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Chapter 6. From Oscillations to Waves 

In this chapter, the discussion of oscillations is extended to systems with two and more degrees of 
freedom. This extension naturally leads to another key notion of physics – waves, so far in simple, 
mostly 1D systems. (In the next chapter, this discussion will be extended to more complex elastic 
continua.) However, even the limited scope of the models analyzed in this chapter will still enable us to 
discuss such important general aspects of waves as their dispersion, phase and group velocities, 
impedance, reflection, and attenuation. 

 
6.1. Two coupled oscillators  

Let us discuss oscillations in systems with several degrees of freedom, starting from the simplest 
case of two linear (harmonic), dissipation-free, 1D oscillators. If the oscillators are independent of each 
other, the Lagrangian function of their system may be expressed as a sum of two independent terms      
of the type (5.1): 
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Correspondingly, Eqs. (2.19) for qj = q1,2 yields two independent equations of motion of the oscillators, 
each one being similar to Eq. (5.2): 
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(In the context of what follows, 1,2 are sometimes called the partial frequencies.) This means that in 
this simplest case, an arbitrary motion of the system is just a sum of independent sinusoidal oscillations 
at two frequencies equal to the partial frequencies (2). 

 However, as soon as the oscillators are coupled (i.e. interact), the full Lagrangian L contains an 
additional mixed term Lint depending on both generalized coordinates q1 and  q2 and/or generalized 
velocities. As a simple example, consider the system shown in Fig. 1, where two small masses m1,2 are 
constrained to move in only one direction (shown horizontal), and are kept between two stiff walls with three 
springs.  

 

 

 

  

 In this case, the kinetic energy is still separable, T = T1 + T2, but the total potential energy, 
consisting of the elastic energies of three springs, is not: 
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where q1.2 are the horizontal displacements of the particles from their equilibrium positions. It is 
convenient to rewrite this expression as   

Fig. 6.1. A simple system of two 
coupled linear oscillators. 
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This formula shows that the Lagrangian function L = T – U of this system contains, besides the partial 
terms (1), a bilinear interaction term: 

              21intint21 , qqLLLLL  .    (6.4) 

The resulting Lagrange equations of motion are as follows: 
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Thus the interaction leads to an effective generalized force q2 exerted on subsystem 1 by subsystem 2, 
and the reciprocal effective force q1.  

 Please note two important aspects of this (otherwise rather simple) system of equations. First, in 
contrast to the actual physical interaction forces (such as F12 = –F21 = M(q2 – q1) for our system1) the 
effective forces on the right-hand sides of Eqs. (5) do not obey the 3rd Newton law. Second, the forces 
are proportional to the same coefficient ; this feature is a result of the general bilinear structure (4) of 
the interaction energy, rather than of any special symmetry. 

  From our prior discussions, we already know how to solve Eqs. (5), because it is still a system 
of linear and homogeneous differential equations, so its general solution is a sum of particular solutions 
of the form similar to Eqs. (5.88),  

       tt ecqecq 
2211 ,  ,     (6.6) 

with all possible values of . These values may be found by plugging Eq. (6) into Eqs. (5), and requiring 
the resulting system of two linear, homogeneous algebraic equations for the distribution coefficients c1,2, 
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to be self-consistent. In our particular case, we get a characteristic equation, 
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that is quadratic in 2, and thus has a simple analytical solution: 
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1 Using these expressions, Eqs. (5) may be readily obtained from the Newton laws, but the Lagrangian approach 
used above will make their generalization, in the next section, more straightforward.  

Linearly 
coupled 
oscillators 
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 According to Eqs. (2) and (3b), for any positive spring constants, the product 12 = (L + 
M)(R + M)/(m1m2)

1/2 is always larger than  /(m1m2)
1/2 = M/(m1m2)

1/2, so the square root in Eq. (9) is 
always smaller than (1

2+2
2)/2. As a result, both values of 2 are negative, i.e. the general solution to 

Eq. (5) is a sum of four terms, each proportional to exp{it}, where both normal frequencies (or 
“natural frequencies”, or “eigenfrequencies”)   i are real: 
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 A plot of these eigenfrequencies as a function of one of the partial frequencies (say, 1), with the 
other partial frequency fixed, gives us the famous anticrossing (also called the “avoided crossing” or 
“non-crossing”) diagram – see Fig. 2. One can see that at weak coupling, the normal frequencies  are 
close to the partial frequencies 1,2 everywhere besides a narrow range near the anticrossing point 1 = 
2. Most remarkably, at passing through this region, +  smoothly “switches” from following 2 to 
following 1 and vice versa. 

 

 

 

 

 

 

 

 

 
 The reason for this counterintuitive behavior may be found by examining the distribution 
coefficients c1,2 corresponding to each branch of the diagram, which may be obtained by plugging the 
corresponding value of  = –i back into Eqs. (7). For example, at the anticrossing point 1 = 2  , 
Eq. (10) is reduced to  
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Plugging this expression back into any of Eqs. (7), we see that for the two branches of the anticrossing 
diagram, the distribution coefficient ratio is the same by magnitude but opposite by sign: 
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 In particular, if the system is symmetric (m1 = m2, L = R), then at the upper branch, 
corresponding to + > -, we get c1 = –c2. This means that in this so-called hard mode,2 masses oscillate 

2 In physics, the term “mode” (or “normal mode”) is typically used to describe the distribution of a variable in 
space, at its oscillations with a single frequency. In our current case, when the notion of space is reduced to two 
oscillator numbers, each mode is fully specified by the corresponding ratio of two distribution coefficients c1,2. 

Anticrossing: 
example 

Fig. 6.2. The anticrossing diagram for two 
values of the normalized coupling strength 
/(m1m2)

1/22
2: 0.3 (red lines) and 0.1 (blue 

lines). In this plot,  1 is assumed to be changed 
by varying 1 rather than m1, but in the opposite 
case, the diagram is qualitatively similar. 
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in anti-phase: q1(t)  –q2(t). The resulting substantial extension/compression of the middle spring (see 
Fig. 1 again) yields additional returning force which increases the oscillation frequency. On the 
contrary, at the lower branch, corresponding to –, the particle oscillations are in phase: c1 = c2, i.e. q1(t) 
 q2(t), so the middle spring is neither stretched nor compressed at all. As a result, in this soft mode, the 
oscillation frequency -  is lower than +, and does not depend on M:  

         
mmm

RL22    .     (6.13) 

Note that for both modes, the oscillations equally engage both particles.   

 Far from the anticrossing point, the situation is completely different. Indeed, a similar calculation 
of c1,2 shows that on each branch of the diagram, the magnitude of one of the distribution coefficients is 
much larger than that of its counterpart. Hence, in this limit, any particular mode of oscillations involves 
virtually only one particle. A slow change of system parameters, bringing it through the anticrossing, 
leads, first, to a maximal delocalization of each mode at 1 = 2, and then to a restoration of the 
localization, but in a different partial degree of freedom. 

 We could readily carry out similar calculations for the case when the systems are coupled via 
their velocities, 21int qqmL  , where m is a coupling coefficient – not necessarily a certain physical 

mass.3 The results are generally similar to those discussed above, again with the maximum level 
splitting at 1 = 2  : 
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the last relation being valid for weak coupling. The generalization to the case of simultaneous coordinate 
and velocity coupling is also straightforward – see the next section.4 

  One more property of weakly coupled oscillators is a periodic slow transfer of energy between 
them, especially strong at or near the anticrossing point 1 = 2. Let me leave an analysis of such 
transfer for the reader’s exercise. (Due to the importance of this effect for quantum mechanics, it will be 
discussed in detail in the QM part of this series.) 

 

6.2. N coupled oscillators 

 The calculations of the previous section may be readily generalized to the case of an arbitrary 
number (say, N) of coupled harmonic oscillators, with an arbitrary type of coupling. It is obvious that in 
this case Eq. (4) should be replaced with 

3 In mechanics, with q1,2 standing for the actual displacements of particles, such coupling is not very natural, but 
there are many dynamic systems of non-mechanical nature in which such coupling is the most natural one. The 
simplest example is the system of two LC (“tank”) circuits, with either capacitive or inductive coupling. Indeed, 
as was discussed in Sec. 2.2, for such a system, the very notions of the potential and kinetic energies are 
conditional and interchangeable.  
4 Note that the anticrossing diagram shown in Fig. 2, is even more ubiquitous in quantum mechanics, because, due 
to the time-oscillatory character of the Schrödinger equation solutions, a weak coupling of any two quantum states 
leads to qualitatively similar behavior of the eigenfrequencies  of the system, and hence of its eigenenergies 
(“energy levels”) E =  of the system. 
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Moreover, we can generalize the above expression for the mixed terms Ljj’, taking into account their 
possible dependence not only on the generalized coordinates but also on the generalized velocities, in a 
bilinear form similar to Eq. (4). The resulting Lagrangian may be represented in a compact form, 
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where the off-diagonal terms are index-symmetric: mjj’ = mj’j, jj’ = j’j, and the factors ½ compensate for 
the double-counting of each term with j  j’, at the summation over two independently running indices. 
One may argue that Eq. (16) is quite general if we still want to keep the equations of motion linear – as 
they always are if the oscillations are small enough. 

 Plugging Eq. (16) into the general form (2.19) of the Lagrange equation, we get N equations      
of motion of the system, one for each value of the index  j’ = 1, 2,…, N: 
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Just as in the previous section, let us look for a particular solution to this system in the form 

                    tecq jj
 .      (6.18) 

As a result, we are getting a system of N linear, homogeneous algebraic equations, 

             0
1

2 


j

N

j
jj'jj' cm  ,     (6.19) 

for the set of N distribution coefficients cj. The condition that this system is self-consistent is that the 
determinant of its matrix equals zero: 

             .0 Det '
2

'  jjjjm       (6.20) 

This characteristic equation is an algebraic equation of degree N for 2, and so has N roots (2)n. For any 
Hamiltonian system with stable equilibrium, the matrices mjj’ and jj’ ensure that all these roots are real 
and negative. As a result, the general solution to Eq. (17) is the sum of 2N terms proportional to exp 
{int}, n = 1, 2,…, N, where all N normal frequencies ωn are real. 

 Plugging each of these 2N values of  = in back into a particular set of linear equations (17), 
one can find the corresponding sets of distribution coefficients cj. Generally, the coefficients are 
complex, but to keep qj(t) real, the coefficients cj+ corresponding to  = +in, and cj- corresponding to  
= –in have to be complex-conjugate of each other. Since the sets of the distribution coefficients may be 
different for each n, they should be marked with two indices, j and n. Thus, at general initial conditions, 
the time evolution of the  jth generalized coordinate may be represented as 
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 This formula shows very clearly again the physical sense of the distribution coefficients cjn: a set 
of these coefficients, with different values of index j but the same mode number n, gives the complex 
amplitudes of oscillations of the coordinates in this mode, i.e. for the special initial conditions that 
ensure purely sinusoidal motion of all the system, with frequency n. 

 The calculation of the normal frequencies and the corresponding modes (distribution coefficient 
sets) of a particular coupled system with many degrees of freedom from Eqs. (19)–(20) is a task that 
frequently may be only done numerically.5 Let us discuss just two particular but very important cases. 
First, let all the coupling coefficients be small in the following sense: mjj’  << mj   mjj  and jj’  << j 
 jj, for all j  j, and all partial frequencies j  (j/mj)

1/2  be not too close to each other: 
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(Such a situation frequently happens if parameters of the system are “random” in the sense that they do 
not follow any special, simple rule – for example, the one resulting from some simple symmetry of the 
system.)  Results of the previous section imply that in this case, the coupling does not produce a 
noticeable change in the oscillation frequencies: {ωn} {j}. In this situation, oscillations at each 
eigenfrequency are heavily concentrated in one degree of freedom, i.e. in each set of the distribution 
coefficients cjn (for a given n), one coefficient’s magnitude is much larger than all others. 

 Now let the conditions (22) be valid for all but one pair of partial frequencies, say 1 and 2, 
while these two frequencies are so close that the coupling of the corresponding partial oscillators 
becomes essential. In this case, the approximation {ωn}  {j} is still valid for all other degrees of 
freedom, and the corresponding terms may be neglected in Eqs. (19) for j = 1 and 2. As a result, we 
return to Eqs. (7) (perhaps generalized for velocity coupling) and hence to the anticrossing diagram (Fig. 
2) discussed in the previous section.  As a result, an extended change of only one partial frequency (say, 
1) of a weakly coupled system produces a sequence of frequency anticrossings – see Fig. 3. 

 

 

 

 

 

 

 

 

6.3. 1D waves 

 The second case when the general results of the last section may be simplified are coupled 
systems with a considerable degree of symmetry. Perhaps the most important of them are uniform 

5 Fortunately, very effective algorithms have been developed for this matrix diagonalization task – see, e.g., 
references in MA Sec. 16(iii)-(iv). For example, the popular MATLAB software package was initially created 
exactly for this purpose. (“MAT” in its name stood for “matrix” rather than “mathematics”.) 
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Fig. 6.3. The level anticrossing in a system of N 
weakly coupled oscillators – schematically.  
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systems that may sustain traveling and standing waves. Figure 4a shows a simple example of such a 
system – a long uniform chain of particles, of mass m, connected with light, elastic springs, pre-
stretched with the tension force T  to have equal lengths d. (This system may be understood as a natural 
generalization of the two-particle system considered in Sec. 1 – cf. Fig. 1.) 

 

 

 

 

  

 

    

 

 

 

 

 

                     

 

 
 The spring’s pre-stretch does not affect small longitudinal oscillations qj of the particles about 
their equilibrium positions zj = jd (where the integer j numbers the particles sequentially) – see Fig. 4b.6 
Indeed, in the 2nd Newton law for such a longitudinal motion of the jth particle, the forces T and (–T) 
exerted by the springs on the right and the left of it, cancel. However, the elastic additions, q, to these 
forces are generally different:   
             )()( 11   jjjjj qqqqqm  .    (6.23) 

 On the contrary, for transverse oscillations within one plane (Fig. 4c), the net transverse 

component of the pre-stretch force exerted on the jth particle, Tt = T(sin+ – sin-), where  are the 
force direction angles, does not vanish. As a result, direct contributions to this force from small 
longitudinal oscillations, with qj << d, T/, are negligible. Also, due to the first of these strong 
conditions, the angles  are small, and hence may be approximated, respectively, as +  (qj+1 – qj)/d 
and -  (qj – qj-1)/d. Plugging these expressions into a similar approximation, Tt   T(+ – -) for the 
transverse force, we see that it may be expressed as T(qj+1 – qj)/d – T(qj – qj-1)/d, i.e. is absolutely similar 

6 Note the need for a clear distinction between the equilibrium position zj of the jth point and its deviation qj from 
it. Such distinction has to be sustained in the continuous limit (see below), where it is frequently called the 
Eulerian description – named after L. Euler, even though it was introduced to mechanics by J. d’Alembert. In this 
course, the distinction is emphasized by using different letters – respectively, z and q (in the 3D case, r and q). 

Fig. 6.4. (a) A uniform 1D chain 
of elastically coupled particles, 
and their small (b) longitudinal 
and (c) transverse displacements 
(much exaggerated for clarity). 
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to that in the longitudinal case, just with the replacement   T/d. As a result, we may write the 
equation of motion of the jth particle for these two cases in the same form: 

          )()( 1ef1ef   jjjjj qqqqqm  ,    (6.24) 

where ef is the “effective spring constant”, equal to  for the longitudinal oscillations, and to T/d for 
the transverse oscillations.7 

 Apart from the (formally) infinite size of the system, Eq. (24) is just a particular case of Eq. (17), 
and thus its particular solution may be looked for in the form (18), where, in light of our previous 
experience, we may immediately take 2  –2. With this substitution, Eq. (24) gives the following 
simple form of the general system of equations (19) for the distribution coefficients cj: 

             02 1ef1efef
2   jjj cccm  .   (6.25) 

Now comes the most important conceptual step toward the wave theory. The translational symmetry of 
Eq. (25), i.e. its invariance with respect to the replacement j  j + 1, allows it to have particular 
solutions of the following form: 
                  jiaec j

 ,      (6.26) 

where the coefficient   may depend on  (and system’s parameters), but not on the particle number j. 
Indeed, plugging Eq. (26) into Eq. (25) and canceling the common factor eij, we see that this 
differential  equation is indeed identically satisfied, provided that  obeys the following algebraic 
characteristic equation: 

          02 efefef
2     ii eem .   (6.27) 

The physical sense of the solution (26) becomes clear if we use it and Eq. (18) with  = i, to write 

                                )(expRe)(expRe)( ph tvzikatkziatq jjj    ,   (6.28) 

where the wave number k is defined as k  /d. Eq. (28) describes a sinusoidal8 traveling wave of 
particle displacements, which propagates, depending on the sign before vph, to the right or the left along 
the particle chain, with the so-called phase velocity 

           
k

v


ph .      (6.29) 

Perhaps the most important characteristic of a wave system is the so-called dispersion relation, 
i.e. the relation between the wave’s frequency   and its wave number k – one may say, between the 
temporal and spatial frequencies of the wave. For our current system, this relation is given by Eq. (27) 
with   kd. Taking into account that (2 – e+i – e-i)  2(1 – cos)  4sin2(/2), the dispersion relation 
may be rewritten in a simpler form: 

7 The re-derivation of Eq. (24) from the Lagrangian formalism, with the simultaneous strict proof that the small 
oscillations in the longitudinal direction and the two mutually perpendicular transverse directions are all 
independent of each other, is a very good exercise, left for the reader. 
8 In optics and quantum mechanics, such waves are usually called monochromatic; I will try to avoid this term 
until the corresponding parts (EM and QM) of my series. 
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 This result, sketched in Fig. 5, is rather remarkable in several aspects. I will discuss them in 
some detail, because most of these features are typical for waves of any type (including even the “de 
Broglie waves”, i.e. wavefunctions, in quantum mechanics), propagating in periodic structures.  

 

 

 

 

 

 First, at low frequencies,  << max, the dispersion relation (31) is linear: 
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Plugging Eq. (31) into Eq. (29), we see that the constant v plays, in the low-frequency limit, the role of 
the phase velocity for waves of any frequency. Due to its importance, this acoustic wave9  limit will with 
be the subject of the special next section. 

 Second, when the wave frequency is comparable with max, the dispersion relation is not linear, 
and the system is dispersive. This means that as a wave, whose Fourier spectrum has several essential 
components with frequencies of the order of max, travels along the structure, its waveform (which may 
be defined as the shape of the line connecting all points qj(z), at the same time) changes.10 This effect 
may be analyzed by representing the general solution of Eq. (24) as the sum (more generally, an 
integral) of the components (28) with different complex amplitudes a: 

             dktkkziatq jkj  




expRe)( .    (6.32) 

 This notation emphasizes the possible dependence of the component wave amplitudes ak and 
frequencies  on the wave number k. While the latter dependence is given by the dispersion relation, in 
our current case by Eq. (30), the function ak is determined by the initial conditions. For applications, the 
case when ak is substantially different from zero only in a narrow interval, of a width k  << k0 around 
some central value k0, is of special importance. The Fourier transform reciprocal to Eq. (32) shows that 
this is true, in particular, for the so-called wave packet – a sinusoidal (“carrier”) wave modulated by a 
spatial envelope function of a large width z ~ 1/k >> 1/k0 – see, e.g., Fig. 6. 

9 This term is purely historical. Though the usual sound waves in air, which are the subject of acoustics, belong to 
this class, the waves we are discussing may have frequencies both well below and well above the human ear’s 
sensitivity range. 
10 The waveform’s deformation due to dispersion (which we are considering now) should be clearly distinguished 
from its possible change due to attenuation due to energy dissipation – which is not taken into account is our 
current energy-conserving model – cf. Sec. 6 below. 
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Fig. 6.5. The dispersion 
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 Using the strong inequality k  << k0, the wave packet’s propagation may be analyzed by 
expending the dispersion relation (k) into the Taylor series at point k0, and, in the first approximation 
in k/ k0, restricting the expansion to its first two terms: 
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In this approximation, Eq. (32) yields 
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Comparing the last expression with the initial form of the wave packet,  
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and taking into account that the phase factors before the integrals in the last forms of Eqs. (34) and (35) 
do not affect its envelope, we see that in this approximation, the envelope sustains its initial form and 
propagates along the system with the so-called group velocity 

      
0

gr kkdk

d
v 


.     (6.36) 

 Except for the acoustic wave limit (31), this velocity, which characterizes the propagation of the 
waveform’s envelope, is different from the phase velocity (29), which describes the propagation of the 
carrier wave, e.g., the spatial position of one of its zeros – see the red and blue arrows in Fig. 6.11  

 Next, for our particular dispersion relation (30), the difference between vph and vgr increases as  
approaches max, with the group velocity (36) tending to zero, while the phase velocity stays almost 
constant. The physics of such a maximum frequency available for the wave propagation may be readily 
understood by noticing that according to Eq. (30), at  = max, the wave number k equals n/d, where n 

11 Taking into account the next term in the Taylor expansion of the function (q), proportional to d2/dq2, we 
would find that the dispersion leads to a gradual change of the envelope’s form. Such changes play an important 
role in quantum mechanics, so they are discussed in detail in the QM part of these lecture notes. 
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is an odd integer, and hence the phase shift   kd is an odd multiple of . Plugging this value into Eq. 
(28), we see that at  = max, the oscillations of two adjacent particles are in anti-phase, for example: 

                ).(expRe)(,expRe)( 010 tqtiiatqtiatq     (6.37) 

It is clear, especially from Fig. 4b for longitudinal oscillations, that at such a phase shift, all the springs 
are maximally stretched/compressed (just as in the hard mode of the two coupled oscillators analyzed in 
Sec. 1), so it is natural that this mode has the highest possible frequency.  

 This fact invites a natural question: what happens with the system if it is agitated at a frequency 
 > max, say by an external force exerted on its boundary? Reviewing the calculations that have led to 
the dispersion relation (30), we see that they are all valid not only for real but also for any complex 
values of k. In particular, at  > max it gives 
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Plugging this relation into Eq. (28), we see that the wave’s amplitude becomes an exponential function 
of the particle’s position: 

        /expIm
jj zeaq kdj .    (6.39) 

Physically this means that penetrating into the structure, the wave decays exponentially (from the 
excitation point), dropping by a factor of e  3 at the so-called penetration depth . (According to Eq. 
(38), at  ~ max this depth is of the order of the distance d between the adjacent particles, and decreases 
but rather slowly as the frequency is increased beyond max.) Such a limited penetration is a very 
common property of waves, including electromagnetic waves penetrating into various plasmas and 
superconductors, and the quantum-mechanical de Broglie waves penetrating into classically forbidden 
regions of space. Note that this effect of “wave expulsion” from the medium’s bulk does not require any 
energy dissipation. 

 Finally, one more fascinating feature of the dispersion relation (30) is its periodicity: if the 
relation is satisfied with some wave number k0(), it is also satisfied with any kn() = k0() + 2n/d, 
where n is an integer. This property is independent of the particular dynamics of the system and is a 
common property of all systems that are d-periodic in the usual (“direct”) space. It has especially 
important implications for the quantum de Broglie waves in periodic systems – for example, crystals – leading, in 
particular, to the famous band/gap structure of their energy spectrum.12 

 

6.4. Acoustic waves 

 Now let us return to the limit of low-frequency, dispersion-free acoustic waves, with  << 0, 
propagating with the frequency-independent velocity (31). Such waves are the general property of any 
elastic continuous medium and obey a simple (and very important) partial differential equation. To 
derive it, let us note that in the acoustic wave limit,  kd  << 1,13 the phase shift   kd is very close to 

12 For more detail see, e.g., QM Sec. 2.5. 
13 Strictly speaking, per the discussion at the end of the previous section, in this reasoning, k means the distance of 
the wave number from the closest point 2n/d – see Fig. 5 again. 
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2n. This means that the differences qj+1(t) – qj(t) and qj(t) – qj-1(t), participating in Eq. (24), are 
relatively small and may be approximated with q/j  q/(z/d)  d(q/z), with the derivatives taken at 
middle points between the particles: respectively, z+  (zj+1 – zj)/2 and z- (zj – zj-1)/2. Let us now 
consider z as a continuous argument, and introduce the particle displacement q(z, t) – a continuous 
function of space and time, satisfying the requirement q(zj, t) = qj(t). In this notation, in the limit kd  0, 
the sum of the last two terms of Eq. (24) becomes –d[q/z(z+) – q/z(z-)], and hence may be 
approximated as –d2(2q/z2), with the second derivative taken at point (z+ – z-)/2  zj, i.e. exactly at the 
same point as the time derivative. As a result, the whole set of ordinary differential equations (24), for 
different j, is reduced to just one partial differential equation 

          0
2
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2

ef2
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q
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m  .     (6.40a) 

Using Eq. (31), we may rewrite this 1D wave equation in a more general form 
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.     (6.40b) 

 The most important property of the wave equation (40), which may be verified by an elementary 
substitution, is that it is satisfied by either of two traveling wave solutions (or their linear superposition): 

           vztftzqvztftzq /,,/,   ,   (6.41) 

where f are any smooth functions of one argument. The physical sense of these solutions may be 
revealed by noticing that the displacements q do not change at the addition of an arbitrary change t to 
their time argument, provided that it is accompanied by an addition of the proportional addition of vt 
to their space argument. This means that with time, the waveforms just move (respectively, to the left or 
the right), with the constant speed v, retaining their form – see Fig. 7. 14  

 

 

 

 
 

 Returning to the simple model shown in Fig. 4, let me emphasize that the acoustic-wave velocity 
v is different for the waves of two types: for the longitudinal waves (with ef = , see Fig. 4b), 

               d
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,     (6.42) 

while for the transverse waves (with ef = T/d, see Fig. 4c): 

14 From the point of view of Eq. (40), the only requirement to the “smoothness” of the functions f is to be doubly 
differentiable. However, we should not forget that in our case the wave equation is only an approximation of the 
discrete Eq. (24), so according to Eq. (30), the traveling waveform conservation is limited by the acoustic wave 
limit condition  << max, which should be fulfilled for all Fourier components of these functions. 

1D wave 
equation 

Fig. 6.7. Propagation of a 
traveling wave in a 
dispersion-free 1D system.  
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where the constant   m/d has a simple physical sense of the particle chain’s mass per unit length. 
Evidently, these velocities, in the same system, may be rather different. 

 The wave equation (40), with its only parameter v, may conceal the fact that any wave-
supporting system is characterized by one more key parameter. In our current model (Fig. 4), this 
parameter may be revealed by calculating the forces F(z, t) accompanying any of the traveling waves 
(41) of particle displacements. For example, in the acoustic wave limit kd  0 we are considering now, 
the force exerted by the jth particle on its right neighbor may be approximated as 

                     d
z

q
tqtqtzF

jjjj zz


  ef1ef )()(),(  ,   (6.44) 

where, as was discussed above, ef is equal to  for the longitudinal waves, and to T/d for the transverse 

waves. But for the traveling waves (41), the partial derivatives q/z are equal to  vf /
  (where the dot 

means the differentiation over the full arguments of the functions f), so the corresponding forces are 
equal to  

               ,ef
  f

v

d
F 


     (6.45) 

i.e. are proportional to the particle’s velocities u = q/t  in these waves,15 u = f , for the same z and t. 
This means that the ratio 
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depends only on the wave propagation direction, but is independent of z and t, and also of the 
propagating waveform. Its magnitude,  
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tzu
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 ,    (6.47) 

characterizing the dynamic “stiffness” of the system for the propagating waves, is called the wave 
impedance.16 Note that the impedance is determined by the product of the system’s generic parameters 
ef and m, while the wave velocity (31) is proportional to their ratio, so these two parameters are 
completely independent, and both are important. According to Eq. (47), the wave impedance, just as the 
wave velocity, is also different for the longitudinal and transverse waves:  

         2/12/1 , 
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t
t

l
l v

Zm
v

d
Z .    (6.48) 

15 Of course, the particle’s velocity u (which is proportional to the wave amplitude) should not be confused with 
the wave’s velocity v (which is independent of this amplitude). 
16 This notion is regretfully missing from many physics (but not engineering!) textbooks. 
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(Note that the first of these expressions for Z coincides with the one used for a single oscillator in Sec. 
5.6. In that case, Z may be also recast in a form similar to Eq. (46), namely, as the ratio of the force and 
velocity amplitudes at free oscillations.) 

 One of the wave impedance’s key functions is to scale the power carried by a traveling wave: 

                                   22ef
ef,, 
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P .  (6.49) 

Two remarks about this important result. First, the sign of P depends only on the direction of the wave 
propagation, but not on the waveform. Second, the instant value of the power does not change if we 
move with the wave in question, i.e. measure P at points with z  vt = const. This is natural because in 
the Hamiltonian system we are considering, the wave energy is conserved. Hence, the wave impedance 
Z characterizes the energy transfer along the system rather than its dissipation. 

 Another important function of the wave impedance notion becomes clear when we consider 
waves in nonuniform systems. Indeed, our previous analysis assumed that the 1D system supporting the 
waves (Fig. 4) is exactly periodic, i.e. macroscopically uniform, and extends all the way from – to +. 
Now let us examine what happens when this is not true. The simplest and very important example of 
such nonuniform systems is a sharp interface, i.e. a point (say, z = 0) at which system parameters 
experience a jump while remaining constant on each side of the interface – see Fig. 8. 

 

 

 

 

 

In this case, the wave equation (40) and its partial solutions (41) are is still valid for z < 0 and z > 
0 – in the former case, with primed parameters. However, the jump of parameters at the interface leads 
to a partial reflection of the incident wave from the interface, so at least on the side of the incidence (in 
the case shown in Fig. 8, for z  0) we need to use two such terms, one describing the incident wave and 
another one, the reflected wave: 
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 To find the relations between the functions f–, f+, and f–’ (of which the first one, describing the 
incident wave, may be considered known), we may use two boundary conditions at z = 0. First, the 
displacement q0(t) of the particle at the interface has to be the same whether it is considered a part of the 
left or right sub-system, and it participates in Eqs. (50) for both z  0 and z  0. This gives us the first 
boundary condition: 
                 tftft'f   .     (6.51) 

On the other hand, the forces exerted on the interface from the left and the right should also have equal 
magnitude, because the interface may be considered as an object with a vanishing mass, and any 
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wave’s 
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Fig. 6.8. Partial reflection of a 
wave from a sharp interface. 
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nonzero net force would give it an infinite (and hence unphysical) acceleration. Together with Eqs. (45) 
and (47), this gives us the second boundary condition: 

                          tftfZt'fZ'    .     (6.52) 

 Integrating both parts of this equation over time, and neglecting the integration constant (which 
describes a common displacement of all particles rather than their oscillations), we get 

               tftfZt'Z'f   .     (6.53) 

Now solving the system of two linear equations (51) and (53) for f+(t) and f+’(t), we see that both these 
functions are proportional to the incident waveform: 

                 ,, tft'ftftf   TR     (6.54) 

with the following reflection (R ) and transmission (T ) coefficients: 
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, TR .    (6.55) 

 Later in this series, we will see that with the appropriate re-definition of the impedance, these 
relations are also valid for waves of other physical nature (including the de Broglie waves in quantum 
mechanics) propagating in 1D continuous structures, and also in continua of higher dimensions, at the 
normal wave incidence upon the interface.17 Note that the coefficients R and T give the ratios of wave 
amplitudes, rather than their powers. Combining Eqs. (49) and (55), we get the following relations for 
the powers – either at the interface or at the corresponding points of the reflected and transmitted waves: 
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      (6.56) 

Note that P– + P+ = P–’, again reflecting the wave energy conservation. 

 Perhaps the most important corollary of Eqs. (55)–(56) is that the reflected wave completely 
vanishes, i.e. the incident wave is completely transmitted through the interface (P+’ = P+), if the so-
called impedance matching condition  Z’ = Z is satisfied, even if the wave velocities v (32) are different 
on the left and the right sides of it. On the contrary, the equality of the acoustic velocities in the two 
continua does not guarantee the full transmission of their interface. Again, this is a very general result. 

 Finally, let us note that for the important particular case of a sinusoidal incident wave:18 

               ,Re that  so,Re titi eatfeatf     R     (6.57) 

where a is its complex amplitude, the total wave (50) on the right of the interface is 

17 See, e.g. the corresponding parts of this series: QM Sec. 2.3 and EM Sec. 7.3. 
18 In the acoustic wave limit, when the impedances Z and Z’, and hence the reflection coefficient R, are real, the 
factors R  and Z may be taken out from under the Re operators in Eqs. (57)-(59). However, in the current, more 

general form of these relations, they are also valid for the case of arbitrary frequencies,  ~ max, when these 
factors may be complex. 

Reflection 
and 

transmission 
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zeeeaeaeatzq tiikzikzvztivzti  RR , (6.58) 

while according to Eq. (45), the corresponding force distribution is 

              tiikzikz eeeZaivztfZvztfZtzFtzFtzF     RRe//,,,  . (6.59) 

These expressions will be used in the next section. 

 

6.5.Standing waves 

 Now let us consider the two limits in which Eqs. (55) predicts a total wave reflection (T = 0): 

Z’/Z   (when R = –1) and Z’/Z  0 (when R = +1). According to Eq. (53), the former limit 

corresponds to f-(t) + f+(t)  q(0, t) = 0, i.e. to vanishing oscillations at the interface. This means that this 
particular limit describes a perfectly rigid boundary, not allowing the system’s end to oscillate at all. In 
this case, Eqs. (58)-(59) yield 

          ,sinRe2Re, kzeaeeeatzq titiikzikz         (6.60) 

           kzeaZeeeZaitzF
titiikzikz cosRe2Re,
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   . (6.61) 

 These equalities mean that we may interpret the process on the right of the interface using two 
mathematically equivalent, but physically different languages: either as the sum of two traveling waves 
(the incident one and the reflected one, propagating in opposite directions), or as a single standing wave. 
Note that in contrast with the traveling wave (Fig. 9a, cf. Fig. 7), in the standing sinusoidal wave (Fig. 
9b) all particles oscillate in time with the same phase.  

 

 

 

 

 

 

 

  

 Note also that the phase of the force oscillations (61) is shifted, both in space and in time, by /2 
relative to the particle displacement oscillations. (In particular, at the rigid boundary the force amplitude 
reaches its maximum.) As a result, the average power flow vanishes, so the average energy of the 
standing wave does not change, though its instant energy still oscillates, at each spatial point, between 
its kinetic and potential components – just as at the usual harmonic oscillations of one particle. A similar 
standing wave, but with a maximum of the displacement q, and with a zero (“node”) of the force F, is 
formed at the open boundary, with Z’/Z  0, and hence R  = +1. 

Fig. 6.9. The time evolution of 
(a) a traveling sinusoidal wave, 
and (b) a standing sinusoidal 
wave at a rigid boundary.
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 Now I have to explain why I have used the sinusoidal waveform for the wave reflection analysis. 
Let us consider a 1D wave system, which obeys Eq. (40), of a finite length l, limited by two rigid walls 
(located, say, at z = 0 and z = l), which impose the corresponding boundary conditions,  

              0),(),0(  tlqtq ,     (6.62) 

on its motion. Naturally, a sinusoidal traveling wave, induced in the system, will be reflected from both 
ends, forming the standing wave patterns of the type (60) near each of them. These two patterns are 
compatible if l is exactly equal to an integer number (say, n) of /2, where   2/k is the wavelength: 

      
k

nnl



2

.      (6.63) 

This requirement yields the following spectrum of possible wave numbers: 

         ,
l

nkn


       (6.64) 

where the list of possible integers n may be limited to non-negative values: n = 1, 2, 3,… (Indeed, 
negative values give absolutely similar waves (60), while n = 0 yields kn = 0, and the corresponding 
wave vanishes at all points: sin(0z)  0.) In the acoustic wave limit we are discussing, Eq. (31),  = vk, 
may be used to translate this wave-number spectrum into an equally simple spectrum of possible 
standing-wave frequencies:19 
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nvknn

     (6.65) 

 Now let us notice that this spectrum, and the corresponding standing-wave patterns, 20 

            lzzktiatzq nnn
n  0for  ,sinexpRe2,  ,   (6.66) 

may be calculated in a different way, by a direct solution of the wave equation (41) with the boundary 
conditions (62). Indeed, let us look for the general solution of this partial differential equation in the so-
called variable-separated form21  
             

n
nn tTzZtzq ),( ,     (6.67) 

where each partial product Zn(z)Tn(t) is supposed to satisfy the equation on its own. Plugging this partial 
solution into Eq. (40), and then dividing all its terms by the same product, ZnTn, we may rewrite the 
result as 
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Here comes the punch line of the variable separation method: since the left-hand side of the equation 
may depend only on t, while its right-hand side, only on z, Eq. (68) may be valid only if both sides are 
constant. Denoting this constant as –kn

2, we get two similar ordinary differential equations,22 

19 Again, negative values of   may be dropped, because they give similar real functions q(z, t). 
20 They describe, in particular, the well-known transverse standing waves on a guitar string.  
21 This variable separation method is very general and is discussed in all parts of this series, especially in EM 
Chapter 2. 
22 The first of them is the 1D form of what is frequently called the Helmholtz equation. 
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with well-known (and similar) sinusoidal solutions 

          tiazvtuTzkszkcZ nnnnnnnnnnnn   expResincos,sincos , (6.70) 

where cn, vn, un, and vn (or, alternatively, an  un + ivn) are constants. The first of these relations, with all 
kn different, may satisfy the boundary conditions only if for all n, cn = 0, and sinknl = 0, giving the same 
wave number spectrum (64) and hence the own frequency spectrum (65), so the general solution (67) of 
the so-called boundary problem, given by Eqs. (40) and (62), takes the form 

              zktiatzq nn
n

n sinexpRe,   ,    (6.71) 

where the complex amplitudes an are determined by the initial conditions.  

 Hence such sinusoidal standing waves (Fig. 10a) are not just an assumption, but a natural 
property of the 1D wave equation. It is also easy to verify that the result (71) is valid for the same 
system with different boundary conditions, though with a modified wave number spectrum. For 
example, if the rigid boundary condition (q = 0) is implemented at z = 0, and the so-called open 
boundary condition (F = 0, i.e. q/z = 0) is imposed at z = l, the spectrum becomes 

     ,...,3,2,1with  ,
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so the lowest standing waves look like Fig. 10b shows.23  

 

 

 

 

 

 

 

 

 Note that the difference between the sequential values of kn is still a constant: 
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1 ,     (6.73) 

the same one as for the spectrum (64). This is natural because in both cases the transfer from the nth 
mode to the (n + 1)th mode corresponds just to an addition of one more half-wave – see Fig. 10. (This 
conclusion is valid for any combination of rigid and free boundary conditions.) As was discussed above, 
for the discrete-particle chain we have started with (Fig. 4), the wave equation (40), and hence the above 

23 The lowest standing wave of the system, with the smallest kn and n, is usually called its fundamental mode. 

Fig. 6.10. The lowest standing 
wave modes for the 1D 
systems with (a) two rigid 
boundaries, and (b) one rigid 
and one open boundary. 
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derivation of Eq. (71), are only valid in the acoustic wave limit, i.e. when the distance d between the 
particles is much less than the wavelengths n  2/kn of the mode under analysis. For a chain of length 
l, this means that the number of particles, N ~ l/d, has to be much larger than 1. However, a remarkable 
property of Eq. (71) is that it remains valid, with the same wave number spectrum (64), not only in the 
acoustic limit but also for arbitrary N > 0. Indeed, since sinknz  (exp{+iknz} – exp{-iknz})/2, each nth 
term of Eq. (71) may be represented as a sum of two traveling waves with equal but opposite wave 
vectors. As was discussed in Sec. 3, such a wave is a solution of equation (24) describing the discrete-
particle system for any kn, with the only condition that its frequency obeys the general dispersion 
relation (30), rather than its acoustic limit (65).  

 Moreover, the expressions for kn (with appropriate boundary conditions), such as Eq. (64) or Eq. 
(72), also survive the transition to arbitrary N, because their derivation above was based only on the 
sinusoidal form of the standing wave. The only new factor arising in the case of arbitrary N is that due to 
the equidistant property (73) of the wave number spectrum, as soon as n exceeds N, the waveforms (71), 
at particle locations zj = jd, start to repeat. For example, 

     jnjnnnjNn zkjNzkjd
d

NkjdkNkzk sinsinsinsinsin 





  

.  (6.74) 

 Hence the system has only N different (linearly-independent) modes. But this result is in full 
compliance with the general conclusion made in Sec. 2, that any system of N coupled oscillators has 
exactly N own frequencies and corresponding oscillation modes. So, our analysis of a particular system 
shown in Fig. 4, just exemplifies this general conclusion. Fig. 11 below illustrates this result for a 
particular finite value of N; the curve connecting the points shows exactly the same dispersion relation 
as was shown in Fig. 5, but now it is just a guide for the eye, because for a system with a finite length l, 
the wave number spectrum is discrete, and the intermediate values of k and  do not have an immediate 
physical sense.24 Note that the own frequencies of the system are generally not equidistant, while the 
wave numbers are. 

 

 

 

 

 

 

 

 This insensitivity of the spacing (73) between the adjacent wave numbers to the particular 
physics of a macroscopically uniform system is a very general fact, common for waves of any nature, 
and is broadly used for analyses of systems with a very large number of particles (such as human-size 
crystals, with N ~ 1023). For N so large, the effect of the boundary conditions, e.g., the difference 

24 Note that Fig. 11 shows the case of one rigid and one open boundary (see Fig. 10b), where l = Nd; for a 
conceptually simpler system with two rigid boundaries (Fig. 10a) we would need to take l = (N + 1)d because 
neither of the end points can oscillate. 

Fig. 6.11. The wave numbers and 
own frequencies of a chain of a 
finite number N of particles in a 
chain with one rigid and one open 
boundary – schematically.
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between the spectra (64) and (72) is negligible, and they may be summarized as the following rule for 
the number of different standing waves within some interval k >> /l: 
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.    (6.75a) 

For such analyses, it is frequently more convenient to work with traveling waves rather than standing 
ones. In this case, we have to take into account that (as was just discussed above) each standing wave 
(66) may be decomposed into two traveling waves with wave numbers kn, so the interval k doubles, 
and Eq. (75a) becomes25  

              traveling2
k

l
N 


.     (6.75b) 

 Note that this counting rule is valid for waves of just one type. As was discussed above, for the 
model system we have studied (Fig. 4), there are 3 types of such waves – one longitudinal and two 
transverse, so if we need to count them all, N should be multiplied by 3.  

   

6.6. Wave decay and attenuation 

 Now let us discuss the effects of energy dissipation on the 1D waves, on the example of the same 
uniform system shown in Fig. 4. The simplest description of this effect is the linear drag that may be 
described, as it was done for a single oscillator in Sec. 5.1, by adding the term dqj/dt, to Eq. (24) for 
each particle:  
              0)()( 1ef1ef   jjjjjj qqqqqqm    .   (6.76) 

(In a uniform system, the drag coefficient  should be similar for all particles, though it may be different 
for the longitudinal and transverse oscillations.)  

 To analyze the dissipation effect on the standing waves, we may again use the variable 
separation method, i.e. look for the solution of Eq. (76) in the form similar to Eq. (67), naturally re-
adjusting it for our current discrete case:  
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njnj tTzZtzq ),( .     (6.77) 

After dividing all terms by mZn(zj)Tn(t) and separating the time-dependent and space-dependent terms, 
we get 
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As we know from the previous section, the resulting equation for the function Zn(zj) is satisfied if the 
variable separation constant is equal to –n

2, where n obeys the dispersion relation (30) for the wave 
number kn, properly calculated for the dissipation-free system, with the account of the given boundary 

25 Note that this simple, but very important relation is frequently derived using the so-called Born-Carman 
boundary condition q0(t)  qN(t), which implies bending the system of interest into a closed loop. For a 1D system 
with N >> 1, such mental exercise may be somehow justified, but for systems of higher dimension, it is hardly 
physically plausible – and is unnecessary. 
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conditions – see, e.g. Eqs. (62) and (72). Hence for the function Tn(t), we are getting the following 
ordinary differential equation: 

m
TTT nnnn 2

with  ,02 2    ,    (6.79)

which is absolutely similar to Eq. (5.6b) for a single linear oscillator, which was studied in Sec. 5.1. As 
we already know, it has the solution (5.9) describing the free oscillation decay with the relaxation time 
given by (5.10),  = 1/, and hence similar for all modes.26  

 Hence, the above analysis of the dissipation effect on free standing waves has not brought any 
surprises, but it gives us a hint of how their forced oscillations, induced by some external forces Fj(t) 
exerted on the particles, may be analyzed. Indeed, representing each of the forces as a sum over the 
system’s modes (spatial harmonics), 
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and using the variable separation (77), we arrive at the natural generalization of Eq. (79): 

 tfTTT nnnnn  22   , (6.81) 

which is identical to Eq. (5.13b) for a single oscillator. This fact enables us to use Eq. (5.27), with G() 
 Gn(), for the calculation of each Tn(t). Now finding the functions fn(t) from Eq. (80) by the usual 
reciprocal Fourier transform, and plugging these results into Eq. (77), we get the following 
generalization of Eq. (5.27): 
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(Here the mutually orthogonal functions Zn(zj) are assumed to be normalized, i.e. the sums of their 
squares over j = 1, 2,…, N to equal 1.) Such function G(zj, zj’,) is called the spatial-temporal Green’s 
function of the system – in our current case, of a discrete 1D set of N particles located at points zj = jd. 
The reader is challenged to spell out this function for at least one of the particular cases discussed above 
and use it to solve at least one forced-oscillation problem. 

 Now let us discuss the dissipation effects on the traveling waves, where they may take a 
completely different form of attenuation. Let us discuss it on a simple example when one end (located at 
z = 0) of a very long chain (l  ) is externally forced to perform sinusoidal oscillations of a certain 
frequency  and a fixed amplitude A0. In this case, it is natural to look for a particular solution to Eq. 
(76) in a form very different from Eq. (77): 

         



  tiectzq jj

Re),( ,     (6.83) 

26 Even an elementary experience with acoustic guitars shows that for their strings, this conclusion of our theory 
is not valid: higher modes (“overtones”) decay substantially faster, leaving the fundamental mode oscillations for 
a slower decay. This is a result of another important energy dissipation (i.e. the wave decay) mechanism, not 
taken into account in Eq. (76) – the radiation of the sound into the guitar’s body through the string supports, 
mostly through the bridge. Such radiation may be described by a proper modification of the boundary conditions 
(62), in terms of the ratio of the wave impedance (47) of the string and those of the supports. 
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with time-independent but generally complex amplitudes cj. As our discussion of a single oscillator in 
Sec. 5.1 implies, this is not the general, but rather a partial solution, which describes the forced 
oscillations in the system, to that it settles after some initial transient process. (At non-zero damping, we 
may be sure that free oscillations fade after a finite time, and thus may be ignored for most purposes.) 

 Plugging Eq. (83) into Eq. (76), we reduce it to an equation for the amplitudes cj, 

                02 1ef1efef
2   jjj cccim  ,   (6.84) 

which is a natural generalization of Eq. (25). As a result, partial solutions of the set of these equations 
(for j = 0, 1, 2,…) may be looked for in the form (26) again, but now, because of the new, imaginary 
term in Eq. (84), we should be ready to get a complex phase shift , and hence a complex wave number 
k  /d.27 Indeed, the resulting characteristic equation for k, 
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(where max is defined by Eq. (30), and the damping coefficient is defined just as in a single oscillator,  
 /2m), does not have a real solution even at  < max. Using the well-known expressions for the sine 
function of a complex argument,28 Eq. (85) may be readily solved in the most important low-damping 
limit  << . In the linear approximation in , it does not affect the real part of k, but makes its 
imaginary part different from zero: 
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with a periodic extension to other periods – see Fig. 5. Just as was done in Eq. (28), due to two values of 
the wave number, generally we have to take cj in the form of not a single wave (26), but of a linear 
superposition of two partial solutions: 
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where the constants c should be found from the boundary conditions. In our particular case, when  c0  
= A0 and c = 0, only one of these two waves, namely the wave exponentially decaying at its penetration 
into the system, is different from zero:  c+  = A0, c– = 0. Hence our solution describes a single wave, 
with the real amplitude and the oscillation energy decreasing as 
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, (6.88) 

i.e. with a frequency-independent attenuation constant  = 2/v,29 so the spatial scale of wave 
penetration into a dissipative system is given by ld  1/. Certainly, our simple solution (88) is only 
valid for a system of length l >> ld; otherwise, we would need the second term in the sum (87) to 
describe the wave reflected from its opposite end. 

27 As a reminder, we have already met such a situation in the absence of damping, but at   > max – see Eq. (38). 
28 See, e.g., MA Eq. (3.5). 
29 I am sorry to use for the attenuation the same letter  as for the phase shift in Eq. (26) and a few of its 
corollaries, but both notations are traditional.  

Wave 
attenuation 
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6.7. Nonlinear and parametric effects 

 Now let me discuss (because of the lack of time, very briefly, and on a semi-quantitative level), 
the new nonlinear and parametric phenomena that appear in oscillatory systems with more than one 
degree of freedom – cf. Secs. 5.4-5.8. One important new effect here is the mutual phase locking of (two 
or more) weakly coupled self-excited oscillators with close frequencies: if the own frequencies of the 
oscillators are sufficiently close, their oscillation frequencies “stick together” to become exactly equal. 
Though the dynamics of this process is very close to that of the phase locking of a single oscillator by an 
external signal, which was discussed in Sec. 5.4, it is rather counter-intuitive in view of the results 
discussed in Sec. 1, and in particular, the anticrossing diagram shown in Fig. 2. The analysis of the 
effect using the van der Pol method (which is left for the reader’s exercise) shows that the origin of the 
difference is the oscillators’ nonlinearity, which makes the oscillation amplitudes virtually independent 
of the phase evolution – see Eq. (5.68) and its discussion. 

 One more new effect is the so-called non-degenerate parametric excitation. It may be illustrated 
on the example of just two coupled oscillators – see Sec. 1 above. Let us assume that the coupling 
constant  participating in Eqs. (5) is not constant, but oscillates in time – say with some frequency p. 
In this case, the forces acting on each oscillator from its counterpart, described by the right-hand sides of 
Eqs. (5), will be proportional to q2,1(1 +  cospt). Assuming that the oscillations of q1 and q2 are close 
to sinusoidal ones, with certain frequencies 1,2, we see that the force exerted on each oscillator contains 
the so-called combinational frequencies 

           1,2p   .      (6.89) 

If one of these frequencies is close to the own oscillation frequency of the oscillator, we can expect a 
substantial parametric interaction between the oscillators (on top of the constant coupling effects 
discussed in Sec. 1). According to Eq. (89), this may happen in two cases: 

                  ,21p        (6.90a) 

       21p   .      (6.90b) 

 The quantitative analysis (also highly recommended to the reader) shows that in the case (90a), 
the parameter modulation indeed leads to energy “pumping” into the oscillations.30 As a result, a 
sufficiently large , at sufficiently small damping coefficients 1,2 and the effective detuning 

             ),( 21p        (6.91) 

may lead to a simultaneous self-excitation of two frequency components 1,2. These frequencies, while 
being approximately equal to the corresponding own frequencies 1,2 of the system, are related to the 
pumping frequency p by the exact relation (90a), but otherwise are arbitrary, e.g., may be 
incommensurate (Fig. 12a), thus justifying the term non-degenerate parametric excitation.31 (The 
parametric excitation of a single oscillator, which was analyzed in Sec. 5.5, is a particular, degenerate 
case of such excitation, with 1 = 2 = p/2.) On the other hand, for the case described by Eq. (90b), the 
parameter modulation always extracts energy from the oscillations, effectively increasing the system’s 
damping.  

30 Hence the common name of p – the pumping frequency. 
31 Note that in some publications, the term parametric down-conversion (PDC) is used instead. 

Parametric 
interaction 
conditions 
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 Somewhat counterintuitively, this difference between the two cases (90) may be interpreted more 
simply by using the basic notions of quantum mechanics. Namely, the equality p = 1 + 2 enables a 
decay of an external photon of energy p into two photons of energies 1 and 2 of the oscillators. 
On the contrary, the complementary relation (90b), meaning that 1 = p + 2, results in a pumping-
induced decay of photons of frequency 1. 

 

  

 

 

 

 

  

 Note that even if the frequencies 1 and 2 of the parametrically excited oscillations are 
incommensurate, the oscillations are highly correlated. Indeed, the quantum-mechanical theory of this 
effect32 shows that the generated photons are entangled.  This fact makes the parametric excitation very 
popular for a broad class of experiments in several currently active fields including quantum 
computation and encryption, and the Bell inequality/local reality studies.33 

 Proceeding to nonlinear phenomena, let us note, first of all, that the simple reasoning that 
accompanied Eq. (5.108) in Sec. 5.8, is also valid in the case when oscillations consist of two (or more) 
sinusoidal components with incommensurate frequencies. Replacing the notation 2 with p, we see 
that the non-degenerate parametric excitation of the type (90a) is possible in a system of two coupled 
oscillators with a quadratic nonlinearity (of the type q2), “pumped” by an intensive external signal at 
frequency p  1 + 2. In optics, it is often more convenient to have all three of these frequencies 
within the same, relatively narrow range. A simple calculation, similar to the one made in Eqs. (5.107)-
(5.108), shows that this may be done using the cubic nonlinearity34 of the type q3, which allows a 
similar parametric energy exchange at the frequency relation shown in Fig. 12b: 

         2121 with  ,2   .    (6.92a) 

 This process is often called the four-wave mixing, because it may be interpreted quantum-
mechanically as the transformation of two externally-delivered photons, each with energy , into two 
other photons of energies 1 and 2. The word “wave” in this term stems from the fact that at optical 
frequencies, it is hard to couple a sufficient volume of a nonlinear medium with lumped-type resonators. 
It is much easier to implement the parametric excitation (as well as other nonlinear phenomena such as 
the higher harmonic generation) of light in distributed systems of a linear size much larger than the 
involved wavelengths. In such systems, the energy transfer from the incoming wave of frequency  to 

32 Which is, surprisingly, not much more complex than the classical theory – see, e.g., QM Sec.5.5. 
33 See, e.g., QM Secs. 8.5 and 10.3, respectively. 
34 In optics, such nonlinearity is implemented using transparent crystals such as lithium niobate (LiNbO3), with 
the cubic-nonlinear dependence of the electric polarization on the applied electric field: P  E + E 3. 

Four- 
wave 
mixing 

Fig. 6.12. Spectra of oscillations at (a) the non-degenerate parametric excitation, and (b) the four-
wave mixing. The arrow directions symbolize the energy flows into and out of the system. 
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generated waves of frequencies 1 and 2 is gradually accumulated at their joint propagation along the 
system. From the analogy between Eq. (85) (describing the evolution of the wave’s amplitude in space), 
and the usual equation of the linear oscillator (describing its evolution in time), it is clear that this 
energy transfer accumulation requires not only the frequencies  but also the wave numbers k be in 
similar relations. For example, the four-wave mixing requires not only the frequency balance (92a) but 
also a similar relation 
       ,2 21 kkk        (6.92b) 

to be fulfilled. Since all three frequencies are close, this relation is easy to arrange. Unfortunately, due to 
the lack of time/space, for more discussion of this very interesting subject, called nonlinear optics, I 
have to refer the reader to special literature.35 

 It may look like a dispersion-free media, with /k = v = const, is the perfect solution for 
arranging the nonlinear/parametric interaction of waves, because in such media, for example, Eq. (92b) 
automatically follows from Eq. (92a). However, in such a medium, not only the desirable three 
parametrically interacting waves but also all their harmonics, have the same velocity. At these 
conditions, the energy transfer rates between all harmonics are of the same order. Perhaps the most 
important result of such a multi-harmonic interaction is that intensive incident traveling waves, 
interacting with a nonlinear medium, may develop sharply non-sinusoidal waveforms, in particular those 
with an almost instant change of the field at a certain moment. Such shock waves, especially the 
mechanical ones, are of large interest for certain applications – some of them not quite innocent, e.g., the 
dynamics of explosion in the usual (chemical) and nuclear bombs.36  

 To conclude this chapter, let me note that the above discussion of 1D acoustic waves will be 
extended, in Sec. 7.7, to elastic 3D media. There we will see that generally, the waves obey a more 
complex equation than the apparently natural generalization of Eq. (40): 
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where 2 is the 3D Laplace operator. This fact adds to the complexity of traveling-wave and standing-
wave phenomena in higher dimensions. Moreover, in multi-dimensional systems, including such 
pseudo-1D systems as thin rods and pseudo-2D systems such as thin membranes, even static elastic 
deformations may be very nontrivial. An introduction to the general theory of small deformations, with a 
focus on elastic continua, will be the subject of the next chapter.  

 

6.8. Exercise problems 

 For each of the systems specified in Problems 1-6: 

  (i) introduce convenient generalized coordinates qj of the system, 

35 See, e.g.,  N. Bloembergen, Nonlinear Optics,  4th ed., World Scientific, 1996, or a more modern treatment by 
R. Boyd, Nonlinear Optics, 3rd ed., Academic Press, 2008. This field is currently very active. As just a single 
example, let me mention the recent experiments with parametric amplification of ultrashort (~20-fs) optical pulses 
to peak power as high as ~51012 W – see X. Zeng et al., Optics Lett. 42, 2014 (2017).  
36 The classical (and perhaps still the best) monograph on the subject is Ya. Zeldovich, Physics of Shock Waves 
and High-Temperature Phenomena, Dover, 2002.  



Essential Graduate Physics                 CM: Classical Mechanics 

 

Chapter 6             Page 26 of 30 

   (ii) calculate the frequencies of its small harmonic oscillations near the equilibrium, 
  (iii) calculate the corresponding distribution coefficients, and  
  (iv) sketch the oscillation modes. 

 
 6.1. Two elastically coupled pendula confined to the vertical plane that 
contains both suspension points, with the parameters shown in the figure on the 
right (see also Problems 1.8 and 2.9). 

  
 
  
 
 6.2. The double pendulum confined to the vertical plane containing the support 
point (which was the subject of Problem 2.1), with m’ = m and l = l’ – see the figure on 
the right. 
 

  

 

 
 6.3 The chime bell considered in Problem 4.12 (see the figure on the right), for the 
particular case l = l’. 
 
 
 
 
 6.4. The triple pendulum shown in the figure on the right, with the motion 
confined to a vertical plane containing the support point. 

 Hint: You may use any (e.g., numerical) method to calculate the characteristic 
equation’s roots. 
  
 
 6.5. The symmetric three-particle system shown in the figure on the 
right, where the connections between the particles not only act as usual 
elastic springs (giving potential energies U = (l)2/2) but also resist 
bending, giving additional potential energy U’ = ’(l) 2/2, where   is the 
(small) bending angle.37  
 
 
 6.6. Three similar beads of mass m, which may slide along a round ring 
of radius R without friction, connected with similar springs with elastic constants 
 and equilibrium lengths l0 (not necessarily equal to 3R) – see the figure on 
the right. 

37 This is a reasonable model for small oscillations of linear molecules such as the now-infamous CO2. 
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 6.7. On the example of the model considered in Problem 1, explore free oscillations in a system 
of two similar and weakly coupled linear oscillators. 

 
 
6.8. A small body is held by four similar elastic springs as shown 

in the figure on the right. Analyze the effect of rotation of the system as a 
whole about the axis normal to its plane, on the body’s small oscillations 
within this plane. Assume that the oscillation frequency is much higher 
than the angular velocity  of the rotation. Discuss the physical sense of 
your results and possible ways of using such systems for measurement of 
the rotation. 
 
 
 6.9. An external longitudinal force F(t) is 
applied to the right particle of the system shown in 
Fig. 1, with L = R = ’ and m1 = m2  m (see the 
figure on the right), and the response q1(t) of the left 
particle to this force is being measured.  

 (i) Calculate the temporal Green’s function for this response. 
 (ii) Use this function to calculate the response to the following force: 

 








,0for ,sin

,0for              ,0

0 ttF

t
tF


 

with constant amplitude F0 and frequency . 
 
 6.10. Use the Lagrangian formalism to re-derive Eqs. (24) for both the longitudinal and the 
transverse oscillations in the system shown in Fig. 4a. 
 
 6.11. Calculate the energy (per unit length) of a sinusoidal traveling wave propagating in the 1D 
system shown in Fig. 4a. Use your result to calculate the average power flow created by the wave, and 
compare it with Eq. (49) in the acoustic wave limit. 
 
 6.12. Calculate spatial distributions of the kinetic and potential energies in a standing sinusoidal 
1D acoustic wave and analyze their evolution in time. 
  
 6.13. The midpoint of a guitar string of length l has been slowly pulled off sideways by a 
distance h << l from its equilibrium position, and then let go. Neglecting energy dissipation, use two 
different approaches to calculate the midpoint’s displacement as a function of time. 

 Hint: You may like to use the following series:
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 6.14. Spell out the spatial-temporal Green’s function (82) for waves in a uniform 1D system of N 
points, with rigid boundary conditions (62). Explore the acoustic limit of your result. 
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 6.15. Calculate the dispersion law (k) and the highest and 
lowest frequencies of small longitudinal waves in a long chain of 
similar, spring-coupled pendula – see the figure on the right. 

 
  
 6.16. Calculate and analyze the dispersion relation 
(k) for small waves in a long chain of elastically coupled 
particles with alternating masses – see the figure on the right. 
In particular, discuss the dispersion relation’s period k, and 
its evolution at m’  m. 

 

6.17. Analyze the traveling wave’s reflection from a 
“point inhomogeneity”: a single particle with a different mass 
m0  m, in an otherwise uniform 1D chain – see the figure on 
the right. 

 
6.18.*  

 (i) Explore an approximate way to analyze small waves in a continuous 1D system with 
parameters slowly varying along its length. 
 (ii) Apply this method to calculate the frequencies of transverse standing waves on 
a freely hanging heavy rope of length l, with a constant mass  per unit length – see the 
figure on the right. 
 (iii) For the three lowest standing wave modes, compare the results with those 
obtained in the solution of Problem 4 for the triple pendulum. 

 Hint: The reader familiar with the WKB approximation in quantum mechanics 
(see, e.g., QM Sec. 2.4) is welcome to adapt it for this classical application. Another 
possible starting point is the van der Pol approximation discussed in Sec. 5.3, which should be translated 
from the time domain to the space domain. 

 
 6.19. A particle of mass m is attached to an infinite string, of mass  per unit length, stretched 
with tension T. The particle is confined to move along the x-axis perpendicular to the string (see the 
figure below), in an additional smooth potential U(x) with a minimum at x = 0. Assuming that the waves 
on the string are excited only by the motion of the particle (rather than any external source), reduce the 
system of equations describing the system to an ordinary differential equation for small oscillations x(t), 
and calculate their Q-factor of due to the drag caused by the string. 
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 6.20.* Use the van der Pol method to analyze the mutual phase locking of two weakly coupled 
self-oscillators with the dissipative nonlinearity, for the cases of: 

 (i) the direct coordinate coupling described by Eq. (5), and 
 (ii) a bilinear but otherwise arbitrary coupling of two similar oscillators.  

 Hint: In Task (ii), describe the coupling by an arbitrary linear operator, and express the result via 
its Fourier image.  
 
 6.21.* Extend Task (ii) of the previous problem to the mutual phase locking of N similar self-
oscillators. In particular, explore the in-phase mode’s stability for the case of so-called global coupling 
via a single force F contributed equally by all oscillators. 
 
 6.22.* Find the condition of non-degenerate parametric excitation in a system of two coupled 
oscillators described by Eqs. (5), but with time-dependent coupling:   (1 +  cospt), with p  1 
+ 2. 

 Hint: Use the van der Pol method, assuming the modulation depth , the static coupling 
coefficient , and the detuning   p – (1+ 2) are all sufficiently small. 
 
 6.23. Show that the cubic nonlinearity of the type q3 indeed enables the parametric interaction 
(“four-wave mixing”) of oscillations with incommensurate frequencies related by Eq. (92a). 
 

6.24. In the first nonvanishing approximation in small oscillation amplitudes, calculate their 
effect on the frequencies of the double-pendulum system that was the subject of Problem 1. 

 6.25. Calculate the velocity of small transverse waves propagating on a thin, planar, elastic 
membrane, with a constant mass m per unit area, pre-stretched with force   per unit width. 
 
 6.26. A membrane discussed in the previous problem is 
stretched on a thin but firm plane frame of area aa.  

 (i) Calculate the frequency spectrum of small transverse 
standing waves in the system; sketch a few lowest wave modes. 
 (ii) Compare the results with those for a discrete-point analog of 
this system, with four particles of equal masses m, connected with light 
flexible strings that are stretched, with equal tensions T, on a similar 
frame – see the figure on the right.  

 Hint: The frames do not allow the membrane edges/string ends 
to deviate from their planes. 
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