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Chapter 4. Rigid Body Motion 

This chapter discusses the motion of rigid bodies, with a heavy focus on its most nontrivial part: 
rotation. Some byproducts of this analysis enable a discussion, at the end of the chapter, of the motion 
of point particles as observed from non-inertial reference frames.  

 

4.1. Translation and rotation 

 It is natural to start a discussion of many-particle systems from a (relatively :-) simple limit when 
the changes of distances rkk’  rk –rk’ between the particles are negligibly small. Such an abstraction is 
called the (absolutely) rigid body; it is a reasonable approximation in many practical problems, 
including the motion of solid samples. In other words, this model neglects deformations – which will be 
the subject of the next chapters. The rigid-body approximation reduces the number of degrees of 
freedom of the system of N particles from 3N to just six – for example, three Cartesian coordinates of 
one point (say, 0), and three angles of the system’s rotation about three mutually perpendicular axes 
passing through this point – see Fig. 1.1 

 

 

 

 

 

 

 

 As it follows from the discussion in Secs. 1.1-1.3, any purely translational motion of a rigid 
body, at which the velocity vectors v of all points are equal, is not more complex than that of a point 
particle. Indeed, according to Eqs. (1.8) and (1.30), in an inertial reference frame, such a body moves 
exactly as a point particle upon the effect of the net external force F(ext). However, the rotation is a bit 
more tricky. 

 Let us start by showing that an arbitrary elementary displacement of a rigid body may be always 
considered as a sum of the translational motion and of what is called a pure rotation. For that, consider a 
“moving” reference frame {n1, n2, n3}, firmly bound to the body, and an arbitrary vector A (Fig. 1). The 
vector may be represented by its Cartesian components Aj in that moving frame: 

 

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1j
jjA nA .      (4.1) 

1 An alternative way to arrive at the same number six is to consider three points of the body, which uniquely 
define its position. If movable independently, the points would have nine degrees of freedom, but since three 
distances rkk’ between them are now fixed, the resulting three constraints reduce the number of degrees of freedom 
to six. 

Fig. 4.1. Deriving Eq. (8). 
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 Let us calculate the time derivative of this vector as observed from a different (“lab”) frame, 
taking into account that if the body rotates relative to this frame, the directions of the unit vectors nj, as 
seen from the lab frame, change in time. Hence, in each product contributing to the sum (1), we have to 
differentiate both operands: 
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On the right-hand side of this equality, the first sum obviously describes the change of vector A as 
observed from the moving frame. In the second sum, each of the infinitesimal vectors dnj may be 
represented by its Cartesian components: 

   



3

1j'
j'jj'j dd nn  ,     (4.3) 

where djj’  are some dimensionless scalar coefficients. To find out more about them, let us scalar-
multiply each side of Eq. (3) by an arbitrary unit vector nj”, and take into account the obvious 
orthonormality condition: 
        j'j"j"j' nn ,     (4.4) 

where j’j” is the Kronecker delta symbol.2 As a result, we get 

jj"j"j dd nn .     (4.5) 

Now let us use Eq. (5) to calculate the first differential of Eq. (4): 

       022   ,particularin ;0  jjjjj"j'j'j"j"j'j"j' dddddd  nnnnnn . (4.6) 

 These relations, valid for any choice of indices j, j’, and j” of the set {1, 2, 3}, show that the 
matrix with elements djj’ is antisymmetric with respect to the swap of its indices; this means that there 
are not nine just three non-zero independent coefficients djj’, all with j  j’. Hence it is natural to 
renumber them in a simpler way: djj’ = –dj’j   dj”, where the indices j, j’, and j” follow in the 
“correct” order –  either {1,2,3}, or {2,3,1}, or {3,1,2}. It is straightforward to verify (either just by a 
component-by-component comparison or by using the Levi-Civita permutation symbol3) that in this new 
notation, Eq. (3) may be represented just as a vector product: 

 jj dd nφn  ,      (4.7) 

where d is the infinitesimal vector defined by its Cartesian components dj in the rotating reference 
frame {n1, n2, n3}. 

 This relation is the basis of all rotation kinematics. Using it, Eq. (2) may be rewritten as 
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To reveal the physical sense of the vector , let us apply Eq. (8) to the particular case when A is the 
radius vector r of a point of the body, and the lab frame is selected in a special way: its origin has the 

2 See, e.g., MA Eq. (13.1). 
3 See, e.g., MA Eq. (13.2). Using this symbol, we may write djj’ = –dj’j  jj’j”dj” for any choice of j, j’, and j”. 
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same position and moves with the same velocity as that of the moving frame, in the particular instant 
under consideration. In this case, the first term on the right-hand side of Eq. (8) is zero, and we get  

         rω
r

frame lab specialin dt

d
,     (4.9) 

were vector r itself is the same in both frames. According to the vector product definition, the particle 
velocity described by this formula has a direction perpendicular to the vectors  and r (Fig. 2), and 
magnitude rsin. As Fig. 2 shows, the last expression may be rewritten as , where  = rsin is the 
distance from the line that is parallel to the vector  and passes through point 0. This is of course just 
the pure rotation about that line (called the instantaneous axis of rotation), with the angular velocity . 
According to Eqs. (3) and (8), the angular velocity vector  is defined by the time evolution of the 
moving frame alone, so it is the same for all points r, i.e. for the rigid body as a whole. Note that nothing 
in our calculations forbids not only the magnitude but also the direction of the vector , and thus of the 
instantaneous axis of rotation, to change in time; hence the name. 

 

 

 

 

 

 

 
 Now let us generalize our result a step further, considering two reference frames that do not 
rotate versus each other: one (“lab”) frame is arbitrary, and another one is selected in the special way 
described above, so Eq. (9) is valid in it. Since the relative motion of these two reference frames is 
purely translational, we can use the simple velocity addition rule given by Eq. (1.6) to write 

         ,labin 0frame  lab  specialin  labin 0labin rωvvvv     (4.10) 

where r is the radius vector of a point is measured in the body-bound (“moving”) frame 0.  

 

4.2. Inertia tensor 

Since the dynamics of each point of a rigid body is strongly constrained by the conditions rkk’ = 
const, this is one of the most important fields of application of the Lagrangian formalism discussed in 
Chapter 2. For using this approach, the first thing we need to calculate is the kinetic energy of the body 
in an inertial reference frame. Since it is just the sum of the kinetic energies (1.19) of all its points, we 
can use Eq. (10) to write:4 
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4 Actually, all symbols for particle masses, coordinates, and velocities should carry the particle’s index, over 
which the summation is carried out. However, in this section, for the notation simplicity, this index is just implied. 

Fig. 4.2. The instantaneous axis and 
the angular velocity of rotation. 
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Let us apply to the right-hand side of Eq. (11) two general vector analysis formulas listed in the Math 
Appendix: the so-called operand rotation rule MA Eq. (7.6) to the second term, and MA Eq. (7.7b) to 
the third term. The result is 

          222
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This expression may be further simplified by making a specific choice of the point 0 (from which the 
radius vectors r of all particles are measured), namely by using for this point the center of mass of the 
body. As was already mentioned in Sec. 3.4 for the two-point case, the radius vector R of this point is 
defined as 
                mMmM with ,rR ,    (4.13) 

so M  is the total mass of the body. In the reference frame centered at this point, we have R = 0, so that 
the second sum in Eq. (12) vanishes, and the kinetic energy is a sum of just two terms: 

                 222
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where V  dR/dt is the center-of-mass velocity in our inertial reference frame, and all particle positions 
r are measured in the center-of-mass frame. Since the angular velocity vector  is common for all points 
of a rigid body, it is more convenient to rewrite the rotational part of the energy in a form in that the 
summation over the components of this vector is separated from the summation over the points of the 
body: 

             
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
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jjjjIT       (4.15) 

where the 33 matrix with elements 

            ''
2

' jjjjjj rrrmI       (4.16) 

represents, in the selected reference frame, the inertia tensor of the body.5  

 Actually, the term “tensor” for the construct described by this matrix has to be justified, because 
in physics it implies a certain reference-frame-independent notion, whose matrix elements have to obey 
certain rules at the transfer between reference frames. To show that the matrix (16) indeed describes 
such a notion, let us calculate another key quantity, the total angular momentum L of the same body.6 
Summing up the angular momenta of each particle, defined by Eq. (1.31), and then using Eq. (10) again, 
in our inertial reference frame we get 

               rωrvrrωvrvrprL mmmm 00 . (4.17) 

 We see that the momentum may be represented as a sum of two terms. The first one, 

5 While the ABCs of the rotational dynamics were developed by Leonhard Euler in 1765, an introduction of the 
inertia tensor’s formalism had to wait very long – until the invention of the tensor analysis by Tullio Levi-Civita 
and Gregorio Ricci-Curbastro in 1900 – soon popularized by its use in Einstein’s general relativity. 
6 Hopefully, there is very little chance of confusing the angular momentum L (a vector) and its Cartesian 
components Lj (scalars with an index) on one hand, and the Lagrangian function L (a scalar without an index) on 
the other hand. 
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      ,000 vRvrL   Mm      (4.18) 

describes the possible rotation of the center of mass about the inertial frame’s origin. This term vanishes 
if the moving reference frame’s origin 0 is positioned at the center of mass (where R = 0). In this case, 
we are left with only the second term, which describes a pure rotation of the body about its center         
of mass: 
          rωrLL mrot .     (4.19) 

Using one more vector algebra formula, the “bac minis cab” rule,7 we may rewrite this expression as  

            ωrrωL 2rm .     (4.20) 

Let us spell out an arbitrary Cartesian component of this vector:  
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By changing the summation order and comparing the result with Eq. (16), the angular momentum may 
be conveniently expressed via the same matrix elements Ijj’ as the rotational kinetic energy: 
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 Since L and  are both legitimate vectors (meaning that they describe physical vectors 
independent of the reference frame choice), the matrix of elements Ijj’ that relates them is a legitimate 
tensor. This fact, and the symmetry of the tensor (Ijj’ = Ij’j), evident from its definition (16), allow the 
tensor to be further simplified. In particular, mathematics tells us that by a certain choice of the 
coordinate axes’ orientations, any symmetric tensor may be reduced to a diagonal form 

         ,' jj'jjj II        (4.23) 

where in our case 

                    22222
jj"j'jj mrrmrrmI  ,    (4.24) 

j being the distance of the particle from the jth axis, i.e. the length of the perpendicular dropped from 
the point to that axis. The axes of such a special coordinate system are called the principal axes, while 
the diagonal elements Ij given by Eq. (24), the principal moments of inertia of the body. In such a 
special reference frame,  Eqs. (15) and (22) are reduced to very simple forms: 

      

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T  ,     (4.25) 

         .jjj IL        (4.26) 

Both these results remind the corresponding relations for the translational motion, Ttran = MV2/2 and P = 
MV, with the angular velocity  replacing the linear velocity V, and the tensor of inertia playing the role 
of scalar mass M. However, let me emphasize that even in the specially selected reference frame, with 

7 See, e.g., MA Eq. (7.5). 
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its axes pointing in principal directions, the analogy is incomplete, and rotation is generally more 
complex than translation, because the measures of inertia, Ij, are generally different for each principal 
axis.  

 Let me illustrate the last fact on a simple but instructive system of three similar massive particles 
fixed in the vertices of an equilateral triangle (Fig. 3).  

 

 

 

 

  

 

Due to the symmetry of the configuration, one of the principal axes has to pass through the center of 
mass 0 and be normal to the plane of the triangle. For the corresponding principal moment of inertia, Eq. 
(24) readily yields I3 = 3m2. If we want to express this result in terms of the triangle’s side a, we may 
notice that due to the system’s symmetry, the angle marked in Fig. 3 equals /6, and from the shaded 
right triangle, a/2 = cos(/6)  3/2, giving  = a/3, so, finally, I3 = ma2. 

 Let me use this simple case to illustrate the following general axis shift theorem, which may be 
rather useful – especially for more complex systems. For that, let us relate the inertia tensor elements Ijj’ 
and I’jj’, calculated in two reference frames – one with its origin at the center of mass 0, and another one 
(0’) translated by a certain vector d (Fig. 4a), so for an arbitrary point, r’ = r + d. Plugging this relation 
into Eq. (16), we get 
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  (4.27) 

Since in the center-of-mass frame, all sums mrj equal zero, we may use Eq. (16) to finally obtain 

               )( '
2

'' jjjjjjjj' dddMII'   .    (4.28) 

In particular, this equation shows that if the shift vector d is perpendicular to one (say, jth) of the 
principal axes (Fig. 4b), i.e. dj = 0, then Eq. (28) is reduced to a very simple formula: 

                        .2MdII' jj       (4.29) 

 

 

 

 

 

 

Fig. 4.4. (a) A general coordinate 
frame’s shift from the center of 
mass, and (b) a shift perpendicular 
to one of the principal axes.  
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 Now returning to the particular system shown in Fig. 3, let us perform such a shift to the new 
(“primed”) axis passing through the location of one of the particles, still perpendicular to their common 
plane. Then the contribution of that particular mass to the primed moment of inertia vanishes, and I’3 = 
2ma2. Now, returning to the center of mass and applying Eq. (29), we get I3 = I’3 – M2 = 2ma2 – 
(3m)(a/3)2 = ma2, i.e. the same result as above. 

 The symmetry situation inside the triangle’s plane is somewhat less obvious, so let us start by 
calculating the moments of inertia for the axes shown vertical and horizontal in Fig. 3. From Eq. (24), 
we readily get: 
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  ,    (4.30) 

where h is the distance from the center of mass and any side of the triangle: h =  sin(/6) = /2 = 
a/23. We see that I1 = I2, and mathematics tells us that in this case, any in-plane axis (passing through 
the center-of-mass 0) may be considered as principal, and has the same moment of inertia. A rigid body 
with this property, I1 = I2  I3, is called the symmetric top. (The last direction is called the main principal 
axis of the system.)  

 Despite the symmetric top’s name, the situation may be even more symmetric in the so-called 
spherical tops, i.e.  highly symmetric systems whose principal moments of inertia are all equal, 

                IIII  321 ,     (4.31) 

Mathematics says that in this case, the moment of inertia for rotation about any axis (but still passing 
through the center of mass) is equal to the same I. Hence Eqs. (25) and (26) are further simplified for 
any direction of the vector : 

         ωL I
I

T  ,
2

2
rot  ,     (4.32) 

thus making the analogy of rotation and translation complete. (As will be discussed in the next section, 
this analogy is also complete if the rotation axis is fixed by external constraints.)   

 Evident examples of a spherical top are a uniform sphere and a uniform spherical shell; its less 
obvious example is a uniform cube – with masses either concentrated in vertices, or uniformly spread 
over the faces, or uniformly distributed over the volume. Again, in this case any axis passing through the 
center of mass is a principal one and has the same principal moment of inertia. For a sphere, this is 
natural; for a cube, rather surprising – but may be confirmed by a direct calculation. 

 

4.3. Fixed-axis rotation 

 Now we are well equipped for a discussion of the rigid body’s rotational dynamics. The general 
equation of this dynamics is given by Eq. (1.38), which is valid for dynamics of any system of particles 
– either rigidly connected or not: 
           τL  ,       (4.33) 

where  is the net torque of external forces. Let us start exploring this equation from the simplest case 
when the axis of rotation, i.e. the direction of vector , is fixed by some external constraints. Directing 
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the z-axis along this vector, we have x = y = 0. According to Eq. (22), in this case, the z-component of 
the angular momentum,  
         ,zzzz IL        (4.34) 

where Izz, though not necessarily one of the principal moments of inertia. still may be calculated using 
Eq. (24): 

        222 yxmmI zzz  ,    (4.35) 

with z being the distance of each particle from the rotation axis z. According to Eq. (15), in this case the 
rotational kinetic energy is just 

                  2
rot 2 z

zzI
T  .      (4.36) 

Moreover, it is straightforward to show that if the rotation axis is fixed, Eqs. (34)-(36) are valid even if 
the axis does not pass through the center of mass – provided that the distances z are now measured 
from that axis. (The proof is left for the reader’s exercise.) 

 As a result, we may not care about other components of the vector L,8 and use just one 
component of Eq. (33), 
           ,zzL        (4.37) 

because it, when combined with Eq. (34), completely determines the dynamics of rotation: 

               ,  i.e., zzzzzzzz II        (4.38) 

where z is the angle of rotation about the axis, so z = . The scalar relations (34), (36), and (38), 
describing rotation about a fixed axis, are completely similar to the corresponding formulas of 1D 
motion of a single particle, with z corresponding to the usual (“linear”) velocity, the angular 
momentum component Lz – to the linear momentum, and Iz  – to the particle’s mass. 

 The resulting motion about the axis is also frequently similar to that of a single particle. As a 
simple example, let us consider what is called the physical (or “compound”) pendulum (Fig. 5) – a rigid 
body free to rotate about a fixed horizontal axis that does not pass through the center of mass 0, in a 
uniform gravity field g.  

 

 

 

 

 

 

 

8 Note that according to Eq. (22), other Cartesian components of the angular momentum, Lx and Ly, may be 
different from zero, and even evolve in time. The corresponding torques x and y, which obey Eq. (33), are 
automatically provided by the external forces that keep the rotation axis fixed. 

Fig. 4.5. Physical pendulum: a rigid 
body with a fixed (horizontal) rotation 
axis  0’ that does not pass through the 
center of mass 0. (The plane of 
drawing is normal to that axis.) 
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 Let us drop the perpendicular from point 0 to the rotation axis, and call the oppositely directed 
vector l – see the dashed arrow in Fig. 5. Then the torque (relative to the rotation axis 0’) of the forces 
keeping the axis fixed is zero, and the only contribution to the net torque is due to gravity alone:  

            glgrglgrlFrτ   Mmmm 0in 0in '0in '0in . (4.39) 

(The last step used the facts that point 0 is the center of mass, so the second term on the right-hand side 
equals zero, and that the vectors l and g are the same for all particles of the body.) 

 This result shows that the torque is directed along the rotation axis, and its (only) component z 
is equal to –Mglsin, where   is the angle between the vectors l and g, i.e. the angular deviation of the 
pendulum from the position of equilibrium – see Fig. 5 again. As a result, Eq. (38) takes the form,  

                ,sin MglI'       (4.40) 

where I’ is the moment of inertia for rotation about the axis 0’ rather than about the center of mass. This 
equation is identical to Eq. (1.18) for the point-mass (sometimes called “mathematical”) pendulum, with 
small-oscillation frequency 
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      (4.41) 

As a sanity check, in the simplest case when the linear size of the body is much smaller than the 
suspension length l, Eq. (35) yields I’ = Ml2, i.e. lef = l, and Eq. (41) reduces to the well-familiar formula 
 = (g/l)1/2 for the point-mass pendulum. 

 Now let us discuss the situations when a rigid body not only rotates but also moves as a whole. 
As was mentioned in the introductory chapter, the total linear momentum of the body, 

                rrvP m
dt

d
mm  ,    (4.42) 

satisfies the 2nd Newton’s law in the form (1.30). Using the definition (13) of the center of mass, the 
momentum may be represented as  
                ,MM VRP        (4.43) 
so Eq. (1.30) may be rewritten as  
           FV M ,      (4.44) 

where F is the vector sum of all external forces. This equation shows that the center of mass of the body 
moves exactly like a point particle of mass M, under the effect of the net force F. In many cases, this 
fact makes the translational dynamics of a rigid body absolutely similar to that of a point particle.  

 The situation becomes more complex if some of the forces contributing to the vector sum F 
depend on the rotation of the same body, i.e. if its rotational and translational motions are coupled. 
Analysis of such coupled motion is rather straightforward if the direction of the rotation axis does not 
change in time, and hence Eqs. (34)-(36) are still valid. Possibly the simplest example is a round 
cylinder (say, a wheel) rolling on a surface without slippage (Fig. 6). Here the no-slippage condition 
may be represented as the requirement to the net velocity of the particular wheel’s point A that touches 
the surface to equal zero – in the reference frame bound to the surface. For the simplest case of plane 

C.o.m.: 
law of 

 motion 
 

Physical 
pendulum: 
frequency 
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surface (Fig. 6a), this condition may be spelled out using Eq. (10), giving the following relation between 
the angular velocity   of the wheel and the linear velocity V of its center: 

         .0 rV       (4.45) 

 

  

 

 

 
  
 
 Such kinematic relations are essentially holonomic constraints, which reduce the number of 
degrees of freedom of the system. For example, without the no-slippage condition (45), the wheel on a 
plane surface has to be considered as a system with two degrees of freedom, making its total kinetic 
energy (14) a function of two independent generalized velocities, say V  and  : 

                22
rottran 22

I
V

M
TTT  .    (4.46) 

Using Eq. (45) we may eliminate, for example, the linear velocity and reduce Eq. (46) to  

        .  where,
222

2
ef

2ef22 MrII
II

r
M

T      (4.47) 

This result may be interpreted as the kinetic energy of pure rotation of the wheel about the instantaneous 
rotation axis A, with Ief being the moment of inertia about that axis, satisfying Eq. (29). 

 Kinematic relations are not always as simple as Eq. (45). For example, if a wheel is rolling on a 
concave surface (Fig. 6b), we need to relate the angular velocities of the wheel’s rotation about its axis 
0’ (say, ) and that (say, ) of its axis’ rotation about the center 0 of curvature of the surface. A popular 
error here is to write  = –(r/R) [WRONG!]. A prudent way to derive the correct relation is to note 
that Eq. (45) holds for this situation as well, and on the other hand, the same linear velocity of the 
wheel’s center may be expressed as V = (R – r). Combining these formulas, we get the correct relation 

      .
rR

r


      (4.48) 

 Another famous example of the relation between translational and rotational motion is given by 
the “sliding-ladder” problem (Fig. 7). Let us analyze it for the simplest case of negligible friction, and 
the ladder’s thickness being small in comparison with its length l. 

 

 

 

 

 
Fig. 4.7. The sliding-ladder problem. 
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 To use the Lagrangian formalism, we may write the kinetic energy of the ladder as the sum (14) 
of its translational and rotational parts: 

             ,
22

222  I
YX

M
T       (4.49) 

where X and Y are the Cartesian coordinates of its center of mass in an inertial reference frame, and I is 
the moment of inertia for rotation about the z-axis passing through the center of mass. (For the 
uniformly distributed mass, an elementary integration of Eq. (35) yields I = Ml2/12). In the reference 
frame with the center in the corner 0, both X and Y may be simply expressed via the angle  : 

       .sin
2

,cos
2

 l
Y

l
X       (4.50) 

(The easiest way to obtain these relations is to notice that the dashed line in Fig. 7 has length l/2, and the 
same slope  as the ladder.) Plugging these expressions into Eq. (49), we get 

      2
2

ef
2ef

3

1

2
,

2
Ml

l
MII

I
T 






  .    (4.51) 

Since the potential energy of the ladder in the gravity field may be also expressed via the same angle, 

        ,sin
2

l
MgMgYU       (4.52) 

  may be conveniently used as the (only) generalized coordinate of the system. Even without writing 
the Lagrange equation of motion for that coordinate, we may notice that since the Lagrangian function L 
 T – U does not depend on time explicitly, and the kinetic energy (51) is a quadratic-homogeneous 
function of the generalized velocity  , the full mechanical energy, 

     







  sin

32
sin

22

2
2ef

g

lMgll
Mg

I
UTE


 ,   (4.53) 

is conserved, giving us the first integral of motion. Moreover, Eq. (53) shows that the system’s energy 
(and hence dynamics) is identical to that of a physical pendulum with an unstable fixed point 1 = /2, a 
stable fixed point at  2  = –/2, and frequency  

         
2/1

2

3










l

g
     (4.54) 

of small oscillations near the latter point. (Of course, this fixed point cannot be reached in the simple 
geometry shown in Fig. 7, where the ladder’s fall on the floor would change its equations of motion. 
Moreover, even before that, the left end of the ladder may detach from the wall. The analysis of this 
issue is left for the reader’s exercise.) 

 

4.4. Free rotation 

 Now let us proceed to more complex situations when the rotation axis is not fixed. A good 
illustration of the complexity arising in this case comes from the case of a rigid body left alone, i.e. not 
subjected to external forces and hence with its potential energy U constant. Since in this case, according 
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to Eq. (44), the center of mass (as observed from any inertial reference frame) moves with a constant 
velocity, we can always use a convenient inertial reference frame with the origin at that point. From the 
point of view of such a frame, the body’s motion is a pure rotation, and Ttran = 0. Hence, the system’s 
Lagrangian function is just its rotational energy (15), which is, first, a quadratic-homogeneous function 
of the components j (which may be taken for generalized velocities), and, second, does not depend on 
time explicitly. As we know from Chapter 2, in this case the mechanical energy, here equal to Trot alone, 
is conserved. According to Eq. (15), for the principal-axes components of the vector , this means 

          



3

1

2
rot const 

2j
j

jI
T  .     (4.55) 

Next, as Eq. (33) shows, in the absence of external forces, the angular momentum L of the body is 
conserved as well. However, though we can certainly use Eq. (26) to represent this fact as  

          const 
3

1

 
j

jjjI nL  ,     (4.56) 

where nj are the principal axes, this does not mean that all components j are constant, because the 
principal axes are fixed relative to the rigid body, and hence may rotate with it. 

 Before exploring these complications, let us briefly mention two conceptually easy, but 
practically very important cases. The first is a spherical top (I1 = I2 = I3 = I). In this case, Eqs. (55) and 
(56) imply that all components of the vector  = L/I, i.e. both the magnitude and the direction of the 
angular velocity are conserved, for any initial spin. In other words, the body conserves its rotation speed 
and axis direction, as measured in an inertial frame. The most obvious example is a spherical planet. For 
example, our Mother Earth, rotating about its axis with angular velocity  = 2/(1 day)  7.310-5 s-1, 
keeps its axis at a nearly constant angle of 2327’ to the ecliptic pole, i.e. to the axis normal to the plane 
of its motion around the Sun. (In Sec. 6 below, we will discuss some very slow motions of this axis, due 
to gravity effects.) 

 Spherical tops are also used in the most accurate gyroscopes, usually with gas-jet or magnetic 
suspension in vacuum. If done carefully, such systems may have spectacular stability. For example, the 
gyroscope system of the Gravity Probe B satellite experiment, flown in 2004-2005, was based on quartz 
spheres – round with a precision of about 10 nm and covered with superconducting thin films (which 
enabled their magnetic suspension and monitoring). The whole system was stable enough to measure the 
so-called geodetic effect in general relativity (essentially, the space curving by the Earth’s mass), 
resulting in the axis’ precession by only 6.6 arc seconds per year, i.e. with an angular velocity of just 
~10-11s-1, with experimental results agreeing with theory with a record ~0.3% accuracy.9 

 The second simple case is that of the symmetric top (I1 = I2  I3) with the initial vector L aligned 
with the main principal axis. In this case,  = L/I3 = const, so the rotation axis is conserved.10 Such tops, 
typically in the shape of a flywheel (heavy, flat rotor), and supported by gimbal systems (also called the 
“Cardan suspensions”) that allow for virtually torque-free rotation about three mutually perpendicular 

9 Still, the main goal of this rather expensive (~$750M) project, an accurate measurement of a more subtle 
relativistic effect, the so-called frame-dragging drift (also called “the Schiff precession”), predicted to be about 
0.04 arc seconds per year, has not been achieved. 
10 This is also true for an asymmetric top, i.e. an arbitrary body (with, say, I1 < I2 < I3), but in this case the 
alignment of the vector L with the axis n2 corresponding to the intermediate moment of inertia, is unstable. 

Rotational 
energy’s 
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axes,11 are broadly used in more common gyroscopes. Invented by Léon Foucault in the 1850s and made 
practical later by H. Anschütz-Kaempfe, such gyroscopes have become core parts of automatic guidance 
systems, for example, in ships, airplanes, missiles, etc. Even if its support wobbles and/or drifts, the 
suspended gyroscope sustains its direction relative to an inertial reference frame.12 

 However, in the general case with no such special initial alignment, the dynamics of symmetric 
tops is more complicated. In this case, the vector L is still conserved, including its direction, but the 
vector  is not. Indeed, let us direct the n2-axis normally to the common plane of the vector L and the 
current instantaneous direction n3 of the main principal axis (in Fig. 8 below, the plane of the drawing); 
then, in that particular instant, L2 = 0. Now let us recall that in a symmetric top, the axis n2 is a principal 
one. According to Eq. (26) with j = 2, the corresponding component 2 has to be equal to L2/I2, so it is 
equal to zero. This means that in the particular instant we are considering, the vector  lies in this plane 
(the common plane of vectors L and n3) as well – see Fig. 8a. 

    

 

 

 

  

 

 

  

 Now consider some point located on the main principal axis n3, and hence on the plane [n3, L]. 
Since  is the instantaneous axis of rotation, according to Eq. (9), the point’s instantaneous velocity v = 
r  is directed normally to that plane. This is true for each point of the main axis (besides only one, 
with r = 0, i.e. the center of mass, which does not move), so the axis as a whole has to move normally to 
the common plane of the vectors L, , and n3, while still passing through point 0. Since this conclusion 
is valid for any moment of time, it means that the vectors  and n3 rotate about the space-fixed vector L 
together, with some angular velocity pre, at each moment staying within one plane. This effect is called 
the free (or “torque-free”, or “regular”) precession, and has to be clearly distinguished it from the 
completely different effect of the torque-induced precession, which will be discussed in the next section. 

To calculate pre, let us represent the instant vector  as a sum of not its Cartesian components 
(as in Fig. 8a), but rather of two non-orthogonal vectors directed along n3 and L (Fig. 8b):  

             .,pre3rot LLL

L
nnnω       (4.57) 

11 See, for example, a nice animation available online at http://en.wikipedia.org/wiki/Gimbal. 
12 Currently, optical gyroscopes are becoming more popular for all but the most precise applications. Much more 
compact but also much less accurate gyroscopes used, for example, in smartphones and tablet computers, are 
based on the effect of rotation on 2D mechanical oscillators (whose analysis is left for the reader’s exercise), and 
are implemented as micro-electro-mechanical systems (MEMS) – see, e.g., Chapter 22 in V. Kaajakari, Practical 
MEMS, Small Gear Publishing, 2009. 

(a)            (b) 

Fig. 4.8. Free rotation of a symmetric top: 
(a) the general configuration of vectors, 
and (b) calculating the free precession 
frequency. 
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Fig. 8b shows that rot has the meaning of the angular velocity of rotation of the body about its main 
principal axis, while pre is the angular velocity of rotation of that axis about the constant direction of 
the vector L, i.e. is exactly the frequency of precession that we are trying to find. Now pre may be 
readily calculated from the comparison of two panels of Fig. 8, by noticing that the same angle  
between the vectors L and n3 participates in two relations: 

               .sin
pre

11




 
L

L
     (4.58) 

Since the n1-axis is a principal one, we may use Eq. (26) for j = 1, i.e. L1 = I11, to eliminate 1 from 
Eq. (58), and get a very simple formula 

          
1

pre I

L
 .      (4.59) 

This result shows that the precession frequency is constant and independent of the alignment of the 
vector L with the main principal axis n3, while its amplitude (characterized by the angle ) does depend 
on the initial alignment, and vanishes if L is parallel to n3.13 Note also that if all principal moments of 
inertia are of the same order, pre is of the same order as the total angular speed     of the rotation. 

 Now let us briefly discuss the free precession in the general case of an “asymmetric top”, i.e. a 
body with arbitrary I1  I2  I3. In this case, the effect is more complex because here not only the 
direction but also the magnitude of the instantaneous angular velocity  may evolve in time. If we are 
only interested in the relation between the instantaneous values of j and Lj, i.e. the “trajectories” of the 
vectors  and L as observed from the reference frame {n1, n2, n3} of the principal axes of the body, 
rather than in the explicit law of their time evolution, they may be found directly from the conservation 
laws. (Let me emphasize again that the vector L, being constant in an inertial reference frame, generally 
evolves in the frame rotating with the body.) Indeed, Eq. (55) may be understood as the equation of an 
ellipsoid in the Cartesian coordinates {1, 2, 3 }, so for a free body, the vector  has to stay on the 
surface of that ellipsoid.14  On the other hand, since the reference frame’s rotation preserves the length 
of any vector, the magnitude (but not the direction!) of the vector L is also an integral of motion in the 
moving frame, and we can write 

     const 
3

1

22
3

1

22  
 j

jj
j

j ILL  .    (4.60) 

Hence the trajectory of the vector  follows the closed curve formed by the intersection of two 
ellipsoids, (55) and (60) – the so-called Poinsot construction. It is evident that this trajectory is generally 
“taco-edge-shaped”, i.e. more complex than a planar circle, but never very complex either.15 

 The same argument may be repeated for the vector L, for whom the first form of Eq. (60) 
describes a sphere, and Eq. (55), another ellipsoid: 

13 For our Earth, free precession’s amplitude is so small (corresponding to sub-10-m linear deviations of the 
symmetry axis from the vector L at the surface) that this effect is of the same order as other, more irregular 
motions of the axis, resulting from turbulent fluid flow effects in the planet’s interior and its atmosphere. 
14 It is frequently called the Poinsot’s ellipsoid, named after Louis Poinsot (1777-1859) who has made several 
important contributions to rigid body mechanics. 
15 Curiously, the “wobbling” motion along such trajectories was observed not only for macroscopic rigid bodies 
but also for heavy atomic nuclei – see, e.g., N. Sensharma et al., Phys. Rev. Lett. 124, 052501 (2020). 
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        



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rot const 
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I

T .     (4.61) 

On the other hand, if we are interested in the trajectory of the vector  as observed from an 
inertial frame (in which the vector L stays still), we may note that the general relation (15) for the same 
rotational energy Trot may also be rewritten as 

          
 


3

1

3

1'
''rot 2

1

j j
jjjj IT  .     (4.62) 

But according to the Eq. (22), the second sum on the right-hand side is nothing more than Lj, so 

       Lω  
 2

1

2

1 3

1
rot

j
jj LT  .     (4.63) 

This equation shows that for a free body (Trot = const, L = const), even if the vector  changes in time, 
its endpoint should stay on a plane normal to the angular momentum L. Earlier, we have seen that for 
the particular case of the symmetric top – see Fig. 8b, but for an asymmetric top, the trajectory of the 
endpoint may not be circular. 

 If we are interested not only in the trajectory of the vector  but also in the law of its evolution 
in time, it may be calculated using the general Eq. (33) expressed in the principal components j. For 
that, we have to recall that Eq. (33) is only valid in an inertial reference frame, while the frame {n1, n2, 
n3} may rotate with the body and hence is generally not inertial. We may handle this problem by 
applying, to the vector L, the general kinematic relation (8): 

       .movin labin Lω
LL


dt

d

dt

d
     (4.64) 

Combining it with Eq. (33), in the moving frame we get 

      τLω
L


dt

d
,     (4.65) 

where  is the external torque. In particular, for the principal-axis components Lj, related to the 
components j by Eq. (26), the vector equation (65) is reduced to a set of three scalar Euler equations 

                 jjjjjjj III   "''" )( ,     (4.66) 

where the set of indices { j, j’ , j” } has to follow the usual “right” order – e.g., {1, 2, 3}, etc.16   

 In order to get a feeling of how the Euler equations work, let us return to the particular case of a 
free symmetric top (1 = 2 = 3 = 0, I1 = I2  I3). In this case, I1 – I2 = 0, so Eq. (66) with j = 3 yields 3 
= const, while the equations for j = 1 and j = 2 take the following simple form: 

               ,Ω,Ω 1pre22pre1        (4.67) 

where pre is a constant determined by both the system parameters and the initial conditions: 

16 These equations are of course valid in the simplest case of the fixed rotation axis as well. For example, if  = 
nz, i.e. x = y = 0, Eq. (66) is reduced to Eq. (38). 

Euler 
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  .     (4.68) 

 The system of two equations (67) has a sinusoidal solution with frequency pre, and describes a 
uniform rotation of the vector , with that frequency, about the main axis n3. This is just another 
representation of the free precession analyzed above, but this time as observed from the rotating body. 
Evidently, pre is substantially different from the frequency pre (59) of the precession as observed from 
the lab frame; for example, pre vanishes for the spherical top (with I1 = I2 = I3), while pre, in this case, 
is equal to the rotation frequency.17  

 Unfortunately, for the rotation of an asymmetric top (i.e., an arbitrary rigid body) the Euler 
equations (66) are substantially nonlinear even in the absence of external torque, and may be solved 
analytically only in just a few cases. One of them is a proof of the already mentioned fact: the free top’s 
rotation about one of its principal axes is stable if the corresponding principal moment of inertia is either 
the largest or the smallest one of the three. (This proof is easy, and is left for the reader’s exercise.)  

 

 4.5. Torque-induced precession 

 The dynamics of rotation becomes even more complex in the presence of external forces. Let us 
consider the most counter-intuitive effect of torque-induced precession, for the simplest case of an 
axially-symmetric body (which is a particular case of the symmetric top, I1 = I2  I3), supported at some 
point A of its symmetry axis, that does not coincide with the center of mass 0 – see Fig. 9.  

 

 

 

 

   

  

 

  
 
 

 The uniform gravity field g creates bulk-distributed forces that, as we know from the analysis of 
the physical pendulum in Sec. 3, are equivalent to a single force Mg applied in the center of mass – in 
Fig. 9, point 0. The torque of this force relative to the support point A is  

     gngrτ  30 Ain MlM .     (4.69) 

Hence the general equation (33) of the angular momentum evolution (valid in any inertial frame, for 
example the one with its origin at point A) becomes 

17 For our Earth with its equatorial bulge (see Sec. 6 below), the ratio (I3 – I1)/I1 is ~1/300, so that 2/pre is about 
10 months. However, due to the fluid flow effects mentioned above, the observed precession is not very regular. 

Fig. 4.9. Symmetric top in the gravity field: 
(a) a side view at the system and (b) the top 
view at the evolution of the horizontal 
component of the angular momentum vector. 
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       gnL  3Ml .     (4.70) 

Despite the apparent simplicity of this (exact!) equation, its analysis is straightforward only in the limit 
when the top is spinning about its symmetry axis n3 with a very high angular velocity rot. In this case, 
we may neglect the contribution to L due to a relatively small precession velocity pre (still to be 
calculated), and use Eq. (26) to write 

                .3rot33 nωL II       (4.71) 

Then Eq. (70) shows that the vector L is perpendicular to both n3 (and hence L) and g, i.e. lies within a 
horizontal plane and is perpendicular to the horizontal component Lxy of the vector L – see Fig. 9b. 
Since, according to Eq. (70), the magnitude of this vector is constant,  L  = Mgl sin, the vector L (and 
hence the body’s main axis) rotates about the vertical axis with the following angular velocity: 

            
rot3

pre sin
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
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L
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L
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Lxy
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L

.    (4.72) 

 Thus, rather counter-intuitively, the fast-rotating top does not follow the external, vertical force 
and, in addition to fast spinning about the symmetry axis n3, performs a revolution, called the torque-
induced precession, about the vertical axis.18 Note that, similarly to the free-precession frequency (59), 
the torque-induced precession frequency (72) does not depend on the initial (and sustained) angle . 
However, the torque-induced precession frequency is inversely (rather than directly) proportional to rot. 
This fact makes the above simple theory valid in many practical cases. Indeed, Eq. (71) is quantitatively 
valid if the contribution of the precession into L is relatively small: Ipre << I3rot, where I is a certain 
effective moment of inertia for the precession – to be calculated below. Using Eq. (72), this condition 
may be rewritten as 

                           .

2/1

2
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rot 



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




I

MglI      (4.73) 

According to Eq. (16), for a body of not too extreme proportions, i.e. with all linear dimensions of the 
same length scale l, all inertia moments are of the order of Ml2, so the right-hand side of Eq. (73) is      
of the order of (g/l)1/2, i.e. comparable with the frequency of small oscillations of the same body as the 
physical pendulum at the absence of its fast rotation. 

 To develop a quantitative theory that would be valid beyond such approximate treatment, the 
Euler equations (66) may be used, but are not very convenient. A better approach, suggested by the 
same L. Euler, is to introduce a set of three independent angles between the principal axes {n1, n2, n3} 
bound to the rigid body, and the axes {nx, ny, nz} of an inertial reference frame (Fig. 10), and then 
express the basic equation (33) of rotation, via these angles. There are several possible options for the 
definition of such angles; Fig. 10 shows the set of Euler angles, most convenient for analyses of fast 
rotation.19 As one can see, the first Euler angle, , is the usual polar angle measured from the nz-axis to 
the n3-axis. The second one is the azimuthal angle , measured from the nx-axis to the line of nodes 
formed by the intersection of planes [nx, ny] and [n1, n2]. The last Euler angle, , is measured within the 

18 A semi-quantitative interpretation of this effect is a very useful exercise, highly recommended to the reader. 
19 Of the several choices more convenient in the absence of fast rotation, the most common is the set of so-called 
Tait-Brian angles (called the yaw, pitch, and roll), which are broadly used for aircraft and maritime navigation.  
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plane [n1, n2], from the line of nodes to the n1-axis. For example, in the simple picture of slow force-
induced precession of a symmetric top, that was discussed above, the angle  is constant, the angle  
changes rapidly, with the rotation velocity rot, while the angle  evolves with the precession frequency 
pre (72). 

 

 

 

 

 

 

 

 

  
 Now we can express the principal-axes components of the instantaneous angular velocity vector, 
1, 2, and 3, as measured in the lab reference frame, in terms of the Euler angles. This may be readily 
done by calculating, from Fig. 10, the contributions of the Euler angles’ evolution to the rotation about 
each principal axis, and then adding them up: 
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     (4.74)   

 These relations enable the expression of the kinetic energy of rotation (25) and the angular 
momentum components (26) via the generalized coordinates , , and  and their time derivatives (i.e. 
the corresponding generalized velocities), and then using the powerful Lagrangian formalism to derive 
their equations of motion. This is especially simple to do in the case of symmetric tops (with I1 = I2), 
because plugging Eqs. (74) into Eq. (25) we get an expression, 

        232221
rot cos

2
sin

2
  

II
T ,    (4.75) 

which does not include explicitly either  or .  (This reflects the fact that for a symmetric top we can 
always select the n1-axis to coincide with the line of nodes, and hence take   = 0 at the considered 
moment of time. Note that this trick does not mean we can take 0 , because the n1-axis, as observed 
from an inertial reference frame, moves!) Now we should not forget that at the torque-induced 
precession, the center of mass moves as well (see, e.g., Fig. 9), so according to Eq. (14), the total kinetic 
energy of the body is the sum of two terms, 

                 22222
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TTTT ,   (4.76) 

while its potential energy is just 

           constcos  MglU .     (4.77) 
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 Now we could readily use Eqs. (2.19) to write the Lagrange equations of motion for the Euler 
angles, but it is simpler to immediately notice that according to Eqs. (75)-(77), the Lagrangian function, 
T – U, does not depend explicitly on the “cyclic” coordinates   and , so the corresponding generalized 
momenta (2.31) are conserved:  

       const,cos)cos(sin 3
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where IA  I1 +Ml2. (According to Eq. (29),  IA is just the body’s moment of inertia for rotation about a 
horizontal axis passing through the support point A.) According to the last of Eqs. (74), p is just L3, i.e. 
the angular momentum’s component along the precessing axis n3. On the other hand, by its very 
definition (78), p is Lz, i.e. the same vector L’s component along the stationary axis z. (Actually, we 
could foresee in advance the conservation of both these components of L for our system, because the 
vector (69) of the external torque is perpendicular to both n3 and nz.) Using this notation, and solving 
the simple system of two linear equations (78)-(79) for the angle derivatives, we get 
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 One more conserved quantity in this problem is the full mechanical energy20  
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Plugging Eqs. (80) into Eq. (81), we get a first-order differential equation for the angle , which may be 
represented in the following physically transparent form: 
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 Thus, similarly to the planetary problems considered in Sec. 3.4, the torque-induced precession 
of a symmetric top has been reduced (without any approximations!) to a 1D problem of the motion of 
just one of its degrees of freedom, the polar angle , in the effective potential Uef(). According to Eq. 
(82), very similar to Eq. (3.44) for the planetary problem, this potential is the sum of the actual potential 
energy U given by Eq. (77), and a contribution from the kinetic energy of motion along two other 
angles. In the absence of rotation about the axes nz and n3 (i.e., Lz = L3 = 0), Eq. (82) is reduced to the 
first integral of the equation (40) of motion of a physical pendulum, with I’ = IA. If the rotation is 
present, then (besides the case of very special initial conditions when  (0) = 0 and Lz = L3),21 the first 
contribution to Uef() diverges at   0 and , so the effective potential energy has a minimum at some 
non-zero value 0 of the polar angle    – see Fig. 11. 

20 Indeed, since the Lagrangian does not depend on time explicitly, H = const, and since the full kinetic energy  T  
(75)-(76) is a quadratic-homogeneous function of the generalized velocities, we have E = H. 
21 In that simple case, the body continues to rotate about the vertical symmetry axis: (t) = 0. Note, however, that 
such motion is stable only if the spinning speed is sufficiently high – see Eq. (85) below.  
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 If the initial angle  (0) is equal to this value 0, i.e. if the initial effective energy is equal to its 
minimum value Uef(0), the polar angle remains constant through the motion: (t) = 0. This corresponds 
to the pure torque-induced precession whose angular velocity is given by the first of Eqs. (80): 
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The condition for finding 0, dUef/d = 0, is a transcendental algebraic equation that cannot be solved 
analytically for arbitrary parameters. However, in the high spinning speed limit (73), this is possible. 
Indeed, in this limit the Mgl-proportional contribution to Uef is small, and we may analyze its effect by 
successive approximations. In the 0th approximation, i.e. at Mgl = 0, the minimum of Uef is evidently 
achieved at cos0  = Lz/L3, turning the precession frequency (83) to zero. In the next, 1st approximation, 
we may require that at  = 0, the derivative of the first term of Eq. (82) for Uef over cos, equal to –
Lz(Lz – L3cos)/IAsin2,22 is canceled with that of the gravity-induced term, equal to Mgl. This 
immediately yields pre = (Lz – L3cos0)/IAsin20  = Mgl/L3, so by identifying rot with 3  L3/I3 (see 
Fig. 8), we recover the simple expression (72).  

 The second important result that may be readily obtained from Eq. (82) is the exact expression 
for the threshold value of the spinning speed for a vertically rotating top ( = 0, Lz = L3). Indeed, in the 
limit   0 this expression may be readily simplified:  
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This formula shows that if rot  L3/I3 is higher than the following threshold value,  
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22 Indeed, the derivative of the fraction 1/2IAsin2, taken at the point cos  = Lz/L3, is multiplied by the numerator, 
(Lz – L3cos)2, which turns to zero at this point. 
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Fig. 4.11. The effective potential energy 
Uef of the symmetric top, given by Eq. 
(82), as a function of the polar angle , 
for a particular value (0.95) of the ratio r 
 Lz/L3 (so that at rot >> th, 0 = cos-1r 
 0.1011), and several values of the 
ratio rot/th – see Eq. (85). 



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 4             Page 21 of 32

then the coefficient at  2 in Eq. (84) is positive, so Uef has a stable minimum at 0 = 0. On the other 
hand, if 3 is decreased below th, the fixed point becomes unstable, so the top falls. As the plots in Fig. 
11 show, Eq. (85) for the threshold frequency works very well even for non-zero but small values of the 
precession angle 0. Note that if we take I = IA in the condition (73) of the approximate treatment, it 
acquires a very simple sense: rot >> th. 

 Finally, Eqs. (82) give a natural description of one more phenomenon. If the initial energy is 
larger than Uef(0), the angle  oscillates between two classical turning points on both sides of the fixed 
point 0 – see Fig. 11 again. The law and frequency of these oscillations may be found exactly as in Sec. 
3.3 – see Eqs. (3.27) and (3.28). At 3 >> th, this motion is a fast rotation of the body’s symmetry axis 
n3 about its average position performing the slow torque-induced precession. Historically, these 
oscillations are called nutations, but their physics is similar to that of the free precession that was 
analyzed in the previous section, and the order of magnitude of their frequency is given by Eq. (59). 

 It may be proved that small friction (not taken into account in the above analysis) leads first to a 
decay of these nutations, then to a slower drift of the precession angle 0 to zero, and finally, to a 
gradual decay of the spinning speed rot until it reaches the threshold (85) and the top falls.  

 

4.6. Non-inertial reference frames 

 Now let us use the results of our analysis of the rotation kinematics in Sec. 1 to complete the 
discussion of the transfer between two reference frames, which was started in the introductory Chapter 
1. As Fig. 12 (which reproduces Fig. 1.2 in a more convenient notation) shows, even if the “moving” 
frame 0 rotates relative to the “lab” frame 0’, the radius vectors observed from these two frames are still 
related, at any moment of time, by the simple Eq. (1.5). In our new notation: 

               rrr  0' .      (4.86) 

  

 

 

 

 

 

 However, as was mentioned in Sec. 1, the general addition rule for velocities is already more 
complex. To find it, let us differentiate Eq. (86) over time: 
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The left-hand side of this relation is evidently the particle’s velocity as measured in the lab frame, and 
the first term on the right-hand side is the velocity v0 of point 0, as measured in the same lab frame. The 
last term is more complex: due to the possible mutual rotation of the frames 0 and 0’, that term may not 
vanish even if the particle does not move relative to the rotating frame 0 – see Fig. 12. 
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 Fortunately, we have already derived the general Eq. (8) to analyze situations exactly like this 
one. Taking A = r in it, we may apply the result to the last term of Eq. (87), to get  

      ),(labin 0labin rωvvv       (4.88) 

where  is the instantaneous angular velocity of an imaginary rigid body connected to the moving 
reference frame (or we may say, of this frame as such), as measured in the lab frame 0’, while v is dr/dt 
as measured in the moving frame 0. The relation (88), on one hand, is a natural generalization of Eq. 
(10) for v  0; on the other hand, if  = 0, it is reduced to simple Eq. (1.8) for the translational motion of 
the frame 0.  

 To calculate the particle’s acceleration, we may just repeat the same trick: differentiate Eq. (88) 
over time, and then use Eq. (8) again, now for the vector A = v + r. The result is 
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   (4.89) 

Carrying out the differentiation in the second term, we finally get the goal relation, 

            )(2labin 0labin rωωvωrωaaa   ,   (4.90) 

where a is the particle’s acceleration as measured in the moving frame. This result is a natural 
generalization of the simple Eq. (1.9) to the rotating frame case. 

 Now let the lab frame 0’ be inertial; then the 2nd Newton’s law for a particle of mass m is 

        Fa labin m ,      (4.91) 

where F is the vector sum of all forces exerted on the particle. This is simple and clear; however, in 
many cases it is much more convenient to work in a non-inertial reference frame. For example, when 
describing most phenomena on the Earth’s surface, it is rather inconvenient to use a reference frame 
bound to the Sun (or to the galactic center, etc.). In order to understand what we should pay for the 
convenience of using a moving frame, we may combine Eqs. (90) and (91) to write 

       .2)(labin 0 rωvωrωωaFa  mmmmm     (4.92) 

This result means that if we want to use an analog of the 2nd Newton’s law in a non-inertial reference 
frame, we have to add, to the actual net force F exerted on a particle, four pseudo-force terms, called 
inertial forces, all proportional to the particle’s mass. Let us analyze them one by one, always 
remembering that these are just mathematical terms, not actual physical forces. (In particular, it would 
be futile to seek a 3rd-Newton’s-law counterpart for any inertial force.)  

 The first term, –ma0in lab, is the only one not related to rotation and is well known from 
undergraduate mechanics. (Let me hope the reader remembers all these weight-in-the-accelerating-
elevator problems.) However, despite its simplicity, this term has more subtle consequences. As an 
example, let us consider, semi-qualitatively, the motion of a planet, such as our Earth, orbiting a star and 
also rotating about its own axis – see Fig. 13. The bulk-distributed gravity forces, acting on a planet 
from its star, are not quite uniform,  because they obey the 1/r2 gravity law (1.15), and hence are 
equivalent to a single force applied to a point A slightly offset from the planet’s center of mass 0, toward 
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the star. For a spherically symmetric planet, the direction from 0 to A would be exactly aligned with the 
direction toward the star. However, real planets are not absolutely rigid, so due to the centrifugal “force” 
(to be discussed momentarily), the rotation about their own axis makes them slightly ellipsoidal – see 
Fig. 13. (For our Earth, this equatorial bulge is about 10 km.) As a result, the net gravity force is slightly 
offset from the direction toward the center of mass 0. On the other hand, repeating all the arguments     
of this section for a body (rather than a point), we may see that, in the reference frame moving with the 
planet, the inertial force –Ma0 (with the magnitude of the total gravity force, but directed from the star) 
is applied exactly to the center of mass. As a result, this pair of forces creates a torque  perpendicular to 
both the direction toward the star and the vector 0A. (In Fig. 13, the torque vector is perpendicular to the 
plane of the drawing). If the angle  between the planet’s “polar” axis of rotation and the direction 
towards the star was fixed, then, as we have seen in the previous section, this torque would induce a 
slow axis precession about that direction. 

 

 

 

 

 

 

 

 

 However, as a result of the orbital motion, the angle  oscillates in time much faster (once a 
year) between values (/2 + ) and  (/2 – ), where  is the axis tilt, i.e. angle between the polar axis 
(the direction of vectors L and rot) and the normal to the ecliptic plane of the planet’s orbit. (For the 
Earth,   23.4.) A straightforward averaging over these fast oscillations23 shows that the torque leads 
to the polar axis’ precession about the axis perpendicular to the ecliptic plane, keeping  constant – see 
Fig. 13. For the Earth, the period  Tpre = 2/pre of this precession of the equinoxes, corrected for a 
substantial effect of the Moon’s gravity, is close to 26,000 years.24 

 Returning to Eq. (92), the direction of the second term of its right-hand side,  

               rωωF  mcf ,     (4.93) 

called the centrifugal force, is always perpendicular to, and directed out of the instantaneous rotation 
axis – see Fig. 14. Indeed, the vector r is perpendicular to both   and r (in Fig. 14, normal to the 
drawing plane and directed from the reader) and has the magnitude rsin = , where  is the distance 
of the particle from the rotation axis. Hence the outer vector product, with the account of the minus sign, 
is normal to the rotation axis , directed from this axis, and is equal to 2rsin  = 2. The centrifugal 
“force” is of course just the result of the fact that the centripetal acceleration 2, explicit in the inertial 
reference frame, disappears in the rotating frame. For a typical location of the Earth ( ~ RE  6106 m), 

23 Details of this calculation may be found, e.g., in Sec. 5.8 of the textbook by H. Goldstein et al., Classical 
Mechanics, 3rd ed., Addison Wesley, 2002. 
24 This effect is known from antiquity, apparently discovered by Hipparchus of Rhodes (190-120 BC). 
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with its angular velocity E  10-4 s-1,  the acceleration is rather considerable, of the order of 3 cm/s2, i.e. 
~0.003 g, and is responsible, in particular, for the largest part of the equatorial bulge mentioned above. 

              

 

 

 

 

 As an example of using the centrifugal force concept, let us return again to our “testbed” 
problem on the bead sliding along a rotating ring – see Fig. 2.1. In the non-inertial reference frame 
attached to the ring, we have to add, to the actual forces mg and N exerted on the bead, the horizontal 
centrifugal force25 directed from the rotation axis, with the magnitude m2. Its component tangential to 
the ring equals (m2)cos = m2Rsincos, and hence the component of Eq. (92) along this direction 
is ma = –mgsin + m2Rsincos. With Ra  , this gives us an equation of motion equivalent to Eq. 
(2.25), which had been derived in Sec. 2.2 (in the inertial frame) using the Lagrangian formalism.  

 The third term on the right-hand side of Eq. (92), 

                vωF  m2C ,     (4.94) 

is the so-called Coriolis force,26 which is different from zero only if the particle moves in a rotating 
reference frame. Its physical sense may be understood by considering a projectile fired horizontally, say 
from the North Pole – see Fig. 15.  

 

 

 

 

 

 
  

 From the point of view of an Earth-based observer, the projectile will be affected by an 
additional Coriolis force (94), directed westward, with the magnitude 2mEv, where v is the main, 
southward component of the velocity. This force would cause the westward acceleration a = 2Ev, and 
hence the westward deviation growing with time as d = at2/2 = Evt2.  (This formula is exact only if d is 
much smaller than the distance r = vt passed by the projectile.) On the other hand, from the point of 

25 For this problem, all other inertial “forces”, besides the Coriolis force (see below) vanish, while the latter force 
is directed normally to the ring and does not affect the bead’s motion along it. 
26 Named after G.-G. de Coriolis (already reverently mentioned in Chapter 1) who described its theory and 
applications in detail in 1835, though the first semi-quantitative analyses of this effect were given by Giovanni 
Battista Riccioli and Claude François Dechales already in the mid-1600s, and all basic components of the Coriolis 
theory may be traced to a 1749 work by Leonard Euler. 

Fig. 4.14. The centrifugal force. 
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view of an inertial-frame observer, the projectile’s trajectory in the horizontal plane is a straight line. 
However, during the flight time t, the Earth’s surface slips eastward from under the trajectory by the 
distance d = r = (vt)(Et) = Evt2, where  = Et is the azimuthal angle of the Earth’s rotation during 
the flight). Thus, both approaches give the same result – as they should. 

 Hence, the Coriolis “force” is just a fancy (but frequently very convenient!) way of describing a 
purely geometric effect pertinent to the rotation, from the point of view of the observer participating in 
it. This force is responsible, in particular, for the higher right banks of rivers in the Northern 
hemisphere, regardless of the direction of their flow – see Fig. 16. Despite the smallness of the Coriolis 
force (for a typical velocity of the water in a river,  v ~ 1 m/s, it is equivalent to acceleration aC ~ 10-2 
cm/s2 ~ 10-5 g), its multi-century effects may be rather prominent.27  

 

  

 

 

 

  

  

 

  
 

 Finally, the last, fourth term of Eq. (92), rω m , exists only when the rotation frequency 
changes in time, and may be interpreted as a local-position-specific addition to the first term. 

 The key relation (92), derived above from Newton’s equation (91), may be alternatively obtained 
from the Lagrangian approach. Indeed, let us use Eq. (88) to represent the kinetic energy of the particle 
in an inertial “lab” frame in terms of v and r measured in a rotating frame: 
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and use this expression to calculate the Lagrangian function. For the relatively simple case of a 
particle’s motion in the field of potential forces, measured from a reference frame that performs a pure 
rotation (so v0in lab = 0)28 with a constant angular velocity , we get 
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where the effective potential energy,29 

27 The same force causes the counterclockwise circulation in the “Nor’easter” storms on the US East Coast, with 
the radial component of the air velocity directed toward the cyclone’s center, due to lower pressure in its middle. 
28 A similar analysis of the cases with v0in lab  0, for example, of a translational relative motion of the reference 
frames, is left for the reader’s exercise. 

Fig. 4.16. Coriolis forces due to the 
Earth’s rotation, in the Northern 
hemisphere. 
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is just the sum of the actual potential energy U of the particle and the so-called centrifugal potential 
energy, associated with the centrifugal “force” (93): 

             ).(
2
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U      (4.97) 

It is straightforward to verify that the Lagrange equations (2.19), derived from Eqs. (96) considering the 
Cartesian components of r and v as generalized coordinates and velocities, coincide with Eq. (92) (with 
a0in lab = 0, ω  = 0, and F = –U).  

 Now it is very informative to have a look at a by-product of this calculation, the generalized 
momentum (2.31) corresponding to the particle’s coordinate r as measured in the rotating reference 
frame,30 

            rωv
v





 m
L

p .     (4.98) 

According to Eq. (88) with v0in lab = 0, the expression in the parentheses is just vin lab.  However, from 
the point of view of the moving frame, i.e. not knowing about the simple physical sense of the vector p, 
we would have a reason to speak about two different linear momenta of the same particle, the so-called 
kinetic momentum p = mv and the canonical momentum p = p + mr.31  Let us calculate the 
Hamiltonian function H defined by Eq. (2.32), and the energy E as functions of the same moving-frame 
variables: 
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These expressions clearly show that E and H are not equal.32 In hindsight, this is not surprising, because 
the kinetic energy (95), expressed in the moving-frame variables, includes a term linear in v, and hence 

29 For the attentive reader who has noticed the difference between the negative sign in the expression for Ucf, and 
the positive sign before the similar second term in Eq. (3.44): as was already discussed in Chapter 3, it is due to 
the difference of assumptions. In the planetary problem, even though the angular momentum L and hence its 
component Lz are fixed, the corresponding angular velocity   is not. On the opposite, in our current discussion, 

the angular velocity  of the reference frame is assumed to be fixed, i.e. is independent of r and v.  
30 Here L/v is just a shorthand for a vector with Cartesian components L/vj. In a more formal language, this is 
the gradient of the scalar function L in the velocity space.  
31 A very similar situation arises at the motion of a particle with electric charge q in magnetic field B. In that case, 
the role of the additional term p – p = mr is played by the product qA, where A  is the vector potential of the 

field B = A – see, e.g., EM Sec. 9.7, and in particular Eqs. (9.183) and (9.192). 
32 Please note the last form of Eq. (99), which shows the physical sense of the Hamiltonian function of a particle 
in the rotating frame very clearly, as the sum of its kinetic energy (as measured in the moving frame), and the 
effective potential energy (96b), including that of the centrifugal “force”. 

Canonical 
momentum 
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is not a quadratic-homogeneous function of this generalized velocity. The difference between these 
functions may be represented as 

      )()()( labin 
2 rωvrωrωvrωrωv  mmmmHE .  (4.101)  

Now using the operand rotation rule again, we may transform this expression into a simpler form:33 

                      labin labin Lωrωvrω  pmHE .   (4.102) 

 As a sanity check, let us apply this general expression to the particular case of our testbed 
problem – see Fig. 2.1. In this case, the vector  is aligned with the z-axis, so that of all Cartesian 
components of the vector L, only the component Lz is important for the scalar product in Eq. (102). This 
component evidently equals Iz = m2 = m(Rsin)2, so that 

          222 sinRmHE  ,     (4.103) 

i.e. the same result that follows from the subtraction of Eqs. (2.40) and (2.41).  

  

4.7. Exercise problems 

 4.1. Calculate the principal moments of inertia for the following uniform rigid bodies: 
 
 
 
 
 
 
  

(i) a thin, planar, round hoop, (ii) a flat round disk, (iii) a thin spherical shell, and (iv) a solid sphere. 

 Compare the results, assuming that all the bodies have the same radius R and mass M, and give 
an interpretation of their difference. 
 
 4.2. Calculate the principal moments of inertia for the rigid bodies shown in the figure below: 

 
 
 
 
 
 
 

(i) an equilateral triangle made of thin rods with a constant linear mass density , 
 (ii) a thin plate in the shape of an equilateral triangle, with a constant areal mass density , and 

(iii) a tetrahedron with a constant bulk mass density . 

33 Note that by the definition (1.36), the angular momenta L of particles merely add up. As a result, the final form 
of Eq. (102) is valid for an arbitrary system of particles. 
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Assuming that the total mass of the three bodies is the same, compare the results and give an 
interpretation of their difference. 
 
 4.3. Calculate the principal moments of inertia of a thin uniform plate cut in the form of a right 
triangle with two /4 angles. 
 
 4.4. Prove that Eqs. (34)-(36) are valid for the rotation of a rigid body about the fixed z-axis, 
even if it does not pass through its center of mass. 
 
 4.5. Calculate the kinetic energy of a right circular cone with height H, 
base radius R, and a constant mass density , that rolls over a horizontal 
surface without slippage, making f turns per second about the vertical axis – 
see the figure on the right. 
 
 4.6. External forces exerted on a rigid body 
rotating with an angular velocity , have zero 
vector sum but a non-vanishing net torque  about 
its center of mass.  

 (i) Calculate the work of the forces on the 
body per unit time, i.e. their instantaneous power. 
 (ii) Prove that the same result is valid for a 
body rotating about a fixed axis and the torque’s 
component along this axis.  
 (iii) Use the last result to prove that at 
negligible friction, the gear assembly shown in the 
figure on the right distributes the external torque, 
applied to its satellite-carrier axis to rotate it about 
the common axis of two axle shafts, equally to both 
shafts, even if they rotate with different angular 
velocities. 
  
 4.7. The end of a uniform thin rod of length 2l and mass m, initially at 
rest, is hit by a bullet of mass m', flying with a velocity v0 perpendicular to the 
rod (see the figure on the right), which gets stuck in it. Use two different 
approaches to calculate the velocity of the opposite end of the rod right after 
the collision. 
 
 4.8. A ball of radius R, initially at rest on a horizontal surface, is hit 
with a billiard cue in the horizontal direction, at height h above the table – 
see the figure on the right. Using the Coulomb approximation for the 
kinetic friction force between the ball and the surface ( Ff  = N), calculate 
the final linear velocity of the rolling ball as a function of h. Would it 
matter if the hit point is shifted horizontally (normally to the plane of the 
drawing)? 

 Hint: As in most solid body collision problems, during the short 

f
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Figure from G. Antoni, Sci. World J., 2014, 523281 
(2014), adapted with permission. Both satellite gears 
may rotate freely about their common carrier axis.
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time of the cue hit, all other forces exerted on the ball may be considered negligibly small. 

4.9. A round cylinder of radius R and mass M may roll, without slippage, over a horizontal 
surface. The mass density distribution inside the cylinder is not uniform, so its center of mass is at some 
distance l  0 from its geometrical axis, and the moment of inertia I (for rotation about the axis parallel 
to the symmetry axis but passing through the center of mass) is different from MR2/2, where M is the 
cylinder’s mass. Derive the equation of motion of the cylinder under the effect of the uniform vertical 
gravity field, and use it to calculate the frequency of small oscillations of the cylinder near its stable 
equilibrium position. 
 
 4.10. A body may rotate about a fixed horizontal axis – see Fig. 5. Find the frequency of its small 
oscillations in a uniform gravity field, as a function of the distance l of the axis from the body’s center 
of mass 0, and analyze the result. 
 

4.11. Calculate the frequency, and sketch the mode of oscillations34 
of a round uniform cylinder of radius R and the mass M, that may roll, 
without slippage, on a horizontal surface of a block of mass M’. The block, 
in turn, may move in the same direction, without friction, on an immobile 
horizontal surface, being connected to it with an elastic spring – see the figure on the right.  
 
 
 4.12. A thin uniform bar of mass M  and length l is hung on a light thread of length 
l’ (like a “chime” bell – see the figure on the right). Derive the equations of the system’s 
motion within a vertical plane passing through the suspension point. 
 
 
 4.13. A uniform round solid cylinder of mass M can roll, 
without slippage, over a concave round cylindrical surface of a block 
of mass M’, in a uniform gravity field – see the figure on the right. 
The block can slide without friction on a horizontal surface. Using the 
Lagrangian formalism, 

(i) find the frequency of small oscillations of the system near the equilibrium, and 
(ii) sketch the oscillation mode for the particular case M’ = M, R’ = 2R. 

  
4.14. A uniform solid hemisphere of radius R and mass M is 

placed on a horizontal surface – see the figure on the right. Find the 
frequency of its small oscillations within a vertical plane, for two ultimate 
cases: 

 (i) there is no friction between the sphere and the horizontal 
surface;  
 (ii) the static friction between them is so strong that there is no slippage. 
 

34 The term mode usually refers to the spatial pattern of oscillations; it will be much discussed in later chapters. 
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 4.15. For the “sliding ladder” problem started in Sec. 3 (see Fig. 7), find the critical value c of 
the angle  at that the ladder loses its contact with the vertical wall, assuming that it starts sliding from 
the vertical position, with a negligible initial velocity.  
 
 4.16. Six similar, uniform rods of length l and mass m are connected by 
light joints so that they may rotate, without friction, versus each other, forming 
a planar polygon. Initially, the polygon was at rest, and had the correct hexagon 
shape – see the figure on the right. Suddenly, an external force F is applied to 
the middle of one rod, in the direction of the hexagon’s symmetry center. 
Calculate the accelerations: of the rod to which the force is applied (a), and of 
the opposite rod (a’), immediately after the application of the force. 
  
 
 4.17. A rectangular cuboid (parallelepiped) with sides a1, a2, and a3, 
made of a material with a constant mass density , is rotated with a constant 
angular velocity  about one of its space diagonals – see the figure on the 
right. Calculate the torque  necessary to sustain this rotation.  
 
 
 4.18. A uniform round ball rolls, without slippage, over a “turntable”: a horizontal plane rotated 
about a vertical axis with a time-independent angular velocity . Derive a self-consistent equation of 
motion of the ball’s center, and discuss its solutions. 
 
 4.19. Calculate the free precession frequency of a uniform thin round disk rotating with an 
angular velocity  about a direction very close to its symmetry axis, from the point of view of: 

 (i) an observer rotating with the disk, and 
 (ii) a lab-based observer. 
 
 4.20. Use the Euler equations to prove the fact mentioned in Sec. 4: free rotation of an arbitrary 
body (“asymmetric top”) about its principal axes with the smallest and largest moments of inertia is 
stable, while that about the intermediate-Ij axis is not. Illustrate the same fact using the Poinsot 
construction. 
 
 4.21. Give an interpretation of the torque-induced precession, that would explain its direction, by 
using a simple system exhibiting this effect, as a model. 
 
 4.22. One end of a light shaft of length l is firmly 
attached to the center of a thin uniform solid disk of radius R and 
mass M, whose plane is perpendicular to the shaft. Another end 
of the shaft is attached to a vertical axis (see the figure on the 
right) so that the shaft may rotate about the axis without friction. 
The disk rolls, without slippage, over a horizontal surface so that 
the whole system rotates about the vertical axis with a constant angular velocity . Calculate the 
(vertical) supporting force N exerted on the disk by the surface. 
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 4.23. A coin of radius r is rolled over a horizontal surface, without 
slippage. Due to its tilt , it rolls around a circle of radius R – see the figure on 
the right. Modeling the coin as a very thin round disk, calculate the time period 
of its motion around the circle. 
 
 4.24. Solve the previous problem in the limit when the coin tilt angle  
and the ratio r/R are small, by simpler means, using  

 (i) an inertial ("lab") reference frame, and 
 (ii) the non-inertial reference frame moving with the coin's center but not rotating with it. 
 
 4.25. A symmetric top on a point support (as shown see, e.g., Fig. 9), rotating around its 
symmetry axis with a high angular velocity rot, is subjected to not only its weight Mg but also an 
additional force also applied to the top’s center of mass, with its vector rotating in the horizontal plane 
with a constant angular velocity  << rot. Derive the system of equations describing the top’s motion. 
Analyze their solution for the simplest case when  is exactly equal to the frequency (72) of the torque-
induced precession in the gravity field alone. 
 
 4.26. Analyze the effect of small friction on a fast rotation of a symmetric top around its axis, 
using a simple model in that the lower end of the body is a right cylinder of radius R.  
 
 4.27. An air-filled balloon is placed inside a water-filled container, which moves by inertia in 
free space, at negligible gravity. Suddenly, force F is applied to the container, pointing in a certain 
direction. What direction does the balloon move relative to the container? 
 
 4.28. Two planets are in a circular orbit around their common center of mass. Calculate the 
effective potential energy of a much lighter body (say, a spacecraft) rotating with the same angular 
velocity, on the line connecting the planets. Sketch the radial dependence of Uef and find out the number 
of so-called Lagrange points in which the potential energy has local maxima. Calculate their position 
explicitly in the limit when one of the planets is much more massive than the other one. 
 
 4.29. Besides the three Lagrange points L1, L2, and L3 discussed in the previous problem, which 
are located on the line connecting two planets on circular orbits about their mutual center of mass, there 
are two off-line points L4 and L5 – both within the plane of the planets’ rotation. Calculate their 
positions. 
 
 4.30. The following simple problem may give additional clarity to the physics of the Coriolis 
“force”. A bead of mass m may slide, without friction, along a straight rod that is rotated within a 
horizontal plane with a constant angular velocity  – see the figure on the right. Calculate the bead’s 
acceleration and the force N exerted on it by the rod, in: 

 (i) an inertial (“lab”) reference frame, and 
 (ii) the non-inertial reference frame rotating with the rod (but not moving with the bead),  

and compare the results. 
 
 4.31. Analyze the dynamics of the famous Foucault pendulum used for spectacular 
demonstrations of the Earth’s rotation. In particular, calculate the angular velocity of the rotation of its 
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oscillation plane relative to the Earth’s surface, at a location with a polar angle (“colatitude”) . Assume 
that the pendulum oscillation amplitude is small enough to neglect nonlinear effects and that its 
oscillation period is much shorter than 24 hours. 
 
 4.32. A small body is dropped down to the surface of Earth from a height h << RE, without initial 
velocity. Calculate the magnitude and direction of its deviation from the vertical, due to the Earth’s 
rotation. Estimate the effect’s magnitude for a body dropped from the Empire State Building. 
 
 4.33. Calculate the height of solar tides on a large ocean, using the following simplifying 
assumptions: the tide period (½ of the Earth's day) is much longer than the period of all ocean waves, 
the Earth (of mass ME) is a sphere of radius RE, and its distance rS from the Sun (of mass MS) is constant 
and much larger than RE.  
 
 4.34. A satellite is on a circular orbit of radius R, around the Earth. Neglecting the gravity field 
of the satellite, 

 (i) write the equations of motion of a small body as observed from the satellite and simplify them 
for the case when the motion is limited to the satellite’s close vicinity; 
 (ii) use these equations to prove that a body may be placed on an elliptical trajectory around the 
satellite’s center of mass, within its plane of rotation around the Earth. Calculate the ellipse’s orientation 
and eccentricity. 
  
 4.35. A non-spherical shape of an artificial satellite may ensure its stable angular orientation 
relative to the Earth’s surface, advantageous for many practical goals. By modeling a satellite as a 
strongly elongated, axially-symmetric body moving around the Earth on a circular orbit of radius R, find 
its stable orientation. 
   
 4.36. A rigid, straight, uniform rod of length l, with the lower end on a pivot, falls 
in a uniform gravity field – see the figure on the right. Neglecting friction, calculate the 
distribution of the bending torque   along its length, and analyze the result. 

 Hint: As will be discussed in detail in Sec. 7.5 of the lecture notes, the bending 
torque’s gradient along the rod’s length is equal to the rod-normal (“shear”) component of 
the total force between two parts of the rod, mentally separated by its cross-section.  
  
 4.37. Let r be the radius vector of a particle, as measured in a possibly non-inertial but certainly 
non-rotating reference frame. Taking its Cartesian components for the generalized coordinates, calculate 
the corresponding generalized momentum p of the particle and its Hamiltonian function H. Compare p 
with mv, and H with the particle’s energy E. Derive the Lagrangian equation of motion in this approach, 
and compare it with Eq. (92). 
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