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Chapter 3. A Few Simple Problems 

The objective of this chapter is to solve a few simple but very important particle dynamics problems that 
may be reduced to 1D motion. They notably include the famous “planetary” problem of two particles 
interacting via a spherically symmetric potential, and the classical particle scattering problem. In the 
process of solution, several methods that will be very essential for the analysis of more complex systems 
are also discussed. 

   

3.1. One-dimensional and 1D-reducible systems 

 If a particle is confined to motion along a straight line (say, axis x), its position is completely 
determined by this coordinate. In this case, as we already know, the particle’s Lagrangian function is 
given by Eq. (2.21): 
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so the Lagrange equation of motion given by Eq. (2.22), 
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is just the x-component of the 2nd Newton’s law.  

 It is convenient to discuss the dynamics of such really-1D systems as a part of a more general 
class of effectively-1D systems. This is a system whose position, due to either holonomic constraints 
and/or conservation laws, is also fully determined by one generalized coordinate q, and whose 
Lagrangian  may be represented in a form similar to Eq. (1): 
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where mef is some constant which may be considered as the effective mass of the system, and the 
function Uef, its effective potential energy. In this case, the Lagrange equation (2.19), describing the 
system’s dynamics, has a form similar to Eq. (2): 
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 As an example, let us return to our testbed system shown in Fig. 2.1. We have already seen that 
for this system, having one degree of freedom, the genuine kinetic energy T, expressed by the first of 
Eqs. (2.23), is not a quadratically-homogeneous function of the generalized velocity. However, the 
system’s Lagrangian function (2.23) still may be represented in the form (3), 
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In this new partitioning of the function L, which is legitimate because Uef depends only on the 
generalized coordinate , but not on the corresponding generalized velocity, Tef includes only a part of 
the genuine kinetic energy T of the bead, while Uef includes not only its real potential energy U in the 
gravity field but also an additional term related to ring rotation. (As we will see in Sec. 4.6, this term 
may be interpreted as the effective potential energy due to the inertial centrifugal “force” arising at the 
problem’s solution in the non-inertial reference frame rotating with the ring.) 

 Returning to the general case of effectively-1D systems with Lagrangians of the type (3), let us 
calculate their Hamiltonian function, using its definition (2.32): 
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So, H is expressed via Tef and Uef exactly as the energy E is expressed via genuine T and U. 

 

3.2. Equilibrium and stability 

 Autonomous systems are defined as dynamic systems whose equations of motion do not depend 
on time explicitly. For the effectively-1D (and in particular the really-1D) systems obeying Eq. (4), this 
means that their function Uef, and hence the Lagrangian function (3) should not depend on time 
explicitly. According to Eqs. (2.35), in such systems, the Hamiltonian function (7), i.e. the sum Tef + Uef, 
is an integral of motion. However, be careful! Generally, this conclusion is not valid for the genuine 
mechanical energy E of such a system; for example, as we already know from Sec. 2.2, for our testbed 
problem, with the generalized coordinate q =   (Fig. 2.1), E is not conserved. 

 According to Eq. (4), an autonomous system, at appropriate initial conditions, may stay in 
equilibrium at one or several stationary (alternatively called fixed) points qn, corresponding to either the 
minimum or a maximum of the effective potential energy (see Fig. 1): 
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 In order to explore the stability of such fixed points, let us analyze the dynamics of small 
deviations 
      nqtqtq  )()(~      (3.9) 

from one of such points. For that, let us expand the function Uef(q)  in the Taylor series at qn: 

Fig. 3.1. An example of the effective 
potential energy profile near stable (q0, q2) 
and unstable (q1) fixed points, and its 
quadratic approximation (10) near point q0. 
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The first term on the right-hand side, Uef(qn), is an arbitrary constant and does not affect motion. The 
next term, linear in the deviation q~ , equals zero – see the fixed point’s definition (8). Hence the fixed 
point’s stability is determined by the next term, quadratic in q~ , more exactly by its coefficient, 
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which is frequently called the effective spring constant. Indeed, neglecting the higher terms of the 
Taylor expansion (10),1 we see that Eq. (4) takes the familiar form: 
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 I am confident that the reader of these notes knows everything about this equation, but since we 
will soon run into similar but more complex equations, let us review the formal procedure of its 
solution. From the mathematical standpoint, Eq. (12) is an ordinary linear differential equation of the 
second order, with constant coefficients. The general theory of such equations tells us that its general 
solution (for any initial conditions) may be represented as 
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where the constants c are determined by initial conditions, while the so-called characteristic exponents 
 are completely defined by the equation itself. To calculate these exponents, it is sufficient to plug just 
one partial solution, et, into the equation.  In our simple case (12), this yields the following 
characteristic equation: 
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 If the ratio kef/mef is positive, i.e. the fixed point corresponds to the minimum of potential energy 
(e.g., see points q0 and q2 in Fig. 1), the characteristic equation yields  
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(where i  is the imaginary unit, i2 = –1), so Eq. (13) describes harmonic (sinusoidal) oscillations of the 
system,2  
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1 Those terms may be important only in very special cases when ef is exactly zero, i.e. when a fixed point is also 
an inflection point of the function Uef(q). 
2 The reader should not be scared of the first form of (16), i.e. of the representation of a real variable (the 
deviation from equilibrium) via a sum of two complex functions. Indeed, any real initial conditions give c–* = c+, 
so the sum is real for any t. An even simpler way to deal with such complex representations of real functions will 
be discussed in the beginning of Chapter 5, and then used throughout this series. 
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with the frequency 0, about the fixed point – which is thereby stable.3 On the other hand, at the 
potential energy maximum (kef < 0, e.g., at point q1 in Fig. 1), we get 
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Since the solution has an exponentially growing part,4 the fixed point is unstable. 

 Note that the quadratic expansion of function Uef(q), given by the truncation of Eq. (10) to the 
three displayed terms, is equivalent to a linear Taylor expansion of the effective force: 
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immediately resulting in the linear equation (12). Hence, to analyze the stability of a fixed point qn, it is 
sufficient to linearize the equation of motion with respect to small deviations from the point, and study 
possible solutions of the resulting linear equation. This linearization procedure is typically simpler to 
carry out than the quadratic expansion (10). 

 As an example, let us return to our testbed problem (Fig. 2.1) whose function Uef we already 
know – see the second of Eqs. (6). With it, the equation of motion (4) becomes 
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where   (g/R)1/2 is the frequency of small oscillations of the system at  = 0 – see Eq. (2.26).5 From 
Eq. (8), we see that on any 2-long segment of the angle , 6 the system may have four fixed points; for 
example, on the half-open segment (-, +] these points are 
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The last two fixed points, corresponding to the bead shifted to either side of the rotating ring, exist only 
if the angular velocity  of the rotation exceeds . (In the limit of very fast rotation,  >> , Eq. (20) 
yields 2,3  /2, i.e. the stationary positions approach the horizontal diameter of the ring – in 
accordance with our physical intuition.)  

 To analyze the fixed point stability, we may again use Eq. (9), in the form  ~
 n , plug it 

into Eq. (19), and Taylor-expand both trigonometric functions of   up to the term linear in ~ : 
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3 This particular type of stability, when the deviation from the equilibrium oscillates with a constant amplitude, 
neither growing nor decreasing in time, is called either orbital, or “neutral”, or “indifferent” stability.   
4 Mathematically, the growing part vanishes at some special (exact) initial conditions which give c+ = 0. However, 
the futility of this argument for real physical systems should be obvious to anybody who has ever tried to balance 
a pencil on its sharp point. 
5 Note that Eq. (19) coincides with Eq. (2.25). This is a good sanity check illustrating that the procedure (5)-(6) of 
moving a term from the potential to the kinetic energy within the Lagrangian function is indeed legitimate. 
6 For this particular problem, the values of   that differ by a multiple of 2, are physically equivalent.
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Generally, this equation may be linearized further by purging its right-hand side of the term proportional 

to 2~ ; however in this simple case, Eq. (21) is already convenient for analysis. In particular, for the 
fixed point 0 = 0 (corresponding to the bead’s position at the bottom of the ring), we have cos 0 = 1 
and sin0 = 0, so Eq. (21) is reduced to a linear differential equation 
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whose characteristic equation is similar to Eq. (14) and yields 
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This result shows that if 2 < 2, both roots  are imaginary, so this fixed point is orbitally stable.
However, if the rotation speed is increased so that 2 < 2, the roots become real:  = (2 – 2)1/2, 
with one of them positive, so the fixed point becomes unstable beyond this threshold, i.e. as soon as 
fixed points 2,3 exist. Absolutely similar calculations for other fixed points yield   
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These results show that the fixed point 1 (the bead on the top of the ring) is always unstable – just as 
we could foresee, while the side fixed points 2,3 are orbitally stable as soon as they exist – at 2 < 2. 

 Thus, our fixed-point analysis may be summarized very simply: an increase of the ring rotation 
speed   beyond a certain threshold value, equal to  given by Eq. (2.26), causes the bead to move to 
one of the ring sides, oscillating about one of the fixed points 2,3. Together with the rotation about the 
vertical axis, this motion yields quite a complex (generally, open) spatial trajectory as observed from a 
lab frame, so it is fascinating that we could analyze it quantitatively in such a simple way. 

 Later in this course, we will repeatedly use the linearization of the equations of motion for the 
analysis of the stability of more complex dynamic systems, including those with energy dissipation. 

 

3.3. Hamiltonian 1D systems 

 Autonomous systems that are described by time-independent Lagrangians are frequently called 
Hamiltonian ones because their Hamiltonian function H (again, not necessarily equal to the genuine 
mechanical energy E!) is conserved. In our current 1D case, described by Eq. (3),  
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From a mathematical standpoint, this conservation law is just the first integral of motion. Solving Eq. 
(24) for q , we get the first-order differential equation, 
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which may be readily integrated: 



Essential Graduate Physics                 CM: Classical Mechanics 

 

Chapter 3             Page 6 of 22 

        
  0

0

2/1
ef

2/1

ef

)(

)( )(2
tt

q'UH

dq'm
tq

tq









  .    (3.26) 

Since the constant H (as well as the proper sign before the integral – see below) is fixed by initial 
conditions, Eq. (26) gives the reciprocal form, t = t(q), of the desired law of system motion, q(t). Of 
course, for any particular problem, the integral in Eq. (26) still has to be worked out, either analytically 
or numerically, but even the latter procedure is typically much easier than the numerical integration of 
the initial, second-order differential equation of motion, because at the addition of many values (to 
which any numerical integration is reduced7) the rounding errors are effectively averaged out. 

 Moreover, Eq. (25) also allows a general classification of 1D system motion. Indeed: 

 (i) If H > Uef(q) in the whole range of our interest, the effective kinetic energy Tef (3) is always 
positive. Hence the derivative dq/dt cannot change its sign, so this effective velocity retains the sign it 
had initially. This is an unbound motion in one direction (Fig. 2a). 

   

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 (ii) Now let the particle approach a classical turning point A where H = Uef(q)  – see Fig. 2b.8 
According to Eq. (25), at that point, the particle velocity vanishes, while its acceleration, according to 
Eq. (4), is still finite. This means that the particle’s velocity sign changes its sign at this point, i.e. it is 
reflected from it. 

7 See, e.g., MA Eqs. (5.2) and (5.3). 
8 This terminology comes from quantum mechanics, which shows that a particle (or rather its wavefunction) 
actually can, to a certain extent, penetrate “classically forbidden” regions where H < Uef(q). 
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Fig. 3.2. Graphical representations of Eq. (25) for three different cases: (a) an unbound motion, with the 
velocity sign conserved, (b) a reflection from a “classical turning point”, accompanied by the velocity 
sign change, and (c) bound, periodic motion between two turning points – schematically. (d) The 
effective potential energy (6) of the bead on the rotating ring (Fig. 2.1) for a particular case with 2 < 2.
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 (iii) If, after the reflection from some point A, the particle runs into another classical turning 
point B (Fig. 2c), the reflection process is repeated again and again, so the particle is bound to a periodic 
motion between two turning points. 

 The last case of periodic oscillations presents a large conceptual and practical interest, and the 
whole of Chapter 5 will be devoted to a detailed analysis of this phenomenon and numerous associated 
effects. Here I will only note that for an autonomous Hamiltonian system described by Eq. (4), Eq. (26) 
immediately enables the calculation of the oscillation period: 
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where the additional front factor 2 accounts for two time intervals: of the motion from B to A and back – 
see Fig. 2c. Indeed, according to Eq. (25), at each classically allowed point q, the velocity’s magnitude 
is the same, so these time intervals are equal to each other. 

 (Note that the dependence of points A and B on H is not necessarily continuous. For example, for 
our testbed problem, whose effective potential energy is plotted in Fig. 2d for a particular value of  > 
, a gradual increase of H  leads to a sudden jump, at H = H1, of the point B to a new position B’, 
corresponding to a sudden switch from oscillations about one fixed point 2,3 to oscillations about two 
adjacent fixed points – before the beginning of a persistent rotation around the ring at H > H2.) 

 Now let us consider a particular, but a very important limit of Eq. (27). As Fig. 2c shows, if H is 
reduced to approach Umin, the periodic oscillations take place at the very bottom of this potential well, 
about a stable fixed point q0. Hence, if the potential energy profile is smooth enough, we may limit the 
Taylor expansion (10) to the displayed quadratic term. Plugging it into Eq. (27), and using the mirror 
symmetry of this particular problem about the fixed point q0, we get 
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where Aq /~ , with A  (2/ef)
1/2(H – Umin)

1/2 being the classical turning point, i.e. the oscillation 

amplitude, and 0 the frequency given by Eq. (15). Taking into account that the elementary integral I in 
that equation equals /2,9 we finally get 
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as it should be for the harmonic oscillations (16). Note that the oscillation period does not depend on the 
oscillation amplitude A, i.e. on the difference (H – Umin) – while it is sufficiently small. 

 

3.4. Planetary problems 

Leaving a more detailed study of oscillations for Chapter 5, let us now discuss the so-called 
planetary systems10 whose description, somewhat surprisingly, may be also reduced to an effectively 1D 

9 Indeed, introducing a new variable   as   sin , we get d = cos  d = (1–2)1/2 d, so that the function under 
the integral is just d, and its limits are   = 0 and  = /2. 

Oscillation 
period 
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problem. Indeed, consider two particles that interact via a conservative central force F21 = –F12 = nrF(r), 
where r and nr are, respectively, the magnitude and the direction of the distance vector r  r1 – r2 
connecting the two particles (Fig. 3).  

 

 

 

 

 
 
Generally, two particles moving without constraints in 3D space, have 3 + 3 = 6 degrees of 

freedom, which may be described, e.g., by their Cartesian coordinates {x1, y1, z1, x2, y2, z2} However, for 
this particular form of interaction, the following series of tricks allows the number of essential degrees 
of freedom to be reduced to just one. 

First, the conservative force of particle interaction may be described by a time-independent 
potential energy U(r), such that F(r) = –U(r)/r.11 Hence the Lagrangian function of the system is 
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Let us perform the transfer from the initial six scalar coordinates of the particles to the following six 
generalized coordinates: three Cartesian components of the distance vector  

      r  r1 – r2,      (3.31) 

and three scalar components of the following vector: 
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which defines the position of the center of mass of the system, with the total mass M. Solving the system 
of two linear equations (31) and (32) for r1 and r2, we get  
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Plugging these relations into Eq. (30), we see that it is reduced to 
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where m is the so-called reduced mass: 
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10 This name is very conditional, because this group of problems includes, for example, charged particle scattering 
(see Sec. 3.7 below). 
11 See, e.g., MA Eq. (10.8) with / = / = 0. 
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Fig. 3.3. Vectors in the planetary problem. 
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Note that according to Eq. (35), the reduced mass is lower than that of the lightest component of the 
two-body system. If one of m1,2 is much less than its counterpart (like it is in most star-planet or planet-
satellite systems), then with a good precision m  min [m1, m2]. 

 Since the Lagrangian function (34) depends only on R  rather than R  itself, according to our 
discussion in Sec. 2.4, all Cartesian components of R are cyclic coordinates, and the corresponding 
generalized momenta are conserved: 
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Physically, this is just the conservation law for the full momentum P  MR of our system, due to the 
absence of external forces. Actually, in the axiomatics used in Sec. 1.3 this law is postulated – see Eq. 
(1.10) – but now we may attribute the momentum P to a certain geometric point, with the center-of-mass 
radius vector R. In particular, since according to Eq. (36) the center moves with a constant velocity in 
the inertial reference frame used to write Eq. (30), we may consider a new inertial frame with the origin 
at point R. In this new frame, R  0, so the vector r (and hence the scalar r) remain the same as in the 
old frame (because the frame transfer vector adds equally to r1 and r2, and cancels in r = r1 – r2), and 
the Lagrangian (34) is now reduced to 
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 Thus our initial problem has been reduced to just three degrees of freedom – three scalar 
components of the vector r. In other words, Eq. (37) shows that the dynamics of the vector r of our 
initial, two-particle system is identical to that of the radius vector of a single particle with the effective 
mass m, moving in the central potential field ).(rU   

 Two more degrees of freedom may be excluded from the planetary problem by noticing that 
according to Eq. (1.35), the angular momentum L = rp of our effective single particle of mass m is also 
conserved, both in magnitude and direction. Since the direction of L is, by its definition, perpendicular 
to both r and v = p/m, this means that the particle’s motion is confined to the plane whose orientation is 
determined by the initial directions of the vectors r and v. Hence we can completely describe the 
particle’s position by just two coordinates in that plane, for example by the distance r to the origin, and 
the polar angle    In these coordinates, Eq. (37) takes the form identical to Eq. (2.49): 
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L   .     (3.38) 

Moreover, the latter coordinate, polar angle , may be also eliminated by using the conservation           
of angular momentum’s magnitude, in the form of Eq. (2.50): 12 

             .const2  mrLz      (3.39) 

 A direct corollary of this conservation is the so-called 2nd Kepler’s law:13 the radius vector r 
sweeps equal areas A in equal time periods. Indeed, in the linear approximation in dA << A, the area 

12 Here index z stands for the coordinate perpendicular to the motion plane. Since other components of the angular 
momentum equal zero, this index is not really necessary, but I will still use it – just to make a clear distinction 
between the angular momentum Lz and the Lagrangian function L. 
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differential dA is equal to the area of a narrow right triangle with the base being the arc differential rd, 
and the height equal to r – see Fig. 4. As a result, according to Eq. (39), the time derivative of the area, 

              ,
22

12/)( 2

m

L
r

dt

rdr

dt

dA z 
     (3.40) 

remains constant. Since the factor Lz/2m is constant, integration of this equation over an arbitrary (not 
necessarily small!) time interval t proves the 2nd Kepler’s law: A   t. 

 

 

 

 

   

Now note that since L/t = 0, the Hamiltonian function H is also conserved, and since, 
according to Eq. (38), the kinetic energy of the system is a quadratic-homogeneous function of the 
generalized velocities r and  , we have H = E, so the system’s energy E, 

)(
22

222 rUr
m

r
m

E   ,     (3.41) 

is also the first integral of motion.14 However, according to Eq. (39), the second term on the right-hand 
side of Eq. (41) may be represented as 

         ,
22 2

2
22

mr

L
r

m z      (3.42) 

so the energy (41) may be expressed as that of a 1D particle moving along axis r, 

            ),(
2 ef

2 rUr
m

E        (3.43) 

in the following effective potential: 

        
2

2

ef 2
)()(

mr

L
rUrU z .     (3.44) 

So the planetary motion problem has been reduced to the study of an effectively-1D system.15 

13 This is one of the three laws deduced, from the extremely detailed astronomical data collected by Tycho Brahe 
(1546-1601), by Johannes Kepler in the early 17th century. In turn, the three Kepler’s laws have become the main 
basis for Newton’s discovery, a few decades later, of the gravity law (1.15). That relentless march of physics… 
14 One may argue that this fact should have been evident earlier because the effective particle of mass m moves in 
a potential field U(r), which conserves energy. 
15 Note that this reduction has been done in a way different from that used for our testbed problem (Fig. 
2.1) in Sec. 2 above. (The reader is encouraged to analyze this difference.) To emphasize this fact, I will 
keep writing E instead of H here, though for the planetary problem we are discussing now, these two 
notions coincide.  

0

r

rd


dA

Fig. 3.4. The area differential dA in 
the polar coordinates.

Effective 
potential 
energy 
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 Now we may proceed just like we did in Sec. 3, with due respect to the very specific effective 
potential (44) which, in particular, diverges at r  0 – besides the very special case of an exactly radial 
motion, Lz = 0. In particular, we may solve Eq. (43) for dr/dt to get 

          .
)]([2 2/1

ef

2/1

rUE

drm
dt








      (3.45) 

This equation enables us not only to get a direct relation between time t and distance r, similarly to Eq. 
(26), 

        
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

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
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2/122

2/1

2/1
ef

2/1

]2/)([2)]([2 mrLrUE

drm

rUE

drm
t

z

,  (3.46) 

but also do a similar calculation of the angle  of the effective particle. Indeed, integrating Eq. (39), 

         
2r

dt

m

L
dt z  ,     (3.47) 

and plugging dt from Eq. (45), we get an explicit expression for the particle’s trajectory  (r):  

 
   

. 
]2/)([2)]([2 2/12222/12/1

ef
22/1  
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


mrLrUEr
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m

L

rUEr

dr

m

L

z

zz  (3.48) 

Note that according to Eq. (39), the derivative d/dt does not change sign at the reflection from any 
classical turning point r  0, so, in contrast to Eq. (46), the sign on the right-hand side of Eq. (48) is 
uniquely determined by the initial conditions and cannot change during the motion.  

Let us use these results, valid for any interaction law U(r), for the planetary motion’s 
classification. (Following a good tradition, in what follows I will select the arbitrary constant in the 
potential energy in the way to provide U  0 and hence Uef  0, at r  .) The following cases should 
be distinguished. 

If U(r) < 0, i.e. the particle interaction is attractive (as it always is in the case of gravity), and the 
divergence of the attractive potential at r  0 is faster than 1/r2, then Uef(r)  – at r  0, so at 
appropriate initial conditions the particle may drop on the center even if Lz  0 – the event called the 
capture.16 On the other hand, with U(r) either converging or diverging slower than 1/r2, at r  0, the 
effective energy profile Uef(r) has the shape shown schematically in Fig. 5. This is true, in particular, for 
the very important case   

             ,0with  ,)(  
r

rU      (3.49) 

which describes, in particular, the Coulomb (electrostatic) interaction of two particles with electric 
charges of opposite signs, and Newton’s gravity law (1.15). This particular case will be analyzed in 
detail below, but for now, let us return to the analysis of an arbitrary attractive potential U(r) < 0 leading 
to the effective potential shown in Fig. 5 when the angular-momentum term in Eq. (44) dominates at 
small distances r. 

16 In order to analyze what exactly happens at the capture, i.e. at r = 0, we would need a model more specific than 
Eq. (30). 

Attractive 
Coulomb 
potential 
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 According to the analysis in Sec. 3, such potential profile, with a minimum at some distance r0, 
may sustain two types of motion, depending on the energy E (determined by initial conditions):  

 (i) If E > 0, there is only one classical turning point where E = Uef, so the distance r either grows 
with time from the very beginning or (if the initial value of r  was negative) first decreases and then, 
after the reflection from the increasing potential Uef, starts to grow indefinitely. The latter case, of 
course, describes the scattering of the effective particle by the attractive center.17 

  (ii) On the opposite, if the energy is within the range 

      ,0)( 0ef  ErU      (3.50) 

the system moves periodically between two classical turning points rmin and rmax – see Fig. 5. These 
oscillations of the distance r correspond to the bound orbital motion of our effective particle about the 
attracting center.  

 Let us start with the discussion of the bound motion, with the energy within the range (50). If the 
energy has its minimal possible value, 

      )],([min)( ef0ef rUrUE       (3.51) 

the distance cannot change, r = r0 = const, so the particle’s orbit is circular, with the radius r0 satisfying 
the condition dUef/dr = 0. Using Eq. (44), we see that the condition for r0 may be written as 

        .
03

0

2

rrdr

dU

mr

Lz
      (3.52) 

Since at circular motion, the velocity v is perpendicular to the radius vector r, Lz is just mr0v, the left-
hand side of Eq. (52) equals mv2/r0, while its right-hand side is just the magnitude of the attractive force, 
so this equality expresses the well-known 2nd Newton’s law for the circular motion. Plugging this result 
into Eq. (47), we get a linear law of angle change, ,const t  with the angular velocity 

      
0

2
0 r

v

mr

Lz   ,     (3.53) 

and hence the rotation period T    2/ obeys the elementary relation 

17 In the opposite case when the interaction is repulsive, U(r) > 0, the addition of the positive angular energy term 
only increases the trend, and the scattering scenario is the only one possible. 

Fig. 3.5. Effective potential profile of an attractive 
central field, and two types of motion in it. 
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v

r02
 T .      (3.54) 

 Now let the energy be above its minimum value (but still negative). Using Eq. (46) just as in 
Sec. 3, we see that the distance r oscillates with the period  

     

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
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2/122
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r mrLrUE

drm

z
rT     (3.55) 

This period is not necessarily equal to another period, T, that corresponds to the 2-change of the angle.  

Indeed, according to Eq. (48), the change of the angle   between two sequential points of the nearest 
approach, 

             
     ,

2/)(2
2
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min

2/12222/1 
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r

r mrLrUEr
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m

L

z

z    (3.56) 

is generally different from 2. Hence, the general trajectory of the bound motion has a spiral shape – 
see, e.g., an illustration in Fig. 6. 

  

 

 

 

 

 

 

 

 

  

 The situation is special, however, for a very important particular case, namely that of the 
Coulomb potential described by Eq. (49).18 Indeed, plugging this potential into Eq. (48), we get 

                     
   




2/12222/1
2//2 mrLrEr
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z

z


 .   (3.57) 

This is a table integral,19 giving 

         
 
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/21
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1 




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


mEL

rmL

z

z     (3.58) 

18 For the power-law interaction, U  r, the orbits are closed curves only if either  = –1 (the Coulomb potential) 
or  = +2 (the 3D harmonic oscillator) – the so-called Bertrand theorem, proved by J. Bertrand only in 1873. 
19 See, e.g., MA Eq. (6.3a). 

r

0



Fig. 3.6. A typical open orbit of a particle 
moving in a non-Coulomb central field. 
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Hence the reciprocal function, r(), is 2-periodic:  

         
)constcos(1 


e

p
r ,      (3.59) 

so at E < 0, the orbit is a closed line characterized by the following parameters:20 
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 The physical meaning of these parameters is very simple. Indeed, the general Eq. (52), in the 
Coulomb potential for which dU/dr = /r2, shows that p is just the circular orbit radius21 for the given 
Lz: r0 = Lz

2/m    p, so 

      
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2

0efef 2
)()(min

zL

m
rUrU


 .    (3.61) 

Using this equality together with the second of Eqs. (60), we see that the parameter e (called the 
eccentricity) may be represented just as 

             .
)]([min

1
2/1

ef 








rU

E
e      (3.62) 

  Analytical geometry tells us that Eq. (59), with e < 1, is one of the canonical representations of 
an ellipse, with one of its two focuses located at the origin. The fact that planets have such trajectories is 
known as the 1st Kepler’s law. Figure 7 shows the relations between the dimensions of the ellipse and 
the parameters p and e.22 

 

 

 

 

 

 

 
 In particular, the major semi-axis a and the minor semi-axis b are simply related to p and e and 
hence, via Eqs. (60), to the motion integrals E and Lz: 
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
   (3.63) 

20 Let me hope that the difference between the parameter p and the particle momentum’s magnitude is absolutely 
clear from the context, so using the same (traditional) notation for both notions cannot lead to confusion. 
21 Mathematicians prefer a more solemn terminology: the parameter 2p is called the latus rectum of the ellipse. 
22 In this figure, the constant participating in Eqs. (58)-(59) is assumed to be zero. A different choice of the 
constant corresponds just to a different origin of , i.e. a constant turn of the ellipse about the origin. 

Fig. 3.7. Ellipse, and its special 
points and dimensions. 
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 As was mentioned above, at E  min [Uef(r)] the orbit is almost circular, with r()  r0  p. On 
the contrary, as E is increased to approach zero (its maximum value for the closed orbit), then e  1, so 
that the aphelion point rmax = p/(1 – e) tends to infinity, i.e. the orbit becomes extremely extended – see 
the magenta lines in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  
 The above relations enable, in particular, a ready calculation of the rotation period T   Tr = T.  
(In the case of a closed trajectory, Tr and T coincide.) Indeed, it is well known that the ellipse’s area A = 

ab. But according to the 2nd Kepler’s law (40), dA/dt = Lz/2m = const. Hence 

           
mL

ab

dtdA

A

z 2//


T .     (3.64a) 

Using Eqs. (60) and (63), this important result may be represented in several other forms: 
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 Since for the Newtonian gravity (1.15),  = Gm1m2 = GmM, at m1 << m2 (i.e. m << M),          
this constant is proportional to m, and the last form of Eq. (64b) yields the 3rd Kepler’s law: the periods 
of motion of different planets in the same central field, say that of our Sun, scale as T   a3/2. Note that 
in contrast to the 2nd Kepler’s law (which is valid for any central field), the 1st and the 3rd Kepler’s laws 
are potential-specific. 

 Now reviewing the above derivation of Eqs. (59)-(60), we see that they are also valid in the case 
of E  0 – see the top horizontal line in Fig. 5 and its discussion above, if we limit the results to the 

Fig.3.8.(a) Zoom-in and (b) zoom-out on the Coulomb-
field trajectories corresponding to the same parameter p 
(i.e., the same Lz) but different values of the eccentricity 
parameter e, i.e. of the energy E – see Eq. (60): ellipses 
(e < 1, red lines), a parabola (e = 1, magenta line), and 
hyperbolas (e > 1, blue lines). Note that the transition 
from closed to open trajectories at e = 1 is dramatic only 
at very large distances, r >> p. 
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physically meaningful range r  0. This means that if the energy is exactly zero, Eq. (59) (with 1e ) is 
still valid for all values of   (except for one special point   =   where r becomes infinite) and 
describes a parabolic (i.e. open) trajectory – see the magenta lines in Fig. 8.  

 Moreover, if E > 0, Eq. (59) is still valid within a certain sector of angles ,  

               0for  ,
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and describes an open, hyperbolic trajectory (see the blue lines in Fig. 8). As was mentioned earlier, 
such trajectories are typical, in particular, for particle scattering. 

 

3.5. Elastic scattering 

 If E > 0, the motion is unbound for any realistic interaction potential. In this case, the two most 
important parameters of the particle trajectory are the impact parameter b and the scattering angle  
(Fig. 9), and the main task of the theory is to find the relation between them in the given potential U(r).  

 

 

 

 

 

 

 

 For that, it is convenient to note that b is related to the two conserved quantities, the particle’s 
energy23 E and its angular momentum Lz, in a simple way. Indeed, at r >> b, the definition L = r(mv) 
yields Lz = bmv, where v = (2E/m)1/2 is the initial (and hence the final) speed of the particle, so 

        .2 2/1mEbLz       (3.66) 

Hence the angular contribution to the effective potential (44) may be represented as 
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Lz       (3.67) 

 Next, according to Eq. (48), the trajectory sections going from infinity to the nearest approach 
point (r = rmin) and from that point to infinity, have to be similar, and hence correspond to equal angle 
changes 0  – see Fig. 9. Hence we may apply the general Eq. (48) to just one of the sections, say [rmin, 
], to find the scattering angle: 

23 The energy conservation law is frequently emphasized by calling such process elastic scattering.  

Fig. 3.9. Main geometric parameters of the scattering problem. 
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In particular, for the Coulomb potential (49), now with an arbitrary sign of , we can use the same table 
integral as in the previous section to get24 
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This result may be more conveniently rewritten as 
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      (3.69b) 

Very clearly, the scattering angle’s magnitude increases with the potential strength , and decreases as 
either the particle energy or the impact parameter (or both) are increased. 

 The general result (68) and the Coulomb-specific relations (69) represent a formally complete 
solution of the scattering problem. However, in a typical experiment on elementary particle scattering, 
the impact parameter b of a single particle is unknown. In this case, our results may be used to obtain the 
statistics of the scattering angle , in particular, the so-called differential cross-section25 
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where n is the average number of the incident particles per unit area, and dN is the average number of 
the particles scattered into a small solid angle interval d. For a uniform beam of initial particles, 
d/d may be calculated by counting the average number of incident particles that have the impact 
parameters within a small range db: 
      .2 bdbndN       (3.71) 

Scattered by a spherically-symmetric center, which provides an axially-symmetric scattering pattern, 
these particles are scattered into the corresponding small solid angle interval d = 2sin d . 
Plugging these two equalities into Eq. (70), we get the following general geometric relation: 
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 In particular, for the Coulomb potential (49), a straightforward differentiation of Eq. (69) yields 
the so-called Rutherford scattering formula (reportedly, derived by R. H. Fowler): 

         .
)2/(sin

1

4 4

2












 Ed

d
     (3.73) 

24 Alternatively, this result may be recovered directly from the first form of Eq. (65), with the eccentricity e 
expressed via the same dimensionless parameter (2Eb/): e = [1 + (2Eb/)2]1/2 > 1. 
25 This terminology stems from the fact that an integral (74) of d/d over the full solid angle, called the total 
cross-section , has the dimension of the area:  = N/n, where N is the total number of scattered particles. 
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 This result, which shows very strong scattering to small angles (so strong that the integral that 
expresses the total cross-section  

      


  d
d

d




4

      (3.74) 

is diverging at   0)26 and very weak backscattering (to angles   ), was historically extremely 
significant: in the early 1910s, its good agreement with -particle scattering experiments carried out by 
Ernest Rutherford’s group gave a strong justification for his introduction of the planetary model of 
atoms, with electrons moving around very small nuclei – just as planets move around stars. 

 Note that elementary particle scattering is frequently accompanied by electromagnetic radiation 
and/or other processes leading to the loss of the initial mechanical energy of the system. Such inelastic 
scattering may give significantly different results. (In particular, the capture of an incoming particle 
becomes possible even for a Coulomb attracting center.) Also, quantum-mechanical effects may be 
important at the scattering of light particles with relatively low energies,27 so the above results should be 
used with caution. 

 

3.6. Exercise problems 
  

 3.1. For the system considered in Problem 2.6 (a bead 
sliding along a string with fixed tension T, see the figure on the 
right), analyze small oscillations of the bead near the equilibrium. 
 
 
 3.2. For the system considered in Problem 2.7 (a bead sliding along a 
string of a fixed length 2l, see the figure on the right), analyze small 
oscillations near the equilibrium. 
 
 
 3.3. A bead is allowed to slide, without friction, along an 
inverted cycloid in a vertical plane – see the figure on the right. 
Calculate the frequency of its free oscillations as a function of 
their amplitude. 

 Hint: The simplest way to describe a cycloid is to 
express the Cartesian coordinates of its arbitrary point as functions of some parameter .28 For the 
inverted cycloid shown in the figure on the right, such parametric representation is 

            .cos1,sin   RyRx   

26 This divergence, which persists at the quantum-mechanical treatment of the problem (see, e.g., QM Chapter 3), 
is due to particles with very large values of b, and disappears at an account, for example, of any non-zero 
concentration of the scattering centers. 
27 Their discussion may be found in QM Secs. 3.3 and 3.8. 
28 This parameter may be understood as the angle of rotation of a circle of the radius R, rolled along a horizontal 
rail with y = 0 (see the dashed lines in the figure above), whose point moves along the cycloid.. 
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 3.4. Illustrate the changes of the fixed point set of our testbed system (Fig. 2.1), which was 
analyzed at the end of Sec. 3.2 of the lecture notes, on the so-called phase plane [  , ]. 
 
 3.5. For a 1D particle of mass m, placed into the potential well U(q) = q2n (where  > 0, and n 
is a positive integer), calculate the functional dependence of the particle’s oscillation period T  on its 

energy E. Explore the limit n  .  
 
 3.6. Two small masses m1 and m2  m1 may slide without friction over a horizontal surface. They 
are connected with a spring with an equilibrium length l and an elastic constant , and at t < 0 are at rest. 
At t = 0, the mass m1 gets a very short kick with impulse P  F(t)dt in a direction different from the 
spring’s line. Calculate the largest and smallest magnitude of its velocity at t > 0. 
 
 3.7. Explain why the term ,2/22mr  recast in accordance with Eq. (42), cannot be merged with 
U(r) in Eq. (38), to form an effective 1D potential energy U(r) – Lz

2/2mr2, with the second term’s sign 
opposite to that given by Eq. (44). We have done an apparently similar thing for our testbed bead-on-
rotating-ring problem at the very end of Sec. 1 – see Eq. (6); why cannot the same trick work for the 
planetary problem? Besides a formal explanation, discuss the physics behind this difference. 
 
 
 3.8. A system of two equal masses m on a light rod of a fixed length l 
(frequently called a dumbbell) can slide without friction along a vertical ring of 
radius R, rotated about its vertical diameter with a constant angular velocity  – 
see the figure on the right. Derive the condition of stability of the lower horizontal 
position of the dumbbell. 
   

 3.9. Analyze the dynamics of the so-called spherical pendulum – a point 
mass hung, in a uniform gravity field g, on a light cord of length l, with no motion’s confinement to a 
vertical plane. In particular:  

(i) find the integrals of motion and reduce the problem to a 1D one, 
(ii) calculate the time period of the possible circular motion around the vertical axis, and 
(iii) explore small deviations from the circular motion. (Are the pendulum’s orbits closed?)29 

 
 3.10. If our planet Earth was suddenly stopped in its orbit around the Sun, how long would it 
take it to fall on our star? Solve this problem using two different approaches, neglecting the Earth’s orbit 
eccentricity and the Sun’s size. 
 
 3.11. The orbits of Mars and Earth around the Sun may be well approximated as coplanar 
circles,30 with a radii ratio of 3/2. Use this fact, and the Earth’s year duration, to calculate the time of 
travel to Mars when spending the least energy on the spacecraft’s launch. Neglect the planets' size and 
the effects of their own gravitational fields. 
 

29 Solving this problem is very good preparation for the analysis of the symmetric top’s rotation in Sec. 4.5. 
30 Indeed, their eccentricities are close to, respectively, 0.093 and 0.0167. 
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 3.12. Derive first-order and second-order differential equations for the reciprocal distance u  1/r 
as a function of , describing the trajectory of a particle’s motion in a central potential U(r). Spell out 
the latter equation for the particular case of the Coulomb potential (49) and discuss the result. 
 
 3.13. For the motion of a particle in the Coulomb attractive field (U(r) = –/r, with  > 0), 
calculate and sketch the so-called hodograph31 – the trajectory followed by the head of the velocity 
vector v, provided that its tail is kept at the origin. 
 
 3.14. Prove that for an arbitrary motion of a particle of mass m in the Coulomb field U = –/r, 
the vector A  pL – mnr (where nr  r/r) is conserved.32 After that: 

 (i) spell out the scalar product rA and use the result for an alternative derivation of Eq. (59), and 
for a geometric interpretation of the vector A; 
 (ii) spell out (A – pL)2 and use the result for an alternative derivation of the hodograph diagram 
discussed in the previous problem.  
 
 3.15. For a particle moving in the following central potential: 

,)(
2rr

rU


   

 (i) for positive  and , and all possible ranges of energy E, calculate the orbit r();  
 (ii) prove that in the limit   0, for energy E < 0, the orbit may be represented as a slowly 
rotating ellipse; 
 (iii) express the angular velocity of this slow rotation via the parameters  and , the particle’s 
mass m, its energy E, and the angular momentum Lz.  
 
 3.16. A star system contains a much lighter planet and an even much smaller mass of dust. 
Assuming that the attractive gravitational potential of the dust is spherically symmetric and proportional 
to the square of the distance from the star,33 calculate the slow precession it gives to a circular orbit of 
the planet. 
  

3.17. A particle is moving in the field of an attractive central force with the potential 

  0  where,  n
r

rU
n


. 

For what values of n, the circular orbits are stable? 

3.18. Determine the condition for a particle of mass m, moving under the effect of a central 
attractive force 

31 The use of this notion for the characterization of motion may be traced back at least to an 1846 treatise by W. 
Hamilton. Nowadays, it is most often used in applied fluid mechanics, in particular meteorology. 
32 This fact, first proved in 1710 by Jacob Hermann, was repeatedly rediscovered during the next two centuries. 
As a result, the most common name of A is, rather  unfairly, the Runge-Lenz vector. 
33 As may be readily shown from the gravitation version of the Gauss law (see, e.g., the model solution of 
Problem 1.7), this approximation is exact if the dust density is constant between the star and the planet. 
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where  and R are positive constants, to have a stable circular orbit. 

3.19. A particle of mass m, with an angular momentum Lz, moves in the field of an attractive 
central force with a distance-independent magnitude F. If the particle's energy E is slightly higher than 
the value Emin corresponding to its circular orbit, what is the time period of its radial oscillations? 
Compare the period with that of the circular orbit at E = Emin. 
 

 3.20. A particle may move without friction, in the uniform gravity field g = –gnz, over an 
axially-symmetric surface that is described, in the cylindrical coordinates 
{, , z}, by a smooth function Z() – see the figure on the right. Derive the 
condition of stability of circular orbits of the particle around the symmetry 
axis z, with respect to small perturbations. For the cases when the condition 
is fulfilled, find out whether the weakly perturbed orbits are open or closed. 
Spell out your results for the following particular cases:  

 (i) a conical surface with Z = ,  
 (ii) a paraboloid with  Z = 2/2, and 
 (iii) a spherical surface with Z2 + 2 = R2, for  < R. 
 

 3.21. The gravitational potential (i.e. the gravitational energy of a unit probe mass) of our Milky 
Way galaxy, averaged over interstellar distances, is reasonably well approximated by the following 
axially symmetric function: 

   ,ln
2

, 22
2

zr
V

zr    

where r is the distance from the galaxy’s symmetry axis and z is the distance from its central plane, 
while V and  > 0 are constants.34 Prove that circular orbits of stars in this gravity field are stable, and 
calculate the frequencies of their small oscillations near such orbits, in the r- and z-directions. 
 
 3.22. For particle scattering by a repulsive Coulomb field, calculate the minimum approach 
distance rmin and the velocity vmin at that point, and analyze their dependence on the impact parameter b 
(see Fig. 9) and on the initial velocity v of the particle. 
 
 3.23. A particle is launched from afar, with an impact parameter b, toward an attracting center 
creating the potential 

.0  and  2with  ,)(  
n

r
rU

n
 

 (i) For the case when the initial kinetic energy E of the particle is barely sufficient for escaping 
its capture by this attracting center, express the minimum approach distance via b and n. 
 (ii) Calculate the capture’s total cross-section and explore its limit at n  2. 

 

34 Just for the reader’s reference, these constants are close to, respectively, 2.2105 m/s and 6. 
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3.24. A small body with an initial velocity v approaches an atmosphere-free planet of mass M 
and radius R.  

(i) Find the condition on the impact parameter b for the body to hit the planet’s surface. 
(ii) If the body barely avoids the collision, what is its scattering angle? 
 
3.25. Calculate the differential and total cross-sections of the classical elastic scattering of small 

particles by a hard sphere of radius R. 
 
3.26. The most famous35 confirmation of Einstein’s general relativity theory has come from the 

observation, by A. Eddington and his associates, of star light’s deflection by the Sun, during the May 
1919 solar eclipse. Considering light photons as classical particles propagating with the speed of light, 
v0  c  3.00108m/s, and using the astronomic data for the Sun’s mass (MS  1.991030kg) and radius 
(RS  6.96108m), calculate the non-relativistic mechanics’ prediction for the angular deflection of the 
light rays grazing the Sun’s surface. 

 

 3.27. Generalize the expression for the small angle of scattering, obtained in the solution of the 
previous problem, to a spherically symmetric but otherwise arbitrary potential U(r). Use the result to 
calculate the differential cross-section of small-angle scattering by the potential U = C/rn, with integer n 
> 0. 

Hint: You may like to use the following table integral: 
 

 
 2/

2/12/

1

2/1

1
2/121 nn

nd
n 














. 

35 It was not the first confirmation, though. The first one came four years earlier from Albert Einstein himself, 
who showed that his theory may qualitatively explain the difference between the rate of Mercury orbit’s 
precession, known from earlier observations, and the non-relativistic theory of that effect. 


