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Chapter 5. Oscillations 

In this course, oscillations and waves are discussed in detail, because of their importance for 
fundamental and applied physics. This chapter starts with a discussion of the harmonic oscillator, 
whose differential equation of motion is linear and hence allows the full analytical solution, and then 
proceeds to so-called “nonlinear” and “parametric” systems whose dynamics may be only explored by 
either approximate analytical or numerical methods. 

 

5.1. Free and forced oscillations 

 In Sec. 3.2 we briefly discussed oscillations in a keystone Hamiltonian system – a 1D harmonic 
oscillator described by a very simple Lagrangian1 
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whose Lagrange equation of motion,2 
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is a linear homogeneous differential equation. Its general solution is given by Eq. (3.16), which is 
frequently recast into another, amplitude-phase form: 

                    tAtvtutq 000 cossincos)( ,   (5.3a) 

where A is the amplitude and   is the phase of the oscillations, which are determined by the initial 
conditions. Mathematically, it is frequently easier to work with sinusoidal functions as complex 
exponents, by rewriting the last form of Eq. (3a) in one more form:3 
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where a is the complex amplitude of the oscillations: 

       .sinIm,cosRe,, vAauAaAaAea i     (5.4) 

1 For the notation brevity, in this chapter, I will drop indices “ef” in the energy components T and U, and in 
parameters like m, , etc. However, the reader should still remember that T and U do not necessarily coincide with 
the actual kinetic and potential energies (even if those energies may be uniquely identified) – see Sec. 3.1. 
2 0 is usually called the own frequency of the oscillator. In quantum mechanics, the Germanized version of the 
same term, eigenfrequency, is used more. In this series, I will use either of the terms, depending on the context.    
3 Note that this is the so-called physics convention. Most engineering texts use the opposite sign in the imaginary 
exponent, exp{-it}  exp{it}, with the corresponding sign implications for intermediate formulas but identical 
final results for real variables. 

For an autonomous, Hamiltonian oscillator, Eqs. (3) give the full classical description of its dynamics. 
However, it is important to understand that this free-oscillation solution, with a constant amplitude A, 
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means the conservation of the energy E  T + U = A2/2 of the oscillator. If its energy changes for any 
reason, the description needs to be generalized. 

 First of all, if the energy leaks out of the oscillator to its environment (the effect usually called 
energy dissipation), the free oscillations decay with time. The simplest model of this effect is 
represented by an additional linear drag (or “kinematic friction”) force, proportional to the generalized 
velocity and directed opposite to it: 
          qFv  ,      (5.5) 

where constant  is called the drag coefficient.4 The inclusion of this force modifies the equation of 
motion (2) to become 
               0 qqqm   .     (5.6a) 

 This equation is frequently rewritten in the form 
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where the parameter  is called the damping coefficient (or just “damping”). Note that Eq. (6) is still a 
linear homogeneous second-order differential equation, and its general solution still has the form of the 
sum (3.13) of two exponents of the type exp{t}, with arbitrary pre-exponential coefficients. Plugging 
such an exponent into Eq. (6), we get the following algebraic characteristic equation for :  

      .02 2
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Solving this quadratic equation, we get 
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so for not very high damping (  < 0) we get the following generalization of Eq. (3):5 
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The result shows that, besides a certain correction to the free oscillation frequency (which is very small 
in the most interesting low damping limit,  << 0), the energy dissipation leads to an exponential decay 
of oscillation amplitude with the time constant  = 1/: 

4 Here Eq. (5) is treated as a phenomenological model, but in statistical mechanics, such dissipative term may be 
derived as an average force exerted upon a system by its environment, at very general assumptions. As will be 
discussed in detail later in this series (QM Chapter 7 and SM Chapter 5), due to the numerous degrees of freedom 
of a typical environment (think about the molecules of air surrounding a macroscopic pendulum), its force also 
has a random component; as a result, the dissipation is fundamentally related to fluctuations. The latter effect may 
be neglected (as it is in this course) only if the oscillator’s energy E is much higher than the energy scale of its 
random fluctuations – in the thermal equilibrium at temperature T, the larger of kBT and 0/2.  
5 Systems with high damping ( > 0) can hardly be called oscillators, and though they are used in engineering 
and physical experiment (e.g., for shock and sound isolation), due to the lack of time/space, for their detailed 
discussion I have to refer the interested reader to special literature – see, e.g., C. Harris and A. Piersol, Shock and 
Vibration Handbook, 5th ed., McGraw Hill, 2002. Let me only note that according to Eq. (8), the dynamics of 
systems with very high damping ( >> 0) has two very different time scales: a relatively short “momentum 
relaxation time” 1/-  1/2 = m/, and a much longer “coordinate relaxation time” 1/+. 2/0

2 = /-. 
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 A very popular dimensionless measure of damping is the so-called quality factor Q (or just the 
Q-factor) which is defined as 0/2, and may be rewritten in several other useful forms: 
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where T  2π/0 is the oscillation period in the absence of damping – see Eq. (3.29). Since the 

oscillation energy E is proportional to A2, i.e. decays as exp{-2t/}, i.e. with the time constant /2, the 
last form of Eq. (11) may be used to rewrite the Q-factor in one more form: 
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where P  is the energy dissipation rate. (Other practical ways to measure Q will be discussed below.) 
The range of Q-factors of mechanical oscillators is very broad, from Q ~ 10 for a human leg (with 
relaxed muscles), to Q ~ 104 of the quartz crystals used in electronic clocks and watches, and all the way 
up to Q > 1010 for nanoparticles suspended (by electrostatic forces) in high vacuum.  

 In contrast to the decaying free oscillations, forced oscillations induced by an external force F(t), 
may maintain their amplitude (and hence energy) infinitely, even at non-zero damping.  This process 
may be described using a still linear but now inhomogeneous differential equation  

           ),(tFqqqm         (5.13a) 

or, more usually, the following generalization of Eq. (6b): 

             mtFtftfqqq /)()(  where),(2 2
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For a mechanical linear, dissipative 1D oscillator (6), under the effect of an additional external force 
F(t), Eq. (13a) is just an expression of the 2nd Newton law. However, according to Eq. (1.41), Eq. (13) is 
valid for any dissipative, linear6 1D system whose Gibbs potential energy (1.39) has the form UG(q, t) = 
κq2/2 – F(t)q. 

 The forced-oscillation solutions to Eq. (13) may be analyzed by two mathematically equivalent 
methods whose relative convenience depends on the character of function f(t). 

 (i) Frequency domain. Representing the function f(t) as a Fourier sum of sinusoidal harmonics:7 

            ,)(  
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and using the linearity of Eq. (13), we may represent its general solution as a sum of the decaying free 
oscillations (9) with the frequency 0’, that are independent of the function f(t), and forced oscillations 
due to each of the Fourier components of the force:8  

6 This is a very unfortunate, but common jargon, meaning “the system described by linear equations of motion”. 
7 Here, in contrast to Eq. (3b), we may drop the operator Re, assuming that f- = f*, so that the imaginary 
components of the sum compensate for each other. 
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Plugging Eq. (15) into Eq. (13), and requiring the factors before each e-it on both sides to be equal, we 
get 
                  ),( fa       (5.16) 

where the complex function (), in our particular case equal to 
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is called either the response function or (especially for non-mechanical oscillators) the generalized 
susceptibility. From here, and Eq. (4), the amplitude of the oscillations under the effect of a sinusoidal 
force is 
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 This formula describes, in particular, an increase of the oscillation amplitude A at   0 – see 
the left panel of Fig. 1. In particular, at the exact equality of these two frequencies,  
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so, according to Eq. (11), the ratio of the response magnitudes at  = 0 and  = 0 (()=0 = 1/0
2) is 

exactly equal to the Q-factor of the oscillator. Thus, the response increase is especially strong in the 
low-damping limit ( << 0, i.e. Q >> 1); moreover, at Q   and   0, the response diverges. (This 
mathematical fact is very useful for the methods to be discussed later in this section.) This is the 
classical description of the famous phenomenon of resonance, so ubiquitous in physics.  

  

 

 

 

 

 

 

 

 

 

8 In physics, this mathematical property of linear equations is frequently called the linear superposition principle. 
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Fig. 5.1. Resonance in the linear 
oscillator, for several values of Q. 
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Due to the increase of the resonance peak height, its width is inversely proportional to Q. 
Quantitatively, in the most interesting low-damping limit, i.e. at Q >> 1, the reciprocal Q-factor gives 
the normalized value of the so-called full-width at half-maximum (FWHM) of the resonance curve:9 

           .
1

0 Q






      (5.20) 

Indeed, this  is defined as the difference (+ – –) between such two values of  at that the modulus 
squared of the oscillator response function, ()2 (which is proportional to the oscillation energy), 
equals a half of its resonance value (19). In the low damping limit, these points are very close to 0, so 
in the linear approximation in   – 0  << 0, we may write (0

2 – 2)  –( +0)( – 0)  –2 –
20, where  
        0        (5.21) 

is a convenient parameter called detuning, which will be repeatedly used later in this chapter, and 
beyond it. In this approximation, the second of Eqs. (18) is reduced to10 

          222
0

2

4

1
)(





 .     (5.22) 

As a result, the points  correspond to 2 = δ2, i.e. ω = ω0 ± δ = ω0(1 ± 1/2Q), so    ω+ – ω- = 
ω0/Q,  thus proving Eq. (20). 

 (ii) Time domain. Returning to an arbitrary external force f(t), one may argue that Eqs. (9), (15)-
(17) provide a full solution of the forced oscillation problem even in this general case. This is formally 
correct, but this solution may be very inconvenient if the external force is far from a sinusoidal function 
of time, especially if it is not periodic at all. In this case, we should first calculate the complex 
amplitudes f participating in the Fourier sum (14). In the general case of a non-periodic f(t), this is 
actually the Fourier integral,11  
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 dteftf ti
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so f should be calculated using the reciprocal Fourier transform, 
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Now we may use Eq. (16) for each Fourier component of the resulting forced oscillations, and rewrite 
the last of Eqs. (15) as 

9 Note that the phase shift    arg[()] between the oscillations and the external force (see the right panel in Fig. 
1) makes its steepest change, by /2, within the same frequency interval . 
10 Such function of frequency may be met in many branches of science, frequently under special names, including 
the “Cauchy distribution”, “the Lorentz function” (or “Lorentzian line”, or “Lorentzian distribution”), “the Breit-
Wigner function” (or “the Breit-Wigner distribution”), etc. 
11 Let me hope that the reader knows that Eq. (23) may be used for periodic functions as well; in such a case, f is 
a set of equidistant delta functions. (A reminder of the basic properties of the Dirac δ-function may be found, for 
example, in MA Sec. 14.) 



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 5             Page 6 of 38

              

,)(
2

1
)(

)(
2

1
)()()(

)(

)(
forced












































tt'i

tt'ititi

edt'fdt'

et'fdt'ddefdeatq









 

 (5.25) 

with the response function (ω) given, in our case, by Eq. (17). Besides requiring two integrations, Eq. 
(25) is conceptually uncomforting: it seems to indicate that the oscillator’s coordinate at time t depends 
not only on the external force exerted at earlier times t’ < t, but also at future times. This would 
contradict one of the most fundamental principles of physics (and indeed, science as a whole), causality: 
no effect may precede its cause. 

 Fortunately, a straightforward calculation (left for the reader’s exercise) shows that the response 
function (17) satisfies the following rule:12 
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This fact allows the last form of Eq. (25) to be rewritten in either of the following equivalent forms: 
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where G(τ), defined as the Fourier transform of the response function, 
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is called the (temporal) Green’s function of the system. According to Eq. (26), G(τ) = 0 for all τ < 0. 

  While the second form of Eq. (27) is frequently more convenient for calculations, its first form is 
more suitable for physical interpretation of the Green’s function. Indeed, let us consider the particular 
case when the force is a delta function  

            0  i.e.   ,with ),()(  t'ttt't'ttf  ,   (5.29) 

representing an ultimately short pulse at the moment t’, with unit “area” f(t)dt. Substituting Eq. (29a) 
into Eq. (27),13 we get  
         t'tGtq  .     (5.30) 

Thus Green’s function G(t – t’) is just the oscillator’s response, as measured at time t, to a short force 
pulse of unit “area”, exerted at time t’. Hence Eq. (27) expresses the linear superposition principle in the 
time domain: the full effect of the force f(t) on a linear system is a sum of the effects of short pulses of 
duration dt’ and magnitude f(t’), each with its own “weight” G(t – t’) – see Fig. 2. 

12 Eq. (26) is true for any linear physical system in which f(t) represents a cause, and q(t) its effect. Following 
tradition, I discuss the frequency-domain expression of this causality relation (called the Kramers-Kronig 
relations) in the Classical Electrodynamics part of this lecture series – see EM Sec. 7.2. 
13 Technically, for this integration, t’ in Eq. (27) should be temporarily replaced with another letter, say t”. 
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 This picture may be used for the calculation of Green’s function for our particular system. 
Indeed, Eqs. (29)-(30) mean that G() is just the solution of the differential equation of motion of the 
system, in our case, Eq. (13), with the replacement t  , and a δ-functional right-hand side: 
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Since Eqs. (27) describes only the second term in Eq. (15), i.e. only the forced, rather than free 
oscillations, we have to exclude the latter by solving Eq. (31) with zero initial conditions: 

              ,000 
d
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where  = – 0 means the instant immediately preceding  = 0.  

 This problem may be simplified even further. Let us integrate both sides of Eq. (31) over an 
infinitesimal interval including the origin, e.g. [–d /2, +d /2], and then follow the limit d  0. Since 
Green’s function has to be continuous because of its physical sense as the (generalized) coordinate, all 
terms on the left-hand side but the first one vanish, while the first term yields dG/d+0 – dG/d–0. Due 
to the second of Eqs. (32), the last of these two derivatives has to equal zero, while the right-hand side 
of Eq. (31) yields 1 upon the integration. Thus, the function G() may be calculated for   > 0 (i.e. for all 
times when it is different from zero) by solving the homogeneous version of the system’s equation of 
motion for   > 0, with the following special initial conditions: 

             .10,00 
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 This approach gives us a convenient way for the calculation of Green’s functions of linear 
systems. In particular for the oscillator with not very high damping ( < 0, i.e. Q > ½), imposing the 
boundary conditions (33) on the homogeneous equation’s solution (9), we immediately get 
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(The same result may be obtained directly from Eq. (28) with the response function () given by Eq. 
(19). This way is, however, a little bit more cumbersome, and is left for the reader’s exercise.)  

 Relations (27) and (34) provide a very convenient recipe for solving many forced oscillations 
problems. As a very simple example, let us calculate the transient process in an oscillator under the 
effect of a constant force being turned on at t = 0, i.e. proportional to the Heaviside step function: 

Oscillator’s 
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. . . . . . 

Fig. 5.2. A schematic, finite-interval 
representation of a force f(t) as a sum of 
short pulses at all times t’ < t, and their 
contributions to the linear system’s 
response q(t), as given by Eq. (27). 
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provided that at t < 0 the oscillator was at rest, so in Eq. (15), qfree(t)  0. Then the second form of Eq. 
(27), together with Eq. (34), yield 
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The simplest way to work out such integrals is to represent the sine function under it as the imaginary 
part of exp{i0’t}, and merge the two exponents, getting 
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 This result, plotted in Fig. 3, is rather natural: it describes nothing more than the transient from 
the initial position q = 0 to the new equilibrium position q0 = f0/0

2 = F0/, accompanied by decaying 
oscillations. For this particular simple function f(t), the same result might be also obtained by 
introducing a new variable  tq~  q(t) – q0 and solving the resulting homogeneous equation for q~  (with 
appropriate initial condition q~ (0) = –q0). However, for more complicated functions f(t), Green’s 
function approach is irreplaceable.  

  

 

 

 

 

 

 

 
 Note that for any particular linear system, its Green’s function should be calculated only once, 
and then may be repeatedly used in Eq. (27) to calculate the system response to various external forces – 
either analytically or numerically. This property makes Green’s function approach very popular in many 
other fields of physics – with the corresponding generalization or re-definition of the function.14 

 

5.2. Weakly nonlinear oscillations  

 In comparison with systems discussed in the last section, which are described by linear 
differential equations with constant coefficients and thus allow a complete and exact analytical solution, 
oscillations in nonlinear systems (very unfortunately but commonly called nonlinear oscillations) 
present a complex and, generally, analytically intractable problem. However, much insight into possible 

14 See, e.g., Sec. 6.6, and also EM Sec. 2.7 and QM Sec. 2.2. 
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Fig. 5.3. The transient process in a linear 
oscillator, induced by a step-like force f(t), for 
the particular case /0 = 0.1 (i.e., Q = 5).  
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processes in such systems may be gained from a discussion of an important case of weakly nonlinear 
systems, which may be explored analytically. An important example of such systems is given by an 
anharmonic oscillator – a 1D system whose higher terms in the potential’s expansion (3.10) cannot be 
neglected, but are small and may be accounted for approximately. If, in addition, damping is low (or 
negligible), and the external harmonic force exerted on the system is not too large, the equation            
of motion is a slightly modified version of Eq. (13): 

            ,...),,(2 qqtfqq   ,     (5.38) 

where   0 is the anticipated frequency of oscillations (whose choice may be to a certain extent 
arbitrary – see below), and the right-hand side f  is small (say, scales as some small dimensionless 
parameter  << 1), and may be considered as a small perturbation.  

 Since at   = 0, this equation has the sinusoidal solution given by Eq. (3), one might naïvely think 
that at a nonzero but small ,  the approximate solution to Eq. (38) should be sought in the form 

    nnqqqqtq  )()2()1()0(   where...,)( ,      (5.39) 

with q(0) = A cos(0t – )  0. This is a good example of apparently impeccable mathematical 
reasoning that would lead to a very inefficient procedure. Indeed, let us apply it to the problem we 
already know the exact solution for, namely free oscillations in a linear but damped oscillator, for this 
occasion assuming the damping to be very low, /0 ~   << 1. The corresponding equation of motion, 
Eq. (6), may be represented in form (38) if we take  = 0 and 

                    with  ,2 qf  .     (5.40) 

The naïve perturbation theory based on Eq. (39) would allow us to find small corrections, of the order of 
, to the free, non-decaying oscillations Acos(0t – ). However, we already know from Eq. (9) that the 
main effect of damping is a gradual decrease of the free oscillation amplitude to zero, i.e. a very large 
change of the amplitude, though at low damping,   << 0, this decay takes large time t ~   >> 1/0. 
Hence, if we want our approximate method to be productive (i.e. to work at all time scales, in particular 
for forced oscillations with stationary amplitude and phase), we need to account for the fact that even a 
small right-hand side of Eq. (38) may eventually lead to large changes of oscillation’s amplitude A (and 
sometimes, as we will see below, also of oscillation’s phase ) at large times, because of the slowly 
accumulating effects of the small perturbation.15  

 This goal may be achieved16 by the account of these slow changes already in the “0th 
approximation”, i.e. the basic part of the solution in the expansion (39):  

15 The same flexible approach is necessary for approximations used in quantum mechanics.  The method 
discussed here is closer in spirit (though not completely identical) to the WKB approximation (see, e.g., QM Sec. 
2.4) rather than most perturbative approaches (QM Ch. 6). 
16 This approach has a long history and, unfortunately, does not have a commonly accepted name. It had been 
gradually developed in celestial mechanics, but its application to 1D systems (on which I am focusing) was 
clearly spelled out only in 1926 by Balthasar van der Pol. So, I will follow several authors who call it the van der 
Pol method. Note, however, that in optics and quantum mechanics, this method is commonly called the Rotating 
Wave Approximation (RWA). In math-oriented texts, this approach, and especially its extensions to higher 
approximations, is usually called either the small parameter method or the asymptotic method. The list of other 

Weakly 
nonlinear 
oscillator 

Perturbative 
solution 
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       0at   0,with )],(cos[)()0(   AtttAq .   (5.41) 

(It is evident that Eq. (9) is a particular case of this form.) Let me discuss this approach using a simple 
but representative example of a dissipative (but high-Q) pendulum driven by a weak sinusoidal external 
force with a nearly resonant frequency: 

     ,cossin2 0
2
0 tfqqq        (5.42) 

with |ω – ω0|, δ << ω0, and the force amplitude f0 so small that | q | << 1 at all times. From what we 
know about the forced oscillations from Sec. 1, in this case, it is natural to identify  on the left-hand 
side of Eq. (38) with the force’s frequency. Expanding sin q into the Taylor series in small q, keeping 
only the first two terms of this expansion, and moving all small terms to the right-hand side, we can 
rewrite Eq. (42) in the following popular form (38):17 

         ),,(cos22 0
32 qqtftfqqqqq    .   (5.43) 

Here  = 0
2/6 in the case of the pendulum (though the calculations below will be valid for any α), and 

the second term on the right-hand side was obtained using the approximation already employed in Sec. 
1: (2 – 0

2) q  2 ( – 0) q = 2q, where    – 0 is the detuning parameter that was already 
used earlier – see Eq. (21).  

 Now, following the general recipe expressed by Eqs. (39) and (41), in the 1st approximation in f 
   we may look for the solution to Eq. (43) in the following form: 

      ~,Ψ  where),(Ψcos)( )1()1( qttqAtq  .   (5.44) 

Let us plug this solution into both parts of Eq. (43), keeping only the terms of the first order in . Thanks 
to our (smart :-) choice of  on the left-hand side of that equation, the two zero-order terms in that part 
cancel each other. Moreover, since each term on the right-hand side of Eq. (43) is already of the order of 
, we may drop q(1)    from the substitution into that part at all, because this would give us only terms 
O(2) or higher. As a result, we get the following approximate equation: 

            .coscoscos2)cos(2 0
3)0()1(2)1( tfAAA

dt

d
tfqq    (5.45) 

 According to Eq. (41), generally, A and  should be considered (slow) functions of time. 
However, let us leave the analyses of the transient process and system’s stability until the next section, 
and use Eq. (45) to find stationary oscillations in the system, that are established after an initial transient 
process.  For that limited task, we may take A = const,  = const, so q(0) represents sinusoidal 
oscillations of frequency . Sorting the terms on the right-hand side according to their time 
dependence,18 we see that it has terms with frequencies  and 3: 

scientists credited for the development of this method, its variations, and extensions includes, most notably, N. 
Krylov, N. Bogolyubov, and Yu. Mitroplolsky.  
17 This equation is frequently called the Duffing equation (or the equation of the Duffing oscillator), after Georg 
Duffing who carried out its first  (rather incomplete) analysis in 1918. 
18 Using the second of Eqs. (44), cos t may be rewritten as cos ( + )   cos  cos   – sin sin . Then using 
the identity given, for example, by MA Eq. (3.4): cos3 = (3/4)cos  + (1/4)cos 3, we get Eq. (46). 

0th  
approximation 
 

Duffing 
equation 



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 5             Page 11 of 38

                    .Ψ3cos
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00
3)0( AfAfAAf  






    (5.46) 

 Now comes the main punch of the van der Pol approach: mathematically, Eq. (45) may be 
viewed as the equation of oscillations in a linear, dissipation-free harmonic oscillator of own frequency 
 (not 0!) under the action of an external force f (0)(t). In our particular case, this force is given by Eq. 
(46) and has three terms: two “quadrature” components with that very frequency , and the third one 
with frequency 3. As we know from our analysis of this problem in Sec. 1, if any of the first two 
components is not equal to zero, q(1) grows to infinity – see Eq. (19) with  = 0. At the same time, by the 
very structure of the van der Pol approximation, q(1) has to be finite – moreover, small! The only way to 
avoid these infinitely growing (so-called secular) terms is to require that the amplitudes of both 
quadrature components of f (0) with frequency  are equal to zero: 

       .0sin2,0cos
4

3
2 00

3   fAfAA    (5.47) 

 These two harmonic balance equations enable us to find both parameters of the forced 
oscillations: their amplitude A and phase . The phase may be readily eliminated from this system (most 
easily, by expressing sin and cos from Eqs. (47) and then requiring the sum sin2 + cos2 to equal 1), 
and the solution for A recast in the following implicit but convenient form: 

             




















2

0
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3
)(  where,

)(

1

4

AA
A

A

f
A .     (5.48) 

This expression differs from Eq. (22) for the linear resonance in the low-damping limit only by the 
replacement of the detuning  with its effective amplitude-dependent value (A) – or, equivalently, the 
replacement of the frequency 0 of the oscillator with its effective, amplitude-dependent value 

           .
8

3
)(

2

00 
 A

A       (5.49) 

The physical meaning of  0(A) is simple: this is just the frequency of free oscillations of amplitude A in 
a similar nonlinear system but with zero damping.19 Indeed, for  = 0 and f0 = 0, we could repeat our 
calculations, assuming that  is an amplitude-dependent eigenfrequency 0(A). Then the second of Eqs. 
(47) is trivially satisfied, while the second of them gives Eq. (49). The implicit relation (48) enables us 
to draw the curves of this nonlinear resonance just by bending the linear resonance plots (Fig. 1) 
according to the so-called skeleton curve expressed by Eq. (49). Figure 4 shows the result of this 
procedure. Note that at small amplitude, (A)  0, i.e. we return to the usual, “linear” resonance (22). 

 To bring our solution to its logical completion, we should still find the first perturbation q(1)(t) 
from what is left of Eq. (45). Since the structure of this equation is identical to Eq. (13) with zero 
damping and the force of frequency 3 , we may use Eqs. (16)-(17) to obtain 

19 The effect of the pendulum’s frequency dependence on its oscillation amplitude was observed as early as 1673 
by Christiaan Huygens – who by the way had invented the pendulum clock, increasing the timekeeping accuracy 
by about three orders of magnitude. (He also discovered the largest of Saturn’s moons, Titan). 



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 5             Page 12 of 38
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)1( 


 tAtq     (5.50) 

Adding this perturbation (note the negative sign!) to the sinusoidal oscillation (41), we see that as the 
amplitude A of oscillations in a system with  > 0 (e.g., a pendulum) grows, their waveform becomes a 
bit more “blunt” near the largest deviations from the equilibrium. 

 

 

 

 

 

 

 

 

 

 
 
 The same Eq. (50) also enables an estimate of the range of validity of our first approximation: 
since it has been based on the assumption |q(1)| << |q(0)| ≤ A, for this particular problem we have to 
require αA2/32ω2 << 1. For a pendulum (i.e. for  = 0

2/6), this condition becomes A2 << 192. Though 
numerical coefficients in such strong inequalities should be taken with a grain of salt, the large 
magnitude of this particular coefficient gives a good hint that the method may give very accurate results 
even for relatively large oscillations with A ~ 1. In Sec. 7 below, we will see that this is indeed the case. 

 From the mathematical viewpoint, the next step would be to write the next approximation as 

    ,~),()(cos)( 2)2()2()1( qtqtqAtq     (5.51) 

and plug it into the Duffing equation (43), which (thanks to our special choice of q(0) and q(1)) would 
retain only the sum )2(2)2( qq  on its left-hand side. Again, requiring the amplitudes of two quadrature 

components of the frequency  on the right-hand side to vanish, we may get second-order corrections to 
the values of A and . Then we may use the remaining part of the equation to calculate q(2), and then go 
after the third-order terms, etc. 20 However, for most purposes, the sum q(0) + q(1), and sometimes even 
the crudest approximation of q(0) alone, are completely sufficient. For example, according to Eq. (50), in 
the case of a simple pendulum swinging as much as between the opposite horizontal positions (A = /2), 
the 1st order correction q(1) is of the order of  0.5%. (Soon beyond this value, completely new dynamic 
phenomena start  – see Sec. 7 below – but they cannot be described by these successive approximations 

20 For a mathematically rigorous treatment of higher approximations, see, e.g., Yu. Mitropolsky and N. Dao, 
Applied Asymptotic Methods in Nonlinear Oscillations, Springer, 2004. A more layman (and, by today’s 
standards, somewhat verbose) discussion of various oscillatory phenomena may be found in the classical text A. 
Andronov, A. Vitt, and S. Khaikin, Theory of Oscillators, first published in the 1960s and still available online as 
Dover’s republication in 2011. 
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at all.) Due to such reasons, for the analysis of particular systems, higher approximations are rarely 
pursued.  

 

5.3. Reduced equations 

 A much more important issue is the stability of the solutions described by Eq. (48). Indeed, Fig. 
4 shows that within a certain range of parameters, these equations give three different values for the 
oscillation amplitude (and phase), and it is important to understand which of them are stable. Since these 
solutions are not the fixed points in the sense discussed in Sec. 3.2 (each point in Fig. 4 represents a 
nearly-sinusoidal oscillation), their stability analysis needs a more general approach that would be valid 
for oscillations with amplitude and phase slowly evolving in time. This approach will also enable the 
analysis of non-stationary (especially the initial transient) processes, which are of importance for some 
dynamic systems. 

First of all, let us formalize the way the harmonic balance equations, such as Eqs. (47), should be 
obtained for the general case (38) – rather than for the particular Eq. (43) considered in the last section. 
After plugging in the 0th approximation (41) into the right-hand side of equation (38) we have to require 
the amplitudes of both quadrature components of frequency  to vanish. From the standard Fourier 
analysis, we know that these requirements may be represented as 

              ,0cos,0sin )0()0(  ff     (5.52) 

where the top bar means the time averaging – in our current case, over the period 2/ of the right-hand 
side of Eq. (52), with the arguments calculated in the 0th  approximation: 

           tAAtfqqtff Ψwith  ,,...Ψsin,Ψcos,,...),,( )0()0()0(  .  (5.53) 

 Now, for a transient process the contribution of q(0) to the left-hand side of Eq. (38) is not zero 
any longer, because its amplitude and phase may be both slow functions of time – see Eq. (41). Let us 
calculate this contribution. The exact result would be 
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  (5.54) 

However,  in the first approximation in , we may neglect the second derivative of A, and also the 
squares and products of the first derivatives of A and   (which are all of the second order in ), so Eq. 
(54) is  reduced to 

        )sin(2)cos(2)0(2)0(   tAtAqq  .   (5.55) 

On the right-hand side of Eq. (53), we can neglect the time derivatives of the amplitude and phase at all, 
because this part is already proportional to the small parameter. Hence, in the first order in , Eq. (38) 
becomes 

          Ψsin2Ψcos2)0(0
ef

)1(2)1(  AAffqq   .   (5.56) 
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 Now, applying Eqs. (52) to the function fef
(0), and taking into account that the time averages of 

sin2 and cos2 are both equal to ½, while the time average of the product sincos vanishes, we get a 
pair of so-called reduced equations (alternatively called either “truncated”, or “RWA”, or “van der Pol” 
equations) for the time evolution of the amplitude and phase: 

    Ψcos
1

,Ψsin
1 )0()0( f

A
fA





  .    (5.57a) 

Extending the definition (4) of the complex amplitude of oscillations to their slow evolution in time, a(t) 
 A(t)exp{i(t)}, and differentiating this relation, the two equations (57a) may be also rewritten in the 
form of either one equation for a: 

             tii ef
i

ef
i

a 


)0()0( )Ψ(   ,    (5.57b) 

or two equations for the real and imaginary parts of a(t) = u(t) + iv(t): 

      tfvtfu 





cos
1

,sin
1 )0()0(   .    (5.57c) 

The first-order harmonic balance equations (52) are evidently just the particular case of the reduced 
equations (57) for stationary oscillations ( 0 A ).21 

 Superficially, the system (57a) of two coupled, first-order differential equations may look more 
complex than the initial, second-order differential equation (38), but actually, it is usually much simpler. 
For example, let us spell them out for the easy case of free oscillations a linear oscillator with damping. 
For that, we may reuse the ready Eq. (46) by taking  = f0 = 0, and thus turning Eqs. (57a) into 

         ,Ψsin)Ψsin2Ψcos2(
1

Ψsin
1 )0( AAAfA 


   (5.58a) 

   .Ψcos)Ψsin2Ψcos2(
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1 )0( 


  AA

A
f

A
   (5.58b) 

 The solution of Eq. (58a) gives us the same “envelope” law A(t) = A(0)e-t as the exact solution 
(10) of the initial differential equation, while the elementary integration of Eq. (58b) yields (t) = t + 
(0)  t – 0t + (0). This means that our approximate solution, 

           ,)0(cos)0()(cos)()( 0
)0(     teAtttAtq t    (5.59) 

agrees with the exact Eq. (9), and misses only the correction (8) of the oscillation frequency. (This 
correction is of the second order in , i.e. of the order of 2, and hence is beyond the accuracy of our first 
approximation.) It is remarkable how nicely do the reduced equations recover the proper frequency of 
free oscillations in this autonomous system – in which the very notion of  is ambiguous. 

21 One may ask why we cannot stick to just one, most compact, complex–amplitude form (57b) of the reduced 
equations. The main reason is that when the function ),,( tqqf  is nonlinear, we cannot replace its real arguments, 

such as q = Acos(t – ), with their complex-function representations like aexp{-it} (as could be done in the 
linear problems considered in Sec. 5.1), and need to use real variables, such as either {A, } or {u, v}, anyway. 
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 The result is different at forced oscillations. For example, for the (generally, nonlinear) Duffing 
oscillator described by Eq. (43) with f0  0, Eqs. (57a) yield the reduced equations, 

          





 cos
2

)(,sin
2

00 f
AAA

f
AA   ,   (5.60) 

which are valid for an arbitrary function (A), provided that this nonlinear detuning remains much 
smaller than the oscillation frequency. Here (after a transient), the amplitude and phase tend to the 
stationary states described by Eqs. (47). This means that  becomes a constant, so q(0)  Acos(t – 
const), i.e. the reduced equations again automatically recover the correct frequency of the solution, in 
this case, equal to the external force frequency. 

 Note that each stationary oscillation regime, with certain amplitude and phase, corresponds to a 
fixed point of the reduced equations, so the stability of those fixed points determines that of the 
oscillations. In the next three sections, we will carry out such analyses for several simple systems of key 
importance for physics and engineering. 

 

5.4. Self-oscillations and phase locking 

 B. van der Pol’s motivation for developing his method was the analysis of one more oscillatory 
motion type: the so-called self-oscillations. Several systems, e.g., electronic rf amplifiers with positive 
feedback and optical media with quantum-level population inversion, provide convenient means for the 
compensation and even over-compensation of the intrinsic energy losses in oscillators. 
Phenomenologically, this effect may be described as the change of sign of the coefficient   from 
positive to negative. Since for small oscillations, the equation of motion is still linear, we may use Eq. 
(9) to describe its general solution. This equation shows that at  < 0, even infinitesimal deviations from 
equilibrium (say, due to unavoidable fluctuations) lead to oscillations with exponentially growing 
amplitude. Of course, in any real system such growth cannot persist infinitely, and shall be limited by 
this or that effect – e.g., in the above examples, respectively, by the amplifier’s saturation and the 
quantum level population’s exhaustion.  

 In many cases, the amplitude limitation may be described reasonably well by making the 
following replacement:  
               322 qqq    ,     (5.61) 

with  > 0. Let us analyze the effects of such nonlinear damping, applying the van der Pol’s approach22 
to the corresponding differential equation: 

         .02 2
0

3  qqqq        (5.62) 

Carrying out the dissipative and detuning terms to the right-hand side, and taking them for f in the 
canonical Eq. (38), we can easily calculate the right-hand sides of the reduced equations (57a), getting23 

             22

8

3
)(  where,)( AAAAA   ,   (5.63a) 

22 In his original work, B. van der Pol considered a very similar equation (frequently called the van der Pol 

oscillator) that differs from Eq. (62) only by the nonlinear term: qqq  23  , and has very similar properties. 
23 For that, one needs to use the trigonometric identity sin3 = (3/4)sin – (1/4)sin3 – see, e.g., MA Eq. (3.4). 
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         AA   .      (5.63b) 

The last of these equations has exactly the same form as Eq. (58b) for the case of decaying 
oscillations and hence shows that the self-oscillations (if they happen, i.e. if A  0) have the own 
frequency 0 of the oscillator – cf. Eq. (59). However, Eq. (63a) is more substantive. If the initial 
damping  is positive, it has only the trivial fixed point, A0 = 0 (that describes the oscillator at rest), but 
if  is negative, there is also another fixed point, 

                 0for  ,
2

  where,
3

2
2/1

2001 







 




qqA ,    (5.64) 

which describes steady self-oscillations with a non-zero amplitude A1. 

 To understand which of these points is stable, let us apply the general approach discussed in Sec. 
3.2, the linearization of equations of motion, to Eq. (63a). For the trivial fixed point A0 = 0, its 
linearization is reduced to discarding the nonlinear term in the definition of the amplitude-dependent 
damping (A). The resulting linear equation evidently shows that the system’s equilibrium point, A = A0 
= 0,  is stable at  > 0 and unstable at  < 0. (This self-excitation condition was already discussed 
above.)  On the other hand, the linearization of near the non-trivial fixed point A1 requires a bit more 

math: in the first order in 0
~

1  AAA , we get 
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1    , (5.65) 

where Eq. (64) has been used to eliminate A1. We see that the fixed point A1 (and hence the self-
oscillation process) is stable as soon as it exists ( 0 ) – similarly to the situation in our “testbed 
problem” (Fig. 2.1), besides that in our current, dissipative system, the stability is “actual” rather than 
“orbital” – see Sec. 6 for more on this issue. 

 Now let us consider another important problem: the effect of an external oscillating force on a 
self-excited oscillator. If the force is sufficiently small, its effects on the self-excitation condition and 
the oscillation amplitude are negligible. However, if the frequency  of such a weak force is close to the 
own frequency 0 of the oscillator, it may lead to phase locking24 – also called “synchronization”, 
though the latter term also has a much broader meaning. At this effect, the oscillation frequency deviates 
from 0, and becomes exactly equal to the external force’s frequency , within a certain range 

       0 .     (5.66) 

 To prove this fact, and also to calculate the phase-locking range width 2, we may repeat the 
calculation of the right-hand sides of the reduced equations (57a), adding the term f0cost to the right-
hand side of Eq. (62) – cf. Eqs. (42)-(43). This addition modifies Eqs. (63) as follows:25 

                    ,sin
2

)( 0 



f

AAA       (5.67a) 

          .cos
2

0 



f

AA       (5.67b) 

24 Apparently, the phase locking was first noticed by the same C. Huygens for pendulum clocks. 
25 Actually, this result should be evident, even without calculations, from the comparison of Eqs. (60) and (63). 
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If the system is self-excited, and the external force is weak, its effect on the oscillation amplitude is 
small, and in the first approximation in f0 we can take A to be constant and equal to the value A1 given 
by Eq. (64). Plugging this approximation into Eq. (67b), we get a very simple equation26  

                            cosΔ ,     (5.68) 
where in our current case  

         .
2

Δ
1

0

A

f


       (5.69) 

Within the range – <  < +, Eq. (68) has two fixed points on each 2-segment of the variable : 

         n 2cos 1 








 

 .     (5.70) 

 It is easy to linearize Eq. (68) near each point to analyze their stability in our usual way; 
however, let me use this case to demonstrate another convenient way to do this in 1D systems, using the 
phase plane [  , ] – see Fig. 5, where the red line shows the right-hand side of Eq. (68). 

  

 

 

 

 

 

 

 

 Since according to Eq. (68), positive values of the plotted function correspond to the growth of 
phase  in time and vice versa, we may draw the arrows showing the direction of phase evolution. From 
this graphics, it is clear that one of these fixed points (for f0 > 0, +) is stable, while its counterpart (in 
this case, –) is unstable. Hence the magnitude of  given by Eq. (69) is indeed the phase-locking range 
(or rather its half) that we wanted to find. Note that the range is proportional to the phase-locking 
signal’s amplitude – perhaps the most important quantitative feature of this effect. 

 To complete our simple analysis, based on the assumption of fixed oscillation amplitude, we 
need to find the condition of its validity. For that, we may linearize Eq. (67a), for the stationary case, 
near the value A1, just as we have done in Eq. (65) for the transient process. The stationary result, 

       



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sin
2

Δ
sin

22

1~
1

0
1 A

f
AAA ,   (5.71) 

shows that our assumption,  A
~
 << A1, and hence the final result (69), are valid if the calculated phase-

locking range 2 is much smaller than 4 . 

26 This equation is ubiquitous in phase-locking system descriptions, including even some digital electronic circuits 
used for that purpose – at the proper re-definition of the phase difference . 

Fig. 5.5. The phase plane of a phase-
locked oscillator, for the particular 
case  = /2,  f0 > 0. 
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5.5. Parametric excitation 

 In both problems solved in the last section, the stability analysis was easy because it could be 
carried out for just one slow variable, either amplitude or phase. More generally, such an analysis of the 
reduced equations involves both of these variables. A classical example of such a situation is provided 
by one important physical effect – the parametric excitation of oscillations. A simple example of such 
excitation is given by a pendulum with a variable parameter, for example, the suspension length l(t) – 
see Fig. 6. Experiments27 and numerical simulations show that if the length is changed periodically 
(modulated) with some frequency 2 that is close to 20, and a sufficiently large depth l, the 
equilibrium position of the pendulum becomes unstable, and it starts oscillating with frequency  equal 
exactly to the half of the modulation frequency – and hence only approximately equal to the average 
frequency 0 of the oscillator. 

 

 

 

 

 

 
 For an elementary analysis of this effect, we may consider the simplest case when the 
oscillations are small. At the lowest point (  = 0), where the pendulum moves with the highest velocity 
vmax, the suspension string’s tension T  is higher than mg by the centripetal force: T max = mg + mvmax

2/l. 
On the contrary, at the maximum deviation of the pendulum from the equilibrium, the force is lower 
than mg, because of the string’s tilt: Tmin = mgcosmax. Using the energy conservation, E = mvmax

2/2 = 
mgl(1 – cosmax), we may express these values as Tmax = mg + 2E/l and Tmin = mg – E/l. Now, if during 
each oscillation period, the string is pulled up slightly by l (with l << l) at each of its two passages 
through the lowest point, and is let to go down by the same amount at each of two points of the 
maximum deviation, the net work of the external force per period is positive: 

                    ,
Δ

6Δ)(2 minmax E
l

l
l  TTW     (5.72) 

and hence increases the oscillator’s energy. If the parameter modulation depth l is sufficient, this 
increase may overcompensate the energy drained out by damping during the same period. 
Quantitatively, Eq. (10) shows that low damping (  << 0) leads to the following energy decrease, 

      EE
0

4

 ,     (5.73) 

per oscillation period. Comparing Eqs. (72) and (73), we see that the net energy flow into the 
oscillations is positive, W + E > 0, i.e. oscillation amplitude has to grow if28 

27 The simplest experiments of this kind may be done with the usual playground swings, where moving your body 
up and down moves the system’s c.o.m. position, and hence the effective length lef of the support – see Eq. (4.41). 
28 Modulation of the pendulum’s mass (say, by periodic pumping water in and out of a suspended bottle) gives a 
qualitatively similar result. Note, however, that parametric oscillations cannot be excited by modulating every 

Fig. 5.6. Parametric excitation of a pendulum. 
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      .
33

2Δ

0 Ql

l 



      (5.74) 

Since this result is independent of the oscillation energy E, the growth of energy and amplitude is 
exponential (until E becomes so large that some of our assumptions fail), so Eq. (74) is the parametric 
excitation’s condition – in this simple model. 

 However, this result does not account for a possible difference between the oscillation frequency 
 and the eigenfrequency 0, and also does not clarify whether the best phase shift between the 
oscillations and parameter modulation, assumed in the above calculation, may be sustained 
automatically. To address these issues, we may apply the van der Pol approach to a simple but 
reasonable model: 
     ,0)2cos1(2 2

0  qtqq       (5.75) 

describing the parametric excitation in a linear oscillator with a sinusoidal modulation of the parameter 
0

2(t). Rewriting this equation in the canonical form (38), 

          ,2cos22),,( 2
0

2 tqqqqqtfqq       (5.76) 

and assuming that the dimensionless ratios /ω and /, and the modulation depth  are all much less 
than 1, we may use general Eqs. (57a) to get the following reduced equations:  
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     (5.77) 

 These equations evidently have a fixed point, with A0 = 0, but its stability analysis (though 
possible) is not absolutely straightforward, because the phase   of oscillations is undetermined at that 
point. In order to avoid this (technical rather than conceptual) difficulty, we may use, instead of the real 
amplitude and phase of oscillations, either their complex amplitude a = A exp{i}, or its components u 
and v – see Eqs. (4). Indeed, for our function f, Eq. (57b) gives 

        *

4
)( aiaia

  ,     (5.78) 

while Eqs. (57c) yield 
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



     (5.79) 

 We see that in contrast to Eqs. (77), in the “Cartesian coordinates” {u, v} the trivial fixed point 
A0 = 0 (i.e. u0 = v0 = 0) is absolutely regular. Moreover, equations (78)-(79) are already linear, so they 
do not require any additional linearization. Thus we may use the same approach as was already used in 
Secs. 3.2 and 5.1, i.e. look for the solution of Eqs. (79) in the exponential form exp{t}. However, now 

oscillator’s parameter – for example, the oscillator’s damping coefficient (at least if it stays positive at all times), 
because this does not change the system’s energy, just the energy drain rate. 



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 5             Page 20 of 38

we are dealing with two variables and should allow them to have, for each value of , a certain ratio u/v. 
For that, we may take the partial solution in the form 

            ., tt ecvecu vu
       (5.80) 

where the constants cu and cv are frequently called the distribution coefficients. Plugging this solution 
into Eqs. (79), we get from them the following system of two linear algebraic equations: 
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    (5.81) 

 The characteristic equation of this system, i.e. the condition of compatibility of Eqs. (81), 
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has two roots:  
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Requiring the fixed point to be unstable, Re+ > 0, we get the parametric excitation condition 

                .
4

2/122 
      (5.84) 

Thus the parametric excitation may indeed happen without any external phase control: the arising 
oscillations self-adjust their phase to pick up energy from the external source responsible for the 
periodic parameter variation. 

 Our key result (84) may be compared with two other calculations. First, in the case of negligible 
damping ( = 0), Eq. (84) turns into the condition /4 >  . This result may be compared with the 
well-developed theory of the so-called Mathieu equation, whose canonical form is 

         .02cos2
2

2

 yvba
dv

yd
     (5.85) 

With the substitutions y  q, v  t, a  (0/)2, and b/a  –/2, this equation is just a particular case 
of Eq. (75) for  = 0. In terms of Eq. (85), our result (84) may be rewritten just as b > a – 1 , and is 
supposed to be valid for b  << 1. The boundaries given by this condition are shown with dashed lines in 
Fig. 7 together with the numerically calculated29 stability boundaries for the Mathieu equation. One can 
see that the van der Pol approximation works just fine within its applicability limit (and a bit beyond :-), 
though it fails to predict some other important features of the Mathieu equation, such as the existence of 
higher, more narrow regions of parametric excitation (at a  n2, i.e. 0  /n, for all integer n), and some 

29 Such calculations are substantially simplified by the use of the so-called Floquet theorem, which is also the 
mathematical basis for the discussion of wave propagation in periodic media – see the next chapter.  
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spill-over of the stability region into the lower half-plane a < 0.30 The reason for these failures is the fact 
that, as can be seen in Fig. 7, these phenomena do not appear in the first approximation in the parameter 
modulation amplitude   b, which is the realm of the reduced equations (79). 

  

 

 

 

 

 

 

  

  

  

 

 

 

 In the opposite case of non-zero damping but exact tuning ( = 0,   0), Eq. (84) becomes  

       .
24

0 Q



       (5.86) 

This condition may be compared with Eq. (74) by taking l/l = 2. The comparison shows that while the 
structure of these conditions is similar, the numerical coefficients are different by a factor close to 2. 
The first reason for this difference is that the instant parameter change at optimal moments of time is 
more efficient than the smooth, sinusoidal variation described by (75). Even more significantly, the 
change of the pendulum’s length modulates not only its frequency 0  (g/l)1/2 as Eq. (75) implies but 
also its mechanical impedance Z  (gl)1/2 – the notion to be discussed in detail in the next chapter. (The 
analysis of the general case of the simultaneous modulation of 0 and Z is left for the reader’s exercise.) 

 To conclude this section, let me summarize the most important differences between the 
excitation of parametric and forced oscillations: 

  (i) Parametric oscillations completely disappear outside of their excitation range, while the 
forced oscillations have a non-zero amplitude for any frequency and amplitude of the external force – 
see Eq. (18).  

 (ii) While the parametric excitation may be described by linear equations such as  Eq. (75), such 
equations cannot predict a finite oscillation amplitude within the excitation range, even at finite 

30 This region (for b << 1, – b2/2 < a < 0) describes, in particular, the counter-intuitive stability of the so-called 
Kapitza pendulum – an inverted pendulum with the suspension point oscillated fast in the vertical direction – the 
effect first observed by Andrew Stephenson in 1908. 
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Fig. 5.7. Stability boundaries of the Mathieu 
equation (85), as calculated: numerically (solid 
curves) and using the reduced equations (79) 
(dashed straight lines). In the regions numbered 
by various n, the trivial solution y = 0 of the 
equation is unstable,  i.e. its general solution y(v) 
includes an exponentially growing term. 
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damping. In order to describe stationary parametric oscillations, some nonlinear effects have to be taken 
into account. (I am leaving analyses of such effects for the reader’s exercise.)  

 One more important feature of parametric oscillations will be discussed in the next section. 

 

5.6. Fixed point classification 

 The reduced equations (79) give us a good pretext for a brief discussion of an important general 
topic of dynamics: classification and stability of the fixed points of a system described by two time-
independent, first-order differential equations with time-independent coefficients.31 After their 
linearization near a fixed point, the equations for deviations can always be expressed in a form similar to 
Eq. (79): 
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
     (5.87) 

where Mjj’ (with j, j’ = 1, 2) are some real scalars, which may be viewed as the elements of a 22 matrix 
M. Looking for an exponential solution of the type (80),  

         ,~,~
2211

tt ecqecq        (5.88) 

we get a general system of two linear equations for the distribution coefficients c1,2: 
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These equations are consistent if 
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giving us a quadratic characteristic equation: 

      .0)( 211222112211
2  MMMMMM    (5.91) 

Its solution,32 

           ,4)(
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1 2/1
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2
22112211 MMMMMM     (5.92) 

shows that the following situations are possible: 

 A. The expression under the square root, (M11- M22)
2 + 4M12M21, is positive. In this case, both 

characteristic exponents   are real, and we can distinguish three sub-cases: 

31 Autonomous systems described by a single, second-order homogeneous differential equation, 
say 0),,( qqqF  , also belong to this class, because we may always treat the generalized velocity vq   as a new 

variable, and use this definition as one first-order differential equation, while the initial equation, in the 
form 0),,( vvqF  , as the second first-order equation. 
32 In the language of linear algebra,  are the eigenvalues, and the corresponding sets of the distribution 
coefficients [c1, c2] are the eigenvectors of the matrix M with elements Mjj’. 



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 5             Page 23 of 38

  (i) Both + and - are negative. As Eqs. (88) show, in this case the deviations q~  tend to 

zero at t  , i.e. the fixed point is stable. Because of generally different magnitudes of the exponents 
, the process represented on the phase plane [ 21

~,~ qq ] (see Fig. 8a, with the solid arrows, for an 

example) may be seen as consisting of two stages: first, a faster (with the rate - > +) relaxation to a 
linear asymptote,33 and then a slower decline, with the rate +, along this line, i.e. at a virtually fixed 
ratio of the variables. Such a fixed point is called the stable node.  

     

  

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

   

33 The asymptote direction may be found by plugging the value + back into Eq. (89) and finding the 
corresponding ratio c1/c2. Note that the separation of the system’s evolution into the two stages is conditional, 
being most vivid in the case of a large difference between the exponents + and -. 

Fig. 5.8. Typical trajectories on the phase plane [ 21
~,~ qq ] near fixed points of different types: 

(a) node, (b) saddle, (c) focus, and (d) center. The particular matrices M used for the first 
three panels correspond to Eqs. (81) for the parametric excitation, with  =  and three 
different values of the ratio /4: (a) 1.25, (b) 1.6, and (c) 0.
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  (ii) Both + and - are positive. This case of an unstable node differs from the previous 
one only by the direction of motion along the phase plane trajectories – see the dashed arrows in Fig. 8a. 
Here the variable ratio is also approaching a constant soon, now the one corresponding to + > -. 

   (iii) Finally, in the case of a saddle (+ > 0, – < 0), the system’s dynamics is different 
(Fig. 8b): after the rate-–relaxation to an asymptote, with the perturbation starts to grow, with the rate 
+, along one of two opposite directions. (The direction is determined on which side of another straight 
line, called the separatrix, the system has been initially.)  So the saddle34 is an unstable fixed point. 

 B. The expression under the square root in Eq. (92), (M11- M22)
2 + 4 M12M21, is negative. In this 

case, the square root is imaginary, making the real parts of both roots equal, Re = (M11 + M22)/2, and 
their imaginary parts equal but opposite. As a result, here there can be just two types of fixed points: 

  (i) Stable focus, at (M11 + M22) < 0. The phase plane trajectories are spirals going to the 
origin (i.e. toward the fixed point) – see Fig. 8c with the solid arrow. 

  (ii) Unstable focus, taking place at (M11 + M22) > 0, differs from the stable one only by 
the direction of motion along the phase trajectories – see the dashed arrow in the same Fig. 8c. 

 C. Frequently, the border case, M11 + M22 = 0, corresponding to the orbital (“indifferent”) 
stability already discussed in Sec. 3.2, is also distinguished, and the corresponding fixed point is referred 
to as the center (Fig. 8d). Considering centers as a separate category makes sense because such fixed 
points are typical for Hamiltonian systems, whose first integral of motion may be frequently represented 
as the distance of the representing point from a certain center. For example, by introducing new 

variables 121
~~  and  ~~ qmqqq  , we may rewrite Eq. (3.12) of a harmonic oscillator without dissipation 

(again, with indices “ef” dropped for brevity), as a system of two first-order differential equations: 

        ,~~,~1~
1221 qqq

m
q        (5.93) 

i.e. as a particular case of Eq. (87), with M11 = M22 = 0, and M12M21 = –/m  –0
2 < 0, and hence (M11- 

M22)
2 + 4M12M21 = –40

2 < 0, and M11 + M22 = 0. On the symmetrized phase plane  Zqq /~,~
21 , where 

the parameter Z  (m)1/2  m0 is the oscillator’s impedance, the sinusoidal oscillations of amplitude A 
are represented by a circle of radius A about the center-type fixed point A = 0. In the case when qq ~~

1   

is the linear coordinate q of an actual mechanical oscillator, so 12
~~ qmq   is its linear momentum 

qmp  , such a circular trajectory corresponds to the conservation of the oscillator’s energy 
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 This is a convenient moment for a brief discussion of the so-called Poincaré (or “slow-variable”, 
or “stroboscopic”) plane.35 From the point of view of the basic Eq. (41), the sinusoidal oscillations q(t) 

34 The term “saddle” is due to the fact that in this case, the system’s dynamics is qualitatively similar to that of a 
heavily damped motion in a 2D potential U( 21

~,~ qq ) having the shape of a horse saddle (or a mountain pass). 
35Named after Jules Henri Poincaré (1854-1912), who is credited, among many other achievements in physics 
and mathematics, for his contributions to special relativity (see, e.g., EM Chapter 9), and the basic idea of 
unstable trajectories responsible for the deterministic chaos – to be discussed in Chapter 9 of this course. 
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= Acos(t – ), described by a circular trajectory on the actual (symmetrized) phase plane, correspond 
to a fixed point {A, }, which may be conveniently represented by a stationary geometric point on the 
plane with these polar coordinates – see Fig. 9a. (As follows from Eq. (4), the point’s Cartesian 
coordinates on that plane are just the variables u  Acos and v  Acos that were used, in particular, in 
the last section.) The quasi-sinusoidal process (41), with slowly changing A and , may be represented 
by  slow motion of that point on this Poincaré plane.  

 

 

 

 

 

 

 

 

  

 Figure 9b shows a convenient way to visualize the relation between the actual phase plane of an 
oscillator, with the “fast” symmetrized coordinates q and p/m, and the Poincaré plane with the “slow” 
coordinates u and v: the latter plane rotates relative to the former one, about the origin, clockwise, with 
the angular velocity .36 Another, “stroboscopic” way to generate the Poincaré plane pattern is to have a 
fast glance at the “real” phase plane just once during the oscillation period T  = 2/.   

 In many cases, the representation on the Poincaré plane is more convenient than that on the 
“real” phase plane. In particular, we have already seen that the reduced equations for such important 
phenomena as phase locking and parametric oscillations, whose original differential equations include 
time explicitly, are time-independent – cf., e.g., Eqs. (75) and (79) describing the latter effect. This 
simplification brings the equations into the category considered earlier in this section and enables an 
easy classification of their fixed points, which may shed additional light on their dynamic properties.    

 In particular, Fig. 10 shows the classification of the only (trivial) fixed point A1 = 0 on the 
Poincaré plane of the parametric oscillator, which follows from Eq. (83). As the parameter modulation 
depth  is increased, the type of this fixed point changes from a stable focus (pertinent to a simple 
oscillator with damping) to a stable node and then to a saddle describing the parametric excitation. In 
the last case, the two directions of the perturbation growth, so prominently featured in Fig. 8b, 
correspond to the two possible values of the oscillation phase , with the phase choice determined by 
initial conditions. 

 This double degeneracy of the parametric oscillation’s phase could already be noticed from Eqs.  
(77), because they are evidently invariant with respect to the replacement    + . Moreover, the 
degeneracy is not an artifact of the van der Pol approximation, because the initial equation (75) is 
already invariant with respect to the corresponding replacement q(t)  q(t – /). This invariance 

36 This notion of phase plane rotation is the origin of the term “Rotating Wave Approximation”, mentioned above. 
(The word “wave” is an artifact of this method’s wide application in classical and quantum optics.) 
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Fig. 5.9. (a) Representation of a 
sinusoidal oscillation (point) and a 
slow transient process (line) on the 
Poincaré plane, and (b) the relation 
between the usual (“fast”) phase plane 
and the “slow” (Poincaré) plane. 
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means that all other characteristics (including the amplitude) of the parametric oscillations excited with 
either of the two phases are exactly similar. At the dawn of the computer age (in the late 1950s and early 
1960s), there were substantial attempts, especially in Japan, to use this property for storage and 
processing digital information coded in the binary-phase form. Though these attempts have not survived 
the competition with simpler approaches based on binary-voltage coding, some current trends in the 
development of prospective reversible and quantum computers may be traced back to that idea.  

  

 

 

 

 

 

 

5.7. Numerical approaches 

 If the amplitude of oscillations, for whatever reason, becomes so large that nonlinear terms in the 
equation describing an oscillator become comparable with its linear terms, numerical methods are 
virtually the only avenue available for their theoretical studies. In Hamiltonian 1D systems, such 
methods may be applied directly to Eq. (3.26), but dissipative and/or parametric systems typically lack 
such first integrals of motion, so the initial differential equation has to be solved.  

 Let us discuss the general idea of such methods on the example of what mathematicians call the  
Cauchy problem (finding the solution for all moments of time, starting from the known initial 
conditions) for the first-order differential equation 

      ).,( qtfq        (5.95) 

(The generalization to a system of several such equations is straightforward.) Breaking the time axis into 
small equal steps h (Fig. 11) we can reduce the equation integration problem to finding the function’s 
value at the next time point, qn+1  q(tn+1)  q(tn + h) from the previously found value qn = q(tn) – and, if 
necessary, the values of q at other previous time steps.   

 

 

 

  

 

  

 In the simplest approach (called the Euler method), qn+1 is found using the following formula: 
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Fig. 5.11. The basic notions used at numerical 
integration of ordinary differential equations. 
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This approximation is equivalent to the replacement of the genuine function q(t), on the segment [tn, 
tn+1], with the two first terms of its Taylor expansion in point tn:  

    ).,()()()()( nnnnnn qthftqhtqtqhtq      (5.97) 

 This approximation has an error proportional to h2. One could argue that by making the step h 
sufficiently small, the Euler method’s error might be made arbitrarily small, but even with all the 
number-crunching power of modern computer platforms, the CPU time necessary to reach sufficient 
accuracy may be too large for big problems.37 Besides that, the increase of the number of time steps, 
which is necessary at h  0 at a fixed total time interval, increases the total rounding errors and 
eventually may cause an increase, rather than the reduction of the overall error of the computed result. 

 A more efficient way is to modify Eq. (96) to include the terms of the second order in h. There 
are several ways to do this, for example using the 2nd-order Runge-Kutta method: 
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    (5.98) 

One can readily check that this method gives the exact result if the function q(t) is a quadratic 
polynomial, and hence in the general case its errors are of the order of h3. We see that the main idea here 
is to first break the segment [tn, tn+1] in half (see Fig. 11 again), evaluate the right-hand side of the 
differential equation (95) at the point intermediate (in both t and q) between the points number n and (n 
+ 1), and then use this information to evaluate qn+1.   

 The advantage of the Runge-Kutta approach over other second-order methods is that it may be 
readily extended to the 4th order, without an additional breakup of the interval [tn, tn+1]: 
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(5.99) 

This method has a much lower error, O(h5), without being too cumbersome. These features have made 
the 4th-order Runge-Kutta the default method in most numerical libraries. Its extension to higher orders 
is possible, but requires more complex formulas, and is justified only for some special cases, e.g., very 
abrupt functions q(t).38 The most frequent enhancement of the method is an automatic adjustment of the 
step h to reach the pre-specified accuracy, but not make more calculations than necessary. 

 Figure 12 shows a typical example of an application of that method to the very simple problem 
of a damped linear oscillator, for two values of the fixed time step h – expressed in terms of the number 
(N) of such steps per oscillation period. The black straight lines connect the adjacent points obtained by 

37 In addition, the Euler method is not time-reversible. This handicap that may be essential for Hamiltonian 
systems described by systems of second-order differential equations. However, this drawback may be partly 
overcome by the so-called leapfrogging – the overlap of time steps h for a generalized coordinate and the 
corresponding generalized velocity. 
38 The most popular approaches in such cases are the Richardson extrapolation, the Bulirsch-Stoer algorithm, and 
a set of so-called prediction-correction techniques, e.g. the Adams-Bashforth-Moulton method – see the literature 
recommended in MA Sec. 16(iii). 
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the 4th-order Runge-Kutta method, while the points connected with the green straight lines represent the 
exact analytical solution (22). The plots show that a-few-percent errors start to appear only at as few as 
~10 time steps per period, so the method is indeed very efficient.  

 Let me hope that the discussion in the next section will make the conveniences and the handicaps 
of the numerical approach to problems of nonlinear dynamics very clear. 

  

 

 

 

 

 

 

 

 

  

  

5.8. Higher-harmonic and subharmonic oscillations 

 Figure 13 shows the numerically calculated39 transient process and stationary oscillations in a 
linear oscillator and a very representative nonlinear system, the pendulum described by Eq. (42), both 
with the same 0.  Both systems are driven by a sinusoidal external force of the same amplitude and 
frequency – in this illustration, equal to the own small-oscillation frequency 0 of both systems. The 
plots show that despite a very substantial amplitude of the pendulum oscillations (the angle amplitude of 
about one radian), their waveform remains almost exactly sinusoidal.40 On the other hand, the 
nonlinearity affects the oscillation amplitude very substantially. These results imply that the 
corresponding reduced equations (60), which are based on the assumption (41), may work very well far 
beyond its formal restriction q << 1.  

 Still, the waveform of oscillations in a nonlinear system always differs from that of the applied 
force – in our case, from the sine function of frequency . This fact is frequently formulated as the 
generation, by the system, of higher harmonics. Indeed, the Fourier theorem tells us that any non-
sinusoidal periodic function of time may be represented as a sum of its basic harmonic of frequency , 
plus higher harmonics with frequencies n, with integer n > 1.  

 Note that an effective generation of higher harmonics is only possible with adequate nonlinearity 
of the system. For example, consider the nonlinear term q3 used in the equations explored in Secs. 2 

39 All numerical results shown in this section have been obtained by the 4th-order Runge-Kutta method with the 
automatic step adjustment that guarantees the relative error of the order of 10-4 – much smaller than the pixel size 
in the shown plots. 
40 In this particular case, the higher harmonic content is about 0.5%, dominated by the 3rd harmonic, whose 
amplitude and phase are in very good agreement with Eq. (50). 

Fig. 5.12. Results of the Runge-Kutta solution of Eq. (6) (with /0 = 0.03) for: (a) 30 and (b) 6 points per 
oscillation period. The results are shown by points; the black and green lines are only the guides for the eye. 
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and 3. If the waveform q(t) is sinusoidal, such term will have only the basic (1st) and the 3rd harmonics – 
see, e.g., Eq. (50). As another example, the “pendulum nonlinearity” sinq cannot produce, without a 
time-independent component (”bias”) in q(t), any even harmonic, including the 2nd one. The most 
efficient generation of harmonics may be achieved using systems with the sharpest nonlinearities – e.g., 
semiconductor diodes whose current may follow an exponential dependence on the applied voltage 
through several orders of magnitude. 41 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Another way to increase the contents of an nth higher harmonic in a nonlinear oscillator is to 
reduce the excitation frequency   to ~0/n, so the oscillator resonated at the frequency n  0 of the 
desired harmonic. For example, Fig. 14a shows the oscillations in a pendulum described by the same Eq. 
(42), but driven at frequency  = 0/3. One can see that the 3rd harmonic amplitude may be comparable 
with that of the basic harmonic, especially if the external frequency is additionally lowered (Fig. 14b) to 
accommodate for the deviation of the effective frequency ω0(A) of own oscillations from its small-
oscillation value ω0 – see Eq. (49), Fig. 4, and their discussion in Sec. 2 above.  

 However, numerical modeling of nonlinear oscillators, as well as experiments with their physical 
implementations, bring more surprises. For example, the bottom panels of Fig. 15 show oscillations in a 
pendulum under the effect of a strong sinusoidal force with a frequency  close to 30. One can see that 
at some parameter values and initial conditions, the system’s oscillation spectrum is heavily contributed 
(almost dominated) by the 3rd subharmonic, i.e. the Fourier component of frequency /3  0.  

This counter-intuitive phenomenon of such subharmonic generation may be explained as 
follows. Let us assume that subharmonic oscillations of frequency /3   0 have somehow appeared, 
and coexist with the forced oscillations of frequency 3:  

41 This method is used in practice, for example, for the generation of electromagnetic waves with frequencies in 
the terahertz range (1012-1013 Hz), which is still in wait for efficient electronic self-oscillators.   

Fig. 5.13. The oscillations induced by a similar sinusoidal external force (turned on at t = 0) in two 
systems with the same small-oscillation frequency ω0 and low damping: a linear oscillator (two 
top panels) and a pendulum (two bottom panels). In all cases, δ/ω0 = 0.03, f0 = 0.1, and ω = ω0.  
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Then the leading nonlinear term, q3, of the Taylor expansion of the pendulum’s nonlinearity sin q, is 
proportional to  
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Fig. 5.14. The oscillations induced in a pendulum, with damping δ/ω0 = 0.03, by a sinusoidal external 
force of amplitude f0 = 0.75, and frequencies ω0/3 (top panel) and 0.8ω0/3 (bottom panel).  
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Fig. 5.15. The oscillations of a pendulum with δ/ω0 = 0.03, driven by a sinusoidal external force of 
amplitude f0 = 3 and frequency 0.83ω0, at initial conditions q(0) = 0 (the top panels) and q(0) = 1 
(the bottom panels), with dq/dt (0) = 0 in both cases.
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 While the first and the last terms of the last expression depend only on the amplitudes of the 
individual components of oscillations, the two middle terms are more interesting, because they produce 
so-called combinational frequencies of the two components. In our case, the third term, 

            ...)Ψ2Ψcos(
4

3
ΨcosΨcos3 sub

2
ubsub

22
ub  ss AAAA ,    (5.102) 

is of special importance, because it produces (besides other combinational frequencies) the subharmonic 
component with the total phase 

      subsub 2
3

2 
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t
.     (5.103) 

Thus, this nonlinear contribution is synchronous with the subharmonic oscillations, and describes the 
interaction that can, within a certain range of the mutual phase shift between the Fourier components,  
deliver to them energy from the external force, so that the oscillations may be sustained. Note, however, 
that the amplitude of the term describing this energy exchange is proportional to the square of Asub, and 
vanishes at the linearization of the equations of motion near the trivial fixed point. This means that the 
point is always stable, i.e., the 3rd subharmonic cannot be self-excited and always needs an initial “kick-
off” – compare the two panels of Fig. 15. The same is true for higher-order subharmonics. 

 Only the second subharmonic is a special case. Indeed, let us make a calculation similar to Eq. 
(102), by replacing Eq. (101) with 

    ,
2

Ψ,Ψ  where,ΨcosΨcos)( subsubsubsub  
t

tAAtq   (5.104) 

for a nonlinear term proportional to q2: 
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Here the combinational-frequency term capable of supporting the 2nd subharmonic, 

       ...cosΨΨcosΨcosΨcos2 subsubsubsubsubsub  tAAAAAA ,  (5.106) 

is linear in the subharmonic’s amplitude, i.e. survives the linearization near the trivial fixed point. This 
means that the second subharmonic may arise spontaneously, from infinitesimal fluctuations. 

 Moreover, such excitation of the second subharmonic is very similar to the parametric excitation 
that was discussed in detail in Sec. 5, and this similarity is not coincidental. Indeed, let us redo the 
expansion (106) making a somewhat different assumption – that the oscillations are a sum of the forced 
oscillations at the external force’s frequency  and an arbitrary but weak perturbation: 

      AqtqtAtq  ~with  ),(~)cos()(  .    (5.107) 

Then, neglecting the small term proportional to 2~q , we get 

    ).cos()(~2)(cos222   tAtqtAq     (5.108) 

Besides the inconsequential phase shift , the second term in the last formula is exactly similar to the 
term describing the parametric effects in Eq. (75). This fact means that for a weak perturbation, a system 
with a quadratic nonlinearity in the presence of a strong “pumping” signal of frequency  is equivalent 
to a system with parameters changing in time with frequency . This fact is broadly used for the 
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parametric excitation at high (e.g., optical) frequencies, where the mechanical means of parameter 
modulation (see, e.g., Fig. 5) are not practicable. The necessary quadratic nonlinearity at optical 
frequencies may be provided by a non-centrosymmetric nonlinear crystal, e.g., the -phase barium 
borate (BaB2O4). 

 Before finishing this section, let me elaborate a bit on a general topic: the relation between the 
numerical and analytical approaches to problems of dynamics – and to physics as a whole. We have just 
seen that sometimes numerical solutions, like those shown in Fig. 15b, may give vital clues for 
previously unanticipated phenomena such as the excitation of subharmonics. (The phenomenon of 
deterministic chaos, which will be discussed in Chapter 9 below, presents another example of  such 
“numerical discoveries”.) One might also argue that for problems without exact analytical solutions, the 
numerical simulation may be an equally productive theoretical tool. These hopes are, however, muted by 
the general problem that is frequently called the curse of dimensionality,42 in which the last word refers 
to the number of parameters of the problem to be solved.43   

 Indeed, let us have one more look at Fig. 15. OK, we have been lucky to find a new 
phenomenon, the 3rd subharmonic generation, for a particular set of parameters – in that case, five of 
them: /0 = 0.03, /0 = 2.4, f0  = 3, q(0) = 1, and dq/dt (0) = 0. Could we tell anything about how 
common this effect is? Are subharmonics with different n possible in this system? The only way to 
address these questions computationally is to carry out similar numerical simulations at many points of 
the d-dimensional (in this case, d = 5) space of parameters. Say, we have decided that breaking the 
reasonable range of each parameter to N = 100 points is sufficient. (For many problems, even more 
points are necessary – see, e.g., Sec. 9.1.) Then the total number of numerical experiments to carry out is 
Nd = (102)5 = 1010 – not a simple task even for the powerful modern computing facilities. (Besides the 
pure number of required CPU cycles, consider the storage and analysis of the results.) For many 
important problems of nonlinear dynamics, e.g., turbulence, the parameter dimensionality d is 
substantially larger, and the computer resources necessary even for one numerical experiment, are much 
greater. 

 In view of the curse of dimensionality, approximate analytical considerations, like those outlined 
above for the subharmonic excitation, are invaluable. More generally, physics used to stand on two legs: 
experiment and analytical theory. The enormous progress of computer performance during the few last 
decades has provided it with one more support point (a tail? :-) – numerical simulation. This does not 
mean we can afford to discard any of the legs we are standing on. 

 

5.9. Relaxation oscillations 

 Such synthesis of the analytical and numerical approaches is also beneficial for the discussion of 
the last subject of this chapter: nonlinear oscillators with high damping. Perhaps the most interesting 
effect in such systems is the so-called relaxation oscillations, a type of self-oscillations with highly non-
sinusoidal waveforms. Let me demonstrate them using our old friend, Eq. (62) with  < 0, whose 

42 This term had been coined in 1957 by Richard Bellman in the context of the optimal control theory (where the 
dimensionality means the number of parameters affecting the system under control) but gradually has spread all 
over quantitative sciences using numerical methods. 
43 In EM Sec. 1.2, I discuss the implications of this “curse” for a different case, when both analytical and 
numerical solutions to the same problem are possible. 
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properties at    << 0 were discussed 
in Sec. 4, because it will enable us to 
follow the crossover from the harmonic 
oscillations to the relaxation ones. 

 Figure 16 shows the results of 
the numerical solution of this equation 
for three characteristic values of its 
only substantial parameter44 
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(Indeed, if we introduce the natural 
dimensionless variables: time   0t, 
displacement x  q/q0, where q0 is the 
scale defined in Eq. (64), and velocity y 
 dx/d, then the second-order 
differential equation (62) may be 
rewritten as the following system of 
two first-order equations: 45 
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with D being its only parameter.) The 
left panels show phase planes [x, dx/d] 
of the oscillator, with their axes 
swapped46 for the comparison with the 
right panels showing the displacement x  
as a function of time. 

 If the damping is low (top two 
panels), the system, launched from any 
initial state, gradually approaches the 
“limit cycle” of nearly sinusoidal 
oscillations. Note that even for this, not 
extremely small value D = 0.2, 
deviations of the waveform x() from a 
purely sinusoidal function of time are 

44 As Eq. (11) shows, for positive damping, this parameter is just the reciprocal Q-factor.  
45 A somewhat different equation used in 1926 by B. van der Pol to trace the harmonic-to-relaxation-oscillation 
crossover for the first time may be also reduced to Eq. (110) by using the so-called Liénard's transformation. 
46 Note that while on the usual phase plane, the free-oscillation process corresponds to a clockwise rotation of the 
representation point (see, e.g., Fig. 9), the axes’ swap in Fig. 16 makes the rotation counterclockwise. 

Fig. 5.16. The phase plane and time evolution of the self-
oscillator described by Eqs. (62) and (110), for three values of the 
normalized damping (109). The red and blue lines show the 
system’s dynamics for two representative initial conditions, while 
the black lines, its asymptotic behavior (the “limit cycles”). 
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very small, its period (in the normalized time ) is very close to the small-oscillation value 2, and its 
amplitude is also very close to the value 2/3  1.15 predicted by the van der Pol method – see Eq. (64). 

 As the damping is increased to D = 2 (middle panels), the limit cycle’s deviations from the 
circle, and hence the deviations of the waveform x() from a sinusoidal function become obvious. Note 
also that while the oscillation period becomes somewhat longer than its small-oscillation value, the 
transient processes of approaching the limit cycle become faster. 

 The trend of these changes becomes evident on the bottom panels, showing case D = 20. (The 
further increase of the damping does not change the results noticeably, only rescaling the displacements 
as x  D – note the vertical scale of the bottom panels of Fig. 16.) It shows that the oscillation period is 
dominated by two similar parts, of equal duration. During these two intervals of relatively slow 
evolution, the limit cycle closely follows the declining branches of the function 

        0
2
01 yyx  D ,     (5.111) 

corresponding to the zero value of the first (and nominally, the largest) term in the second equation of 
the system (110) – see the dashed line on the left bottom panel. During these intervals, the displacement 
x grows in accordance with the first of these equations, with its right-hand part virtually equal to the y0 
corresponding to Eq. (111). Even without solving the resulting differential equation exactly,47 we see 
that at these brunches, with y0  1, x() changes with a speed of the order of D, and hence the path from 
the initial and final points of each branch, of a length x ~ D, takes a time interval  of the order of 1 –  
exactly as the right panel shows.  

 As soon as the system reaches the branch’s endpoint x = (2/33)D  0.385D, where the 
derivative dy0/dx diverges, the balance of the terms on the right-hand part of the second Eq. (110) is not 
more possible, and its magnitude abruptly becomes of the order of D >> 1. As a result, the system jumps 
from this point to the opposite branch of the curve (111) very rapidly, during a time interval   ~ y0/D 
~ 1/D << 1, insufficient for x to change much. (The initial transient processes, i.e. the approaches to the 
limit cycle from almost arbitrary initial conditions, are equally fast, also with x  const.) Upon reaching 
the new branch, the system “relaxes” to a relatively slow evolution in the opposite direction (hence the 
term “relaxation oscillations”), and the process repeats again and again. 

 Such oscillations take place in a large number of practical mechanical systems and electronic 
devices, ranging from bowed string musical instruments (including those of the violin family), to usual 
mechanical clocks, to car light blinkers. Many of them allow for simple analyses; to save time/space, let 
me leave a couple of problems of this type for the reader’s exercise.  

 

5.10. Exercise problems 

 5.1. A body of mass m is connected to its support not only with an elastic 
spring but also with a damper (say, an air brake) that provides a drag force obeying 
Eq. (5) – see the figure on the right.  

47 Its integration leads to an elementary function for (y), but transcendental equations for y() and x().





m


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 (i) How to select the constants  and  to minimize the body’s vibrations caused by vertical 
oscillations of its support with frequency ?  
 (ii)* What if the oscillations are random? 
 
 5.2. For a system with the response function given by Eq. (17): 

 (i) prove Eq. (26), and  
 (ii) use an approach different from the one used in Sec. 1, to derive Eq. (34). 

 Hint: You may like to use the Cauchy integral theorem and the Cauchy integral formula for 
analytical functions of a complex variable.48 
 
 5.3. A square-wave pulse of force (see the figure on the right) is exerted 
on a damping-free linear oscillator of frequency 0, initially at rest. Calculate the 
law of motion q(t), sketch it, and interpret the result. 
 
 5.4. A linear oscillator with frequency 0 and damping  was at rest at t  0. At t = 0, an external 
force F(t) = F0cost starts to be exerted on it. 

  (i) Derive the general expression for the time evolution of the oscillator’s displacement, and 
interpret the result. 
 (ii) Spell out the result for the exact resonance ( = 0) in a system with low damping ( << 0) 
and explore the limit   0. 
 
 5.5. A pulse of external force F(t), with a finite duration T, is exerted on a linear oscillator with 
negligible damping, initially at rest in its equilibrium position. Use two different approaches to calculate 
the resulting change of the oscillator’s energy. 
  
 5.6. A bead may slide, without friction, in a vertical plane along a parabolic curve y = x2/2, in a 
uniform gravity field g = –gny. Calculate the change its free oscillations’ frequency as a function of their 
amplitude A, in the first nonvanishing approximation in A  0, by using two different approaches. 
  
 5.7. For a system with the Lagrangian function  

422

22
qqq

m
L  

 , 

with small parameter , use the harmonic balance method to find the frequency of free oscillations as a 
function of their amplitude. 
 
 5.8. Use a different approach to derive Eq. (49) for the frequency of free oscillations of the 
system described by the Duffing equation (43) with  = 0, in the first nonvanishing approximation in the 
small parameter A2/0

2 << 1. 
 
 5.9. On the plane [a1, a2] of two real parameters a1 and a2, find the regions in which the fixed 
point of the following system of equations, 

48 See, e.g., MA Eq. (15.1). 

0/2 
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is unstable, and sketch the regions of each fixed point type – stable and unstable nodes, focuses, etc. 
  
 5.10. Solve Problem 4(ii) by using the reduced equations (57), and compare the result with the 
exact solution.  
 
 5.11. Use the reduced equations to analyze forced oscillations in an oscillator with weak 
nonlinear damping, described by the following equation: 

,cos2 0
32

0 tfqqqq     

with   0; ,  > 0; and A2 << 1. In particular, find the stationary amplitude of the forced 
oscillations and analyze their stability. Discuss the effect(s) of the nonlinear term on the resonance. 
 

5.12. Within the approach discussed in Sec. 4, calculate the average frequency of a self-oscillator 
outside of the range of its phase locking by a weak sinusoidal force. 
 
 5.13.* Use the reduced equations to analyze the stability of the forced nonlinear oscillations 
described by the Duffing equation (43). Relate the result to the slope of the resonance curves (Fig. 4). 

 
5.14. Use the van der Pol method to find the condition of 

parametric excitation of an oscillator described by the following 
equation: 

,0)(2 2
0  qtqq    

where 0
2(t) is the square-wave function shown in the figure on the 

right, with   0. 
 
5.15. Use the van der Pol method to analyze the parametric excitation of an oscillator with weak 

nonlinear damping, described by the following equation: 

  ,02cos12 2
0

3  qtqqq    

with   0; ,  > 0; and , A2 << 1. In particular, find the amplitude of stationary oscillations and 
analyze their stability. 
 
 5.16. Upon adding the nonlinear term q3 to the left-hand side of Eq. (75),  

  (i) find the corresponding addition to the reduced equations, 
 (ii) calculate the stationary amplitude A of the parametric oscillations, 
 (iii) find the type and stability of each fixed point of the reduced equations, 

  (iv) sketch the Poincaré phase plane of the system in major parameter regions. 
  

5.17. Use the van der Pol method to find the condition of parametric excitation of a linear 
oscillator with simultaneous weak modulation of the effective mass m(t) = m0(1 + mcos2t) and the 
effective spring constant (t) = 0[1 + cos(2t – )], with the same frequency 2  20, for arbitrary 

2
0

t

  12
0

)(2
0 t
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modulation depths ratio m/ and phase shift . Interpret the result in terms of modulation of the 
oscillator’s instantaneous frequency (t)  [(t)/m(t)]1/2 and impedance Z(t)  [(t)m(t)]1/2. 
 
 5.18.* Find the condition of parametric excitation of a nonlinear oscillator described by the 
following equation: 

,2cos2 0
22

0 tfqqqq     

with sufficiently small , ,  f0, and     – 0. 

 
5.19. Find the condition of stability of the equilibrium point q = 0 of a parametric oscillator 

described by Eq. (75), in the limit when  << 0 <<  and  << 1. Use the result to analyze the stability 
of the Kapitza pendulum mentioned in Sec. 5. 
 
 5.20.* Use numerical simulation to explore phase-plane trajectories [ qq , ] of an autonomous 
pendulum described by Eq. (42) with f0 = 0, for both low and high damping, and discuss their most 
significant features. 
 
 5.21. Analyze relaxation oscillations of the system shown 
in the figure on the right. Here an elastic spring prevents a block 
of mass m from being carried away by a horizontal conveyor belt 
moving with a constant velocity u. Assume that the coefficient k 
of the kinematic friction between the block and the belt is lower 
than the static friction coefficient s. 
 
 5.22. The figure on the right shows the circuit of the simplest 
electronic relaxation oscillator. N is a bistable circuit element that 
switches very rapidly from its very-high-resistance state to a very-low-
resistance state as the voltage across it is increased beyond some value 
Vt, and switches back as the voltage is decreased below another value 
Vt’ < Vt.49 Calculate the waveform and the time period of voltage 
oscillations in the circuit. 

 Hint: The solution of this problem requires a very basic understanding of electric circuits, 
including such notions as the e.m.f. E and the internal resistance R of a dc current source – e.g., of an 
electric battery. 

49 This is a reasonable model for many two-terminal gas-discharge devices (such as glow lamps), whose effective 
resistance may drop by up to 5 orders of magnitude when the discharge has been ignited by voltage V > Vt. In 
usual neon glow lamps, the discharge stops at a voltage Vt’ that is about 30% lower than Vt. 

m

constu
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