 for two spins-½,44  
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For example, since the operator 21 ˆˆ ss  does not affect the state of the third spin, Eqs. (*) yield 
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These results evidently do not depend on the indices of the operator product components, so their 
summation for all three index combinations yield 
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This means that we have already found two stationary states of the system, with the same energy 

44 I am again using the standard shorthand notation, in which the spin’s number is coded with its position inside 
the ket-vector. 
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 Thanks to Eqs. (**), the calculations for the “mixed” (entangled) spin states are only slightly 
bulkier. For example, let us calculate 
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Applying the second of Eqs. (**) to the first term on the right-hand side, its analog for indices 1 and 3, 
to the third term, and the analog of the first of Eqs. (*) for indices 2 and 3, to the second term, we get 
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 It is useful to formulate this result verbally: the action of the sum of all two-spin operator 
products on a ket with just one spin down yields, besides the multiplication by (/2)2, the ket of the same 
state with the minus sign, plus two other possible kets with one spin down, each multiplied by a factor 
of 2. This rule, which may be readily verified to be valid for any state with one spin down, means that 
the three states of this group are only coupled to each other, so their interaction, in units of  –J(/2)2, 
may be described by the following 33 matrix: 
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(Due to the symmetry of the matrix, it is not even important what exactly states correspond to its 
rows/columns.) The eigenvalues of this matrix may be found from the corresponding characteristic 
equation 
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 One root: + = –2, i.e. +  + –1 = –3, of this simple cubic equation may be readily guessed;45 
after that, dividing the polynomial f() by ( – +)  ( + 2), we get the quadratic polynomial g() = 2 
–2 – 8, whose roots are easy to calculate: - = + = –2, 0 = +4, so + = – = –3, 0 = +3. As a result, 
the eigenenergies corresponding to the one-spin-down states are E+ = E– = –E0 and +E0, where E0 is 
given by Eq. (***).  

 Due to the spin up-down symmetry of the Hamiltonian, it is obvious (and may be checked by the 
absolutely similar calculation) that the three states with one spin up also are coupled to each other, and 

45 If you do not like guessing, it is useful to have a look at the numerical plot of function f(), which touches the 
horizontal axis (i.e. has a double root) at the point  = –2. Another (much harder) option is to use the cumbersome 
(“quasi-analytical”) Tartaglia-Cardano formulas for the roots of an arbitrary cubic equation. 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 464 

have similar eigenenergies: two eigenstates with energy –E0, and one state with energy +E0. To 
summarize: our system has just two energy levels, each of them four-degenerate: one level with energy 
+E0, corresponding to the two states with all spins aligned (in any direction), plus two linear 
superpositions of three states with one spin misaligned, while the level with energy –E0 corresponds to 
four other linear superpositions of the states with one spin misaligned, each superposition consisting of 
the same number of spins-up and spins-down. 

 The misaligned-spin superpositions may be readily found by plugging the calculated values of  
into the linear system of equations with the matrix (****), and then the normalization – just as was 
repeatedly done in the examples and exercises of Chapter 4. The results for the one-spin-down states 
may be represented in the form 
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the one-spin-up eigenstates are similar. The physical meaning of these three eigenstates becomes more 
transparent by rewriting them all in a similar wave form: 
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If we interpret the system’s Hamiltonian as a model of interaction of the spins located at three 
equidistant positions on a circle, for example at angles  = 0, and  = 2/3, then each state is just a 
traveling wave of propagation of the spin-down “excitation”, with the equal phase shifts  at each 
excitation’s jump to the adjacent site, absolutely similar to that of single-particle 1D Bloch waves – see 
Sec. 2.7.46 In this picture, the above eigenvalues of the normalized wave number  (to whom any 
multiple of 3 may be added without changing the solution) result from the natural cycling-boundary 
condition exp{i 2} = 1. Such Bloch waves of spin orientations are called either spin waves or magnon 
waves.47 

 The spin-wave interpretation explains why the state with  = 0 has the energy (+E0),48 different 
from that (–E0) of the two states with  = 1: in usual wave systems, with positive kinetic energy, the 
wave energy grows with the square of the wave number (modulo its period, in our current case  = 3). 
Note, however, that in the Heisenberg model (and at real spin interactions in crystals) the sign of J may 
be both positive and negative. Only the case J > 0, with the ground-state energy E0 < 0, corresponds to 
classical wave systems. (It also describes the effect of spontaneous spin alignment, the ferromagnetism.) 

46 Such constant phase shift between the adjacent sites is the main feature of any traveling waves in periodic 
structures, including classical systems – see, e.g., CM Sec. 6.3. 
47The fact that such waves, possibly with numerous flipped spins, are described by the Heisenberg model is the 
essence of the so-called Bethe Ansatz – named after H. Bethe who first suggested this idea in 1931. This fact 
enables exact analyses of some models for systems of N >> 1 spins, for which the direct approach used above is 
not practicable. For an introduction to the Bethe Ansatz, I can recommend, for example, a popular article by M. 
Batchelor, Phys. Today 60, 36 (2007), or a more detailed three-part review by M. Karbach et al., available online 
at  http://www.phys.uri.edu/gerhard/introbethe.html. 
48 If the fact that this energy is equal to that of the all-spin-aligned states looks surprising to you, please revisit the 
discussion of the 4He atom in Sec. 8.2 of the lecture notes and/or the solution of Problem 3. There, in the absence 
of the external field, all triplet states (either factorable or entangled) of the two-spin system also had the same 
energy. 
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For the case J < 0,49 the lowest energy of the system is –E0 < 0, corresponding to the alternating-spin 
ground states. This is the Heisenberg-model description of the effect of antiferromagnetism;. 

 One more (parenthetic) remark: since the two one-spin-down stationary states with  = 1 

   3/23/2

3

1  ii ee 

correspond to the same energy –E0, any of their linear superpositions is also a legitimate stationary state. 
Of such superpositions, the most notable are the combinations that exclude one of three elementary 
(factorable) states, for example, 

   





 







2

1

3

2
sin2

3

2
sin2

62
1


ii

ii
. 

While the initial states () may be interpreted as traveling spin waves, the state 1 represents a standing 
spin wave. On the other hand, we may write 

 
2

1
1 , 

so this state is based on the singlet of the last two spins. Evidently, there are three such states, with the 
same energy, which differ only by the number of the particle in the non-entangled spin state, but since 
they all are linear superpositions of the traveling-wave states , only two of them are linearly 
independent. (Of course, the same is true for the one-spin-down states with  = 1.) 

  

 Problem 8.23. For a system of three spins-½, find the common eigenstates and eigenvalues of the 

operators zŜ  and 2Ŝ , where 321 ˆˆˆˆ sssS   is the vector operator of the total spin of the system. Do the 

corresponding quantum numbers S and MS obey Eqs. (8.48) of the lecture notes? 

 Solution: Since the partial operators 3,2,1ŝ  are defined in different Hilbert spaces and hence 

commute, we may transform the operator 2Ŝ  just as in the model solution of Problem 3: 

               133221
2
3

2
2

2
1

2
321

2 ˆˆˆˆˆˆ2ˆˆˆˆˆˆˆ sssssssss  sssS .  (*)  

 The eigenstates and the corresponding eigenvalues of the operator in the second parentheses of 
the last expression have been found in the solution of the previous problem. They all (as well as an 
arbitrary spin state of this system) may be represented as linear superpositions of 23 = 8 simple 
(factorable) states, with the ket-vectors (in the z-basis for each spin), 

     etc.,,,  ,    (**) 

which form a full uncoupled-representation basis of the system. The corresponding eigenvalues of 2Ŝ  
also follow from the previous problem’s results – naturally, stripped of the factor (–J): 

2

133221 2
3ˆˆˆˆˆˆ 









ssssss . 

49 A negative J may result from the exchange interaction of electrons of adjacent atoms. 
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 Next, since each of the operators in the first parentheses of the last form of Eq. (*), namely 2
3,2,1̂s , 

acts only on the corresponding component of these elementary kets, they all obey the same equality as in 
the case of a single spin-½ (see Chapter 4): 

  Issss zyx
ˆ

2
3ˆˆˆˆ 

2

3,2,1

2222
3,2,1 









. 

This means that all the eigenstates found in the solution of the previous problem are also eigenstates of 
the operator in the first parentheses of Eq. (*), with the same eigenvalue, 9(/2)2.  

 So, all these states are eigenstates of the total operator 2Ŝ as well, with the following 
eigenvalues: 

 
 














                             /3.2 with states, misaligned-spinfour for   ,3329

 0, with states misaligned  twoand states, aligned-spin for two,15329

2

2
2




S  

 Now proceeding to the operator 

zzzz sssS 321 ˆˆˆˆ  , 

we may note that each of the component operators on the right-hand side of this equality acts only on 
the corresponding spin. As a result, according to Eq. (4.128) of the lecture notes, acting on any of the 
factorable basis ket (**), the net operator results in the same ket multiplied by the factor MS, where50  

       321 mmmM S  .  

For example, for the state with m1 = +½, m2 = –½, and m3 = +½ (and hence MS = +½):  

       
2222

ˆˆˆˆ
321


zzzz sssS .  

 Since each of the discussed eigenstates of the operator 2Ŝ  is a linear superposition of such 
elementary states with  the same value of  MS (the same number of up- and down-spins), they are also 

the eigenstates of the operator zŜ , with the following eigenvalues: 


















            down. spins all with state aligned for the,2/3

  down, spins  with twostates misaligned allfor 1/2,

       up, spins  with twostates misaligned allfor 1/2,

                up, spins all with state aligned for the,2/3

with  , SSz MMS   

 Comparing these results with the general Eqs. (8.48) of the lecture notes, we see that they all fit, 
in particular satisfying the relations 

  SMSSSS S     and122  , 

provided that we prescribe to the eigenstates (besides the values of MS specified above) the following 
values of the quantum number S: 

50 Here, as in the solution of Problem 4, the index s in the magnetic quantum numbers ms of the component spins 
has been dropped. 
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










                             /3.2 with states, misaligned-spinfour for ,2/1

 0, with states misaligned  twoand states, aligned-spin for two,2/3




S  

  I believe that these results, together with those for the two-spin system (discussed in Sec. 8.2 of 
the lecture notes and the solution of Problem 3) illuminate the physical sense of the net quantum 
numbers S and MS, and in particular clarify why these numbers may take not only integer but also half-
integer values. 

   

 Problem 8.24. Explore basic properties of the Heisenberg model (whose few-spin versions were 
the subjects of Problems 6, 7, and 22), for a 1D chain of N spins-½: 

 
,0with  ,ˆˆˆˆ

',
'   JJH

j
j

jj
jj sss B  

where the summation is over all N spins, with the symbol {j, j’} meaning that the first sum is only over 
the adjacent spin pairs. In particular, find the ground state of the system and its lowest excited states in 
the absence of external magnetic field B, and also the dependence of their energies on the field. 

 Hint: For the sake of simplicity, you may assume that the first sum includes the term 1ˆˆ ss N  as 

well. (Physically, this means that the chain is bent into a closed loop. 51)  

 Solution: This problem is a natural generalization of Problems 6, 7, and 22, so it may be solved 
quickly by using some intermediate results of their model solutions. First of all, it is evident from those 
solutions that at least at B = 0, the ground state of the system with J > 0 (i.e. the Heisenberg model of 
ferromagnetism52) is one of two simple (factorable) products of N aligned spin states: 

      ...g,...g .    (*) 

Indeed, acting on any of these ket-vectors by the first term of our Hamiltonian,  

 
 112121

',
' ˆˆˆˆ...ˆˆˆˆˆˆˆ

0 ssssssssss   NNN
jj

jj JJH B , 

and applying Eq. (*) of the model solution of Problem 22 to each of N pairs of spins, we get the same 
ket multiplied by the following factor (which is, by definition, the state’s energy):  

2

g 2






 


JNEEE . 

 Moreover, as it is physically clear from the expressions for the kets  0  and    in the same 
solution, the lowest excitations of the system should be Bloch-wave-like linear superpositions,  

                  


j

jkeC ji ,     (**) 

51 Note that for dissipative spin systems,  differences between low-energy excitations of open-end and closed-end 
1D chains may be substantial even in the limit N   – see, e.g., SM Sec. 4.5. However, for our Hamiltonian 
(and hence dissipation-free) system, the differences are relatively small. 
52 Solutions of the similar Heisenberg model of antiferromagnetism, with J < 0 and B  0, are more involved. 
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of the kets  k  corresponding to one reversed spin, in the kth position:  


kNkkNk

kk




...... ,......

11

, 

where the real parameter  (physically, the normalized wave number53 of the spin wave) satisfies the  
cyclic boundary condition  k + N  =  k  if 

            1iNe .      (***) 

(The summation in Eq. (**) is over all N spins of the ring, with sequential numbering starting from any 
position – counting the positions modulo N, i.e. identifying the number j = j0 + N with j0.) Indeed, by 
applying Eqs. (*) and (**) of the model solution of Problem 22 to each pair of adjacent spins, we get 
similar results for any of these single-misaligned-spin states: 

  








 12124

2
ˆ

2

0 kkkNJkH


B . 

As a result, acting by the same Hamiltonian upon any of the aggregate kets (**), and then changing the 
summation indices in the last two partial sums from j to j’ = j  1, we get 

 

 

   .224
2

224
2

12124
2

ˆ

2

'

2

2

0





































































ii

iiiij'i

jijiji

eeNJ

j'keej'keej'keNCJ

jkejkejkeNCJH

j'

j'

j'

j'

j

jjj






B

 

Hence the kets (**) indeed describe the stationary states of our system, with their energies independent 
(at B = 0 only!) of the misaligned spin’s orientation: 

                  cos1
2

4224
2

2

g

2














 




JEeeNJE ii .  (****) 

As a sanity check, for the particular case N = 3, when Eq. (***) gives, modulo 2,  = 0, 2/3, i.e. 
cos = +1,  –½ , we recover the results of Problem 22: E(0) = –3J(/2)2 + 4J(/2)20  –3J(/2)2, 
E(2/3) = –3J(/2)2 + 4J(/2)2(1 + ½)  +3J(/2)2. 

 The last term of Eq. (****) evidently describes the spin-wave excitation energy. For our 
(ferromagnetic) case J > 0, this energy is positive for any .54 The excitation energy tends to zero at  
 0, so the triplet-like solution with  = 0 has the same energy as the ground state with all spins 
aligned. (If this fact looks counter-intuitive, please revisit the discussion of the two-spin triplet in Sec. 

53 See, e.g., Eq. (2.193) and/or CM Eq. (6.26), and the accompanying discussions.  
54 For the antiferromagnetic chain (J < 0), the term is negative, showing that the spin-aligned states (*) are 
unstable with respect to a single spin reversal, and hence they are not the ground states of the system.  
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8.2 of the lecture notes, and in the solution of Problem 3.) So, the first actual excitation (with E() > Eg) 
corresponds to the two lowest non-zero values of  (modulo 2) of the allowed set (***): 







 













 






   N

JE
N

EE
N

E
 2

cos1
2

4
22

2

gg


. 

Note that if N >> 1, the energy of these low-energy excitations is proportional to the square of , i.e. of 
the normalized wave number k = /d (where d is the spatial period of the natural geometric model of the 
chain): 

  22
2

2
2

g 2
2

2
2 kdJJEE 
















  , 

meaning that the low-energy spin waves55 have a quadratic dispersion law (k), similar to that of free 
non-relativistic particles (see Eq. (1.30) of the lecture notes), but very much different from that of the 
acoustic waves56 and the electromagnetic waves in free space.57 

 Proceeding to the effects of a non-zero magnetic field B, as we already know from the solutions 
of Problems 6 and 24, the states described by Eqs. (*) and (**) are also eigenstates of the sum jzj ŝ  

(where the z-axis is directed along the field), with the eigenvalues N(/2) and (N – 2)(/2), 
respectively. As a result, we may immediately write their energies in the field:58 

      BB 
2

2cos1
2

4
2

,
22

222




























  NJJNENJNE . 

Note, however, that at arbitrary B, these (exact!) results do not allow us to say what is the ground state 
of the system,  and what is its lowest excitation energy – because at B  0, more complex spin waves 
(with more than one spin inverted) may have comparable, and in particular lower, energies.  

  

 Problem 8.25. Calculate commutators of the following operators: 






   22111221 ˆˆˆˆ

2

1
ˆ,ˆˆˆ,ˆˆˆ †††† aaaaaaaa z , 

where †
2,1â and 2,1â  are the operators of the creation and annihilation of bosons in two different states. 

 Solution: Let us start with calculating the following commutator: 

  211212211221 ˆˆˆˆˆˆˆˆˆˆ,ˆˆˆ,ˆ †††††† aaaaaaaaaaaa 



  . 

Per Eq. (8.75) of the lecture notes, bosonic operators with different particle indices may be swapped at 
will, so we may continue by grouping the operators belonging to each particle, together: 

55 This means that the particle-like narrow-k wave packets of the spin waves in systems with N >> 1, called 
magnons, may be assigned a finite mass inversely proportional to J. 
56 See, e.g., CM Secs. 6.3 and 6.4, in particular, Eq. (6.31).  
57 See, e.g., EM Sec. 7.1, in particular, Eq. (7.13). 
58 Note that at B  0, E(0)  E. 
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  




















 22112211 ˆˆˆˆˆˆˆˆˆ,ˆ †††† aaaaaaaa . 

As we know from solving Chapter 5, to simplify operator expressions, it is often useful to place the 
basic operators, in each term, in the same order – for example, with the annihilation operators first. For 
bosonic operators, this may be done using the commutation relation (8.74). Applying it to the second 
and third parentheses of the last expression, we get 

  zaaaaaaIaaIaaaa  ˆ2ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆ 221122112211
†††††† 










 





 




 . 

 Now we can use the same step sequence for the calculation of a different commutator: 

  2221112121222111212211 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆˆˆˆˆ,ˆ2 ††††††††††† aaaaaaaaaaaaaaaaaaaaaaz 



   

      
.ˆ2ˆˆ2ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

212221211122212111

2221211122212111

†††††††††

††††††††






 





 



aaaIaaaaaaaaaaaaIaaa

aaaaaaaaaaaaaaaa
 

An absolutely similar calculation yields 

     ˆ2ˆ,ˆ2 z . 

 All our results may be summarized in the following form: 

    ,ˆˆ,ˆ,ˆ2ˆ,ˆ    zz  

which is strikingly similar to the commutation relations (5.154) of the ladder operators L̂  of the orbital 
angular momentum – and also to those valid for similarly formed ladder operators of the spin and the 
total angular momentum. This similarity is used, in particular, in quantum field theory.  

 

 Problem 8.26. Compose the simplest model Hamiltonians, in terms of the second quantization 
formalism, for systems of indistinguishable particles placed in the following external potentials: 

 (i) two weakly coupled potential wells, with on-site particle interactions giving additional energy 
J per each pair of particles in the same potential well, and 
 (ii) a periodic 1D potential, with the same particle interactions, in the tight-binding limit. 

Solutions:  

 (i) Let us use Eq. (8.99) of the lecture notes as the baseline, and add a term describing on-site 
interactions. For bosons, this may be done, for example, by keeping the diagonal elements in Eq. (8.114) 
with all ujjjj equal to J. As a result, the simplest model that satisfies the assignment requirements is  

.h.c.ˆ†ˆˆˆ†ˆ†ˆ
2

ˆ†ˆˆˆ†ˆ†ˆ
2

ˆ†ˆˆ
2122222221111111 





  aataaaa

J
aaaaaa

J
aaH   

with  1,2 = cz, t   c–  =  c+ . Applying the bosonic operator commutation rule to the middle pair of 
operators in the 4-products, just as it was done in Eq. (8.120), we may rewrite the result as  
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    jjj aaNaatINN
J

NINN
J

NH ˆ†ˆˆwith  ,h.c.ˆ†ˆˆˆˆ
2

ˆˆˆˆ
2

ˆˆ
2122221111 





   . 

 For fermions, such a model would not make much sense because the eigenvalues Nj may only 
take values 0 or 1, so the term proportional to J would equal zero for any state. This is why the simplest 
model for fermions may be based on the assumption of two quantum states for each site (say, with 
different spin orientations), so each of their occupancies N and N may be equal to either 0 or 1. Then, 
in analogy with the above expression for bosons, we may write 

    




   h.c.ˆ†ˆˆ†ˆˆˆˆˆˆˆˆˆˆ

21212222211111 aaaatNNJNNNNJNNH  . 

This expression takes into account the fact that the orbital motion, whether this is a localized state or 
interwell tunneling, is typically independent of the particle’s spin, so the terms proportional to t include 
only creation-annihilation operator products with the same spin orientation, and coefficients j and t are 
spin-independent. 

 (ii) A straightforward generalization of the formula for bosons to an infinite 1D chain of similar 
localized cites (see also Eq. (8.112) of the notes) is 

 



 










 

j
jjjj aatINN

J
H h.c.ˆ†ˆˆˆˆ

2
ˆ

1 . 

Here I have used the fact that if the potential is indeed periodic, the core energies j are equal to each 
other, so if the total number N of particles in the system is fixed, their sum N is also a constant, and 
may be taken for the energy reference. This Hamiltonian is known as the Bose-Hubbard model.  

 A close term, the Hubbard model, is typically reserved for fermions (typically, electrons in 
condensed matter systems), and may be also obtained by the generalization of the above two-site model. 
Just as for bosons, the difference between the parameters j and tj at different sites is typically neglected, 
giving 





 



 





 

j
jjjjjj

aaaatNNJH h.c.ˆˆˆˆˆˆˆ
,1,,1,

†† . 

 

Problem 8.27. For each of the Hamiltonians composed in the previous problem, derive the 
Heisenberg equations of motion for particle creation/annihilation operators. 

Solution: Evidently, the bosonic and fermionic models have to be considered separately. 

 Bosons. The Heisenberg equation contributions due to the terms quadratic in the 
creation/annihilation operators have been calculated in Sec. 8.3 (see Eqs. (8.101)-(8.106) of the lecture 
notes), so the only new terms we should handle for our Bose models are those proportional to 

jjjj aaaa ˆˆ†ˆ†ˆ , all with the same site index j. Dropping the index for the sake of notation simplicity, we may 

write a typical commutator we would need as 

          .ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆ †††††† aaaaaaaaaaaaaaa 



     (*) 
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Applying the commutation rule (8.74) to the first term twice, to move the first annihilation operator to 
the back (rightmost) position, we get 

,ˆˆˆˆˆˆˆˆ2ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ ††††††††††††† aaaaaaaaaaaaIaaaaaaaaaaaaaaaaaIaaaaa 




 





   

The last term in this expression cancels with that in Eq. (*), so we get 

.ˆˆˆ2ˆˆˆˆ,ˆ ††† aaaaaaaa 



  

As a result, the Heisenberg equations of motion for the annihilation operators take the following forms: 

 – for two coupled wells: 

,ˆˆˆ†ˆˆˆ,ˆˆˆ†ˆˆˆ 12222222111111 ataaaJaaiataaaJaai     

– for the Bose-Hubbard model of a 1D chain of similar sites: 

 .ˆˆˆˆˆˆ 11
†

  jjjjjj aataaaJai   

(The equations for the creation operators may be obtained absolutely similarly.)   

 Despite the innocent look of these equations, they are nonlinear and hence do not allow exact 
analytical solutions.  

 Fermions. It may look that for the fermions, the situation would be easier because only the first 
power of each population operator participates in the Hamiltonians. However, the celebration would be 
premature because the creation-annihilation operators belonging to different states are not independent 
now. Indeed, let us crank open a typical commutator we would need (with the well’s index dropped, as 
above): 

  ,ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆˆˆ,ˆ ††††††
 



 aaaaaaaaaaaaaaaNNa  

and start swapping operators in the first term by using the fermionic commutation rules (8.95)-(8.96): 

 




  aaaaaaaaaaaaaIaaaaa ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ ††††††† . 

At this stage, we should notice that the second term in the last expression gives zero at its action upon 
any fermion state (because two annihilation operators follow each other), and thus may be ignored. 
Similarly, twice commuting the operators in the second term of the commutator, we get   

  aaaaaaaaaaaaaaa ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ †††††† , 

so it always gives zero as well. Thus, finally, 

  .ˆˆˆˆˆ,ˆ †
  aaaNNa  

This is not more complex than for the bosonic operators, but not simpler either. We may also notice that 
all commutators like 
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       j'j Na ˆ,ˆ  

vanish if j and j’ are different (orbital and/or spin) states. As a result, the Heisenberg equations of 
motion are: 

 – for two coupled wells: 

,ˆˆ†ˆˆˆˆ,ˆˆ†ˆˆˆˆ
12222222111111   ataaaJaaiataaaJaai    

 – for the Hubbard model: 

 ,ˆˆˆ†ˆˆˆ
,1,1   jjjjjj aataaaJai   

and similarly for the opposite-spin states. We see that equations for the states with opposite spins are 
coupled via the on-site interaction term, not making their solution any easier. 

  

 Problem 8.28. Express the ket-vectors of all possible Dirac states of three indistinguishable  

 (i) bosons, and  
 (ii) fermions, 

via those of the single-particle states , ’, and ” they occupy. 

 Solutions:  

 (i) Bosons: If all three single-particle states occupied in the considered Dirac states are different, 
we may use Eq. (8.80) of the lecture notes with N1 = N2 = N3 = 1, N4 = N5 = … = 0, so the left-hand side 
of this relation may be truncated just to three positions, while its right-hand side is a sum of N! = 3! = 6 
different kets formed by particle permutations:59 

               '"'""'"''""' 
6

1
1,1,1 , (*) 

where the possible zeros in the left-hand ket (expressing unoccupied states) are suppressed. 

 If two of the single-particle states (say, ’ and ”) are identical, i.e. there are just two different 
single-particle states,  and ’, then the Dirac ket may be truncated even more, to show just two first 
positions, say with N1 = 1 and N2 = 2, and the right-hand side of Eq. (8.80) has only three permutations: 

    '''''''''''' 









3

1

!3

!2
2,1

2/1

. 

Absolutely similarly, 

  ''' 
3

1
1,2 . 

59 Note again that the symbol positions within the kets on two sides of this relation have very different meanings: 
in the second quantization language (the left-hand side) they code the single-particle state numbers, while those in 
the “usual” notation (the right-hand side), the particle numbers. To emphasize the difference, I always separate 
the state numbers by commas. 
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 Finally, if all three particles are in the same single-particle state (say, ), then we may take N1 = 
3, N2 = N3 =.. = 0, and Eq. (8.80) yields simply 

 









2/1

!3

!3
3 . 

 Note that the general state of a three-particle system may be a linear superposition of the Dirac 
states of these three types, with various , ’, and ”, i.e. it is not necessarily one of the Dirac states. 

 (ii) Fermions: Per the Pauli principle, all occupied states , ’, and ” have to be different, so 
suppressing all zeros in the Dirac ket-vector again, we may spell out the Slater determinant (8.60) as 

 ,
6

1

!3

1
1,1,1









'"'""'"''""'

"'

"'

"'




 

where the last expression uses the same shorthand notation (with the symbol position coding of the 
particle numbers) as used in Task (i) of this solution. Evidently, it differs from Eq. (*) only by sign 
alternation, which ensures the state asymmetry (rather than symmetry) with respect to the permutation 
of any two particles. 

 

 Problem 8.29. Explain why the general perturbative result (8.126), when applied to the 4He 
atom, gives the correct60 expression (8.29) for the ground singlet state, and correct Eqs. (8.39)-(8.42) 
(with the minus sign in the first of these relations) for the excited triplet states, but cannot describe these 
results, with the plus sign in Eq. (8.39), for the excited singlet state. 

 Solution: In the numbered-particle language, the unperturbed ground (singlet) state used for the 
calculation of Eq. (8.29) is represented by Eq. (8.24) and may be described by the ket-vector 

     gggg
2

1

2

1
gg ,   (*) 

where “g” denotes the orbital factor of the single-particle ground state: r  g  100(r), and each ket on 
the right-hand side of this expression is a spin-orbital – see Eq. (8.125). On the other hand, with the 
states g and g taken for the single-particle basis ( and ’) for the Dirac representation, the two-
electron Dirac state ket,  N1, N2 =  1, 1, i.e. the Slater determinant (8.60a), is represented by the ket 

       gggg
2

1

2

1

2

1  '''' , 

i.e. exactly the same state as Eq. (*).  

60 Correct in the sense of the first order of the perturbation theory. 
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 However, for the analysis of the 4He atom in Sec. 8.2 of the lecture notes, we have described the 
excited singlet state by its orbital wavefunction (8.35), with the plus sign, i.e. by the following total 
(orbital + spin) ket-vector: 

        geeg
2

1

2

1
egge

2

1
, 

where “e” means the orbital part of a single-particle excited state: r  e  nlm(r) with n > 1. 
Multiplying the parentheses, we may represent this expression as a sum of four terms: 

              gegeegeg
2

1
, 

which may be regrouped as 

   







  egge

2

1
geeg

2

1

2

1
. 

Each of the two components of this linear superposition is a 22 Slater determinant in the particle-
number representation, i.e. a single Dirac ket  N1, N2 =  1, 1. However, since these two kets have 
different spin-orbital state bases (g and e vs. e and g), their coherent sum is not a single Dirac ket, 
such as those used at the derivation of Eq. (8.126).  

The same is also true for the entangled excited triplet state, 

       geeg
2

1

2

1
egge

2

1
, 

which is just another, linearly-independent superposition of the two same Dirac kets: 

   







  egge

2

1
geeg

2

1

2

1
. 

On the other hand, the two “simple” (factorable) triplet states, for example 

     geeg
2

1
egge

2

1
, 

are single Slater determinants, i.e. single Dirac kets.  

 Hence, the fact that Eq. (8.126), with N = 2, does describe a negative contribution from the 
exchange interaction is only due to the existence of the corresponding factorable triplet states.  

 

 Problem 8.30.* Explore the Thomas-Fermi model61 of a heavy atom, with the nuclear charge Q = 
Ze >> e, in which the interaction between electrons is limited to their contributions to the common 
electrostatic potential (r). In particular, derive the ordinary differential equation obeyed by the radial 
distribution of the potential, and use it to estimate the effective radius of the atom.  

61 It was suggested in 1927 independently by L. Thomas and E. Fermi. 
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 Solution: In the case Z >> 1, due to the Pauli principle, we may expect the characteristic radius 
rTF(Z) of the atom (i.e. of the electron cloud surrounding the point-like nucleus) to be much larger than 
the characteristic radius r0 of the single-electron ground-state wavefunctions in the Coulomb field of a 
bare nucleus with charge Q = Ze: 

      
Z

r
r B
0  ,    

where rB is the Bohr radius given by Eqs. (1.10) and (3.192) of the lecture notes. (This assumption, rTF 
>> r0, will be confirmed by our solution.) Due to this relation, which means that the electron’s 
electrostatic potential energy U(r) = –e(r) changes in space slowly on the r0-scale, we may calculate 
the electron density n(r)  dN/dV in a small local volume dV, with r0 << (dV)1/3 << rTF, by neglecting the 
gradient of U(r), i.e. considering each electron as a locally  free particle with the full energy  

       r e
m

p


e

2

2
,     (*) 

where the second term is treated, at each location r, as a local constant. As a result, we may apply to this 
small local volume of this gas, at a negligible temperature,62 the analysis carried out for fermions in the 
model solution of Problem 21, with the spin degeneracy g = 2s + 1 = 2, to calculate the local Fermi 
energy, i.e. the highest kinetic energy level filled by the electrons at point r: 

                         3/22

e

2

F 3
2

rr n
m

 
 .     (**) 

 Now comes the most non-trivial point of this solution. If we accept the free electron energy at 
distance r   from the nucleus for the reference, i.e. take () = 0, then the largest value of the full 
energy (*), for any r, should equal zero because an electrically-neutral atom should be in dynamic 
equilibrium with free electrons in the environment.63 Hence the maximum value (**) of the local kinetic 
energy has to be equal to –q(r)  e(r). This equality yields 

           2/3

2
e

2

2

3

1








r
r




em
n .     (***) 

 The second relation between the functions n(r) and (r) is given by the Poisson equation of 
electrostatics,64 

62 The apparent scale of temperatures at which this assumption certainly becomes invalid is given by the Hartree 
energy EH  27.2 eV (see Eq. (1.13) and its discussion), corresponding to TK = EH/kB ~ 3105 K – about a 
thousand times higher than the standard room temperature of 300 K. Actually, the solution of the next problem 
will show that the validity limit for temperature is even ~Z4/3 >> 1 times higher.  
63 Note that in statistical physics, this situation is called chemical equilibrium, and the corresponding value of 
energy (in our case, accepted for zero), is called the chemical potential, commonly denoted as . A more general 
introduction of this notion in statistical physics enables one to streamline this reasoning, and also generalize the 
calculations to arbitrary temperatures. This is why I gave this problem and the next one again, and provided their 
more formal solutions, in the SM part of this series.  
64 See, e.g., EM Eq. (1.41). Let me hope that the difference between the single-particle energy  and the electric 
constant 0 (see, e.g., Appendix UCA) is absolutely clear from the context. 
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        
00

2





 rrr

r
nZe 

 , 

because the electric charge density (r) consists of the point-like positive charge Q = Ze of the nucleus 
at the origin and the space-distributed negative charge of the electron cloud, with the density –en(r). 
Plugging in the n(r) from Eq. (***), and spelling out the Laplace operator for our spherically-symmetric 
problem,65 we get the following Thomas-Fermi equation for the radial distribution of the electrostatic 
potential : 

0for  ,
2

3

1
2/3

2
e

0
2

2
2














 r

eme

dr

d
r

dr

d

r 





. 

 This ordinary differential equation has to be solved with the following boundary conditions. 
Close to the atomic nucleus, the potential has to approach its field alone:  

  0at  ,
44 00

 r
r

Ze

r

Q
r


 . 

On the other hand, at large distances, due to the atom’s electroneutrality, its electrostatic potential 
should not only tend to zero but also do it faster than that of any non-zero net charge:66 

   rrr at  ,0 . 

 It is convenient to recast this boundary problem by introducing the dimensionless distance  
from the origin, defined as 

                    8853.0
4

3

2

1
  and,with  ,

3/2

0
3/2

01/3
B

TF
TF








 brZbr

Z

r
bZr

Zr

r
, (****) 

and also a dimensionless function () defined by the following equality: 

   



r

Ze
r

04
 . 

With these definitions, our boundary problem becomes “universal” (i.e. free of parameters, in particular, 
independent of the atomic number Z): 

             








.at  ,0

,0at  ,1
with  ,

2/1

2/3

2

2











d

d
    

 Unfortunately, this nonlinear differential equation may be solved only numerically, but this is 
not a big loss: the solution shows that as its argument  is increased, the function () goes down from 

65 See, e.g., MA Eq. (10.9) with / = / = 0. 
66 A useful sanity check of the Thomas-Fermi model’s self-consistency may be performed by using the above 
relations to prove that the total number of electrons, calculated as 

    drrrnrdnN 2

0

3 4 


 r , 

equals exactly Z – a simple exercise, highly recommended to the reader. 
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unity at  = 0 to zero at    monotonically (and very uneventfully), at distances  ~ 1. (For example, 
(1)  0.4.) This is why, even without the exact solution on hand, we may conclude that the constant 
rTF(Z) defined by Eq. (****) gives a fair scale of the atom’s size. That formula shows that this size 
decreases with the atomic number Z very slowly, as rB/Z1/3, and hence, at Z >> 1, is much larger than r0 
= rB/Z – confirming, in particular, our initial assumption. This result is in good agreement (for Z >> 1) with 
those given by more accurate models describing quantized energy spectra of heavy atoms.  

 

 Problem 8.31.* Use the Thomas-Fermi model explored in the previous problem to calculate the 
total binding energy of a heavy atom. Compare the result with that of the simpler model, in that the 
Coulomb electron-electron interaction is completely ignored. 

 Solution: The binding energy of an atom may be calculated, for example, as  

       



0

'
b

ZZ

Z'E W ,     (*) 

where W(Z’) is the work necessary to decrease the atomic number from Z’ to (Z’ – 1).  In order to find 
W(Z’), let us note that the process of decreasing the atomic number by one may be decomposed into two 
moves: taking one electron out of the electron cloud, and then one proton, of charge +e, out of the 
nucleus. By removing this electron from the Fermi surface, i.e. at its total energy equal to zero, the first 
step of the process requires no work, while the second step requires work W (Z’) = –ee(0), where e(r) 
is the part of the potential (r) that is due to electrons only.67 Using the relations derived in the previous 
problem, with the notation replacement Z  Z’, we get 
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Since (0) – 1 = 0 by construction, at r  0, the last fraction tends to (d/dr) r=0 and we get  
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 Due to the properties of the universal function (), discussed at the end of the previous 
problem’s solution, we may expect the derivative d/d to be negative, with a modulus of the order of 1 
at  = 0. Indeed, a numerical solution of the boundary problem for the function () yields 

5881.1
0














d

d
a , 

so W(Z’) > 0 for any Z’. As a result, the total binding energy Eb given by Eq. (*) is positive as well. 
(This means that the atom’s components, after they have been brought far apart, have higher energy than 

67 Of course, the removed proton also interacts (and very strongly) with the initial Z' protons in the nucleus. 
However, our goal is to calculate the binding energy, i.e. difference between the sum of energies of the 
"assembled" nucleus and individual electrons, all far apart from each other, and that of the fully “assembled” 
atom. At the calculation of such difference, the change of the intrinsic energy of the nucleus cancels. 
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the initial atom, ensuring that the latter is stable.) Due to the condition Z >> 1, the sum (*) may be 
calculated as the integral 

    .
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But the last fraction is just the Hartree energy EH, so we finally get 
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Note the very nontrivial scaling of the binding energy with the atomic number Z. 

 Now let us consider a simpler model,68 in which the electron-electron interaction is completely 
ignored. Using the same arguments as in the previous problem’s solution, we still may use its Eq. (**), 

            3/22

e

2

F 3
2

rr n
m

 
 ,     (**)  

for the local Fermi energy F(r), i.e. the largest kinetic energy of electrons at the location r, and find its 
dependence on r from the requirement that the largest total energy of the electron,   

       rrrr  eq  FF , 

is spatially independent. However, in this simple model, the electrostatic potential (r) is given by the 
bare Coulomb field of the nuclear point charge Ze, so this condition becomes 

        const
4 0

2

F 
r

Ze


 r ,     (***)  

with  not known in advance. In order to have the electrons localized near the nucleus,   cannot be 
positive (i.e. larger than the potential energy value at r  ), so F (and hence the electron density n) 
has to turn to zero at some finite radius ref, which, in this model, plays the role of the atom’s radius. 69 
Per Eq. (***), this radius is related to  as  

0
4 ef0
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so Eqs. (**) and (***) yield 
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 Now we may calculate the constant ref (and hence ) by requiring the atom as the whole to be 
neutral, i.e. the number of electrons to be equal to Z: 

68 Very unfortunately, this model is sometimes called “statistical” – why?? 
69 Note that in contrast to the Thomas-Fermi approximation, this simple model is not self-consistent because it 
implies that (ref) = –  0, while the electrostatic potential of a neutral and spherically symmetrical atom should 
vanish at its effective surface. 
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Carrying out the integration, we get 
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By using the substitution   sin2, the last integral may be recast into a sum of elementary integrals, 
which may be readily worked out using MA Eqs. (3.3d) and (3.4). The final result is /16, so the 
electron counting yields the following equation: 

        ,
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So, for the effective radius of the atom, this simple model gives the same functional dependence on Z as 
rTF in the Thomas-Fermi model. The fact that ref ~ rTF >> r0 = rB/Z  shows that, at least in this system, 
the implicit interaction of electrons via the Pauli principle, taken into account in this model, is more 
important than their explicit Coulomb interaction – completely ignored in it. 

 Now let us calculate the binding energy (*) within this model. In order to avoid the calculation of 
the electron potential e(0) felt by the nuclear charges, the partial work W(Z’) may be calculated 
differently than for the Thomas-Fermi model. Namely, let us calculate the radius ref(Z’) and (Z’) of an 
ion, with Z’ electrons, but the nuclear charge Q is still equal to Ze. Reviewing the above calculations, we 
see that this may be done by replacing Z on the right-hand side of Eq. (****) with Z’:  
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and then calculating  as 
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The work W (Z’) necessary for the removal of an additional electron from the ion to infinity is –(Z’), 
so, replacing the sum (*) with the corresponding integral, we get 
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 Very naturally, this value is higher than that calculated in the solution of the previous problem 
for the Thomas-Fermi model because, in the current simple model, each electron is attracted to the 
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nucleus by its Coulomb field unscreened by other electrons, making their interaction stronger. Note, 
however, that the difference is not too large – just about 50%.  

 

Problem 8.32. Suggest and explore a simple model of dephasing in a system consisting of N 
similar, distinct, non-interacting components. In particular, how does the dephasing time scale with N? 

 Solution: To piggyback on our discussion of dephasing in two-level (spin-½-like) systems in 
Sec. 7.3 of the lecture notes, let us explore a system of N similar, distinct two-level components whose 
quantum-mechanical phases , defined by Eqs. (5.1) and (5.11) with  = –/2, 

        
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2/2/

2
sin

2
cos   ii ee    (*)  

(where the Bloch-sphere angles  and  are real), obey the diffusion law (7.85): 

                   tDt  20 22  ,    (**) 

while  stays constant.70 Let us further assume that the phase difference we are interested in (say, the 
one defining quantum interference in the system) is the sum  
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over all two-level components, with a constant coefficient C.  

 In this case, we may write 
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Under the natural assumption that the fluctuation sources fk(t) participating in each of Eqs. (7.70) and 
resulting in the phase diffusion (**) are independent of each other,71 all terms with k  k’ vanish, and we 
get 
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Since according to Eq. (7.89), the dephasing time T2 is inversely proportional to the phase diffusion 
coefficient, we get 

 
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2
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T
T  . 

 This result shows that at least in this simple model, for any reasonable and N-independent value 
of C, the dephasing time in a typical macroscopic system (with, say, N ~ NA ~ 1023) is extremely small.  

 

70 As a reminder, these results follow from the simple model described by Eqs. (7.69), (7.70), and (7.82), and, per 
Eq. (7.142), agree with the more general Eq. (7.210). Note, however, that this model, in which there is no 
diffusion of the phase , is only valid for the interaction Hamiltonian (7.70) diagonal in the z-basis. 
71 If this assumption is violated, the final result may be an even stronger function of N. 
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 Problem 8.33. The notion of the reduced density operator ŵ  defined by Eq. (7.160) is sometimes 
used for the characterization of entanglement in multi-qubit systems. Calculate ŵ  for one qubit of a 
two-qubit system that is in an arbitrary pure state, and analyze the result. 

 Solution: Let ŵ  be the density operator of the two-bit system. As was discussed in Sec. 7.1 of 
the lecture notes, if a system is in a pure state, we may always select a basis in which the operator has 
the simple form following from Eqs. (7.15)-(7.16): 

      jj www ˆ ,     (*) 

where the index j lists the states of the full system. In our current case of a two-qubit system, we may 
represent any pure state as a linear superposition of the 4 basis states of the composite 22-dimensional 
Hilbert space: 

     11011000 11100100  aaaaw j ,  (**) 

where the qubit number is coded, as usual, by the position of its ket-vector,72 while 0 and 1 are the 
basis states of each qubit – in the same basis that is used in Eq. (*). 

 Now let us form the reduced density operator 1ŵ  of the first qubit as prescribed by Eq. (7.160), 
i.e. by taking the partial trace of the full density operator over the states of its “environment” – in this 
case, of the second qubit: 

11001ˆ10ˆ0ˆTrˆ 21 jjjj wwwwwwww   , 

where the single kets are those of the second qubit. For the state (**), the short brackets participating in 
the last form may be readily calculated; for example, 
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in the last form, the single kets are those of the first qubit. Acting absolutely similarly, we get 

,101 1101 aaw j   

so, finally: 
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 Let us analyze this result, taking into account that the coefficients in Eq. (**) have to satisfy the 
normalization requirement 
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2
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2

01

2

00  aaaaww jj  

72 As a reminder, the qubits are “always” (or at least in this course) considered distinguishable – say, by their 
spatial positions. 
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We may immediately notice that for any factorable (i.e. unentangled) state of the two-qubit system, the 
reduced density operator has only one ket-bra combination, i.e. formally coincides with the genuine 
density operator of the first qubit, describing its pure state. For example, if wj = 00, i.e. if a00 = 1 
while all other coefficients in Eq. (**) equal zero, then 

         00ˆ1 w .      (****) 

Also, the state wj = 01 (described by Eq. (***) if a01 = 1 while all other coefficients vanish) gives 
the same result. On the other hand, such states as the singlet or the entangled triplet: wj = (1/2)(01 
 01) give the reduced operator 

 1100
2

1
ˆ1 w , 

corresponding to a 50/50 classical mixture. 

 Let us prove that all entangled states of the two-bit system give a mixed state of 1ŵ . For 
example, let us find out what values the coefficients akk’ may have to give Eq. (****). From the last form 
of Eq. (***), this requires, in particular, the coefficient before the operator 11 to vanish: 

0
2

01

2

1110101111
**  aaaaaa . 

But this may be only if a11 = a01 = 0. Plugging the first of these results into the requirement for the 
coefficient before 01 to vanish as well, 

,0**
11011000  aaaa  

we get a00a10* = 0, so at least one of these coefficients has to equal 0. Per Eq. (**), this means that the 
direct product states listed above, 

10  and00  jj ww  

are the only ones that yield Eq. (****). An absolutely similar analysis of the opposite case,  

11ˆ1 w , 

shows that it also results only from any of the direct products 

01  and11  jj ww , 

but not from any entangled state. 

 Hence, the so-reduced density operator may indeed be used for entanglement characterization. 

 

 Problem 8.34. For a system of two distinct qubits (i.e. two-level systems), introduce a reasonable 
uncoupled-representation z-basis and write, in this basis, the 44 matrix of the operator that swaps their 
states.  

 Solution: The requested basis should obviously include all four possible uncoupled-
representation states: 
             ,,, ,     (*) 
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but in order to prescribe definite 4-component vectors to the states, and hence definite 44 matrices to 
the linear operators acting in this joint Hilbert space, a certain order of the basis states should be 
selected. (For one spin-½, the traditional order, used in particular in this course, is natural:  first, then 
.) Generally, the order may be selected at will, but it makes sense to establish it in a way that makes 
possible generalization to more than two spins natural. In this sense, the order given by Eq. (*), in which 
the rightmost spins are altered first, is very reasonable. This may be confirmed by rewiring it in the 
notation accepted in qubit applications (with  denoted as 0, and  as 1 – see the beginning of Sec. 8.5 
of the lecture notes): 
              11 ,10,01,00 .      

Indeed, if these zeros and ones are understood in the sense of classical bits, this line corresponds to the 
naturally ordered sequence of binary numbers, in the decimal system equal to 0, 1, 2, and 3. 

 With this order accepted, the ket-vector of an arbitrary pure state of this composite system, 

 dcba  , 

is represented by the column 
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and the operator X̂ swapping the spin states, 

   dcbadcbaXX ˆˆ  , 

should just swap the coefficients b and c, so its matrix X, in the accepted basis, should act as 
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Evidently, this operation is achieved by the following 44 matrix: 
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Problem 8.35. Find a time-independent Hamiltonian that causes the qubit evolution described by 
Eqs. (8.155) of the lecture notes. Discuss the relation between your result and the time-dependent 
Hamiltonian (6.86).  
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Solution: In the lecture notes, Eqs. (8.155) were obtained as solutions of Eqs. (6.94), for the 
particular case of exact frequency tuning,  = 0.  In the notation of Sec. 8.5, they are 

  0110
*, aAaiAaai   .    (*) 

They may be evidently interpreted as the set of two Schrödinger equations,  

11101011010000 , aHaHaiaHaHai   , 

with the following matrix coefficients of an effective time-independent Hamiltonian (in the basis of the 
states 0 and 1): 
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Recalling the definition (4.105) of the Pauli matrices, we may represent this matrix as 
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 Hence, for the requested Hamiltonian operator itself, we may write the following expression (valid in 
any basis): 

          .ImˆReˆˆsinˆcosˆ AσAσσσAH yxyx      (**) 

 This expression may be interpreted as the result of time averaging of the product of the time-
dependent Hamiltonian (6.86), whose perturbative treatment in Sec. 6.5 has led us to Eqs. (*), by the 
factor exp{i10t} which compensates the re-definition (6.82) of the probability amplitudes. Let me hope 
that the reader remembers that such an averaging, as an alternative method of performing the rotating 
wave approximation (RWA) was repeatedly used in Chapter 7. 

 Note also that according to Eq. (4.163a), for a spin-½ particle with a non-zero gyromagnetic 
ratio , the Hamiltonian (**) may be created by applying a time-independent magnetic field with its 
vector B within the [ x, y] plane, with the angle (–) between it and the x-axis.  
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Chapter 9. Elements of Relativistic Quantum Mechanics 

Problem 9.1. Prove the Casimir formula (see Eq. (9.23) of the lecture notes) by calculating the 
net force F = PA exerted by the electromagnetic field, in its ground state, on two perfectly conducting 
parallel plates of area A, separated with a free-space gap of width t << A1/2. 

Hint: Calculate the field’s energy in the gap’s volume with and without the account of the plate 
effect, and then apply the Euler-Maclaurin formula73 to the difference between these two results. 

Solution: Let us calculate the electromagnetic energy in the volume At of the gap as a sum over 
all possible sinusoidal standing waves74 with wave vectors k = {k, kz}, where the z-axis is normal to the 
plates, and   {x, y} is the 2D radius vector in the plane of their surfaces: 

        
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(where the front factor 2 is due to two different electromagnetic field modes, with orthogonal 
polarizations, for each wave vector k), with and without the effect of the plates. To avoid the high-k 
divergence, we may cut both sums at the same, sufficiently large (kmax >> 1/t  >> 1/A1/2) value of k   k  
because the higher modes are not affected by the plates.  

Thanks to the strong condition A1/2 >> t, the in-plane wave vector quantization may be replaced 
with an integral, by using the electromagnetic-wave analog of Eq. (1.92) of the lecture notes:  
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On the other hand, the values of kz are significantly limited to a discrete set, 
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t

n
kz


 

by the boundary conditions on the plate surfaces.75 As a result, Eq. (*) becomes 
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where the symbol ’ means that the term with n = 0 is taken with the additional factor ½, because for 
this special value of n, the boundary conditions allow only one wave polarization, with the electric field 
normal to the plate surfaces.  

73 See, e.g., MA Eq. (2.12). 
74 As implied by the discussion in Sec. 9.1 (but perhaps was not sufficiently emphasized there), the analogy 
between an electromagnetic field mode and that of the simple (“lumped”) 1D harmonic oscillator is direct only for 
a standing (rather than traveling) wave. 
75 See, e.g., EM Eq. (7.196). 
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 Now it is convenient to use the fact that the function under the integral is symmetric with respect 
to all Cartesian components of the wave vector, and extend the summation and integration to all 
(positive and negative) values of n, kx, and ky, compensating this extension by an extra multiplier 1/23  
1/8, and then make, in the double integral, the transfer from the Cartesian to the polar coordinates: 
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(Note that the exception for n = 0 in the sum ’ is automatically absorbed into , making it regular.)  
Since 2kdk  d(k
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2 + (n/t)2], the integration is elementary, giving 
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where nmax  kmaxt/ >> 1. 

 Now let us repeat the calculation for the same volume but disregarding the effect of the plates, so 
the summation over kz may be replaced with the integration similar to that over kx and ky: 
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where the last integration is in symmetric limits. The result is 
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The difference between these two energy values, describing the effect of the conducting plates,  
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may be recast into a simpler form by introducing a continuous dimensionless variable   kzt/: 
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 The expression in the square brackets may be evaluated using the Euler-Maclaurin formula. 
However, since the function f() is not infinitely differentiable (it has a “soft cusp” at  = 0), we may 
apply that formula only separately to each of the two similar “wings” of the symmetric function f(), 
with –nmax    < 0 and 0 <    nmax. (At this separation, the term f(0) may be either delegated to one of 
the partial sums or, more logically, accounted for separately.) Summing up these three contributions, we 
get  
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 At  = nmax, our function f() vanishes due to the definition of the parameter nmax, while its 
derivatives at this point may be ignored because the mode summation cutoff at kmax may be made 
smoothly spread over an interval /t << k << kmax, without a substantial effect on the calculation. As a 
result, using the derivatives, 
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we obtain the final result (which, as could be expected, is independent of the artificial cutoff kmax): 
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 The result shows that the energy difference is negative, and its magnitude grows as t is 
decreased, i.e. the plates attract each other. The differentiation over t, F = –(E)/t, immediately yields 
the Casimir formula (9.23): 

4

2

240t

cA
F


 . 

 Note also that the numerical coefficient apart, Eq. (***) is a great case for its derivation from 
dimensionality arguments, without solving the problem exactly. Indeed, since we are dealing with 
quantum mechanics of the electromagnetic field in free space, the final expression for the ratio E/A 
may only include the Planck constant , the free-space speed of light c, and the only significant 
geometric parameter of the problem, t. Now by writing the dimensionalities of these constants (correct 
in any system of units): 

      length,
time

length
time,energy  tc , 

we see that the only way they may be combined to give the correct dimensionality of the result, 

 2length 

energy






A

E
, 

is in the fraction c/t3. However, the reader should not think that all their hard work on the problem was 
“only” the calculation of the numerical factor before this fraction. A more important reward is that the 
solution yields a very clear physical picture of the Casimir effect, while the dimensionality-based 
“derivation” cannot bring this clarity. 

 

 Problem 9.2.  Electromagnetic radiation of some single-mode quantum sources may have such a 
high degree of coherence that it is possible to observe the interference of waves from two independent 
sources with virtually the same frequency, incident on one detector. 

 (i) Generalize Eq. (9.29) of the lecture notes to this case. 
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 (ii) Use this generalized expression to show that incident waves in different Fock states do not 
create an interference pattern. 

 Solutions:  

 (i) Let us rewrite the second form of Eq. (9.29), 

)()(iniˆ†ˆiniΓ * rr eeaa , 

as follows: 

                  rerrerrr *iniini  and   ,iniiniwith  ,)(iniˆ†ˆ)(iniΓ  aa . (*) 

A sum of two waves of the same frequency may be described by the ket-vector  

                     221121 iniiniiniiniini rererrr  ,    

where each component wave is proportional to its own spatial distribution factor ej(r) and may be in its 
own quantum state. Plugging this expression, and the corresponding expression for the bra-vector, into 
the first of Eqs. (*), and opening the parentheses, we may represent  as a sum of four terms including 
the following two terms describing the waves’ interference: 

           c.c.  iniˆ†ˆiniΓ 2121int
*  rereaa     (**) 

For plane waves, e1(r)  exp{i(k1r + const1}, e2(r)  exp{i(k2r + const2)}, so the product e1
*(r)e2(r) 

is proportional to exp{i12}, with 12 = (k1 – k2)r + const; the same is approximately true for quasi-
plane-wave situations – see Sec. 3.1. If the wave frequencies  are slightly different, the phase shift 12 
slowly drifts in time due to the difference between the two values of k = /c, so the interference still can 
be measured if this is done relatively fast in order not to be averaged out. 

 (ii) Let the component waves be in some Fock states: 

2,12,1ini n ; 

then the interference terms in Eq. (**) are proportional to the following long bracket: 

2121
ˆˆˆ† nNnnaan  . 

But the number operator aaN ˆˆˆ †  is diagonal in the stationary (Fock) state basis – see, e.g., Eq. (5.74) 
of the lecture notes. As a result, if the component waves are in different Fock states, with n1  n2, then 
int = 0, i.e. the interference pattern disappears. 

 

Problem 9.3. Calculate the zero-delay value g(2)(0) of the second-order correlation function of a 
single-mode electromagnetic field in the so-called cat state (see Problem 7.4): a coherent superposition 
of two Glauber states with equal but sign-opposite parameters  and a certain phase shift between them. 

Solution: The initial state of this field may be represented by the following ket-vector: 

  ieC cat , 
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where each ket  represents the Glauber state with the complex “shift parameter”  that participates in 
the basic Eqs. (5.102) and (5.124) of the lecture notes. The normalization constant C may be found by 
requiring the superposition state to be normalized, catcat = 1 (just as the component states  are), 
giving the following equation: 

   1
2     ii eeC . 

Opening the parentheses, we get 

  ii ee
C 


11

12
. 

 The inner products participating in this expression may be calculated, for example, by using the 
Fock-state expansions (5.134) of the  Glauber states: 76 
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(For the particular case  = 0, this result was already obtained in the solution of Problem 7.4.) 

Now we can use the basic Eq. (5.124) and its bra-vector counterpart, 

,ˆ,ˆ *†   aa  

to calculate the numerator of the ratio (9.35), at the final steps of the calculation using Eqs. (*) and (**) 
again: 
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         .cos2exp22
4242   C  

The inner product in its denominator may be calculated similarly: 

76 Another way to get the same final result for C is to use the coordinate representation (5.107) of the Glauber 
state.  



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 491 

   




































ii

ii

eaaeaa

aaaa
C

eaaeCaaaa

ˆˆˆˆ

ˆˆˆˆ

ˆˆcatˆˆcatˆˆ

††

††

†††

2

2

cat

 

    
  ,

cos2exp1

cos2exp1
cos2exp22

)(

)()()(

2

2
2222

2

*

***







































C

e

e
C

i

i

 

so, finally, 
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The result shows that the second-order correlation function is the largest at  = 0,  
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is always larger than 1, and may be much larger than 2.77 Such super-bunching, with g(2)(0) > 2, may be 
obtained with other field states as well – see the next problem. 

 

 Problem 9.4. Calculate the zero-delay value g(2)(0) of the second-order correlation function of a 
single-mode electromagnetic field in the squeezed ground state  defined by Eq. (5.142) of the lecture 
notes. 

 Solution: Let us reuse the important intermediate result,  

      Ibbbb ˆˆˆˆˆ ††  ,     (*) 

obtained in the model solution of Problem 5.22 for the squeezing operators †b̂ and b̂ . These operators 
are defined by Eq. (5.144), which may be rewritten as 

bbabba ˆˆˆ,ˆˆˆ *†††   , 

where  and  are the c-number squeezing parameters: 

 .sinh,cosh rer i   

As was discussed in the same solution, the squeezed ground state is an eigenstate of the operator b̂ , with 
zero eigenvalue:  

77 The result (***) even tends to infinity at   0, but we should remember that if   = 0 exactly, the field is in its 
ground state, and according to Eq. (9.29) with n = 0, there are no photon counts at all to speak about. 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 492 

                   0ˆ ,0ˆ †  bb  ,     (**) 

and is normalized: 
1 . 

 The average participating in the denominator of (9.35) for the requested value  
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was already calculated in the model solution of Problem 5.23: 
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so we only need to calculate the expectation value in the numerator of that fraction: 
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 The multiplication of the square brackets gives 16 operator-product terms but due to Eqs. (**), 

we may immediately discard those with the operator products either starting with †b̂ , or ending with b̂ , 
or both – because, acting on the state , they would give null states. The remaining four terms give 
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Let us calculate each of the averages by applying the commutation relation (*). It makes sense to start 
with calculating an auxiliary two-operator product:78 
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and then use this result, together with Eqs. (**), to calculate the four-operator averages one by one: 
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78 Actually, it was also calculated in the model solution of Problem 5.23. 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 493 

    

,000†ˆ†ˆ†ˆˆˆˆ

†ˆ†ˆˆˆˆ†ˆ†ˆ†ˆˆ†ˆ†ˆ†ˆˆ

††

†














 





bbbbbb

bbIbbbbbbbbbb
 

       

.000ˆˆˆˆˆˆ

ˆˆˆˆˆ†ˆˆˆˆ†ˆˆˆˆ

†

†














 





bbbbbb

Ibbbbbbbbbbbb
 

 Thus, we finally have 
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 Since coth2r of the real argument r     is always larger than 1, our result shows that g(2)(0)  3, 
indicating the super-bunching effect mentioned at the end of Sec. 9.2 of the lecture notes and in the 
previous problem.79 Note that, paradoxically, at r  0, the result (***) does not tend to Eq. (9.37), 
g(2)(0) = 1, for the Glauber state, i.e. in the absence of squeezing. However, there is no actual 
contradiction here, because at r = 0 and  = 0, both results yield an uncertainty due to the vanishing 
denominator, physically corresponding to the absence of photon counts from the field in the usual 
ground state.  

 

Problem 9.5. Calculate the rate of spontaneous photon emission (into unrestricted free space) by 
a hydrogen atom, initially in the 2p state (n = 2, l = 1) with m = 0. Would the result be different for m = 
 1? for the 2s state (n = 2, l = 0, m = 0)? Discuss the relation between these quantum-mechanical results 
and those given by the classical theory of radiation for the simplest classical model of the atom. 

Solution: For this single-particle system, we may use the general formula (9.53) of the lecture 
notes, for the electric-dipole radiation into free space, with d = –er: 
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in the first case, with  fin   n, l, m fin  = 1, 0, 0  and  ini    n, l, m ini =   2, 1, 0. Due to the axial 
symmetry of these two states, the only non-zero contribution to the matrix element of the radius vector’s 
operator is provided by its z-component:  
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This matrix element was already calculated in the solution of Problem 6.20: 

79 For recent experimental observations of super-bunching see, e.g., Y. Bromberg et al., Nature Photonics 4, 721 
(2010), and references therein. 
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so, finally, 
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 Now we may plug into this result the expressions for the Bohr radius rB (see Eq. (1.10) of the 
lecture notes), and the radiation frequency, following from Eqs. (1.12)-(1.13): 
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and get Eq. (*) in a form more convenient for evaluation: 
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thus confirming the estimate (9.54). Numerically,   1.61016 s–1, s  6.3108 s–1, so the relative half-
width of the spectral line s/  410–8 << 1.  

 Superficially, it may look like for other 2p initial states, with m = 1, the rate vanishes because 
the initial function under the matrix element integral is now proportional to exp{im}, and the integral 
over the azimuthal angle equals zero. However, this is only true for the z-component of the dipole 
moment operator; for two other components, the solid-angle integral becomes 
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i.e. exactly the same result as for m = 0. In hindsight, this is very natural, because the wavefunctions of 
all three 2p states with different m are similar, besides their spatial orientation – see, e.g., the second row 
of Fig. 3.20 of the lecture notes. 

 On the other hand, for the initial 2s state, the initial and final wavefunctions are both independent 
of  and ; hence all Cartesian components of the solid-angle integral of the product f*ri are equal to 
zero, so the electric dipole transition rate vanishes. This zero result is a particular manifestation of the 
orbital selection rules (mentioned in Sec. 5.6 of the lecture notes, and proved in the model solution of 
Problem 5.41): in the absence of spin effects, the electric dipole transitions are possible only if l  lini – 
lfin = 1.  

 In order to compare Eq. (*) with the classical theory of radiation, let us take into account that due 
to the general exponential decay law (see, e.g., Eqs. (2.151) or (6.114) of the lecture notes), the 
ensemble-averaged radiation power of an atom, immediately after its definite placement into the initial 
state, is 
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sQ ΓP . 

Using Eq. (*), this power at the 2p  1s transition may be represented as 
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This quantum-mechanical result may be compared with the following classical result for the power 
radiated by a charge q = –e moving, with the angular velocity , around a circle of radius R:80 
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P . 

 The comparison of the two formulas shows that the quantum and classical expressions are close 
if we parallel R and rB.81 However, not only the numerical coefficients but (more importantly) the very 
spirit of these results are very much different. The classical theory depends only on the initial, but not on 
the final state (and hence there are no selection rules), does not have a good analog of the most 
important s-states (with l = 0), and even more importantly, does not have the fundamental notion of the 
ground state with a non-zero spatial extension – which produces no spontaneous radiation at all. Still, it 
may be shown that the quantum-mechanical results approach the classical ones for transitions between 
the so-called Rydberg states, with n >> 1 and hence with r >> rB. 

 

 Problem 9.6. An electron has been placed on the lowest excited level of a spherically symmetric, 
quadratic potential well U(r) = me2r2/2. Calculate the rate of its relaxation to the ground state, with the 
emission of a photon (into unrestricted free space). Compare the rate with that for a similar transition of 
the hydrogen atom, for the case when the radiation frequencies of these two systems are equal.  

 Solution: Just like in the previous problem, the spontaneous photon emission rate of this single-
particle system, due to its electric dipole moment d = qr, may be calculated as 
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so the problem is reduced to the calculation of the proper matrix element for the isotropic 3D harmonic 
oscillator. As was discussed in Sec. 3.5 of the lecture notes, and in the model solution of Problem 3.27, 
its eigenfunctions may be represented either in the spherical-coordinate form or the Cartesian form. In 
the latter representation (which is a bit easier for calculations) the final, ground-state wavefunction is a 
product of similar 1D functions: 

       ,000fin zyx  r  

80 This expression follows from the well-known Larmor formula for radiation at 1D motion (see, e.g., EM Eq. 
(8.29) for the free space, in which Z = Z0 = 1/0c and v = c), with the extra factor of 2, due to the radiation by two 
non-zero oscillating Cartesian components of the rotating electric dipole moment – see the model solution of EM 
Problem 8.1. 
81 In the view of the original Bohr’s theory, and the exact relations (3.210)-(3.211), this is a reasonable (though an 
approximate) estimate. 
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while the excited energy level is triple-degenerate, with wavefunctions of the type 

       ,001ini zyx  r  

with two other eigenfunctions different only by the argument swaps – and hence giving the same 
radiation rate. (Here 0 and 1 describe, respectively, the ground state and the first excited state of the 
1D oscillator.) Hence the matrix element participating in Eq. (*) may be calculated as 
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 Since 0 is an even function, while 1 is an odd function of their arguments (see, e.g.,  Eq. 
(2.284) and/or Fig. 2.35 of the lecture notes), only the first one of the resulting three 1D integrals does 
not vanish, giving 
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Since Eq. (*) assumes that all participating wavefunctions are normalized, each of the two last integrals 
equals 1, while the first one, by definition, is the matrix element x10. According to Eq. (5.92), with n’ = 1 
and n = 0, for our system (with 0 =  and m = me) it is equal to (/2me)1/2. As a result, we get 
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 According to Eq. (5.95), the last fraction is just the ground-state expectation value of x2, so 
comparing this result with the solution of the previous problem, we get a physically transparent result: 
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Since the difference between the adjacent energy levels of a harmonic oscillator is , its radiation 
frequency is just , so for the matching of its value with that of the hydrogen atom’s radiation (at the n = 
2 to n = 1 transition), 
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we get 
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 This result is natural because, in the hydrogen atom, the wavefunctions are more pressed to the 
center by the rapidly diverging Coulomb potential U(r)  –1/r, and hence provide a smaller dipole 
moment d, for the same frequency. 
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 Problem 9.7. Derive an analog of Eq. (9.53) for the spontaneous photon emission (into free 
space) due to a change of the magnetic dipole moment m of a small-size system. 

 Solution: The derivation is straightforward due to the similarity between the Hamiltonians 
describing the interaction of the electric and magnetic dipole moments of a small system with the 
corresponding electromagnetic field components:  

,ˆˆ,ˆˆ ˆˆ
magneticelectric md  BE HH  

and of the expressions of the field operators via the photon creation/annihilation operators – see Eqs. 
(9.16) of the lecture notes:  

 




 














 










j
jjj

j
jj

j
j

j aataait ˆˆ)(
2

),(,ˆˆ)(
2

),( ††
2/12/1

ˆˆ rbrrer
 

BE . 

 (As a reminder, the c-number vector functions ej(r) and bj(r), describing the spatial distribution of the 
electric and magnetic fields in the jth mode, are similarly normalized, 
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so they similarly drop out at the averaging over free-space modes,82 besides the replacement of 1/0 in 
the electric field case with 0 in the magnetic field case.) As a result, reproducing the calculations 
carried out in Secs. 9.2-9.3 for the electric dipole case, we get  
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Due to the identity 0  1/0c
2, this relation may be rewritten as  
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 Its comparison with Eq. (9.53) of the lecture notes, 
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shows that their relation parallels that between the classical expressions for the intensity of the electric-
dipole and magnetic-dipole radiation, with an extra factor c2 in the denominator in the latter case.83 Due 
to this factor, for an orbital motion of a charged particle with velocity v << c, its magnetic-dipole 
radiation power is of the order of ~(v/c)2 of the electric-dipole one. This weakness is the justification for 
the focus on the latter radiation in Sec. 9.3 of the lecture notes; however, if a system does not change its 
electric dipole moment at a quantum transition, its magnetic-dipole radiation may be important – see, 
e.g., the next problem. 

82 This is not true for electromagnetic cavities, where the exact position of the emitting particle in the standing 
wave field may play an important role, in particular affecting the coupling constant  – see Sec. 9.4 of the lecture 
notes and also Problem 11 below. 
83 See, e.g., EM Eqs. (8.26) and (8.139). 



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 498 

 Problem 9.8. A spin-½  particle with a gyromagnetic ratio  is in its orbital ground state in a 
static magnetic field B0. Calculate the rate of its spontaneous transition from the higher to the lower spin 
energy level, with the emission of a photon into unrestricted free space. Evaluate this rate for an electron 
in a field of 10 T, and discuss the implications of this result for laboratory experiments with electron 
spins. 

 Solution: Since the particle remains in the same (ground) orbital state, its electromagnetic 
radiation at such  quantum transition may be only due to the flip of its magnetic dipole moment m = S, 
with the emission of a photon with the frequency84 
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Hence we may use the result of the previous problem for the rate of such spontaneous transition: 
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 In order to evaluate the matrix element participating in this formula, we may use the standard 
spin z-basis, with the axis z directed along the magnetic field. In this case, for  > 0, the initial spin state 
(with the higher energy) is , and the final one is , i.e. 
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By now, the reader hopefully knows the matrix elements on the right-hand side by heart,85 and we get 
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As a result, we get 

2

22

3

3

0
magnetic 23

4

4

1
Γ

cc








 . 

 For an electron with  = e = –e/me, this expression may be rewritten as 
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where   e2/40c  1/137 is the fine structure constant. Comparing this expression with the solution 
of Problem 5 for the electric-dipole emission by a hydrogen atom, 
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84 The conservation of the net angular momentum of this system is achieved by the emission of a circularly 
polarized photon, carrying away a momentum of magnitude . 
85 If not, see, e.g. Eq. (4.128) of the lecture notes. 
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we see that the decay rate due to the spin flip in atoms is much (by a factor ~ 2) smaller than that due to 
the electric-dipole radiation, even if the radiation frequency  is the same.  

 The same is even more true for experiments with electrons in realistic magnetic fields, where the 
spin-flip radiation frequency  =  B0 = eB 0/me is much lower than those ( ~ 1016 s–1) of the optical 
transitions in atoms. For example, even for B 0 = 10 T (which is a pretty high field for a laboratory),   
1.761012 s–1.  As a result, the rate of the spontaneous spin flips is extremely low: for the above case, 
magnetic  4.410–8 s. This means that the lifetime  = 1/ of the excited spin states is limited by such 
flips to ~2.3107s  265 days – the time more than sufficient to carry out virtually any imaginable 
experiment (say, of the Stern-Gerlach type) with electron spins. 

  

 Problem 9.9. Calculate the rate of spontaneous transitions between the two sublevels of the 
ground state of a hydrogen atom, formed as a result of its hyperfine splitting. Discuss the implications of 
the result for the width of the 21-cm spectral line of hydrogen. 

 Solution: As was discussed in the model solution of Problem 8.5, the hyperfine splitting of the 
ground state energy of the hydrogen atom, due to the interaction between the spins of its electron and 
nucleus (proton), separates the three spin-triplet states with the (z-basis) ket-vectors 

           
pepepepe

  and,,
2

1
  sss , (*) 

from the singlet spin state with the ket-vector 

      
pepe2

1
s ,    (**) 

giving the states (*) a slightly higher energy.  Since the magnitude of the proton’s gyromagnetic ratio p 
= gpe/2mp, is much smaller than that of the electron, e = –gee/2me  –e/me (due to the proton’s larger 
mass, mp >> me), its interaction with the electromagnetic field is proportionally smaller, and may be 
neglected. As a result, the radiation is dominantly due to the flip of the electron’s spin, and its rate may 
be calculated using the formula derived in the solution of Problem 7:  

2

23
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0
s iniˆfin
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3

4

4

1
Γ m

cc




 , 

with the magnetic dipole moment operator ee
ˆˆ Sm   – just as in the previous problem. However, now 

this rate has to be calculated for each of the three initial states (*), at the same final state (**). 

 Let us start from the first, entangled-triplet initial state s+: 

   sSssSssSsssss zzyyxx eeeeee
ˆˆˆˆˆiniˆfin nnnSmm  . 

These three matrix elements may be calculated, for example, using Eqs. (4.128) of the lecture notes; for 
example: 

     
pepeeeeepepee

2

1

22

1ˆ 


sSs x  . 
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Due to the orthonormality of the proton spin states, this expression reduces to 

    .000
44

ˆ
eeeeeeeeeeeee 


sSs x  

The result for the y-component of the spin operator is similar, but the z-component bracket is different 
from zero: 

     
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As a result, we get 
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(Note that the last value is twice smaller than that in the previous problem, due to a different, entangled 
two-spin character of the initial and final states in our current case.) 

 Now let us perform a similar calculation for the first simple (factorable) triplet state, s. For this 
state, the z-component’s matrix element vanishes: 
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but the x- and y-components do not. Due to the similar structure of their operators (see Eq. (4.128) 
again), it is convenient to calculate them in one shot: 
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i.e. the same result as in Eq. (***). An absolutely similar calculation for the second factorable initial 
state, s, gives the same final result. So, the spontaneous photon emission rate,  
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where  is the fine structure constant, does not depend on which exactly of the states (*), or what their 
linear superposition, the system initially was in. 
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 Plugging in the fundamental constants, and the radiation frequency  = ss  0.8921010 s–1 (the 
famous 21-cm line – see the model solution of Problem 8.5), we get s  2.8610–15 s–1.86 Thus, the 
“natural” (fundamental) broadening of the 21-cm line, due to the spontaneous radiation, is extremely 
small: 

25

ss

s 102.3 



. 

The much larger width ( ~ 10–3ss) of the 21-cm radiation line observed from various space regions 
is mostly due to the Doppler effect caused by the random thermal velocities of the emitting hydrogen 
atoms.  

 

Problem 9.10. Find the eigenstates and eigenvalues of the Jaynes-Cummings Hamiltonian (9.78), 
and discuss their behavior near the resonance point  = . 

 Solution:  The functional form of both eigenstates with energies close to En (9.80) is given by 
Eq. (9.82) of the lecture notes: 
                      cc ,     (*) 

where  

.,1 nn   

Plugging this solution into the stationary Schrödinger equation corresponding to the Jaynes-Cummings 
Hamiltonian (9.78), 
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, 

and taking into account the following results of operator actions on the component states  (which 
readily follow from what the reader already knows about two-level systems and harmonic oscillators), 
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we get the following system of two linear algebraic equations for the coefficients c: 
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 With the definitions (9.70) and (9.80) of parameters  and En, and a natural notation for 
eigenenergy’s deviation from the central value En: 

86 Reformulated into the decay time s  1/s ~ 31014 s ~ 107 years, this result means that such spontaneous 
radiation events are extremely rare. Indeed, most of the observed 21-line radiation by the hydrogen atoms in space 
is due to their transitions (both up and down across the hyperfine energy gap) that are induced by electromagnetic 
radiation from other sources, including the cosmic microwave background.  



Essential Graduate Physics                          QM: Quantum Mechanics

Problems with Solutions                  Page 502 
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the system takes a very symmetric form, 
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so the condition of its consistency, 
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gives the following simple result for the Jaynes-Cummings eigenenergies: 
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At   0, this result is reduced to Eq. (9.79) of the lecture notes, while at   0, it describes an 
anticrossing diagram similar to those encountered in the course so many times (see, e.g., Fig. 5.1), with 
the minimum sublevel splitting (at the exact resonance,  =  ) 

0for  ,2
~~

Δ 2/1   nEEEn  . 

 Now we need to find the eigenstate vectors  corresponding to the calculated eigenenergies. 
Since we already know their functional form (*), it is sufficient to calculate the pair of the coefficients c 

for each eigenstate.87 For that, we need to plug each of the two solutions (***) back into any of Eqs. 
(**), use it to calculate the corresponding coefficient ratios. For example, the first equation yields 
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By using the normalization condition  c+ 2 +  c– 2 = 1, this result may be represented in the following 
convenient form: 
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cccc    

which makes it easy to analyze the basic properties of the distribution coefficients. In particular: 

 (i) If the detuning’s magnitude    is much larger than the coupling factor n1/2, the angle   is 
close to 0, and the magnitude of one of the coefficients is much larger than that of the other one, i.e. the 

87 Note that they are frequently called distribution coefficients, because they specify how exactly each eigenstate 
is distributed between the simple “partial” states of the system, in our particular case, between . Such 
coefficients are also an important notion of the classical theory of oscillations and waves – see, e.g., CM Secs. 
5.5-5.6 and 6.1-6.3. 
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system essentially resides in one of the component states , meaning that the interaction of the two-
level and oscillator subsystems has virtually no effect on the system’s properties. 

 (ii) In the opposite, most interesting limit    << n1/2, we have  = /4, i.e. the distribution 
coefficients are equal by magnitude,  c  = 1/2, with opposite signs of the ratio c+/c– at the upper and 
lower sublevels, so (apart from an inconsequential common phase multiplier), we may write 
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in exact analogy with Eqs. (2.169) and (2.175), and also Eqs. (4.114). This means that near the exact 
resonance, the partial states  interact most strongly. As was discussed in Sec. 9.4 of the lecture notes, 
the physics of this fact is that at   , the partial energies of the two components of the coherent 
superposition (*) are very close, enabling their strong coherent mixing (“hybridization”). 

 

 Problem 9.11. Analyze the Purcell effect, mentioned in Secs. 9.3 and 9.4 of the lecture notes, 
quantitatively. In particular, calculate the so-called Purcell factor FP defined as the ratio of the rate s of 
an atom’s spontaneous emission into a resonant cavity tuned exactly to the quantum transition 
frequency, to that into free space.  

 Solution: If the cavity’s coupling to its environment is sufficiently large to suppress the phase 
coherence of the components of the states (9.82),88 the photon emission by the atom is an incoherent 
effect, which may be described by the Golden Rule – just as it was done for the emission into free space 
at the beginning of Sec. 9.3. The main necessary modification is that of the density of states because Eq. 
(9.50) is valid only in the free space. 

 As we know from classical electrodynamics, in the absence of dissipation, i.e. of coupling to the 
environment, the frequency spectrum of a resonant cavity is discrete, so its density of states, 
participating in Eq. (9.49) as f, is a sum of delta functions (E – j) at energies corresponding to the 
resonance frequencies j. Each of these delta functions is essentially an infinitely narrow resonance 
curve, well known from the classical theory of oscillations.89 A small but non-zero dissipation gives the 
resonance a small but non-zero width90 

       jj

E
EE 


 
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 with  ,

1
22f  ,  (*) 

where  is the damping constant related as  = j/2Q to the Q-factor of the resonance,91 and the constant 
factor before the fraction is selected to satisfy the normalization condition 

88 The corresponding condition is   >> ,  , where the constants  and  are defined in Sec. 9.4 of the lecture 
notes, and   is the damping constant – see below. 
89 See, e.g., CM Sec. 5.1. 
90 See, e.g., Eq.  (7.150) – which duplicates CM Eq. (5.22). 
91 Generally, the factors  (and hence Q) depend on the resonance number j; I do not use the corresponding 
indices only to avoid formula cluttering. Note also that Eq. (*) is strictly valid only if both   and   are much 
smaller than j, meaning in particular that Q >> 1. 
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In particular, at the exact tuning (E = j), Eq. (*) yields 
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which should be used instead of Eq. (9.50).  

 Also, the ed defined by Eq. (9.52) has to be replaced with some ed  emax, where  
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reflecting the facts that, first, the atom may not be necessarily placed into the point where the electric 
field of the cavity mode is the largest, and, second, that only one mode is involved. With these 
replacements, the Purcell factor is 

 
 

 
 

2

max

3

cavityspace free
2

f

cavity
2

f

space frees

cavitys

P 6 




















e

ec

V

Q

e

e
F d

d

d







. 

 At the “best” location of the atom (in the electric field’s maximum), the last factor equals 1, and 
we get 
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In the lowest-frequency modes of a typical resonant cavity, the last ratio is of the order of 1 (see, e.g., 
EM Sec. 7.9), so the Purcell factor of a cavity scales as its Q-factor. For transitions between the adjacent 
Rydberg states, with very high values of the principal quantum number n, the electric dipole transition 
frequencies may be lowered to the microwave band ( ~ 1011 s–1), in which superconducting cavities 
may have very high values of Q (up to ~1012), so the Purcell factor may be made extremely large. 

 As was mentioned in Sec. 9.3 of the lecture notes, this resonant increase of the radiation rate at 
frequencies   j is compensated by its suppression between the resonances. 

 

 Problem 9.12. Use Eqs. (9.84) of the lecture notes to prove the continuity relation (1.52), with 
the probability density w and the current density j given by Eqs. (9.89).  

 Solution: Multiplying all terms of the Klein-Gordon equation (9.84) by * and of its complex-
conjugate, by , and then subtracting the results, we get 

        0
1 **

*
* 22

2

2

2

2

2




















ttc

.   (*) 

Now by using the same mathematical identity (1.45) as was employed at a similar calculation for the 
non-relativistic case, 

 **** 22    , 
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and a similar identity for the time derivatives 
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and multiplying all terms of Eq. (*) by i/2m, we may rewrite it as 
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But this is exactly the continuity equation (1.52), 
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with the probability and the probability current density given by Eqs. (9.89): 
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 Problem 9.13. Prove that the Klein-Gordon equation  (9.84) may be rewritten in a form similar to 
the non-relativistic Schrödinger equation (1.25) but for a two-component wavefunction, with the 
Hamiltonian represented (in the usual z-basis) by the following 22-matrix: 
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Use your solution to discuss the physical meaning of the wavefunction’s components. 

 Solution: Plugging the general form of the two-component wavefunction,92 
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where (in contrast with the apparently similar Eq. (9.123) of the lecture notes)  are some spin-
independent scalar wavefunctions, into the Schrödinger equation to be proved, 

  ,σ
2

σσ 22
2


zyz mc

m
i

t
i 


 

  

and spelling out the Pauli matrices, we get 

































































































10

01

211

11
 22

2

mc
mt

i


 . 

92 Here  are functions of both r and t, and the lower-case letter is used just to distinguish this two-component 
function from the scalar (single-component) function (r, t) obeying the same Klein-Gordon equation in the 
scalar form (9.84). 
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Performing the matrix-by-vector multiplications, and requiring both elements of the resulting columns 
on the left-hand and right-hand sides to be equal, we get the following two scalar equations: 

         
 

  .
2

,
2

22
2

22
2





















mc
mt

i

mc
mt

i







    (*) 

 Comparing these equations with Eq. (9.84), rewritten in the form 

       



2

22
2

2

2

2

1



cm

tc
,     (**) 

we see that their major difference is the absence of the second derivative over time in Eqs. (*). This is 
why it is natural to look for the relation between the functions  and  in the following form: 

              
t

DC



  ,     (***) 

where C and D are some c-number constants, so the left-hand sides of Eqs. (*) would have terms 
proportional to 2/t2. However, the comparison of Eqs. (*) and (**) shows that the sum (+ + -) 
should not contain the derivative /t; this is only possible if the coefficients D in Eq. (***) are equal 
and opposite. Also, for two Eqs. (*) to give the same single Eq. (**), the coefficients C have to be 
equal. With these observations, Eq. (***) is reduced to 

C

D

t
C

t
DC 















  with  , . 

Plugging this relation into Eqs. (*), we see that they, after the cancellation of the normalization constant 
C,  give two equivalent equations: 

 

  ,2
2

,2
2

22
2

22
2





















































t
mc

mtt
i

t
mc

mtt
i











 

which differ from Eq. (**) only by the presence of the terms proportional to /t. However, these 
terms cancel if the constant  is selected as 












  tmc

i
C

mc

i
22

 that  so,
  , 

giving two equivalent equations,  



 22

2

2

2

2

2

mc
mtmc





 , 

which, after the division of all terms by 2/m, coincide with the Klein-Gordon equation (**).  

 In order to interpret the two-component function , note a substantial (though incomplete) 
similarity between Eqs. (*) for the stationary states, i.e. with /t  E/i: 
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   

   ,
2

,
2

2
2

2

2
2

2













m
mcE

m
mcE





 

and Eqs. (9.126) of the lecture notes, with U(r) = 0, for a free spin-½ particle: 

 
  .ˆˆ

,ˆˆ

2

2













pσ

pσ

cmcE

cmcE
 

 From this analogy, and the discussion of the Dirac equation in Secs. 9.6 and 9.7 of the lecture 
notes, we may conclude that in both cases,   describe, respectively, the particle and antiparticle 
components of the composite wavefunction. Not surprisingly, for spinless particles, which obey the 
Klein-Gordon equation, these components are just scalar functions of r and t, while for spin-½ particles 
described by the Dirac equation, each of the   is itself a two-component column (spinor), with each 
component describing the states with Sz = /2. 

 

 Problem 9.14. Calculate and discuss the energy spectrum of a relativistic, spinless, charged 
particle placed into an external uniform, time-independent magnetic field B. Use the result to formulate 
the condition of validity of the non-relativistic theory for this case. 

 Solution: In the absence of spin and particle creation/annihilation effects, we may use the 
relativistic Schrödinger equation that may be obtained by making the general replacements (9.90), with 
the momentum and Hamiltonian operators given by Eqs. (9.83), in the Klein-Gordon equation – see, 
e.g., the bottom-right cell of Table 9.1. The replacement yields 

                 





 


 2222

2

mcqicq
t

i A  .   (*) 

In a time-independent magnetic field, with A = A(r) and  = 0, this equation has a set of stationary 
solutions similar in general structure to those in the non-relativistic case:  

 






 t

E
it


exp),( rr  . 

Plugging such a solution into Eq. (*), we get the following stationary relativistic Schrödinger equation  

        
2

222
222222

22

1
   i.e.,

mc

mcE
qi

m
mcqicE


 AA   . 

 Let us compare the last equation with the non-relativistic Schrödinger equation for the same 
problem (see, e.g., Eq. (3.27) with  = 0), with some effective energy referred (as usual in the non-
relativistic theory)  to the rest energy mc2 of the particle: 

  ,
2

1
ef

2  Eqi
m

 A  

We see that these two equations are identical, provided that 
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     2/1

ef
222

2

222

ef 2  i.e.,
2

EmcmcE
mc

mcE
E 


 , 

where the two signs before the square root describe, respectively, the particle and the antiparticle.93 

 Hence we may use the solution of the non-relativistic problem (see, e.g., Sec. 3.2 of the lecture 
notes and the solution of Problem 3.6 with  E = 0), in particular, its energy spectrum, 

  





  z

z
zn pn

m

q

m

p
np   and,...,2,1,0,with  ,

22

1
c

2

c

B
  , 

where the z-axis is directed along the magnetic field, to get the (exact!) energy spectrum of the 
relativistic problem: 

          2/1
22222

2/1
222 122 znzn pcnqcmcmcmcpE  B . 

This means that as in the non-relativistic case, due to the free motion of the particle along the magnetic 
field, the spectrum consists of parabolic continuous bands (each corresponding to a specific quantum 
number n) with the following bottom values corresponding to the purely transverse motion with pz = 0: 

      
2/1

2
c2

2/1
222 12112min 



  n

mc
mcnqcmcEnzp


 B . 

 From here we may return to the non-relativistic result for the Landau levels by expanding the 
right-hand side in the small dimensionless parameter c/mc2 << 1 and keeping only two leading terms. 
Hence, the non-relativistic theory is valid only if, first, cpz << mc2 (i.e. vz << c), and second, if 

q

cm
mc




22
2

c   i.e.,  B . 

Even for a particle as light as the electron, the right-hand side of the last relation is close to 4109 T – 
the value much higher than the strongest static fields (~102 T) created in laboratory. However, it is 
comparable to the fields conjectured to exist in the so-called magnetars – a specific variety of neutron 
stars.94 (In a “usual” neutron star, B ~ 106 T.) 

 

 Problem 9.15. Prove Eq. (9.91) of the lecture notes for the energy spectrum of a hydrogen-like 
atom/ion, starting from the relativistic Schrödinger equation. 

 Hint: A mathematical analysis of Eq. (3.193) shows that its eigenvalues are still given by Eq. 
(3.201), n = –1/2n2 with n = l + 1 + nr, where nr = 0, 1, 2,…, even if the parameter l is not an integer.   

 Solution: For the Coulomb field of the nucleus with charge Q = +Ze,  

,0,
4 0

 A
r

Ze


  

93 Comparing the last expression with Eq. (9.1) of the lecture notes, we can see that Eef is just p2/2m, where p = P 
– qA is the relativistic kinetic (“Mv-“) momentum of the particle. 
94 For a recent review, see e.g., R. Turolla et al., Rep. Prog. Phys. 78, 116901 (2015). 
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the relativistic Schrödinger equation (see, e.g., Eq. (*) of the model solution of the previous problem), 
for an electron with the electric charge q = –e and the rest mass m = me, takes the form 

  










 22

e
222

2

0

2

4
cmc

r

Ze

t
i 


, 

so the stationary Schrödinger equation is 

  


22
e

222

2

0

2

4
cmc

r

Ze
E 








  . 

 Looking for its solution in the same form (3.200) that was used in the non-relativistic case, 

      ,m
ll YrRr , 

we get the following equation for the radial function Rl: 

    lll cm
r

ll

dr

d
r

dr

d

r
c

r

Ze
E RRR

22
e2

2
2

22

2

0

2 11

4








 
















 


. 

By squaring the parentheses, grouping the terms with the same power of 1/r, and dividing all terms by 
2mec

2, this equation may be rewritten in the form 

   
lll cm

cmE

r

Ze

cm

EZe

c
ll

dr

d
r

dr

d

rm
RRR

2
e

22
e

2

0

2

2
e

2

0

2

22
2

2
e

2

244

1
1

2















































, 

which is similar to the non-relativistic equation (see Eq. (3.181) of the lecture notes, with U(r) given by 
Eq. (3.190) with C = Zefe

2/40 and m = me), 

  ,
4

1
2

ef
0

2
ef

efef
2

2
e

2

lll E
r

eZ
ll

dr

d
r

dr

d
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RRR 




















 

with the following effective parameters: 

         
2

e

22
e

2

ef2
e

ef
22

efef 2
,,11

cm

cmE
EZ

cm

E
ZZllll


  ,  (*) 

where   is the fine structure constant. Hence, we may use the energy spectrum of the non-relativistic 
problem, given by Eq. (3.201) with C = Ze2/40, and the fact provided in the Hint, to write 

          
           .

¼1½2½½22
2
ef22/1

efef

2
e

2
2
ef2

ef

2
e

2
2
ef2

ef

H
ef Z

lln

cm
Z

ln

cm
Z

n

E
E

rr 






 (**) 

Now using the identity l(l +1) + ¼  (l + ½)2, we get from Eqs. (*) and (**) the following simple 
equation for E: 

 
     

2

2
e

22/1222

2
e

2

2
e
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e

2

½½22 
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

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
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
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cmE

r 


. 
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Solving it, we get 

     
2/1

22/1222

22
2

e

½½
1
























Zln

Z
cmE

r

. 

With the notation 

         ½½½½
2/12222/1222  lZlnZlnr  , 

this is just Eq. (9.91) of the lecture notes.  

 

 Problem 9.16. Derive a general expression for the differential cross-section of elastic scattering 
of a spinless relativistic particle by a static potential U(r), in the Born approximation, and formulate the 
conditions of its validity. Use these results to calculate the differential cross-section of scattering of a 
particle with the electric charge –e by the Coulomb electrostatic potential (r) = Ze/40r. 

 Solution: In the absence of spin and of particle creation/annihilation, we may use the relativistic 
Schrödinger equation which may be obtained by using the replacements (9.90), and the momentum and 
Hamiltonian operators given by Eqs. (9.83), in the Klein-Gordon equation – see, e.g., the bottom-right 
cell of Table 9.1 of the lecture notes.95 In our case, q = U(r) and A = 0, so the replacement yields 

                     



 


 22222

2

mccU
t

i  r .   (*) 

As was discussed in Sec. 3.3 of the lecture notes, the elastic scattering may be analyzed using definite-
energy wavefunctions – wave packets of a formally infinite spatial extension, so we may look for  the 
particular solution of Eq. (*) in the usual form 

 






 t

E
it


exp),( rr  . 

The equation is obviously satisfied provided that the spatial factor (r) obeys the following stationary 
equation: 

      222222 mccUE  r . 

Dividing both sides of this equation by 2mc2, we may rewrite it as 

  ,
2 efef

2
2

 EU
m

 r


 

with  

        
2
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ef2ef 2
  and

2

2

mc

mcE
E

mc

UEU
U







rr
r . 

 But this equation exactly coincides with the non-relativistic Schrödinger equation (with the 
effective potential energy profile Uef(r) and effective particle energy Eef) that was used, in particular, in 

95 See also the model solutions of the two previous problems.. 
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Sec. 3.3 of the lecture notes to derive Eq. (3.88) for the differential cross-section of scattering in the 
Born approximation. Hence we may use that result, in the form 

        0

2
3

ef

2

2
with  ,

2
kkqr rq 









 rdeU

m

d

d i




,  (**) 

keeping in mind that the k and k0 are now effective rather than the actual wave vectors whose 
magnitude is related, by the very familiar Eq. (1.89), to not the actual but the effective energy of the 
particle: 

   2/1222
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2
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mE
kk 









. 

Note that the last expression has a simple physical sense: k = k0 = p, where the free-particle 
momentum p is given by the basic Eq. (9.1): 

    2222 mcpcE  . 

 The condition of validity of Eq. (**) may be obtained by the corresponding replacements in the 
non-relativistic condition (3.77): 

           ka
ma

U ,1max
2

2

0ef


 ,     (***) 

where (Uef)0 is a proper scale of the effective potential’s magnitude, and a denotes its characteristic 
spatial extension. Let us specify these conditions for our particular case of the Coulomb potential: 
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  so,
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
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
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
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
rr . 

 As was discussed in the model solution of Problem 3.11, the effective radius a of an 
exponentially screened Coulomb potential tends to infinity as the screening is gradually removed (  
0); as a result, the expression on the right-hand side of Eq. (***) is reduced to (2/ma2)(ka)  2k/ma. 
Repeating the arguments given at the end of that solution, with the additional factor E/mc2 = M/m 
(where M  m/(1 – v2/c2)1/2 is the relativistic mass and v is the particle’s velocity), and replacing the non-
relativistic relation p = mv used there with the relativistic one, p = Mv,96 the relation takes exactly the 
same form as in the non-relativistic case: 

1
c

v
Z , 

where   1/137 is the fine structure constant.  

 Now let us notice that if this condition is satisfied, the second term in the last expression for  
Uef(r)  is much smaller than the first one, at all distances of interest: r > 1/k. Indeed, 

96 See, e.g., EM Sec. 9.3 – in particular, Eqs. (9.70), (9.71), and (9.73). Note again that since the relativistic 
Schrödinger equation for a free particle is the quantum-mechanical generalization of the classical relations of 
special relativity, they are exactly valid for the plane-wave solutions   exp{i(pr – Et)/} with definite c-
number values of p and E. 
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Hence we have the right to not only ignore the effect of this term on the Born approximation’s validity 
condition (***) but also, in this approximation, drop it at the calculation of the differential cross-section 
(**). Since the remaining (1st) term of Uef (r)  differs from U(r) only by the additional factor E/mc2, we 
may reuse the solution of the same Problem 3.11, getting 

2

222
0

22

222
0

2 2

4

2

4 


















 cq

EZe

q

m

mc

EZe

d

d

 


. 

Since the relativistic replacements keep intact the usual geometric relation between the magnitude k of 
the vectors k and k0, and that of the vector q, 

      
2

sin2


kq  , 

where   is the scattering angle (see the figure on the right), we may rewrite our 
result for the differential cross-section as 

   2/sin

1

242/sin

1

24 4

2

22
0

2

4

2

222
0

2























 cp

EZe

ck

EZe

d

d


. 

 Hence the angular dependence of d/d remains the same as in the non-relativistic quantum 
mechanics (and as in the classical mechanics), with a strong (non-integrable) divergence at   0 and 
hence a formally infinite total cross-section.  

 

 Problem 9.17. Starting from Eqs. (9.95)-(9.98) of the lecture notes, prove that the probability 
density w given by Eq. (9.101) and the probability current density j defined by Eq. (9.102) do indeed 
satisfy the continuity equation (1.52): w/t + j = 0. 

 Solution: Very similarly to what was done in Sec. 1.4 of the lecture notes for the non-relativistic 
Schrödinger equation, let us write Eq. (9.95), with the Dirac Hamiltonian (9.97), in the coordinate 
representation: 

           





  ˆˆ  i.e.,ˆˆˆ 22 mcci

t
imcc

t
i αpα  ,  (*) 

and left-multiply all its terms by the Hermitian-conjugate wavefunction †:  

        



 ̂ˆ ††† 2mcci
t

i α .    (**) 

(Since according to Eq. (9.96), both  and † are matrix rows/columns, while according to Eqs. (9.98), 

α̂  and ̂  are square matrices, all multiplications here and below should be understood in the matrix 
sense.)  

k

0k
q


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 Let us also write the Hermitian conjugate of Eq. (*):97 

   ̂ˆ ††
†

2 



  mcci
t

i α , 

right-multiply all its terms by : 





  ̂ˆ ††
†

2mcci
t

i α , 

and then subtract this relation from Eq. (**). After the cancellation of the last terms and of the common 
factor i in the remaining terms, the result takes the form 

               0ˆˆ ††
†

† 


















 αα c
tt

.   (***) 

 Now taking into account the identities98  

    











ααα ˆˆˆ  and, †††
†

†† 
ttt

, 

Eq. (***) may be spelled out as    

    0ˆ†† 



αc
t

 , 

i.e. as the continuity equation for the probability density (9.101) and the probability current (9.102). 

 

 Problem 9.18. Calculate the commutator of the operator 2L̂ and the Dirac Hamiltonian of a free 
particle. Compare the result with that for the non-relativistic Hamiltonian, and interpret the difference.  

 Solution: As was discussed in Sec. 9.6 of the lecture notes, since the vector operator prL ˆˆˆ   is 
defined in the Hilbert space of orbital states of the particle, it commutes with the spin operators (9.98), 
and hence with the second term of the Dirac Hamiltonian (9.97). So it is sufficient to calculate the 
commutator of its jth Cartesian component Lj with the first term of that Hamiltonian:99 

       



3

1

3

1

ˆ,ˆˆˆˆ,ˆˆˆ,ˆˆ,ˆ
j'

j'jj'
j'

j'j'jjj pLαcpαLccLHL pα . 

According to the second of Eqs. (5.149), the last commutator equals the sum of ipj”jj’j”, where jj’j” is 
the Levi-Civita symbol, over all j”, so 

97 Note the change of operators’ order in their products; it follows from the basic rule of the Hermitian 

conjugation of operator products:   ††† ˆˆˆˆ ABBA   – see, e.g., Problem 4.1(iii). 
98 See, e.g., MA Eqs. (4.1) and (11.4a). (It is straightforward to verify that these relations remain valid for multi-
component functions like  and vector matrices like .) 
99 Actually, this is just a straightforward generalization of the calculation made for Lx in the lecture notes – see Eq. 
(9.106). 
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            



3

1,

ˆˆˆ,ˆ
j"j'

jj'j"j"j'j pαciHL  .     (*) 

 Rewriting this commutation relation as 





3

1,

ˆˆˆˆˆˆ
j"j'

jj'j"j"j'jj pαciLHHL  , 

we may use it to calculate  

    
   

  



















3

1,

3

1,

2

ˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆ

j"j'
jj'j"j"jj'jjjj

jj
j"j'

jj'j"j"j'jjjjjjjjjjj

pLαciLLHLHL

LLHpαciLHLLLHHLLLLHHLLHL








 

      ,ˆ,ˆˆˆˆˆˆˆˆˆˆˆˆˆ
3

1",

3

1,

3

1,














jj'
jj'j"j"jj'

j"j'
jj'j"j"jj'jjj

j"j'
jj'j"j"j'j pLαcipLαciLLHLpαciLH    

where the curly brackets denote the anticommutator – see Eq. (4.34).  

 Now the sum of these relations over all  j = 1, 2, 3 yields the required commutator: 

         .ˆ,ˆˆˆ,ˆˆ,ˆˆ,ˆ
3

1,,

3

1

2
3

1

22 












j"j'j
jj'j"j"jj'

j
j

j
j pLαciHLHLHL    (**) 

 Since this commutator is not equal to zero, the expectation value of L2 of a free spin-½ particle is 
not conserved at its free motion – and neither are its Cartesian components Lj. This result differs from 
the situation in non-relativistic quantum mechanics, where the free-particle Hamiltonian, 

m

p
H

2

ˆˆ
2

 , 

commutes with the operators of L2 and all Lj, so the orbital angular momentum is conserved – see, for 
example, the solution of Problem 5.25. This difference shows that in the Dirac theory (and in the 
physical reality :-) the orbital and spin degrees of the particle are generally related, and only in the non-
relativistic limit, this relation weakens, manifesting itself only in small artifacts such as the spin-orbit 
coupling (9.122) and its results including, most notably, the fine structure of atomic levels – see Sec. 6.3 
of the lecture notes. 

 

 Problem 9.19. Calculate commutators of the operators 2Ŝ and 2Ĵ with the Dirac Hamiltonian 
(9.97) and give an interpretation of the results. 

 Solution: Let us first generalize Eqs. (9.109) of the lecture notes to arbitrary Cartesian 

components of the vector operators Ŝ , α̂ , and β̂ . This may be readily done not only in the explicit 44 

matrix form, by using Eqs. (9.98b) and (9.107b), but even in the shorthand 22 matrix form, by using 
Eqs. (9.98a) and (9.107a):100  

100 While doing that, we have to remember that the “elements” of these 22 matrices are still the Pauli matrices, 
so their product components, generally, cannot be swapped. 
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.
0σσ

σσ0

2σ0

0σ

0σ

σ0

2
Sα

,
0σσ

σσ0

20σ

σ0

σ0

0σ

2
αS



































































jj'

jj'

j

j

j'

j'

jj'

j'j

j'j

j'

j'

j

j

j'j





  (*) 

From here, the commutator of these matrices is 

   
  .

0σ,σ

σ,σ0

2
SααSα,S 












j'j

j'j

jj'j'jj'j


 

With the Pauli matrix commutation rule (whose calculation was one of the tasks of Problem 4.3), this 
relation becomes 

       

























3

1

3

1 0

0

02

20

2
α,S

j"
jj'j"

j"

j"

j" jj'j"j"

jj'j"j"

j'j i
i

i












.  

Now by using the definition (9.98a) of the vector matrix  again, we may rewrite this result just as101   

             .ˆˆ,ˆ   i.e.,αα,S
3

1"

3

1"




j

jj'j"j"j'j
j

jj'j"j"j'j iαSi       

 An absolutely similar calculation for β̂  yields quite a different result: 

 

  .0̂ ˆ,ˆ   i.e.,0
σ0

0σ

σ0

0σ

2

σ0

0σ

I0

0I

I0

0I

σ0

0σ

2
SββSβ,S



































































































j'j

j

j

j

j

j

j

j

j

jj'j'jj'j

βS




 

Now using Eq. (9.97), we get  

    












3

1,'
'

3

1'
''

2
3

1'
' .ˆˆˆˆ,ˆˆˆˆ,ˆˆ,ˆ

j"j
jj'j"jj"

j
jjj

j
jj'jj pcipScmcpcSHS    

 For the purposes of comparison with the commutator  HL j
ˆ,ˆ , which was calculated as a by-

product in the model solution of the previous problem, let us swap the indices j’ and j”, and then use the 
property jj”j’ = –jj’j” of the Levi-Civita symbol to write 

             .ˆˆˆˆˆ,ˆ
3

1,

3

1,
 

 


j"j' j"j'

jj'j"j"j'jj"j'j"j'j pαcipciHS     (**) 

So, the commutator  HS j
ˆ,ˆ  differs from the commutator  HL j

ˆ,ˆ  (see the solution of the previous 

problem) only by the sign. 

101 Note that in the “Dirac basis” used in this course (and most textbooks), the notions of an operator and the 
corresponding 22 matrix are identical, so we may switch between the operator and matrix notations at will. 
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 One might expect the commutators  HS ˆ,ˆ 2  and  HL ˆ,ˆ2  to be similar as well. However, this is 
not so. Indeed, rewriting Eq. (**) as 





3

1,

ˆˆˆˆˆˆ
j"j'

jj'j"j"j'jj pαciSHHS  , 

we may use this relation twice to calculate 

   
 

  .ˆˆ,ˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆ

3

1,

3

1,

3

1,

3

1,

3

1,

2



































j"j'
jj'j"j"j'j

j"j'
jj'j"j"jj'jjj

j"j'
jj'j"j"j'j

j"j'
jj'j"j"jj'jjjj

jj
j"j'

jj'j"j"j'jjjjjjjjjjj

pαScipSαciSSHSpαciSH

pSαciSSHSHS

SSHpαciSHSSSHHSSSSHHSSHS













 

The last anticommutator may be readily calculated using Eq. (*) and the well-known property {j, j’} = 
2Ijj’ of the Pauli matrices:102 

 






























0σσ

σσ0

20σσ

σσ0

2
SααSα,S

jj'

jj'

j'j

j'j

jj'j'jj'j


 

           
 

  .
0I

I0

0σ,σ

σ,σ0

2 jj'

j'j

j'j





























 


 

However, by the very definition of the Kronecker and Levi-Civita symbols, the product jj’jj’j” equals 
zero for any combination of indices, so 

                0̂ˆ,ˆˆ,ˆˆ,ˆ  hence  and,0̂ˆ,ˆ
3

1

2
3

1

222 







 

 j
j

j
jj HSHSHSHS ,  (***) 

i.e. the observable S2 is conserved (at least) at the free motion of the particle. This result might be 
expected because, in the non-relativistic theory, this observable is firmly fixed by the particle’s spin s, S2 
= 2s(s + 1), so for a spin-½ particle, S2 = (3/4)2 in any of its quantum states. As an easy direct 
calculation using Eq. (9.107) shows,103 the last result is also valid in the relativistic Dirac theory (which 
covers only spin-½ particles). 

 Now the second task of the problem’s assignment becomes very easy. With the definition 
(9.111) of the total angular momentum, which may be represented in its Cartesian components as 

jjj SLJ ˆˆˆ  , 

we may use the relation (**) derived above, together with Eq. (**) of the model solution of the previous 
problem, to get104 

102 See, e.g., the model solution of the same Problem 4.3. 
103 This additional exercise is highly recommended to the reader. 
104 This result confirms the fact already stated in Sec. 9.6 of the lecture notes: at the free motion of a particle, any 
component of its full angular moment J  L + S is conserved. 
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        0̂ˆˆˆˆˆ,ˆˆ,ˆˆ,ˆˆˆ,ˆ
3

1,

3

1,

 
 j"j'

jj'j"j"j'
j"j'

jj'j"j"j'jjjjj pαcipαciHSHLHSLHJ   . 

 Since all operators of Jj commute with the Hamiltonian, so do the operators of Jj
2 and of J2 = J1

2 
+ J2

2 + J3
2. So, in contrast with the orbital momentum L, the expectation values of all Cartesian 

components and of the square of the total angular momentum J = L + S of a free particle are conserved 
in the Dirac theory. 

 
 Problem 9.20. In the Heisenberg picture of quantum dynamics, derive an equation describing the 
time evolution of a free electron’s velocity in the Dirac theory. Solve the equation for the simplest state 
with definite energy and momentum, and interpret the oscillations (so-called Zitterbewegung or 
“trembling motion”) appearing in the solution. 

 Solution: Let us start with finding what operator corresponds to the particle’s velocity in the 
Dirac theory. With the Dirac Hamiltonian (9.97),  

              2ˆˆˆˆ mccH  pα ,     (*) 

the Heisenberg equation (4.199) for the jth Cartesian component of the electron’s radius vector becomes 

      2ˆ,ˆˆˆ,ˆˆ,ˆ
ˆ

mcβrcrHr
dt

rd
i jjj

j  pα . 

Operators β̂  and  α̂ , which are defined in the Hilbert space of spin states, commute with the Cartesian 
coordinate operators, which are defined in the Hilbert space of orbital states, while the momentum 
operator in the Dirac theory is defined just in the non-relativistic quantum mechanics, and hence its 
Cartesian components obey the usual commutation relations (2.14). As a result, the second commutator 
in the last expression vanishes, while the first one is 

     iαciαcprαcpαcrcr j
j'

jjj'
j'

j'jj'
j'

j'j'jj ˆˆˆ,ˆˆˆˆ,ˆˆˆ,ˆ
3

1
'

3

1

3

1









 



pα . 

So, for the particle’s velocity, we get a very simple result: 

α
r

v ˆ
ˆ

ˆ i.e.,ˆ
ˆ

ˆ c
dt

d
c

dt

rd
v j

j
j   . 

This is a formal confirmation of the conclusion, made in the lecture notes on the basis of a comparison 
of Eqs. (9.101) and (9.102), that the operator α̂c corresponds to the particle’s velocity.105  

 Now let us use the same Eqs. (4.199) and (9.97) to find the equation of motion of this operator –
or rather its jth Cartesian component: 

105 Still, please remember that in the spin Hilbert space, each Cartesian component of this operator is represented 
by a 44 matrix (see Eqs. (9.98) of the lecture notes), and acts upon the 4-component bispinor (9.96), rather than 
on a scalar wavefunction as in the wave mechanics. 
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         
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ˆ,ˆˆˆ,ˆˆ,ˆˆˆ,ˆˆ,ˆ
ˆ
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2
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mcβcpααcmcβccαcHv
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jj'
j'

j'jj'j'j

j
j

j'j'jjjj
j


















pα

 

Using the anticommutation relations (9.99)-(9.100), we get 

          















 







2
3

1

2
3

'
1'

2 ˆˆˆˆ2ˆˆ2ˆˆˆ2
ˆ

mcβpαcvmcβcpααc
dt

vd
i

jj'
j'

j'j'jj

jj
j

j'j'j
j  .  (**) 

Now by noticing that for an arbitrary choice of the index j, Eq. (*) may be rewritten as  

jj

jj'
j'

j'j' pαcmcpαcH ˆˆˆˆˆˆ 2
3

1

















 




 , 

we may simplify Eq. (**) as  

  jjjjjjjjj
j pcHvpcHvpαcHv

dt

vd
i ˆ2ˆˆ2ˆˆˆ2ˆˆ2ˆˆˆˆ2

ˆ
22   , 

where for the last step, Eq. (9.99) was used again. Thus, we have obtained a simple equation for each of 
the three Cartesian components of the velocity; their set may be rewritten in the vector form: 

            pv
v

ˆ2ˆˆ2
ˆ 2cH

dt

d
i  .     (***) 

 For a free particle, the Hamiltonian and momentum operators do not depend on time. (The first 
fact follows from the Heisenberg equation of motion for any system with time-independent Hamiltonian, 
while the second one is obvious from Eq. (*) because the momentum operator commutes with itself and 
both spin operators.) Hence a free Dirac particle may be placed into a simple state with definite and 
time-independent values of energy E and momentum p. For such a state, Eq. (***) becomes  

IcE
dt

d
i ˆ2ˆ2

ˆ 2pv
v

 , 

where the identity operator is in the Hilbert space of the particle’s spin. This linear differential equation 
may be readily integrated, giving 

             


E

c

E
MeI

M
I

M
t ti 2

  andwith  ,ˆ)0(ˆˆˆ
2







   p

v
p

v .  (****) 

 So, on top of the constant velocity p/M  (where M is the relativistic, i.e. velocity-dependent 
mass), which might be expected for a free particle, the velocity operator performs sinusoidal 
oscillations. As Eq. (4.191) shows, this conclusion is valid for the expectation value v(t) of the 
particle’s velocity (and as a result, of its spatial position) as well, unless the initial state is set up so that 
v(0) is exactly equal to p/M. 106 

106 An additional task for the reader: spell out how exactly such calculation of v(t) should be performed. Note a 
useful sanity check: since the velocity is an observable, the procedure should give a purely real function of time. 
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 This curious effect of Zitterbewegung (German for “trembling motion”)107 is essentially the 
“usual” quantum oscillations, with the frequency  = (E1 – E2)/, between two partial states of the 
particle, which were repeatedly discussed in this course starting from Sec. 2.6. In this particular case, 
one of the energies is that of the particle, E1 = E, while another one is that of its antiparticle, E2 = –E 
(see Fig. 9.6 in the lecture notes), so E1 – E2 = 2E. So, the oscillations may be interpreted as a result of 
the periodic conversion of the electron from the particle to its antiparticle (positron) and back.  

 Unfortunately, a direct experimental observation of this effect would require using either a very 
specific measurement tool or an intermediate agent (a photon or another particle/field) with its energy 
quantum  at least as high as 2E, i.e. larger than 2mec

2  1 MeV. But such an agent, interacting with 
the original electron, may create multiple other electrons (the situation beyond the Dirac theory), which 
may mask the Zitterbewegung. As a result, to the best of my knowledge, this effect has not been directly 
observed yet – though a few of its close analogs have been.108 

 However, the Zitterbewegung effect finds its indirect confirmation in the existence of the so-
called Darwin term (mentioned in Sec. 6.3 of the lecture notes)  

U
cm

H 2
22

2

D 8
ˆ 

  

in the interaction of a relativistic particle with an external potential U(r). In an atom, this term (non-
vanishing only inside the nucleus) contributes to the fine-structure correction of the energies of s-states 
(with l = 0 and hence with non-zero wavefunction values at r  0), which is necessary for Eq. (6.60) to 
be valid for these states.  

 

 Problem 9.21. Calculate the energy spectrum of a relativistic spin-½ particle with an electric 
charge q, placed into a time-independent uniform external magnetic field B. Compare the calculated 
spectrum with that following from the non-relativistic theory and the relativistic Schrödinger equation. 

 Solution: Let us look for the solution of the Dirac equation (9.112) for a particle in a time-
independent magnetic field (i.e. for  = 0, but A  0),  

   ,0Ψˆˆˆ 2  Hmcqic Aα   

in the same form (9.125) as in Sec. 9.7 of the lecture notes: 

   
  



















 t
E

it


exp,Ψ
r

r
r




. 

where each of the elements  is a two-component column (spinor) of the type (9.123), representing two 
spin states of the particle (index +) and the antiparticle (index –). Plugging this solution into the Dirac 
equation, instead of Eqs. (9.126) of the lecture notes (which are valid in the opposite case when   0 
but A = 0), we get the following set of two equations: 

107 This feature of the Dirac theory was first revealed in 1930 by E. Schrödinger. 
108 See, e.g., R. Gerritsma et al., Nature 463, 68 (2010). 
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   
    .0ˆ

,0ˆ
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2













Aσ

Aσ

qicmcE

qicmcE








 

Eliminating – from this system, we get the following equation for the particle’s spinor: 

           0ˆ 22222  Aσ qicmcE  .   (*) 

 Let us spell out the second term by using the fact that the Pauli operators (9.98) defined in the 
spin Hilbert space, and the momentum operator defined in the orbital Hilbert space, commute: 

       












3

1',
'''

2
3

1

2 ˆˆˆˆ
jj

jjjjjj
j

jjj qAiqAiqAiqi  Aσ  , 

where j  /rj. Now by using the identity109 





3

1
' ˆˆˆˆ

j"
jj'j"j"jj'jj iI  , 

where jj’j” is the Levi-Civita symbol, we get  
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
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However, according to Eq. (5.18), the last sum is just the (j”)th component of the vector A  B, so 

    

    ,qqiqqi

qqiqi j
j"

j"

BB 

 


SAσA

AAσ

ˆ2ˆ

ˆˆ

22

"

3

1

22







 B
 

where the last step used the basic Eq. (4.116) for the spin-½ operator. Plugging this expression into Eq. 
(*), and dividing all its terms by 2mc2, we may rewrite that equation as 

     ,ˆ
2 ef

22

 





   E

m

qq
i

m
BSA




    (**) 

where Eef = p2/2m is the same effective energy that appears in solutions of the relativistic Schrödinger 
equation :110 

             
 

2

222

ef
2mc

mcE
E


 .     (***) 

109 See, e.g., the solution of Problem 4.3. 
110 See the model solutions of Problems 14-16.  
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 However, besides the replacement E  Eef, Eq. (**) is the non-relativistic Schrödinger equation 
of a particle with the gyromagnetic ratio   gq/2m = q/m (i.e., with the g-factor equal to exactly 2) in 
the magnetic field. As we know from the discussion in Chapters 3 and 5,111 its energy spectrum consists 
of continuous bands, each corresponding to various values of the momentum pz (where the z-axis is 
directed along the magnetic field), with discrete interband offsets due to the Landau-level quantization 
within the [x, y] plane, plus the spin orientation energy with the same energy spacing:112 







  qmn

m

p
E s

z sgn
2

1

2 c

2

ef  , 

with  

.½  and,...,2,1,0,, c  sz mn
m

q
p

B
  

So, to get the spectrum of the genuine relativistic energy E, we need just to plug this result into the 
relation that follows from Eq. (***): 

2/1

2
ef2 2

1 





 

mc

E
mcE . 

In the non-relativistic limit, this recalculation becomes trivial: 

  2
efef

2 at  , mcEEmcE  . 

  On the other hand, as has been shown in the solution of Problem 14, the analysis of the same 
situation using the relativistic Schrödinger equation gives for Eef (and hence for E) a similar spectrum 
but without the ms-term describing the spin. 

 

 Problem 9.22.* Following the discussion at the end of Section 9.7 of the lecture notes, introduce 
quantum field operators ̂  that would be related to the usual wavefunctions  just as the 
electromagnetic field operators (9.16) are related to the classical EM fields, and explore the basic 
properties of these operators. (For this preliminary study, consider the fixed-time situation.)   

 Solution: In an analogy with Eqs. (9.16) of the lecture notes but taking into account the scalar 
nature of the “matter field” (wavefunction) , we may define the field operator and its Hermitian 
conjugate as 

        †*† ˆˆ,ˆˆ j
j

jj
j

j aa   rrrr  . 

Here j(r) are members of some full, orthonormal set of single-particle wavefunctions of a multiparticle 

system (where the index j numbers both the orbital and spin degrees of freedom),113 while jj aa ˆ  and ˆ†  

are the particle creation and annihilation operators discussed in Secs. 8.3-8.4 of the lecture notes. 

111 See, in particular, the model solutions of Problem 5.50. 
112 As Eq. (**) shows, the eigenstates of the relativistic problem are also similar to those of the corresponding 
non-relativistic problem.  
113 When dealing with free (or nearly free) particles, the natural and hence a very popular choice of the base 
functions j(r) is the plane waves k(r)  exp{ikr}. (Since their spectrum is continuous, the summation over j in 
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 Let us explore the properties of the state (called, say, ) that is created by the action of the 

operator  r†̂  upon the vacuum Dirac state: 

      0,...,1,...,0,00,...,0,0ˆ0,...,0,0ˆ *†*†
j

j
jj

j
j a   rrr  . 

The last ket describes a single particle in the state number j, so we may represent it just as  j , and 
rewrite the above relation as 
                j

j
j r* .     (*) 

Let us calculate the wavefunction (r’) of this single-particle state at some arbitrary point r’, for now 
not necessarily equal to the argument r of the field operator. The obvious 3D generalization of the 
definition (4.233) of the wavefunction, in the single-particle representation, is114  

               rrrrr jj'' j  **  while,  .   (**) 

Now combining Eqs. (*) and (**), we get 

   
jj

jj'jj'' rrrrr . 

Using the closure relation (4.44), and the evident 3D generalization of Eq. (4.231), we get  

   ''I'' rrrrrrr  
ˆ . 

 This means that the operator  r†̂ , acting upon the free space, creates a particle localized 
definitely at point r. An absolutely similar calculation shows that its Hermitian conjugate, the operator  
 r̂ , annihilates a particle at this location. This is very natural because the field operators are just the 

sums of the creation/annihilation operators weighed by the wavefunctions of the corresponding states. 

 In contrast to these general properties, the commutation relations of the field operators depend 
on whether we are dealing with bosons or fermions. In the former case, we may use Eqs. (8.75)-(8.76) of 
the lecture notes to get, for example,  

                I'I'aa'' j
j

jjj'j
j,j'

jj'jj
j,j'

j
ˆˆˆ,ˆˆ,ˆ **†*†

'' rrrrrrrr   



 . 

Now using Eqs. (**), with the argument replacements r  r’, we may complete this calculation as 

      'II'jj'
j

rrrrrr   ˆˆˆ,ˆ † . 

Acting absolutely similarly, for the bosonic operators we may also get 

the above formulas is then replaced with the integration over the 3D space of the wave vectors k, plus the 
summation over the involved spin states.) 
114 Since all calculations in this solution are for a fixed moment of time, the wavefunction may be denoted as , 
rather than  in Eq. (4.233). 
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          0̂ˆ,ˆˆ,ˆ ††  '' rrrr  , 

while for the fermionic operators, Eqs. (8.95)-(8.96) of the lecture notes yield similar relations for the 
anticommutators: 

                 0̂ˆ,ˆˆ,ˆ,ˆˆ,ˆ †††  '''I' rrrrrrrr  . 

 Next, let us consider the following operator integral,  

                rdfF 3ˆˆˆˆ † rrr  ,     (***) 

where  rf̂  is a single-particle operator. Plugging into this expression the field operator definitions, we 
obtain 

       
,j'j

j'jjj'jj
j'j,

j'j aafrdfaaF
,

3
'

,

ˆˆˆˆˆˆ †*† rrr  . 

where fjj’ are the usual matrix elements of the operator f̂ . But the last expression exactly coincides with 
the right-hand side of Eq. (8.87) of the lecture notes; hence the integral (***) is an equivalent 
representation of the similar single-particle components: 

 



N

k
kfF

1

ˆˆ r . 

 The most important particular cases of such operators are those of the full momentum and the 
full kinetic energy of the system, which are equal to, respectively, 





N

k
k

N

k
k

N

k
k m

TipP
1

2
2

11 2
ˆ  and,ˆˆ 

   

in the “usual” (particle-number) representation, where m is the mass of a single particle.115 According to 
Eq. (***), in the second-quantization language, these operators may be represented as 

        rd
m

TrdiP 32
2

3 ˆˆ
2

ˆ   andˆˆˆ †† rrrr   


  . 

Very similarly, the pair-interaction operators of  the type (8.113), 

,),(ˆ
2

1ˆ

'
1',

intint 




N

kk
kk

k'kuU rr  

may be expressed via the field operators as 

                  rrrrrr  ˆˆ,ˆˆˆ
2

1ˆ
int

33
int

†† ''u''rdrdU  .   (****) 

 Using the relations (***) and (****), one may express the Hamiltonians of many important 
models of interacting particle systems via the field operators. After that, the equations of motion of these 

115 A useful (and simple :-) optional exercise for the reader: explore how these operators commute with the field 
operators, separately for bosons and fermions. 
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operators (for example, in the Heisenberg picture) may be obtained and analyzed, forming the fabric of 
the quantum field theory. Evidently, the most important new feature of such theory, in comparison with 
the plain-vanilla quantum mechanics discussed in this course, is its ability to describe, in a natural way, 
the creation and annihilation of particles – just as the creation and annihilation of photons were studied 
in Secs. 9.2-9.4. These phenomena are most significant at particle energies higher than 2mc2 but also 
show up as small corrections to the results of the “usual” (particle-number-conserving) quantum 
mechanics at lower energies. 
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Chapter 10. Making Sense of Quantum Mechanics 

 10.1.* The original (circa 1964) J. Bell’s inequality was derived for the results of SG 
measurements performed on two non-interacting particles with zero net spin, by using the following 
local-reality-based assumption: the result of each single-particle measurement is uniquely determined 
(besides the experimental setup) by some c-number hidden parameter  that may be random, i.e. change 
from experiment to experiment. Derive such inequality for the experiment shown in Fig. 10.4 of the 
lecture notes and compare it with the corresponding quantum-mechanical result for the singlet state 
(10.24). 

 Solution: Let us calculate the statistical average s1(a)s2(b), where s1(a) is the component of the 
spin of the first particle along some direction a, and s2(b) is the similar projection of the second 
particle’s spin on another direction, b. If we accept the hidden-variable assumption described in the 
assignment, then we may write 

                   dssss ,, 2121 baba  ,    (*) 

where ()  0 is the normalized probability density of the random hidden parameter , with 

          1  d ,     (**) 

and the integration is over the whole range of possible values of this parameter. Since the total spin of 
the pair is definitely zero, s2(b, ) has to be equal to –s1(b, ), so that we may rewrite Eq. (*) as 

           dssss ,, 1121 baba  . 

Now let us write a similar expression for s1(a)s2(c), where c is one more direction, and subtract them: 

                  dsssssss   ,,, 1112121 cbacaba . 

 Next, let each measured value of s1 have only two equal and opposite possible values – just as it 
is the case for any spin-½. If (just for the notation simplicity) we measure these values in the units of 
/2, then s1 = 1, i.e. (s1)

2 = 1. So we can multiply the second term in the square brackets in the last 
displayed expression by s1(b, ) s1(b, ) = 1, and rewrite it as 

                    dssssssss   ,,1,, 11112121 cbbacaba . 

But since –1  s1(a, )s1(b, )  +1, and –1  s1(b, ) s1(c, )  +1 as well, i.e. [1 – s1(b, ) s1(c, )]  
0, while ()  0 by definition, we may write 

                       .,,,,1 11112121  dssddssssss   bcbccaba  

Now by using Eq. (**), the equality s1(c, ) = – s2(c, ), and then the definition of s1(b, ) s2(c, ) 
similar to the one given by Eq. (*), we get the original Bell’s inequality: 
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                          cbcaba 212121 1 ssssss  .   (***) 

 While its derivation (in contrast to E. Wigner’s version described in Sec. 10.3 of the lecture 
notes) requires explicit use of the parameter , whose randomness is intended to explain the intrinsic 
uncertainty of measurement results in quantum mechanics, the made assumptions are still so natural that 
it is hard to imagine a more general hidden-parameter theory.  

 Now let us see whether the predictions of quantum mechanics satisfy Eq. (***) for the simple 
geometry shown in Fig. 10.4. For a pure entangled state such as the singlet (10.24), the average of 
s1(a)s2(b), i.e. its expectation value, may be calculated as  

                 bababa 2112211221
ˆˆ

2

1ˆˆ PPsPPsss , (****) 

where each  nP̂  is the single-particle projection operator  

  zzyyxx nnnP  ˆˆˆˆˆ  nσn , 

and n is a unit vector that may point in any of the three directions a, b, and c. In our case (Fig. 10.4) 
when all the directions are in the same plane, we may take their azimuthal angles for zero, so that nx = 
sin, ny = 0, nz = cos, and in the usual z-basis, the operator’s matrix elements are 

        .cosˆ,sinˆˆ,cosˆ   nnnn PPPP  

 Using these expressions, we may readily calculate any of the four averages arising at opening the 
parentheses in Eq. (****), for example 

        etc.,coscosˆˆˆˆ
2121 baPPPP  baba  

The final result is 

       bababass   cossinsin2coscos2
2

1
21 ba  

(very naturally depending only on the angle between the directions a and b, but not on their orientation 
relative to the z-axis), with similar expressions for s1(b)s2(c) and s1(a)s2(c), so that in the simple case 
shown in Fig. 10.4, 

             cos,2cos 212121  cacbba ssssss . 

These results show that the hidden-variable-based Bell’s inequality (***) is not satisfied at   /2; for 
example, at  << 1, its left-hand side,  

        2
2121 2

3
cos2cos   caba ssss , 

is larger rather than smaller than its right-hand side 

    ,
2

1
cos11 2

21   cb ss  

leading to the same conclusions as the version discussed in the lecture notes. 
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