
Essential Graduate Physics                 CM: Classical Mechanics 

 

© K. Likharev             

 

Chapter 1. Review of Fundamentals 

After a brief discussion of the title and contents of the course, this introductory chapter reviews the 
basic notions and facts of the non-relativistic classical mechanics, that are supposed to be known to the 
reader from their undergraduate studies.1 Due to this reason, the discussion is very short.  

 

1.0. Terminology: Mechanics and dynamics 

 A more fair title for this course would be Classical Mechanics and Dynamics, because the 
notions of mechanics and dynamics, though much intertwined, are still somewhat different. The term 
mechanics, in its narrow sense, means the derivation of equations of motion of point-like particles and 
their systems (including solids and fluids), the solution of these equations, and an interpretation of the 
results. Dynamics is a more ambiguous term; it may mean, in particular: 

 (i) the part of physics that deals with motion (in contrast to statics); 
 (ii) the part of physics that deals with reasons for motion (in contrast to kinematics); 
 (iii) the part of mechanics that focuses on its two last tasks, i.e. the solution of the equations of 
motion and discussion of the results.2  

 Because of this ambiguity, after some hesitation, I have opted to use the traditional name 
Classical Mechanics, with the word Mechanics in its broad sense that includes (similarly to Quantum 
Mechanics and Statistical Mechanics) studies of dynamics of some non-mechanical systems as well. 

1 The reader is advised to perform (perhaps after reading this chapter as a reminder) a self-check by solving a few 
problems of those listed in Sec. 1.6. If the results are not satisfactory, it may make sense to start with some 
remedial reading. For that, I could recommend, e.g., J. Marion and S. Thornton, Classical Dynamics of Particles 
and Systems, 5th ed., Saunders, 2003; and D. Morin, Introduction to Classical Mechanics, Cambridge U., 2008.  
2 The reader may have noticed that the last definition of dynamics is suspiciously close to the part of mathematics 
devoted to differential equation analysis; what is the difference? An important bit of philosophy: physics may be 
defined as an art (and a bit of science :-) of describing Mother Nature by mathematical means; hence in many 
cases the approaches of a mathematician and a physicist to a problem are very similar. The main difference 
between them is that physicists try to express the results of their analyses in terms of the properties of the systems 
under study, rather than the functions describing them, and as a result develop a sort of intuition (“gut feeling”) 
about how other similar systems may behave, even if their exact equations of motion are somewhat different – or 
not known at all. The intuition so developed has enormous heuristic power, and most discoveries in physics have 
been made through gut-feeling-based insights rather than by plugging one formula into another one. 

 

1.1. Kinematics: Basic notions 

 The basic notions of kinematics may be defined in various ways, and some mathematicians pay 
much attention to alternative systems of axioms and the relations between them. In physics, we typically 
stick to less rigorous ways (in order to proceed faster to solving particular problems) and end debating 
any definition as soon as “everybody in the room” agrees that we are all speaking about the same thing – 
at least in the context in which they are being discussed. Let me hope that the following notions used in 
classical mechanics do satisfy this criterion in our “room”: 
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(i) All the Euclidean geometry notions, including the point, the straight line, the plane, etc.3 

(ii) Reference frames: platforms for observation and mathematical description of physical 
phenomena. A reference frame includes a coordinate system used for measuring the point’s position 
(namely, its radius vector r that connects the coordinate origin to the point – see Fig. 1) and a clock that 
measures time t. A coordinate system may be understood as a certain method of expressing the radius 
vector r of a point as a set of its scalar coordinates. The most important of such systems (but by no 
means the only one) are the Cartesian (orthogonal, linear) coordinates4 rj of a point, in which its radius 
vector  may be represented as the following sum: 





3

1j
jj rnr ,    (1.1) 

where n1, n2, and n3 are unit vectors directed along the coordinate axis – see Fig. 1.5 

 

 

 

 

 

 

(iii) The absolute (“Newtonian”) space/time,6 which does not depend on the matter distribution. 
The space is assumed to have the Euclidean metric, which may be expressed as the following relation 
between the length r of any radius vector r and its Cartesian coordinates: 

             
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3
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222

j
jrr r ,     (1.2) 

while time t is assumed to run similarly in all reference frames. These assumptions are critically revised 
in the relativity theory (which, in this series, is discussed only starting from EM Chapter 9.) 

3 All these notions are of course abstractions: simplified models of the real objects existing in Nature. But please 
always remember that any quantitative statement made in physics (e.g., a formula) may be strictly valid only for 
an approximate model of a physical system. (The reader should not be disheartened too much by this fact: 
experiments show that many models make extremely precise predictions of the behavior of the real systems.) 
4 In this series, the Cartesian coordinates (introduced in 1637 by René Descartes, a.k.a. Cartesius) are denoted 
either as either {r1, r2, r3} or {x, y, z}, depending on convenience in each particular case. Note that axis numbering 
is important for operations like the vector (“cross”) product; the “correct” (meaning generally accepted) 
numbering order is such that the rotation n1  n2  n3  n1… looks counterclockwise if watched from a point 
with all rj > 0 – like the one shown in Fig. 1. 
5 Note that representation (1) is also possible for locally orthogonal but curvilinear (for example, polar/cylindrical 
and spherical) coordinates, which will be extensively used in this series. However, such coordinates are not 
Cartesian, and for them some of the relations given below are invalid – see, e.g., MA Sec. 10. 
6 These notions were formally introduced by Sir Isaac Newton in his main work, the three-volume Philosophiae 
Naturalis Principia Mathematica published in 1686-1687, but are rooted in earlier ideas by Galileo Galilei, 
published in 1632. 
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Fig. 1.1. Cartesian coordinates of a point.  
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 (iv) The (instant) velocity of the point, 

                  r
r

v 
dt

d
t)( ,     (1.3) 

and its acceleration: 

rv
v

a  
dt

d
t)( .        (1.4)     

(v) Transfer between reference frames. The above definitions of vectors r, v, and a depend on 
the chosen reference frame (are “reference-frame-specific”), and we frequently need to relate those 
vectors as observed in different frames. Within Euclidean geometry, the relation between the radius 
vectors in two frames with the corresponding axes parallel at the moment of interest (Fig. 2), is very 
simple:  

           '' 0in 0in 0in 0rrr  .     (1.5) 

 

 

 

 

 
  
 
 If the frames move versus each other by translation only (no mutual rotation!), similar relations 
are valid for the velocities and accelerations as well: 

          '' 0in 0in 0in 0vvv  ,     (1.6) 

          '' 0in 0in 0in 0aaa  .     (1.7) 

 Note that in the case of mutual rotation of the reference frames, the transfer laws for velocities 
and accelerations are more complex than those given by Eqs. (6) and (7). Indeed, in this case, notions 
like v0in 0’  are not well defined: different points of an imaginary rigid body connected to frame 0 may 
have different velocities when observed in frame 0’. It will be more natural for me to discuss these more 
general relations at the end of Chapter 4 devoted to rigid body motion. 

 (vi) A particle (or “point particle”): a localized physical object whose size is negligible, and 
whose shape is irrelevant to the given problem. Note that the last qualification is extremely important. 
For example, the size and shape of a spaceship are not too important for the discussion of its orbital 
motion but are paramount when its landing procedures are being developed. Since classical mechanics 
neglects the quantum mechanical uncertainties,7 in it, the position of a particle at any particular instant t 
may be identified with a single geometrical point, i.e. with a single radius vector r(t). The formal final 
goal of classical mechanics is finding the laws of motion r(t) of all particles in the given problem. 

7 This approximation is legitimate when the product of the coordinate and momentum scales of the particle 
motion is much larger than Planck’s constant  ~ 10-34 Js. More detailed conditions of the classical mechanics’ 
applicability depend on a particular system – see, e.g., the QM part of this series.  

Fig. 1.2. Transfer between two reference frames.
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1.2. Dynamics: Newton’s laws 

 Generally, the classical dynamics is fully described (in addition to the kinematic relations 
discussed above) by three Newton’s laws. In contrast to the impression some textbooks on theoretical 
physics try to create, these laws are experimental in nature, and cannot be derived from purely 
theoretical arguments. 

 I am confident that the reader of these notes is already familiar with Newton’s laws,8 in some 
formulation. Let me note only that in some formulations, the 1st Newton’s law looks just like a particular 
case of the 2nd law – when the net force acting on a particle equals zero. To avoid this duplication, the 1st 
law may be formulated as the following postulate: 

There exists at least one reference frame, called inertial, in which any freeparticle (i.e. a 
particle fully isolated from the rest of the Universe) moves with v = const, i.e. with a = 0.  

Note that according to Eq. (7), this postulate immediately means that there is also an infinite number of 
inertial reference frames – because all frames 0’ moving without rotation or acceleration relative to the 
postulated inertial frame 0 (i.e. having a0in 0’ = 0) are also inertial. 

 On the other hand, the 2nd and 3rd Newton’s laws may be postulated together in the following 
elegant way. Each particle, say number k, may be characterized by a scalar constant (called mass mk), 
such that at any interaction of N particles (isolated from the rest of the Universe), in any inertial system, 

      const. 
11




N

k
kk

N

k
k m vpP     (1.8) 

(Each component of this sum,  
         ,kkk m vp         (1.9) 

is called the mechanical momentum9 of the corresponding particle, while the sum P, the total momentum 
of the system.)  

 Let us apply this postulate to just two interacting particles. Differentiating Eq. (8) written for this 
case, over time, we get 
           .21 pp          (1.10) 

Let us give the derivative 1p  (which is a vector) the name of the force F exerted on particle 1. In our 

current case, when the only possible source of the force is particle 2, it may be denoted as F12: .121 Fp   

Similarly, 221 pF  , so Eq. (10) becomes the 3rd Newton’s law 

            2112 FF  .      (1.11) 

Plugging Eq. (1.9) into these force definitions, and differentiating the products mkvk, taking into account 
that particle masses are constants,10 we get that for the k and k’ taking any of values 1, 2,    

8 Due to the genius of Sir Isaac, these laws were formulated in the same Principia (1687), well ahead of the 
physics of his time. 
9 The more extended term linear momentum is typically used only in cases when there is a chance of confusion 
with the angular momentum of the same particle/system – see below. The present-day definition of linear 
momentum and the term itself belong to John Wallis (1670), but the concept may be traced back to more vague 
notions of several previous scientists – all the way back to at least a 570 AD work by John Philoponus. 
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         . where,' kk'mm kkkkkk  Fav .    (1.12) 

 Now, returning to the general case of several interacting particles, and making an additional (but 
very natural) assumption that all partial forces Fkk’ acting on particle k add up as vectors, we may 
generalize Eq. (12) into the 2nd Newton’s law 

        k
kk

kkkkkm FFpa  
'

' ,     (1.13) 

that allows a clear interpretation of the mass as a measure of a particle’s inertia. 

 As a matter of principle, if the dependence of all pair forces Fkk’ of particle positions (and 
generally of time as well) is known, Eq. (13) augmented with the kinematic relations (2) and (3) allows 
calculation of the laws of motion rk(t) of all particles of the system. For example, for one particle the 2nd 
law (13) gives an ordinary differential equation of the second order: 

       ),( tm rFr  ,      (1.14) 

which may be integrated – either analytically or numerically.  

In certain cases, this is very simple. As an elementary example, for local motions with r << r, 
Newton’s gravity force11 

                RF
3R

mm'
G      (1.15) 

(where R  r – r’ is the distance between particles of masses m and m’)12 may be approximated as 

           ,gF m       (1.16) 

with the vector g  –(Gm’/R3)R being constant.13 As a result, m in Eq. (13) cancels, it is reduced to just 
gr   = const, and may be easily integrated twice: 

         )0()0(
2

)0( )()(),0()0( )()(
2

00

rvgrvrvgvgvr   t
t

dt't'ttdt'tt
tt

 , (1.17) 

thus giving the generic solution to all those undergraduate problems on the projectile motion, which 
should be so familiar to the reader. 

10 Note that this may not be true for composite bodies of varying total mass M (e.g., rockets emitting jets, see 
Problem 11), in these cases the momentum’s derivative may differ from Ma. 
11 Introduced in the same famous Principia! 
12 The fact that the masses participating in Eqs. (14) and (16) are equal, the so-called weak equivalence principle, 
is actually highly nontrivial, but has been repeatedly verified with gradually improved relative accuracy, starting 
from ~10-3 in Isaac Newton’s own experimentation and all the way down to 1.510-15 from recent satellite 
experiments – see P. Touboul et al., Phys. Rev. Lett. 129, 121102 (2022). 
13 Of course, the most important particular case of Eq. (16) is the gravity field near the Earth’s surface. In this 
case, using the fact that Eq. (15) remains valid for the gravity field created by a spherically uniform sphere, we get 
g = GME/RE

2, where ME and RE are the Earth’s mass and radius. Plugging in their values, ME  5.971024 kg and 
RE  6.37106 m, we get g  9.82 m/s2. The experimental value of g varies from 9.78 to 9.83 m/s2 at various 
locations on the surface (due to the deviations of Earth’s shape from a sphere, and the location-dependent effect of 
the centrifugal “inertial force” – see Sec. 4.5 below), with an average value of approximately 9.807 m/s2. 
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 All this looks (and indeed is) very simple, but in most other cases, Eq. (13) leads to more 
complex calculations. As an example, let us think about how would we use it to solve another simple 
problem: a bead of mass m sliding, without friction, along a round ring of radius R in a gravity field 
obeying Eq. (16) – see Fig. 3. (This system is equivalent to the usual point pendulum, i.e. a point mass 
suspended from point 0 on a light rod or string, and constrained to move in one vertical plane.) 

 

 

 

 

 

 

  

  

 Suppose we are only interested in the bead’s velocity v at the lowest point after it has been 
dropped from the rest at the rightmost position. If we want to solve this problem using only the Newton 
laws, we have to take the following steps: 

 (i) consider the bead in an arbitrary intermediate position on a ring, described, for example by 
the angle θ shown in Fig. 3; 
 (ii) draw all the forces acting on the particle – in our current case, the gravity force mg and the 
reaction force N exerted by the ring – see Fig. 3 above 
 (iii) write the Cartesian components of the 2nd Newton’s law (14) for the bead acceleration: max 
= Nx, may = Ny – mg, 
 (iv) recognize that in the absence of friction, the force N should be normal to the ring, so that we 
can use two additional equations, Nx = –N sin  and Ny = N cos ; 
 (v) eliminate unknown variables N, Nx, and Ny from the resulting system of four equations, thus 
getting a single second-order differential equation for one variable, for example, : 

       sinmgmR  ;     (1.18)  

 (vi) use the mathematical identity    dd /2/2   to integrate this equation over  once to get 

an  expression relating the velocity   and the angle ; and, finally, 
 (vii) using our specific initial condition ( 0 at 2/  ), find the final velocity as Rv   at 

0 . 

 All this is very much doable, but please agree that the procedure it too cumbersome for such a 
simple problem. Moreover, in many other cases even writing equations of motion along relevant 
coordinates is very complex, and any help the general theory may provide is highly valuable. In many 
cases, such help is given by conservation laws; let us review the most general of them. 

 

 

 

Fig. 1.3. A bead sliding along a vertical ring. 
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1.3. Conservation laws 

 (i) Energy conservation is arguably the most general law of physics, but in mechanics, it takes a 
more humble form of mechanical energy conservation, which has limited applicability. To derive it, we 
first have to define the kinetic energy of a particle as14 

          2

2
v

m
T  ,        (1.19) 

and then recast its differential as15 

       .
22

2

dt

d
d

dt

dd
mdm

m
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ddT
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vvvv 









 






   (1.20) 

Now plugging in the momentum’s derivative from the 2nd Newton’s law, dp/dt = F, where F is the full 
force acting on the particle, we get dT = Fdr. The integration of this equality along the particle’s 
trajectory connecting some points A and B gives the formula that is sometimes called the work-energy 
principle: 

      
B

A

AB )()(Δ rFrr dTTT ,    (1.21) 

where the integral on the right-hand side is called the work of the force F on the path from A to B. 

 The next step may be made only for a potential (also called “conservative”) force that may be 
represented as the (minus) gradient of some scalar function U(r), called the potential energy.16 The 
vector operator  (called either del or nabla) of spatial differentiation17 allows a very compact 
expression of this fact: 

         UF .      (1.22) 

For example, for the uniform gravity field (16), 

               const,  mghU      (1.23) 

where h is the vertical coordinate directed “up” – opposite to the direction of the vector g.  

 Integrating the tangential component F of the vector F given by Eq. (22), along an arbitrary path 
connecting the points A and B, we get 

            )()( BA

B

A

B

A

rrrF UUddrF    ,    (1.24) 

14 In such quantitative form, the kinetic energy was introduced (under the name “living force”) by Gottfried 
Leibniz and Johann Bernoulli (circa 1700), though its main properties (21) and (27) had not been clearly revealed 
until an 1829 work by Gaspard-Gustave de Coriolis. The modern term “kinetic energy” was coined only in 1849-
1851 by Lord Kelvin (born William Thomson). 
15 In these notes, ab denotes the scalar (or “dot-”) product of vectors a and b – see, e.g., MA Eq. (7.1). 
16 Note that because of its definition via the gradient, the potential energy is only defined up to an arbitrary 
additive constant. This notion had been used already by G. Leibniz, though the term we are using for it nowadays 
was introduced much later (in the mid-19th century) by William Rankine.   
17 Its basic properties are listed in MA Sec. 8. 
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i.e. work of potential forces may be represented as the difference of values of the function U(r) in the 
initial and final points of the path. (Note that according to Eq. (24), the work of a potential force on any 
closed path, with rA = rB, is zero.) 

 Now returning to Eq. (21) and comparing it with Eq. (24), we see that 

     )()()()(  i.e.),()()()( AAAABAAB rrrrrrrr UTUTUUTT  ,  (1.25) 

so the total mechanical energy E, defined as 

         UTE  ,      (1.26) 

is indeed conserved: 
               )()( BA rr EE  ,     (1.27) 

but for conservative forces only. (Non-conservative forces may change E by either transferring energy 
from its mechanical form to another form, e.g., to heat in the case of friction, or by pumping the energy 
into the system under consideration from another, “external” system.) 

 Mechanical energy conservation allows us to return for just a second to the problem shown in 
Fig. 3 and solve it in one shot by writing Eq. (27) for the initial and final points:18 

      .0
2

0 2  v
m

mgR      (1.28) 

The (elementary) solution of Eq. (28) for v immediately gives us the desired answer. Let me hope that 
the reader agrees that this way of problem’s solution is much simpler, and I have earned their attention 
to discuss other conservation laws – which may be equally effective. 

 (ii) Linear momentum. The conservation of the full linear momentum of any system of particles 
isolated from the rest of the world was already discussed in the previous section, and may serve as the 
basic postulate of classical dynamics – see Eq. (8). In the case of one free particle, the law is reduced to 
the trivial result p = const, i.e. v = const. If a system of N particles is affected by external forces F(ext), 
we may write   

               



N

k
kkkk

1
'

)(ext FFF .     (1.29) 

If we sum up the resulting Eqs. (13) for all particles of the system then, due to the 3rd Newton’s law (11) 
valid for any indices k  k’, the contributions of all internal forces Fkk’ to the resulting double sum on the 
right-hand side cancel, and we get the following equation: 

           .  where,
1

(ext))ext(ext)( 



N

k
kFFFP      (1.30) 

It tells us that the translational motion of the system as a whole is similar to that of a single particle, 
under the effect of the net external force F(ext). As a simple sanity check, if the external forces have a 
zero sum, we return to the postulate (8). Just one reminder: Eq. (30), as its precursor Eq. (13),  is only 
valid in an inertial reference frame. 

18 Here the arbitrary constant in Eq. (23) is chosen so that the potential energy is zero at the final point. 
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 I hope that the reader knows numerous examples of the application of the linear momentum’s 
conservation law, including all these undergraduate problems on car collisions, where the large collision 
forces are typically not known so the direct application of Eq. (13) to each car is impracticable. 

 (iii) The angular momentum of a particle19 is defined as the following vector:20 

          ,prL        (1.31) 

where ab means the vector (or “cross-“) product of the vector operands.21 Differentiating Eq. (31) over 
time, we get 
      .prprL        (1.32) 

In the first product, r is just the velocity vector v, parallel to the particle momentum p = mv, so this term 
vanishes since the vector product of any two parallel vectors equals zero. In the second product, p  is 
equal to the full force F acting on the particle, so Eq. (32) is reduced to 

                      ,τL        (1.33) 
where the vector 
          ,Frτ        (1.34) 

is called the torque exerted by force F.22 (Note that the torque is reference-frame specific – and again, 
the frame has to be inertial for Eq. (33) to be valid, because we have used Eq. (13) for its derivation.) 
For an important particular case of  a central force F that is directed along the radius vector r of a 
particle, the torque vanishes, so (in that particular reference frame only!) the angular momentum is 
conserved: 
          const. L       (1.35) 

 For a system of N particles, the total angular momentum is naturally defined as   

          .
1




N

k
kLL       (1.36) 

Differentiating this equation over time, using Eq. (33) for each ,kL and again partitioning each force per 

Eq. (29), we get 

          .       where,
1

(ext)(ext)(ext)

'
1',

' 






N

k
kk

N

kk
kk

kkk FrττFrL    (1.37) 

The first (double) sum may be always divided into pairs of the type (rk  Fkk’ + rk’  Fk’k). With a natural 
assumption of the central forces, Fkk’  (rk – rk’), each of these pairs equals zero. Indeed, in this case, 

19 Here we imply that the internal motions of the particle, including its rotation about its axis, are negligible. 
(Otherwise, it could not be represented by a point, as was postulated in Sec. 1.)   
20 This explicit definition of angular momentum (in different mathematical forms, and under the name of 
“moment of rotational motion”) appeared in scientific publications only in the 1740s, though the fact of its 
conservation (35) in the field of central forces, in the form of the 2nd Kepler law (see Fig. 3.4 below), had been 
proved already by I. Newton in his Principia.  
21 See, e.g., MA Eq. (7.3). 
22 Alternatively, especially in mechanical engineering, torque is called the force moment. This notion may be 
traced all the way back to Archimedes’ theory of levers developed in the 3rd century BC. 
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each component of the pair is a vector perpendicular to the plane containing the positions of both 
particles and the reference frame origin, i.e. to the plane of the drawing in Fig. 4.  
 
 
 
 
 
 
 
 
 
 

 Also, due to the 3rd Newton’s law (11), these two forces are equal and opposite, and the 
magnitude of each term in the sum may be represented as Fkk’hkk’, with equal “lever arms” hkk’ = hk’k. 
As a result, each sum (rkFkk’ + rk’Fk’k), and hence the whole double sum in Eq. (37) vanish, and it is 
reduced to a very simple result, 
           (ext)τL  ,      (1.38) 

which is similar to Eq. (33) for a single particle, and is the angular analog of Eq. (30).  

 In particular, Eq. (38) shows that if the full external torque (ext) vanishes for some reason (e.g. if 
the system of particles is isolated from the rest of the Universe), the conservation law (35) is valid for 
the full angular momentum L even if its individual components Lk are not conserved due to inter-
particle interactions. 

  Please note again that since the conservation laws may be derived from Newton’s laws (as was 
done above), they do not introduce anything new to the dynamics of any system. Indeed, from the 
mathematical point of view, the conservation laws discussed above are just the first integrals of the 
second-order differential equations of motion following from Newton’s laws. However, for a physicist, 
thinking about particular systems in terms of the conserved (or potentially conserved) quantities 
frequently provides decisive clues on their dynamics. 

 

1.4. Potential energy and equilibrium 

 Another important role of the potential energy U, especially for dissipative systems whose total 
mechanical energy E is not conserved because it may be drained to the environment, is finding the 
positions of equilibrium (sometimes called the fixed points) of the system and analyzing their stability 
with respect to small perturbations. For a single particle, this is very simple: the force (22) vanishes at 
each extremum (either minimum or maximum) of the potential energy.23 (Of those fixed points, only the 
minimums of U(r) are stable – see Sec. 3.2 below for a discussion of this point.)  

 A slightly more subtle case is a particle with an internal potential energy U(r), subjected to an 
additional external force F(ext)(r). In this case, the stable equilibrium is reached at the minimum of not 
the function U(r), but of what is sometimes called the Gibbs potential energy 

23 Assuming that the additional, non-conservative forces (such as viscosity) responsible for the mechanical energy 
drain, vanish at equilibrium – as they typically do. (The static friction is one counter-example.) 

Fig. 1.4. Internal and external forces, and 
the internal torque cancellation in a system 
of two particles. 
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               ,ext
G  

r
rrFrr 'd'UU     (1.39) 

which is defined, just as U(r) is, to an arbitrary additive constant.24  The proof of Eq. (39) is very 
simple: in an extremum of this function, the total force acting on the particle, 

                G
extexttot U'd'U   

r
rrFFFF    (1.40) 

vanishes, as it is necessary for equilibrium.  

 Physically, the difference UG – U specified by Eq. (39) is the r-dependent part of the potential 
energy U(ext) of the external system responsible for the force F(ext), so UG is just the total potential energy 
U + U(ext), excluding its part that does not depend on r and hence is irrelevant for the analysis. 
According to the 3rd Newton’s law, the force exerted by the particle on the external system equals (–
F(ext)), so its work (and hence the change of U(ext) due to the change of r) is given by the second term on 
the right-hand side of Eq. (39).  Thus the condition of equilibrium, UG = 0, is just the condition of an 
extremum of the total potential energy, U + U(ext) + const, of the two interacting systems. 

 For the simplest (and very frequent) case when the applied force is independent of the particle’s 
position, the Gibbs potential energy (39) is just25 

           constext
G  rFrr UU .    (1.41) 

As the simplest example, consider a 1D deformation of the usual elastic spring providing the returning 
force (–x), where x is the deviation from its equilibrium. As follows from Eq. (22), its potential energy 
is U = x2/2 + const, so its minimum corresponds to x = 0. Now let us apply an additional external force 
F, say independent of x. Then the equilibrium deformation of the spring, x0 = F/, corresponds to the 
minimum of not U, but rather of the Gibbs potential energy (41), in our particular case taking the form 

        Fx
x

FxUU 
2

2

G


.     (1.42) 

 

1.5. OK, we’ve got it – can we go home now? 

 Sorry, not yet. In many cases, the conservation laws discussed above provide little help, even in 
systems without dissipation. As a simple example, consider a generalization of the bead-on-the-ring 
problem shown in Fig. 3, in which the ring is rotated by external forces, with a constant angular velocity 
, about its vertical diameter.26 In this problem (to which I will repeatedly return below, using it as an 

24 Unfortunately, in most textbooks, the association of the (unavoidably used) notion of UG with the glorious 
name of Josiah Willard Gibbs is postponed until a course of statistical mechanics and/or thermodynamics, where 
UG is a part of the Gibbs free energy, in contrast to U, which is a part of the Helmholtz free energy – see, e.g., SM 
Sec. 1.4. I use this notion throughout my series, because the difference between UG and U, and hence that between 
the Gibbs and Helmholtz free energies, has nothing to do with statistics or thermal motion, and belongs to the 
whole physics, including not only mechanics but also electrodynamics and quantum mechanics.  
25 Eq. (41) is a particular case of what mathematicians call the Legendre transformations. 
26 This is essentially a simplified model of the mechanical control device called the centrifugal (or “flyball”, or 
“centrifugal flyball”) governor – see, e.g., http://en.wikipedia.org/wiki/Centrifugal_governor. (Sometimes the 
device is called the “Watt’s governor”, after the famous James Watts who used it in 1788 in one of his first steam 

Gibbs’ 
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energy 
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analytical mechanics “testbed”), none of the three conservation laws listed in the last section, holds. In 
particular, the bead’s energy,  

      mghv
m

E  2

2
,     (1.43) 

is not constant, because the external forces rotating the ring may change it. Of course, we still can solve 
the problem using Newton’s laws, but this is even more complex than for the above case of the ring at 
rest, in particular because the force N exerted on the bead by the ring now may have three rather than 
two Cartesian components, which are not simply related. On the other hand, it is clear that the bead still 
has just one degree of freedom (say, the angle ), so its dynamics should not be too complicated. 

 This case gives us a clue on how situations like this one can be simplified: if we only could 
exclude the so-called reaction forces such as N, that take into account external constraints imposed on 
the particle motion, in advance, that should help a lot. Such a constraint exclusion may be provided by 
analytical mechanics, in particular its Lagrangian formulation, to which we will now proceed. 

 Of course, the value of the Lagrangian approach goes far beyond simple systems such as the 
bead on a rotating ring. Indeed, this system has just two externally imposed constrains: the fixed 
distance of the bead from the center of the ring, and the instant angle of rotation of the ring about its 
vertical diameter. Now let us consider the motion of a rigid body. It is essentially a system of a very 
large number, N >> 1, of particles (~1023 of them if we think about atoms in a 1-cm-scale body). If the 
only way to analyze its motion would be to write Newton’s laws for each of the particles, the situation 
would be completely hopeless. Fortunately, the number of constraints imposed on its motion is almost 
similarly huge. (At negligible deformations of the body, the distances between each pair of its particles 
should be constant.) As a result, the number of actual degrees of freedom of such a body is small (at 
negligible deformations, just six – see Sec. 4.1), so with the kind help from analytical mechanics, the 
motion of the body may be, in many important cases, analyzed even without numerical calculations.  

 One more important motivation for analytical mechanics is given by the dynamics of “non-
mechanical” systems, for example, of the electromagnetic field – possibly interacting with charged 
particles, conducting bodies, etc. In many such systems, the easiest (and sometimes the only practicable) 
way to find the equations of motion is to derive them from either the Lagrangian or Hamiltonian 
function of the system. Moreover, the Hamiltonian formulation of the analytical mechanics (to be 
reviewed in Chapter 10 below) offers a direct pathway to deriving quantum-mechanical Hamiltonian 
operators of various systems, which are necessary for the analysis of their quantum properties. 

 

1.6. Self-test problems 

 1.1. A bicycle, ridden with velocity v on wet pavement, has no mudguards on its wheels. How 
far behind should the following biker ride to avoid being splashed over? Neglect the air resistance 
effects. 

engines, though it had been used in European windmills at least since the early 1600s.) Just as a curiosity: the 
now-ubiquitous term cybernetics was coined by Norbert Wiener in 1948 from the word “governor” (or rather 
from its Ancient-Greek original ή) exactly in this meaning because the centrifugal governor had been 
the first well-studied control device. 
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 1.2. Two round disks of radius R are firmly connected with a coaxial 
cylinder of a smaller radius r, and a thread is wound on the resulting spool. 
The spool is placed on a horizontal surface, and the thread’s end is being 
pooled out at angle  – see the figure on the right. Assuming that the spool 
does not slip on the surface, what direction would it roll? 
  
 

 1.3.* Calculate the equilibrium shape of a flexible heavy rope of 
length l, with a constant mass  per unit length, if it is hung in a 
uniform gravity field between two points separated by a horizontal 
distance d – see the figure on the right.  
 

 1.4. A uniform, long, thin bar is placed horizontally on two 
similar round cylinders rotating toward each other with the same 
angular velocity  and displaced by distance d – see the figure on 
the right. Calculate the laws of relatively slow horizontal motion of 
the bar within the plane of the drawing, for both possible directions 
of cylinder rotation, assuming that the kinetic friction force 
between the slipping surfaces of the bar and each cylinder obeys 
the simple Coulomb approximation27  F  = N, where N is the normal pressure force between them, and 
  is a constant (velocity-independent) coefficient. Formulate the condition of validity of your result.  
 
  
 1.5. A small block slides, without friction, down a smooth slide 
that ends with a round loop of radius R – see the figure on the right. 
What smallest initial height h allows the block to make its way around 
the loop without dropping from the slide if it is launched with negligible 
initial velocity? 
 
 
 
 1.6. A satellite of mass m is being launched from height H over 
the surface of a spherical planet with radius R and mass M >> m – see 
the figure on the right. Find the range of initial velocities v0 (normal to 
the radius) providing closed orbits above the planet’s surface. 
  
 

 1.7. Prove that the thin-uniform-disk model of a galaxy allows for small sinusoidal (“harmonic”) 
oscillations of stars inside it, along the direction normal to the disk, and calculate the frequency of these 
oscillations in terms of Newton’s gravitational constant G and the average density  of the disk’s matter. 

27 It was suggested in 1785 by the same Charles-Augustin de Coulomb who discovered the famous Coulomb law 
of electrostatics, and hence pioneered the whole quantitative science of electricity – see EM Ch. 1. 
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 1.8. Derive differential equations of motion for small oscillations of two 
similar pendula coupled with a spring (see the figure on the right), within their 
common vertical plane. Assume that at the vertical position of both pendula, the 
spring is not stretched (d = 0). 
  

 1.9. One of the popular futuristic concepts of travel is digging a straight railway tunnel through 
the Earth and letting a train go through it, without initial velocity – driven only by gravity. Calculate the 
train’s travel time through such a tunnel, assuming that the Earth’s density  is constant, and neglecting 
the friction and planet-rotation effects. 
 
 1.10. A  small bead of mass m may slide, without friction, 
along a light string stretched with force T >> mg, between two 
points separated by a horizontal distance 2d – see the figure on the 
right. Calculate the frequency of oscillations of the bead about its 
equilibrium position, within the vertical plane.    
 
 1.11. For a rocket accelerating (in free space) due to its working jet motor (and hence spending 
the jet fuel), calculate the relation between its velocity and the remaining mass.  

 Hint: For the sake of simplicity, consider the 1D motion. 
 
 1.12. Prove the following virial theorem:28 for a set of N particles performing a periodic motion, 





N

k
kkT

12

1
rF , 

where the top bar means averaging over time – in this case over the motion period. What does the virial 
theorem say about: 

 (i) a 1D motion of a particle in the confining potential29 U(x) = ax2s, with a > 0 and s > 0, and  
 (ii) an orbital motion of a particle in the central potential U(r) = –C/r? 

 Hint: Explore the time derivative of the following scalar function of time:   



N

k
kktG

1

rp . 

 1.13. As will be discussed in Chapter 8, if a solid body moves through a fluid with a sufficiently 
high velocity v, the fluid’s drag force is approximately proportional to v2. Use this approximation 
(introduced by Sir Isaac Newton himself) to find the velocity as a function of time during the body’s 
vertical fall in the air near the Earth’s surface. 
 
 1.14. A particle of mass m, moving with velocity u, collides head-on with a particle of mass M, 
initially at rest, increasing its internal energy by E. Calculate the velocities of both particles after the 
collision, if u is barely sufficient for such an internal energy increase. 

28 It was first stated by Rudolf Clausius in 1870.  
29 Here and below I am following the (regretful) custom of using the single word “potential” for the potential 
energy of the particle – just for brevity. This custom is also common in quantum mechanics, but in 
electrodynamics, these two notions should be clearly distinguished – as they are in the EM part of this series. 

g

T

d2

m

T

m

l l

g
dF  

m


