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Chapter 2. Lagrangian Analytical Mechanics 

The goal of this chapter is to describe the Lagrangian formalism of analytical mechanics, which is 
extremely useful for obtaining the differential equations of motion (and sometimes their first integrals) 
not only for mechanical systems with holonomic constraints but also for some other dynamic systems. 

 

2.1. Lagrange equations 

 In many cases, the constraints imposed on the 3D motion of a system of N particles may be 
described by N vector (i.e. 3N scalar) algebraic equations 

          ,1with  ),,,...,,...,,( 21 Nktqqqq Jjkk  rr    (2.1) 

where qj are certain generalized coordinates that (together with constraints) completely define the 
system position. Their number J ≤ 3N  is called the number of the actual degrees of freedom of the 
system. The constraints that allow such a description are called holonomic.1  

 For example, for the problem already mentioned in Section 1.5, namely, the bead sliding along a 
rotating ring (Fig. 1), J  = 1, because with the constraints imposed by the ring, the bead’s position is 
uniquely determined by just one generalized coordinate – for example, its polar angle  .  

 

 

 

 

 

 

 

 

 Indeed, selecting the reference frame as shown in Fig. 1 and using the well-known formulas for 
the spherical coordinates,2 we see that in this case, Eq. (1) has the form 

               const  where,cos,sinsin,cossin,,  tRRRzyx r , (2.2) 

with the last constant depending on the exact selection of the axes x and y and the time origin. Since the 
angle , in this case, is a fixed function of time, and R is a fixed constant, the particle’s position in space 

1 Possibly, the simplest counter-example of a non-holonomic constraint is a set of inequalities describing the hard 
walls confining the motion of particles in a closed volume. Non-holonomic constraints are better dealt with by 
other methods, e.g., by imposing proper boundary conditions on the (otherwise unconstrained) motion. 
2 See, e.g., MA Eq. (10.7). 

Fig. 2.1. A bead on a rotating ring as an 
example of a system with just one 
degree of freedom (J = 1). 
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at any instant t is completely determined by the value of its only generalized coordinate . (Note that its  
dimensionality is different from that of Cartesian coordinates!) 

 Now returning to the general case of J degrees of freedom, let us consider a set of small 
variations (alternatively called “virtual displacements”) qj allowed by the constraints. Virtual 
displacements differ from the actual small displacements (described by differentials dqj proportional to 
time variation dt) in that qj describes not the system’s motion as such, but rather its possible variation – 
see Fig. 1.  

 

 

 

 

 

  

 
 Generally, operations with variations are the subject of a special field of mathematics, the 
calculus of variations.3 However, the only math background necessary for our current purposes is the 
understanding that operations with variations are similar to those with the usual differentials, though we 
need to watch carefully what each variable is a function of. For example, if we consider the variation of 
the radius vectors (1), at a fixed time t, as functions of independent variations qj, we may use the usual 
formula for the differentiation of a function of several arguments:4 

      .j
j j

k
k q

q
  




r
r      (2.3) 

 Now let us break the force acting upon the kth particle into two parts: the frictionless, 
constraining part Nk of the reaction force and the remaining part Fk – including the forces from other 
sources and possibly the frictional part of the reaction force. Then the 2nd Newton’s law for the kth 
particle of the system may be rewritten as 

      .kkkkm NFv        (2.4) 

Since any variation of the motion has to be allowed by the constraints, its 3N-dimensional vector with N 
3D-vector components rk has to be perpendicular to the 3N-dimensional vector of the constraining 
forces, also having N 3D-vector components Nk. (For example, for the problem shown in Fig. 1, the 
virtual displacement vector rk may be directed only along the ring, while the constraining force N 
exerted by the ring, has to be perpendicular to that direction.) This condition may be expressed as 

3 For a concise introduction to the field see, e.g., either I. Gelfand and S. Fomin, Calculus of Variations, Dover, 
2000, or L. Elsgolc, Calculus of Variations,  Dover, 2007. An even shorter review may be found in Chapter 17 of 
Arfken and Weber – see MA Sec. 16. For a more detailed discussion, using many examples from physics, see R. 
Weinstock, Calculus of Variations, Dover, 2007. 
4 See, e.g., MA Eq. (4.2). Also, in all formulas of this section, summations over j are from 1 to J, while those over 
the particle number k are from 1 to N, so for the sake of brevity, these limits are not explicitly specified. 

Fig. 2.2. Actual displacement dqj vs. the 
virtual one (i.e. variation) qj. 
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      0
k

kk rN  ,     (2.5) 

where the scalar product of 3N-dimensional vectors is defined exactly like that of 3D vectors, i.e. as the 
sum of the products of the corresponding components of the operands. The substitution of Eq. (4) into 
Eq. (5) results in the so-called D’Alembert principle:5 

         0)( 
k

kkkkm rFv  .     (2.6) 

Plugging Eq. (3) into Eq. (6), we get 

              0
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q
m F

r
v ,    (2.7) 

where the scalars Fj, called the generalized forces, are defined as follows:6 

               . 



k j

k
kj q

r
FF      (2.8) 

 Now we may use the standard argument of the calculus of variations: for the left-hand side of 
Eq. (7) to be zero for an arbitrary selection of independent variations qj, the expression in the curly 
brackets, for every j, should equal zero. This gives us the desired set of J  3N equations 

0


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k
j

j

k
kk q

m F
r

v ;     (2.9)

what remains is just to recast them in a more convenient form.  

 First, using the differentiation by parts to calculate the following time derivative:  
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v     (2.10) 

we may notice that the first term on the right-hand side is exactly the scalar product in the first term of 
Eq. (9).  

 Second, let us use another key fact of the calculus of variations (which is, essentially, evident 
from  Fig. 3): the differentiation of a variable over time and over the generalized coordinate variation (at 
a fixed time) are interchangeable operations. As a result, in the second term on the right-hand side of Eq. 
(10), we may write 

     .
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    (2.11) 

 

5 It was spelled out in a 1743 work by Jean le Rond d’Alembert, though the core of this result has been traced to 
an earlier work by Jacob (Jean) Bernoulli (1667 – 1748) – not to be confused with his son Daniel Bernoulli (1700-
1782) who is credited, in particular, for the Bernoulli equation for ideal fluids, to be discussed in Sec. 8.4 below. 
6 Note that since the dimensionality of generalized coordinates may be arbitrary, that of generalized forces may 
also differ from the newton. 
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 Finally, let us differentiate Eq. (1) over time: 

      
t

q
qdt

d k
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kk
k 







  rrr
v  .     (2.12) 

This equation shows that particle velocities vk may be considered to be linear functions of the 
generalized velocities jq  considered as independent variables, with proportionality coefficients 

        .
j
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j
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qq 
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

 rv


      (2.13) 

 With the account of Eqs. (10), (11), and (13), Eq. (9) turns into 
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This result may be further simplified by making, for the total kinetic energy of the system, 

     k
k

kk
k

k
k mv

m
T vv   2

1

2
2 ,    (2.15) 

the same commitment as for vk, i.e. considering T a function of not only the generalized coordinates qj 
and time t but also of the generalized velocities iq  – as variables independent of qj and t. Then we may 

calculate the partial derivatives of T as 

             ,,  
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and notice that they are exactly the two sums participating in Eq. (14). As a result, we get a system of J 
Lagrange equations,7  

                    Jj
q
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q
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dt
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,...,2,1for ,0 
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

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

.    (2.17) 

Their big advantage over the initial Newton’s-law equations (4) is that the Lagrange equations do not 
include the constraining forces Nk, and thus there are only J of them – typically much fewer than 3N. 

7 They were derived in 1788 by Joseph-Louis Lagrange, who pioneered the whole field of analytical mechanics – 
not to mention his key contributions to number theory and celestial mechanics. 

General 
Lagrange 
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Fig. 2.3. The variation of the differential (of 
any smooth function f) is equal to the 
differential of its variation. 
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 This is as far as we can go for arbitrary forces. However, if all the forces may be expressed in a 
form similar to, but somewhat more general than Eq. (1.22): Fk = –kU(r1, r2,…, rN, t), where U is the 
effective potential energy of the system,8 and k denotes the spatial differentiation over coordinates      
of the kth particle, we may recast Eq. (8) into a simpler form:  
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Since we assume that U depends only on particle coordinates (and possibly time), but not velocities: 
,0/  jqU   with the substitution of Eq. (18), the Lagrange equation (17) may be represented in the so-

called canonical form: 

                    ,0

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
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jj q

L

q
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d


     (2.19a) 

where L is the Lagrangian function (sometimes called just the “Lagrangian”), defined as 

         UTL  .      (2.19b) 

(It is crucial to distinguish this function from the mechanical energy (1.26), E = T + U.) 

 Note also that according to Eq. (2.18), for a system under the effect of an additional generalized 
external force Fj(t) we have to use, in all these relations, not the internal potential energy U(int) of the 
system, but its Gibbs potential energy U  U(int) – Fjqj  – see the discussion in Sec. 1.4. 

 Using the Lagrangian approach in practice, the reader should always remember, first, that each 
system has only one Lagrange function (19b), but is described by J 1 Lagrange equations (19a), with j 
taking values 1, 2,…, J, and second, that differentiating the function L, we have to consider the 
generalized velocities as its independent arguments, ignoring the fact they are actually the time 
derivatives of the generalized coordinates. 

  

2.2. Three simple examples 

 As the first, simplest example, consider a particle constrained to move along one axis (say, x): 

                ).,(,
2

2 txUUx
m

T        (2.20) 

In this case, it is natural to consider x as the (only) generalized coordinate, and x  as the generalized 
velocity, so 

       ).,(
2

2 txUx
m

UTL        (2.21) 

Considering x  and x as independent variables, we get xmxL   / , and xUxL  // , so Eq. (19)  
(the only Lagrange equation in this case of the single degree of freedom!) yields 

8 Note that due to the possible time dependence of U, Eq. (17) does not mean that the forces Fk have to be 
conservative – see the next section for more discussion. With this understanding, I will still use for function U the 
convenient name of “potential energy”. 
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            ,0











x

U
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      (2.22) 

evidently the same result as the x-component of the 2nd Newton’s law with Fx = –U/x. This example is 
a good sanity check, but it also shows that the Lagrange formalism does not provide too much advantage 
in this particular case. 

 Such an advantage is, however, evident in our testbed problem – see Fig. 1. Indeed, taking the 
polar angle  for the (only) generalized coordinate,  we see that in this case, the kinetic energy depends 
not only on the generalized velocity but also on the generalized coordinate:9 

          
 
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  (2.23) 

Here it is especially important to remember that at substantiating the Lagrange equation,   and   have 
to be treated as independent arguments of L, so 
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giving us the following equation of motion: 

                 .0sincossin222   mgRmRmR
dt

d     (2.25) 

As a sanity check, at  = 0, Eq. (25) is reduced to the equation (1.18) of the usual pendulum: 

           
2/1

2 Ω  where,0sinΩ 







R

g .    (2.26) 

We will explore Eq. (25) in more detail later, but please note how simple its derivation was – in 
comparison with writing the 3D Newton’s law and then excluding the reaction force. 

 Next, though the Lagrangian formalism was derived from Newton’s law for mechanical systems, 
the resulting equations (19) are applicable to other dynamic systems, especially those for which the 
kinetic and potential energies may be readily expressed via some generalized coordinates. As the 
simplest example, consider the well-known connection of a capacitor with capacitance C to an inductive 
coil with self-inductance L 10 (Electrical engineers frequently call it the LC tank circuit.)  

 

 

 

 

9 The above expression for ))(2/( 222 zyxmT    may be readily obtained either by the formal differentiation 

of Eq. (2) over time, or just by noticing that the velocity vector has two perpendicular components: one (of 

magnitude R ) along the ring, and another one (of magnitude  sinR ) normal to the ring’s plane. 
10 A fancy font is used here to avoid any chance of confusion between the inductance and the Lagrange function. 

Fig. 2.4. LC tank circuit. 
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 As the reader (hopefully :-) knows from their undergraduate studies, at relatively low frequencies 
we may use the so-called lumped-circuit approximation, in which the total energy of this system is the 
sum of two components, the electric energy Ee localized inside the capacitor, and the magnetic energy 
Em localized inside the inductance coil: 

       .
2

,
2

2

m

2

e

I
E

C

Q
E

L
      (2.27) 

Since the electric current I through the coil and the electric charge Q on the capacitor are related by the 
charge continuity equation dQ/dt = I (evident from Fig. 4), it is natural to declare Q the generalized 
coordinate of the system, and the current, its generalized velocity. With this choice, the electrostatic 
energy Ee (Q) may be treated as the potential energy U of the system, and the magnetic energy Em(I), as 
its kinetic energy T. With this attribution, we get 
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so the Lagrange equation (19) becomes 
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 Note, however, that the above choice of the generalized coordinate and velocity is not unique. 
Instead, one can use, as the generalized coordinate, the magnetic flux  through the inductive coil, 
related to the common voltage V across the circuit (Fig. 4) by Faraday’s induction law V = –d/dt. With 
this choice, (-V) becomes the generalized velocity, Em = 2/2L should be understood as the potential 
energy, and Ee = CV2/2 treated as the kinetic energy. For this choice, the resulting Lagrange equation    
of motion is equivalent to Eq. (29). If both parameters of the circuit, L and C, are constant in time, Eq. 
(29) describes sinusoidal oscillations with the frequency 

       
  2/10

1

CL
 .     (2.30) 

 This is of course a well-known result, which may be derived in a more standard way – by 
equating the voltage drops across the capacitor (V = Q/C) and the inductor (V = –LdI/dt  –Ld2Q/dt2). 
However, the Lagrangian approach is much more convenient for more complex systems – for example, 
for the general description of the electromagnetic field and its interaction with charged particles.11 

 

2.3. Hamiltonian function and energy 

 The canonical form (19) of the Lagrange equation has been derived using Eq. (18), which is 
formally similar to Eq. (1.22) for a potential force. Does this mean that the system described by Eq. (19) 
always conserves energy? Not necessarily, because the “potential energy” U that participates in Eq. 
(18), may depend not only on the generalized coordinates but on time as well. Let us start the analysis   
of this issue with the introduction of two new (and very important!) notions: the generalized momentum 
corresponding to each generalized coordinate qj,  

11 See, e.g., EM Secs. 9.7 and 9.8. 
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and the Hamiltonian function12 
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 To see whether the Hamiltonian function is conserved during the motion, let us differentiate both 
sides of its definition (32) over time: 
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If we want to make use of the Lagrange equation (19), the last derivative has to be calculated 
considering L as a function of independent arguments jq , jq , and t, so 
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where the last term is the derivative of L as an explicit function of time. We see that the last term in the 
square brackets of Eq. (33) immediately cancels with the last term in the parentheses of Eq. (34). 
Moreover, using the Lagrange equation (19a) for the first term in the square brackets of Eq. (33), we see 
that it cancels with the first term in the parentheses of Eq. (34). As a result, we arrive at a very simple 
and important result: 
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The most important corollary of this formula is that if the Lagrangian function does not depend on time 
explicitly ( ),0/  tL the Hamiltonian function is an integral of motion:  

         const.H        (2.36) 

 Let us see how this works, using the first two examples discussed in the previous section. For a 
1D particle, the definition (31) of the generalized momentum yields 
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so it coincides with the usual linear momentum – or rather with its x-component. According to Eq. (32), 
the Hamiltonian function for this case (with just one degree of freedom) is 
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12 It is named after Sir William Rowan Hamilton, who developed his approach to analytical mechanics in 1833, 
on the basis of the Lagrangian mechanics. This function is sometimes called just the “Hamiltonian”, but it is 
advisable to use the full term “Hamiltonian function” in classical mechanics, to distinguish it from the 
Hamiltonian operator used in quantum mechanics, whose abbreviation to Hamiltonian is extremely common. 
(The relation of these two notions will be discussed in Sec. 10.1 below.) 
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i.e. coincides with the particle’s mechanical energy E = T + U. Since the Lagrangian does not depend on 
time explicitly, both H and E are conserved.  

 However, it is not always that simple! Indeed, let us return again to our testbed problem (Fig. 1). 
In this case, the generalized momentum corresponding to the generalized coordinate   is 

               ,2
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and Eq. (32) yields: 
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This means that (as soon as 0 ), the Hamiltonian function differs from the mechanical energy 

            constcossin
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m
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The difference, E – H = mR22sin2  (besides an inconsequential constant), may change at the bead’s 
motion along the ring, so although H is an integral of motion (since L/t = 0), the energy is generally 
not conserved.  

 In this context, let us find out when these two functions, E and H, do coincide. In mathematics, 
there is a notion of a homogeneous function f(x1,x2,…) of degree , defined in the following way: for 
an arbitrary constant a,  

     ,...).,(,...),( 2121 xxfaaxaxf      (2.42) 

Such functions obey the following Euler theorem:13 

                 , 



j
j

j

fx
x

f       (2.43) 

which may be simply proved by differentiating both parts of Eq. (42) over a and then setting this 
parameter to the particular value a = 1. Now, consider the case when the kinetic energy is a quadratic 
form of all generalized velocities jq : 

      ,),...,,(
,

21
j'j

j'jjj' qqtqqtT       (2.44) 

with no other terms. It is evident that such T satisfies the definition (42) of a homogeneous function      
of the velocities with  = 2,14 so the Euler theorem (43) gives 

      .2Tq
q

T
j

j j



 


     (2.45) 

13 This is just one of many theorems bearing the name of their author – the genius mathematician Leonhard Euler 
(1707-1783). 
14 Such functions are called quadratic-homogeneous. 
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But since U is independent of the generalized velocities, jj qTqL   // , and the left-hand side of 

Eq. (45) is exactly the first term in the definition (32) of the Hamiltonian function, so in this case 

       .)(22 EUTUTTLTH      (2.46) 

 So, for a system with a kinetic energy of the type (44), for example, a free particle with T  
considered as a function of its Cartesian velocities, 

             222

2 zyx vvv
m

T  ,     (2.47) 

the notions of the Hamiltonian function and mechanical energy are identical. Indeed, some textbooks, 
very regrettably, do not distinguish these notions at all! However, as we have seen from our bead-on-
the-rotating-ring example, these variables do not always coincide. For that problem, the kinetic energy, 
in addition to the term proportional to 2 , has another, velocity-independent term – see the first of Eqs. 
(23) – and hence is not a quadratic-homogeneous function of the angular velocity, giving E  H. 

 Thus, Eq. (36) expresses a new conservation law, generally different from that of mechanical 
energy conservation. 

 

2.4. Other conservation laws 

 Looking at the Lagrange equation (19), we immediately see that if L  T – U is independent of 
some generalized coordinate qj, L/qj = 0,15 then the corresponding generalized momentum is an 
integral of motion:16 

      .const




j

j q

L
p


     (2.48) 

For example, for a 1D particle with the Lagrangian (21), the momentum px is conserved if the potential 
energy is constant (and hence the x-component of force is zero) – of course. As a less obvious example, 
let us consider a 2D motion of a particle in the field of central forces. If we use polar coordinates r and 
  in the role of generalized coordinates, then the Lagrangian function17 

             )(
2

222 rUrr
m

UTL       (2.49) 

is independent of , and hence the corresponding generalized momentum,  

              
 


2mr
L

p 



 ,     (2.50) 

15 Such coordinates are frequently called cyclic, because in some cases (like  in Eq. (49) below) they represent 
periodic coordinates such as angles. However, this terminology is somewhat misleading, because some “cyclic” 
coordinates (e.g., x in our first example) have nothing to do with rotation.  
16 This fact may be considered a particular case of a more general mathematical statement called the Noether 
theorem – named after its author, Emmy Nöther, sometimes called the “greatest woman mathematician ever 
lived”. Unfortunately, because of time/space restrictions, for its discussion I have to refer the interested reader 
elsewhere – for example to Sec. 13.7 in H. Goldstein et al., Classical Mechanics, 3rd ed. Addison Wesley, 2002. 
17 Note that here 2r is the square of the scalar derivative ,r rather than the square of the vector r = v. 
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is conserved. This is just a particular (2D) case of the angular momentum conservation – see Eq. (1.24). 
Indeed, for the 2D motion within the [x, y] plane, the angular momentum vector,  

       

zmymxm

zyx
zyx



nnn

prL  ,     (2.51) 

has only one component different from zero, namely the component normal to the motion plane: 

            ).()( xmyymxLz        (2.52) 

Differentiating the well-known relations between the polar and Cartesian coordinates, 

      ,sin,cos  ryrx       (2.53) 

over time, and plugging the result into Eq. (52), we see that  

                .2
 pmrLz        (2.54) 

 Thus the Lagrangian formalism provides a powerful way of searching for non-evident integrals 
of motion. On the other hand, if such a conserved quantity is obvious or known a priori, it is helpful for 
the selection of the most appropriate generalized coordinates, giving the simplest Lagrange equations. 
For example, in the last problem, if we knew in advance that p had to be conserved, this could provide 
sufficient motivation for using the angle  as one of the generalized coordinates. 

 

2.5. Exercise problems 

 In each of Problems 1-11, for the given system: 

  (i) introduce a convenient set of generalized coordinates qj, 
  (ii) write down the Lagrangian L as a function of ,j jq q , and (if appropriate) time, 

  (iii) write down the Lagrange equation(s) of motion, 
  (iv) calculate the Hamiltonian function H; find out whether it is conserved, 
  (v) calculate the mechanical energy E; is E = H?; is the energy conserved? 
  (vi) any other evident integrals of motion? 

 2.1. A double pendulum – see the figure on the right. Consider only the motion 
within the vertical plane containing the suspension point. 

 

 
 
 

 2.2. A stretchable pendulum (i.e. a massive particle hung on an elastic cord that 
exerts force F = –(l – l0), where  and l0 are positive constants), also confined to the 
vertical plane: 
 

m g 

l 

l

l

m

m

g
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 2.3. A fixed-length pendulum hanging from a point whose motion law x0(t) in the 
horizontal direction is fixed. (No vertical plane constraint here.) 
 
  
 
  
 2.4. A pendulum of mass m, hung on another point mass m’ that may slide, without 
friction, along a straight horizontal rail – see the figure on the right. The motion is confined 
to the vertical plane that contains the rail.  
 
 
  
 2.5. A point-mass pendulum of length l, attached to the rim of a disk of 
radius R, which is rotated in a vertical plane with a constant angular velocity  
– see the figure on the right. (Consider only the motion within the disk’s plane.) 
  
 
  
 2.6. A bead of mass m, sliding without friction along a light 
string with a fixed tension T, hung between two horizontally 
displaced supports – see the figure on the right. Here, in contrast to 
the similar Problem 1.10, the tension T  may be comparable with the 
bead’s weight mg, and the motion is not restricted to the vertical 
plane. 
 

 2.7. A bead of mass m, sliding without friction along a light string of a 
fixed length 2l, that is hung between two support points displaced horizontally 
by distance 2d < 2l – see the figure on the right. As in the previous problem, 
the motion is not restricted to the vertical plane. 
 
 
 2.8. A block of mass m that can slide, without friction, along the 
inclined plane surface of a heavy wedge with mass m’. The wedge is free to 
move, also without friction, along a horizontal surface – see the figure on the 
right. (Both motions are within the vertical plane containing the steepest slope 
line.) 
  
 
 2.9. The two-pendula system that was the subject of Problem 1.8 – see 
the figure on the right. 
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 2.10. A system of two similar, inductively coupled LC circuits – 
see the figure on the right. 
 

 2.11.*A small Josephson junction – the system consisting of two 
superconductors (S) weakly coupled by Cooper-pair tunneling through a 
thin insulating layer (I) that separates them – see the figure on the right. 

 Hints:   

 (i) At not very high frequencies (whose quantum  is lower than the binding energy 2 of the 
Cooper pairs), the Josephson effect in a sufficiently small junction may be described by the following 
coupling energy:  

  constcosJ   EU , 

where the constant EJ describes the coupling strength, while the variable  (called the Josephson phase 
difference) is connected to the voltage V across the junction by the famous frequency-to-voltage relation 

   ,
2

V
e

dt

d





 

where e  1.60210-19 C is the fundamental electric charge and   1.05410-34 Js is the Planck 
constant.18  

 (ii) The junction (as any system of two close conductors) has a substantial electric capacitance C. 

18 More discussion of the Josephson effect and the physical sense of the variable  may be found, for example, in 
EM Sec. 6.5 and QM Secs. 1.6 and 2.8, but the given problem may be solved without that additional information. 
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