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Chapter 8. Fluid Mechanics 

This chapter describes the basic notions of fluid mechanics, discusses a few core problems of statics and 
dynamics of ideal and viscous fluids, and gives a very brief review of such a complicated phenomenon 
as turbulence. In addition, the viscous fluid flow discussion is used as a platform for an elementary 
introduction to numerical methods of the partial differential equation solution – whose importance 
extends well beyond this particular field. 

 

8.1. Hydrostatics 

The mechanics of fluids (defined as the materials that cannot keep their geometric form on their 
own, and include both liquids and gases) is both more simple and more complex than that of elastic 
solids, with the simplifications mostly in statics.1 Indeed, fluids, by definition, cannot resist static shear 
deformations. There are two ways to express this fact. First, we can formally take the shear modulus , 
describing this resistance, to equal zero. Then Hooke’s law (7.32) shows that the stress tensor is 
diagonal: 
      .jj'jjjj'         (8.1) 

Alternatively, the same conclusion may be reached just by looking at the stress tensor definition (7.19) 
and/or Fig. 7.3, and saying that in the absence of shear stress, the elementary interface dF has to be 
normal to the area element dA, i.e. parallel to the vector dA. 

 Moreover, in fluids at equilibrium, all three diagonal elements jj of the stress tensor have to be 
equal at each point. To prove that, it is sufficient to single out (mentally rather than physically), from a 
static fluid, a small volume in the shape of a right prism, with mutually perpendicular faces normal to 
the two directions we are interested in – in Fig. 1, along the x- and y-axes. 

 

 

 

 

 

 

 The prism is in equilibrium if each Cartesian component of the vector of the total force exerted 
on all its faces equals zero. For the x-component, this balance may be expressed as xxdAx – 
(dA)cos = 0. However, from the geometry (Fig. 1), dAx = dAcos, so the above expression yields 
  = xx. A similar argument for the y-component gives   = yy, so xx  = yy. Changing the 
orientation of the prism, we can get such equalities for any pair of diagonal elements of the stress tensor, 
jj, so all three of them have to be equal. 

1 It is often called hydrostatics because water has always been the most important liquid for the human race and 
hence for science and engineering. 

Fig. 8.1. Proving the pressure isotropy. 
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  This common diagonal element of the stress matrix is usually denoted as (-P), because in the 
vast majority of cases, the parameter P, called pressure, is positive. Thus we arrive at the key relation 
(which was already mentioned in Sec. 7.2): 

       jj'jj'  P .      (8.2) 

In the absence of bulk forces, pressure should be constant through the volume of fluid, due to the 
translational symmetry. Let us see how this result is affected by bulk forces. With the simple stress 
tensor (2), the general condition of equilibrium of a continuous medium, expressed by Eq. (7.25) with 
the left-hand side equal to zero, becomes 

      0



 j
j

f
r

P ,     (8.3) 

and may be re-written in the following convenient vector form: 

       .0 fP      (8.4) 

In the simplest case of a heavy fluid with mass density , in a uniform gravity field f = g,  the equation 
of equilibrium becomes, 
      0 gP ,     (8.5) 

with only one nonzero component – near the Earth’s surface, the vertical one. If, in addition, the fluid 
may be considered incompressible, with its density  constant,2 this equation may be readily integrated 
over the vertical coordinate (say, y) to give the so-called Pascal equation:3  

               ,const gyP      (8.6) 

where the direction of the y-axis is taken opposite to that of vector g. 

 Two manifestations of this key equation are well known. The first one is the fact that in 
interconnected vessels filled with a fluid, its pressure is equal at all points at the same height (y), 
regardless of the vessel shape, provided that the fluid is in equilibrium.4 In particular, if a heavy liquid 
has an open surface, then in equilibrium, it has to be horizontal – at least, not too close to the retaining 
walls (see Sec. 2). 

 The second manifestation of Eq. (6) is the buoyant force Fb exerted by a liquid on a (possibly, 
partly) submerged body, i.e. the vector sum of the elementary pressure forces dF = PdA exerted on all 
elementary areas dA of the submerged part of the body’s surface – see Fig. 2. According to Eq. (6), with 
the constant equal to zero (corresponding to zero pressure at the liquid’s surface taken for y = 0, see Fig. 
2a), the vertical component of this elementary force is  

2 As was discussed in Sec. 7.3 in the context of Table 7.1, this is an excellent approximation, for example, for 
human-scale experiments with water. 
3 The equation, and the SI unit of pressure 1 Pa  1N/m2, are named after Blaise Pascal (1623-1662) who not only 
pioneered hydrostatics, but also invented the first mechanical calculator, and made several other important 
contributions to mathematics – and to Christian philosophy! 
4 This simple fact opens wide opportunities for the engineering field of hydraulics, in particular enabling a very 
simple and efficient way to magnify forces, using interconnected hydraulic cylinders of different diameters. 

Pressure 
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       hy gydAdAgydAdFdF   coscoscos P .   (8.7) 

where dAh = cosdA is the horizontal footprint (say, dxdz) of the elementary area dA. Now integrating 
this relation over all the surface, we get the total vertical buoyant force:5 

         ,b gVdAygF h

S

        (8.8) 

where V is the volume of the submerged part of the body’s volume, while  is the liquid’s density, so by 
magnitude, Fb equals the weight of the liquid that would fill the submerged volume. 

 

 

 

 

 

 

 

 

 This well-known Archimedes principle may be proved even more simply using the following 
argument: the liquid’s pressure forces, and hence the resulting buoyant force, cannot depend on what is 
inside the body’s volume. Hence Fb would be the same if we filled the volume V in question with a 
liquid similar to the surrounding one. But in this case, the liquid should be still in equilibrium even if the 
surface is completely flexible, so both forces acting on its inner part, the buoyant force Fb and the inner 
liquid’s weight mg = Vg, have to be equal and opposite, thus proving Eq. (8) again. 

 Despite the simplicity of the Archimedes principle, its erroneous formulations, such as “The 
buoyant force’s magnitude is equal to the weight of the displaced liquid” [WRONG!] creep from one 
undergraduate textbook to another, leading to application errors. A typical example is shown in Fig. 2b, 
where a solid vertical cylinder with the base area A is pressed into a liquid inside a container of 
comparable size, pushing the liquid’s level up by distance a. The correct answer for the buoyant force, 
following from Eq. (8), is  
         bagAgVF  b ,     (8.9a) 

because the volume V of the submerged part of the cylinder is evidently A(a + b). But the wrong 
formulation cited above, using the term displaced liquid, would give a different answer: 

        gAbgVF   displacedb . [WRONG!]   (8.9b) 

(The latter result is correct only asymptotically, in the limit b/a .) 

 Another frequent error in hydrostatics concerns the angular stability of a freely floating body – 
the problem of vital importance for the boat/ship design. It is sometimes claimed that the body is stable 

5 The force is vertical, because the horizontal components of the elementary forces dF exerted on opposite 
elementary areas dA, at the same height y, cancel. 
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only if the so-called buoyancy center, the effective point of buoyant force application (in Fig, 3, point 
B),6 is above the center of mass (C) of the floating body. However, as Fig. 3 shows, this is unnecessary; 
indeed in the shown case, point B remains below point C, even at a small tilt. Still, in this case, the 
torque created by the pair of forces Fb and mg tries to return the body to the equilibrium position, which 
is therefore stable. As Fig. 3 shows, the actual condition of the angular stability may be expressed as the 
requirement for point M (in shipbuilding, called the metacenter of the ship’s hull) to be above the ship’s 
center of mass C.7 

  

 

 

 

 

 

 

 To conclude this section, let me note that the integration of Eq. (4) may be more complex in the 
case if the bulk forces f depend on position,8 and/or if the fluid is substantially compressible. In the 
latter case, Eq. (4) has to be solved together with the medium-specific equation of state  = (P) 

describing its compressibility law – whose example is given by Eq. (7.38) for ideal gases:   mN/V = 
mP/kBT, where m is the mass of one gas molecule. 

 

8.2. Surface tension effects 

 Besides the bulk (volume-distributed) forces, one more possible source of pressure is surface 
tension. This effect results from the difference between the potential energy of atomic interactions on 
the interface between two different fluids and that in their bulks, and thus may be described by an 
additional potential energy  
           AU i ,      (8.10) 

where A is the interface area, and   is called the surface tension constant – or just the “surface tension”. 
For a stable interface of any two fluids,  is always positive.9 For surfaces of typical liquids (or their 
interfaces with air), at room temperature, the surface tension equals a few 10-2 J/m2,10 corresponding to 

6 A simple calculation, similar to the one resulting in Eq. (8), but for the total torque rather than the total force, 
shows that B is just the center of mass of the submerged volume V filled with any uniform material. 
7 It is easy (and hence is left for the reader) to prove that a small tilt of the body leads to a small lateral 
displacement of point B, but does not affect the position of the metacenter M. 
8 A simple example of such a problem is given by the fluid equilibrium in a container rotating with a constant 
angular velocity . If we solve such a problem in a reference frame rotating together with the container, the real 
bulk forces should be complemented by the centrifugal “force” (4.93), depending on r. 
9 Indeed, if the   of the interface of certain two fluids is negative, it self-reconfigures to decrease Ui, i.e. to 
increase Ui, by increasing the interface area, i.e. fragments the system into a macroscopically uniform solution.  
10 For a better feeling of this number, one should remember that 1 J/m2  1 N/m. 
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tension 

Fig. 8.3. Angular stability of a 
floating body. 

B

C

M
bF

gm



Essential Graduate Physics                 CM: Classical Mechanics 
 

 

Chapter 8            Page 5 of 30 

the potential energy Ui of a few 10-2 eV per surface molecule – i.e. just a fraction of the full binding (or 
“cohesive”) energy of the same liquid, which is typically of the order of 10-1 eV per molecule.  

 In the absence of other forces, the surface tension makes a liquid drop spherical to minimize its 
surface area A at a fixed volume. For the analysis of the surface tension effects for more complex 
geometries, and in the presence of other forces, it is convenient to reduce them to a certain additional 
effective pressure drop Pef at the interface. To calculate Pef, let us consider the condition of 
equilibrium of a small part dA of a smooth interface between two fluids (Fig. 2), in the absence of bulk 
forces.  

 

 

 

 

 

 

 If the pressures P1,2 on the two sides of the interface are different, the work of stress forces on 

fluid 1 at a small virtual displacement r = nr of the interface (where n = dA/dA is the unit vector 
normal to the interface) equals11 
              21 PP  rdAW .     (8.11) 

For equilibrium, this work has to be compensated by an equal change of the interface energy, Ui = 
(dA). Differential geometry tells us that in the linear approximation in r, the relative change of the 
elementary surface area, corresponding to a fixed solid angle d, may be expressed as 

                
 

21 R

r

R

r

dA

dA 
 ,     (8.12) 

where R1,2 are the so-called principal radii of the interface curvature.12 Combining Eqs. (10)-(12), we 
get the following Young-Laplace formula:13 

                









21
ef21

11
Δ

RR
PPP .    (8.13) 

11 This equality follows from the general relation (7.30), with the stress tensor elements expressed by Eq. (2), but 
in this simple case of the net stress force dF = (P1 – P2)dA parallel to the interface element vector dA, it may be 

even more simply obtained just from the definition of work: W = dFr at the virtual displacement r = nr. 
12 This general formula may be readily verified for a sphere of radius r (for which R1 = R2 = r and dA = r2d, so 
(dA)/dA =  (r2)/r2 = 2r/r), and for a round cylindrical interface of radius R (for which R1 = r, R2 = , and dA = 
rddz, so (dA)/dA =  r/r). For more on curvature, see, for example, M. do Camo, Differential Geometry of 
Curves and Surfaces, 2nd ed., Dover, 2016. 
13 This result (not to be confused with Eq. (15), called Young’s equation) was derived in 1806 by Pierre-Simon 
Laplace (of the Laplace operator/equation fame) on the basis of the first analysis of the surface tension effects by 
Thomas Young (yes, the same Young who performed the famous two-slit experiment with light!) a year earlier.  
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Fig. 8.4. Deriving the Young-Laplace 
formula (13). 
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 In particular, this formula shows that the additional pressure created by surface tension inside a 
spherical drop of a liquid, of radius R, equals 2/R, i.e. decreases with R. In contrast, according to Eqs. 
(5)-(6), the pressure effects of bulk forces, for example gravity, grow as gR. The comparison of these 
two pressure components shows that if the drop radius (or more generally, the characteristic linear size 
of a liquid’s sample) is much larger than the so-called capillary length 

       
2/1

c

2










g
a




,     (8.14) 

the surface tension may be safely ignored – as will be done in all following sections of this chapter, 
besides a brief discussion at the end of Sec. 4. For the water surface, or more exactly its interface with 
air at ambient conditions,   0.073 J/m2, while   1,000 kg/m3, so ac  4 mm. 

 On the other hand, in very narrow tubes, such as blood capillary vessels with radius a ~ 1 m, 
i.e. a << ac, the surface tension effects are very important. The key notion for the analysis of these 
effects is the contact angle c (also called the “wetting angle”) at an equilibrium edge of a liquid wetting 
a solid – see Fig. 5.  

 

 

 

 

 

 
 According to its definition (10), the constant  may be interpreted as a force (per unit length of 
the interface boundary) directed normally to the boundary, and “trying” to reduce the interface area. As 
a result, the balance of horizontal components of the three such forces, shown in Fig. 5a, immediately 
yields the Young’s equation 

            sgclgsl cos   ,     (8.15) 

where the indices of the three constants  correspond to three possible interfaces between the liquid, 
solid, and gas. For the so-called hydrophilic surfaces that “like to be wet” by a particular liquid (not 
necessarily water), meaning that sl < sg, this relation yields cosc  > 0, i.e. c  < /2 – the situation 
shown in Fig. 5a. On the other hand, for hydrophobic surfaces with sl > sg, Eq. (15) yields larger 
contact angles, c  > /2 – see Fig. 5b. 

 Let us use this notion to solve the simplest and perhaps the most practically important problem 
of this field – find the height h of the fluid column lifted by the surface tension forces in a narrow 
vertical tube made of a hydrophilic material, assuming its internal surface to be a round cylinder of 
radius a – see Fig. 6. Inside an incompressible fluid, pressure drops with height according to the Pascal 
equation (6), so just below the surface, P  P0 – gh, where P0 is the background (e.g., atmospheric) 
pressure. This means that at a << h, the pressure variation along the concave surface (called the 
meniscus) of the liquid is negligible, so according to the Young-Poisson equation (13), the sum (1/R1 + 
1/R2) has to be virtually constant along the surface. Due to the axial symmetry of the problem, this 
means that the surface has to be a part of a sphere. From the contact angle definition, the radius R of the 

Fig. 8.5. Contact angles 
for (a) hydrophilic and 
(b) hydrophobic surfaces. 
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sphere is equal to a/cosc – see Fig. 6. Plugging this relation into Eq. (3) with P1 – P2 = gh, we get the 
following result for h: 

               
a

gh ccos2 
  .     (8.16a) 

 In hindsight, this result might be obtained more directly – by requiring the total weight gV = 
g(a2h) of the lifted liquid’s column to be equal to the vertical component Fcosc of the full surface 
tension force F = p, acting on the perimeter p = 2a of the meniscus. Using the definition (11) of the 
capillary length ac, Eq. (16a) may be represented as the so-called Jurin rule: 

                
a

a

a

a
h

2
c

c

2
c cos   ;     (8.16b) 

according to our initial assumption h >> a, Eq. (16) is only valid for narrow tubes, with radius a << ac.   

 

 

 

 

 

 

  

 
   
 This capillary rise is the basic mechanism of lifting water with nutrients from roots to the 
branches and leaves of plants, so the tallest tree heights correspond to the Jurin rule (16), with cosc  1, 
and the pore radius a limited from below by a few microns, because of the viscosity effects restricting 
the fluid discharge – see Sec. 5 below.  

 

8.3. Kinematics 

 In contrast to the stress tensor, which is frequently very simple – see Eq. (2), the strain tensor is 
not a very useful notion in fluid mechanics. Indeed, besides a very few situations,14 typical problems of 
this field involve fluid flow, i.e. a state when the velocity of fluid particles has some nonzero time 
average. This means that the trajectory of each particle is a long line, and the very notion of its 
displacement q from the initial position becomes impracticable. However, the particle’s velocity v  
dq/dt remains a very useful notion, especially if it is considered as a function of the observation point r 
and (generally) time t. In an important class of fluid dynamics problems, the so-called stationary (or 
“steady”, or “static”) flow, the velocity defined in this way does not depend on time, v = v(r).  

14 One of them is sound propagation, where the particle displacements q are typically small, so the results of Sec. 
7.7 are applicable. As a reminder, they show that in fluids, with  = 0, the transverse sound cannot propagate, 
while the longitudinal sound can – see Eq. (7.114). 

a

Fig. 8.6. Liquid’s rise in a vertical capillary tube. 
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 There is, however, a price to pay for the convenience of this notion: namely, due to the 
difference between the vectors q and r, the particle’s acceleration a = d2q/dt2 (that participates, in 
particular, in the 2nd Newton law) cannot be calculated just as the time derivative of the velocity v(r, t). 
This fact is evident, for example, for the static flow case, in which the acceleration of individual fluid 
particles may be very significant even if v(r) does not depend on time – just think about the acceleration 
of a drop of water flowing over the Niagara Falls’ rim, first accelerating fast and then virtually stopping 
below, while the water velocity v at every particular point, as measured from a bank-based reference 
frame, is nearly constant. Thus the primary task of fluid kinematics is to express a via v; let us do this.  

 Since each Cartesian component vj of the velocity v has to be considered as a function of four 
independent scalar variables: three Cartesian components rj of the vector r and time t, its full time 
derivative may be represented as 

         
dt

dr

r

v

t

v

dt

dv j

j j

jjj '
3

1' '

 







 .     (8.17) 

Let us apply this general relation to a specific set of infinitesimal changes {dr1, dr2, dr3} that follows a 
small displacement dq of a certain particle of the fluid: dr = dq = vdt, i.e.  

         dtvdr jj  .      (8.18) 

In this case, dvj/dt is the jth component aj of the particle’s acceleration a, so Eq. (17) yields the following 
key relation of fluid kinematics: 

           .
3

1' '
'

 









j j

j
j

j
j r

v
v

t

v
a      (8.19a) 

Using the del operator , this result may be rewritten in the following compact vector form:15 

               vv
v

a )( 




t

.     (8.19b) 

This relation already signals the main technical problem of fluid dynamics: many equations involving 
the particle’s acceleration are nonlinear in velocity, excluding such a powerful tool as the linear 
superposition principle (which was used so frequently in the previous chapters of this course) from the 
applicable mathematical arsenal.  

 One more basic relation of fluid kinematics is the so-called continuity equation, which is 
essentially just the differential version of the mass conservation law. Let us mark, inside a fluid flow, an 
arbitrary volume V limited by a stationary (time-independent) surface S. The total mass of the fluid 
inside the volume may change only due to its flow through the boundary: 

     
SS

n

V

drdvrd
dt

d

dt

dM
,23 Av    (8.20a) 

15 Note that the operator relation d/dt = /t + (v) is applicable to an arbitrary (scalar or vector) function; it is 
frequently called the convective derivative. (Alternative adjectives, such as “Lagrangian”, “substantial”, or 
“Stokes”, are sometimes used for this derivative as well.) The relation has numerous applications well beyond the 
fluid dynamics – see, e.g., EM Chapter 9 and QM Chapter 1. 

Fluid  
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where the elementary area vector dA is defined just as in Sec. 7.2 – see Fig. 7.  

 

 

 

 

 

 

 
 Now using the same divergence theorem that has been used several times in this course,16 the 
surface integral in Eq. (20a) may be transformed into the integral of (v) over the volume V, so the 
relation may be rewritten as 

           03 





 



 rd
tV

j


,     (8.20b) 

where the vector j  v is called either the mass flux density (or the “mass current”). Since Eq. (20b) is 
valid for an arbitrary stationary volume V, the function under the integral has to vanish at any point: 

                 0



j
t


.       (8.21) 

 Note that similar continuity equations are valid not only for mass but also for other conserved 
physics quantities (e.g., the electric charge, probability, etc.), with the proper re-definitions of  and j.17 

 

8.4. Dynamics: Ideal fluids 

 Let us start our discussion of fluid dynamics from the simplest case when the stress tensor obeys 
Eq. (2) even in motion. Physically, this means that the fluid viscosity effects, leading to mechanical 
energy loss, are negligible. (The conditions of this assumption will be discussed in the next section.) 
Then the equation of motion of such an ideal fluid (essentially the 2nd Newton law for its unit volume) 
may be obtained from Eq. (7.25) using the simplifications of its right-hand side, discussed in Sec. 1:  

                 .fa  P      (8.22) 

Now using the basic kinematic relation (19), we arrive at the following Euler equation:18 

       fvv
v





P
t

.     (8.23) 

 Generally, this equation has to be solved together with the continuity equation (21) and the 
equation of state of the particular fluid,  = (P ). However, as we have already discussed, in many 

16 If the reader still needs a reminder, see MA Eq. (12.1). 
17 See, e.g., EM Sec. 4.1, QM Sec. 1.4, and SM Sec. 5.6. 
18 It was derived in 1755 by the same Leonhard Euler whose name has already been (reverently) mentioned 
several times in this course. 

Fig. 8.7. Deriving the continuity equation. 
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situations, the compressibility of water and other important liquids is very low and may be ignored, so  
may be treated as a given constant. Moreover, in many cases, the bulk forces f are conservative and may 
be represented as a gradient of a certain potential function u(r) – the potential energy per unit volume:  

            uf ;       (8.24) 

for example, for a uniform, vertical gravity field, u(r) = gy, where y is measured from some (arbitrary) 
horizontal level. In this case, the right-hand side of Eq. (23) becomes  –(P + u). For these cases, it is 
beneficial to recast the left-hand of that equation as well, using the following well-known identity of 
vector algebra19 

        vvvv 







 

2

2v
.    (8.25) 

As a result, the Euler equation takes the following form:  

                   .0
2

2












 v

u
t

 P vv
v

    (8.26) 

 In a stationary flow, the first term of this equation vanishes. If the second term, describing fluid’s 
vorticity, is zero as well, then Eq. (26) has the first integral of motion, 

            const
2

2  vu


P ,     (8.27) 

called the Bernoulli equation.20 Numerous examples of the application of Eq. (27) to simple problems of 
stationary flow in pipes, both with and without the Earth gravity field, should be well known to the 
readers from their undergraduate courses, so I hope I can skip their discussion without much harm. 

 In the general case, an ideal fluid may have vorticity, so Eq. (27) is not always valid. Moreover, 
due to the absence of viscosity in an ideal fluid, the vorticity, once created, does not decrease along the 
so-called streamline – the fluid particle’s trajectory, to which the velocity is tangential at every point.21 
Mathematically, this fact22 is expressed by the following Kelvin theorem: (v)dA = const along any 
small contiguous group of streamlines crossing an elementary area dA.23  

 However, in many important cases, the vorticity is negligible. For example, even if the vorticity 
exists in some part of the fluid volume (say, induced by local turbulence, see Sec. 6 below), it may 
decay due to the fluid’s viscosity, to be discussed in Sec. 5, well before it reaches the region of our 
interest. (If this viscosity is sufficiently small, its effects on the fluid’s flow in the region of interest are 

19 It readily follows, for example, from MA Eq. (11.6) with g = f = v. 
20 Named after Daniel Bernoulli (1700-1782), not to be confused with Jacob Bernoulli or one of several Johanns 
of the same famous Bernoulli family, which gave the world so many famous mathematicians and scientists. 
21 Perhaps the most spectacular manifestation of the vorticity conservation is the famous toroidal vortex rings 
(see, e.g., a nice photo and a movie at https://en.wikipedia.org/wiki/Vortex_ring), predicted in 1858 by H. von 
Helmholtz, and then demonstrated by P. Tait in a series of spectacular experiments with smoke in the air. The 
persistence of such a ring, once created, is only limited by the fluid’s viscosity – see the next section. 
22 This theorem was first formulated (verbally) by Hermann von Helmholtz. 
23 Its proof may be found, e.g., in Sec. 8 of L. Landau and E. Lifshitz, Fluid Mechanics, 2nd ed., Butterworth-
Heinemann, 1987. 

Bernoulli 
equation 
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negligible, i.e. the ideal-fluid approximation is still acceptable.) Another important case is when a solid 
body of an arbitrary shape is embedded into an ideal fluid whose flow is uniform (meaning, by 
definition, that v(r,t) = v0 = const) at large distances,24 its vorticity is zero everywhere. Indeed, since 
v = 0 at the uniform flow, the vorticity is zero at distant points of any streamline, and according to 
the Kelvin theorem, should equal zero everywhere. 

 In such cases, the velocity distribution, as any curl-free vector field, may be represented as a 
gradient of some effective potential function, 

          .v        (8.28) 

Such potential flow may be described by a simple differential equation. Indeed, the continuity equation 
(21) for a steady flow of an incompressible fluid is reduced to v = 0. Plugging Eq. (28) into this 
relation, we get the scalar Laplace equation, 

          02   ,      (8.29) 

which should be solved with appropriate boundary conditions. For example, the fluid flow may be 
limited by solid bodies, inside which the fluid cannot penetrate. Then the fluid velocity v at the solid 
body boundaries should not have a normal component; according to Eq. (28), this means 

       0surfaces 


n


.     (8.30) 

On the other hand, if at large distances the fluid flow is known, e.g., uniform, then: 

      rat ,const0v .    (8.31) 

 As the reader may already know (for example, from a course on electrodynamics25), the Laplace 
equation (29) is analytically solvable in several simple (symmetric) but important situations. Let us 
consider, for example, the case of a round cylinder, with radius R, immersed into a flow with the initial 
velocity v0 perpendicular to the cylinder’s axis (Fig. 8). For this problem, it is natural to use the 
cylindrical coordinates, with the z-axis coinciding with the cylinder’s axis. In this case, the velocity 
distribution is obviously independent of z, so we may simplify the general expression of the Laplace 
operator in cylindrical coordinates26 by taking /z = 0. As a result, Eq. (29) is reduced to27 
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    (8.32) 

The general solution of this equation may be obtained using the variable separation method, similar to 
that used in Sec. 6.5 – see Eq. (6.67). The result is28 

24 This case is very important, because the motion of a solid body, with a constant velocity u, in the otherwise 
stationary fluid, gives exactly the same problem (with v0 = -u), in a reference frame bound to the body. 
25 See, e.g., EM Secs. 2.3-2.8. 
26 See, e.g., MA Eq. (10.3). 
27 Let me hope that the letter , used here to denote the magnitude of the 2D radius vector  = {x, y}, will not be 
confused with the fluid’s density   – which does not participate in this boundary problem. 
28 See, e.g., EM Eq. (2.112). Note that the most general solution of Eq. (32) also includes a term proportional to 
, but in our geometry, this term should be zero for such a single-valued function as the velocity potential. 
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where the coefficients an and bn have to be found from the boundary conditions (30) and (31). Choosing 
the x-axis to be parallel to the vector v0 (Fig. 8a), so x = cos, we may spell out these conditions in the 
following form: 

             ,at ,0 R



     (8.34) 

             ,at ,cos 00 Rv        (8.35) 

where 0 is an arbitrary constant, which does not affect the velocity distribution and may be taken for 
zero. The condition (35) is incompatible with any term of the sum (33) except the term with n = 1 (with 
s1 = 0 and c1a1 = –v0), so Eq. (33) is reduced to 
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Now, plugging this solution into Eq. (34), we get c1b1 = –v0R
2, so, finally, 
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 Figure 8a shows the surfaces of constant velocity potential  given by Eq. (37a). To find the 
fluid velocity, it is easier to rewrite that result in the Cartesian coordinates x = cos, y = sin: 
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Fig. 8.8. The flow of an ideal, incompressible fluid around a cylinder: (a) equipotential surfaces and 
(b) streamlines. 
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From here, we may readily calculate the Cartesian components of the fluid’s velocity: 29 
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   (8.38) 

These expressions show that the maximum fluid’s speed is achieved at the transverse diameter’s ends ( 
= R,  =  /2), where v = 2v0, while at the longitudinal diameter’s ends ( = R,  = 0, ), the velocity 
vanishes – the so-called stagnation points. 

 Now the pressure distribution may be calculated by plugging Eqs. (38) into the Bernoulli 
equation (27) with u(r) = 0. The result shows that the pressure reaches its maximum at the stagnation 
points, while at the ends of the transverse diameter x = 0, where the velocity is largest, it is lower by 
2v0

2. Note that the distributions of both the velocity and the pressure are symmetric with respect to the 
transverse axis x = 0, so the fluid flow does not create any net drag force in its direction. It may be 
shown that this result, which stems from the conservation of the mechanical energy of an ideal fluid, 
remains valid for a solid body of arbitrary shape moving inside an infinite volume of an ideal fluid – the 
so-called D’Alembert paradox. However, if a body moves near an ideal fluid’s surface, its energy may 
be transformed into that of the surface waves, and the drag becomes possible. 

 Speaking about the surface waves: the description of such waves in a gravity field30 is one more 
classical problem of the ideal fluid dynamics.31 Let us consider an open surface of an ideal liquid of 
density  in a uniform gravity field f = g = -gny – see Fig. 9.  

 

 

 

 

 

 

 
  

 If the wave amplitude A  is sufficiently small, we may neglect the nonlinear term (v)v  A2 in 
the Euler equation (23) in comparison with the first term, v/t, which is linear in A. For a wave with 

29 Figure 8b shows the flow streamlines. They may be found by the integration of the obvious equation dy/dx = 
vy(x, y)/vx(x, y). For our simple problem, this may be done analytically, giving y(1 – R2/2) = const, where the 
constant is specific for each streamline. 
30 The alternative, historical term “gravity waves” for this phenomenon may nowadays lead to confusion with the 
relativistic effect of gravity waves – which may propagate in free space. 
31 It was solved by Sir George Biddell Airy (1801-19892), of the Airy functions’ fame. (He was also a prominent 
astronomer and, in particular, established Greenwich as the prime meridian.) 

Fig. 8.9. Small surface wave on a deep 
heavy liquid. Dashed lines show particle 
trajectories. (For clarity, the 
displacement amplitude A is strongly 
exaggerated.) 
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frequency  and wave number k, the particle’s velocity v = dq/dt is of the order of A, so this 
approximation is legitimate if 2A  >> k(A)2, i.e. when  

            ,1kA       (8.39)  

i.e. when the wave’s amplitude A is much smaller than its wavelength  = 2/k. Due to this assumption, 
we may neglect the liquid vorticity effects, and (for an incompressible fluid) again use the Laplace 
equation (29) for the wave’s analysis. Looking for its solution in the natural form of a sinusoidal wave, 
uniform in one of the horizontal directions (x),  
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  )()(Re tkziey  ,     (8.40) 

we get a very simple equation 
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with an exponential solution (properly decaying at y  -),  = Aexp{ky}, so Eq. (40) becomes 
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where the last form is valid if A is real – which may be always arranged by a proper selection of the 
origins of z and/or t. Note that the rate k of the wave’s decay in the vertical direction is exactly equal to 
the wave number of its propagation in the horizontal direction – along the fluid’s surface. Because of 
that, the trajectories of fluid particles are exactly circular – see Fig. 9. Indeed, using Eqs. (28) and (42) 
to calculate velocity components,  
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we see that vy and vz, at the same height y, have equal real amplitudes, and are phase-shifted by /2. This 
result becomes even more clear if we use the velocity definition v = dq/dt to integrate Eqs. (43) over 
time to recover the particle displacement law q(t). Due to the strong inequality (39), the integration may 
be done at fixed y and z: 
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Note that the phase of oscillations of vz coincides with that of qy. This means, in particular, that at the 
wave’s “crest”, particles are moving in the direction of the wave’s propagation – see arrows in Fig. 9. 

 It is remarkable that all this picture follows from the Laplace equation alone! The “only” 
remaining feature to calculate is the dispersion law (k), and for that, we need to combine Eq. (42) with 
what remains, in our linear approximation, of the Euler equation (23). In this approximation, and with 
the bulk force potential u = gy, the equation is reduced to 
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This equality means that the function in the parentheses is constant in space; at the surface, and at 
negligible surface tension, it should be equal to the pressure P0 above the surface (say, the atmospheric 
pressure), which we assume to be constant. This means that on the surface, the contributions to P  that 
come from the first and the third terms in Eq. (45) have to compensate for each other. Let us take the 
average surface position for y = 0; then the surface with waves is described by the relation y(z, t) = qy(y, 
z, t) – see Fig. 9. Due to the strong relation (39), we can use Eqs. (42) and (44) with y = 0, so the above 
compensation condition yields 

                 0sinsin  tkz
k

gtkz AA 


 .   (8.46) 

This condition is identically satisfied on the whole surface (and for any A) as soon as  

          gk2 ,      (8.47) 

 This equality is the dispersion relation we were looking for. Looking at this very simple result 
(which includes just one constant, g), note, first of all, that it does not involve the fluid’s density. This is 
not too surprising, because due to the weak equivalence principle, particle masses always drop out from 
the solutions of problems involving gravitational forces alone. Second, the dispersion law (47) is 
strongly nonlinear, and in particular, does not have an acoustic wave limit at all. This means that the 
surface wave propagation is strongly dispersive, with both the phase velocity uph  /k = g/ and the 
group velocity ugr  d/dk = g/2  uph/2 diverging at   0.32  

 This divergence is an artifact of our assumption of the infinitely deep liquid. A rather 
straightforward generalization of the above calculations to a layer of a finite thickness h, using the 
additional boundary condition vyy=-h = 0, yields a more general dispersion relation:33 

                khgk tanh2  .     (8.48) 

It shows that relatively long waves, with  >> h, i.e. with kh << 1, propagate without dispersion (i.e. 
have /k = const  u), with the following velocity: 

           2/1ghu  .      (8.49) 

For the Earth’s oceans, this velocity is rather high, close to 250 m/s (!) for the average ocean depth h  5 
km. This result explains, in particular, the very fast propagation of tsunami waves.   

 In the opposite limit of very short waves (large k), Eq. (47) also does not give a good description 
of typical experimental data, due to surface tension effects  – see Sec. 2 above. Using Eq. (13), it is easy 
(and hence also left for the reader’s exercise) to show that their account leads (at kh >> 1) to the 
following modification of Eq. (47): 
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2 k

gk  .     (8.50) 

32 Here, unlike in Chapters 6 and 7, the wave velocity is denoted by the letter u to avoid any chance of confusion 
with the velocity v (43) of the liquid’s particles. 
33 This calculation (left for the reader’s exercise), shows also that at finite h, the particle trajectories are elliptical 
rather than circular, becoming more and more stretched in the wave propagation direction near the bottom of the 
layer. 
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According to this formula, the surface tension is important at wavelengths smaller than the capillary 
constant ac given by Eq. (14). Much shorter waves, for that Eq. (50) yields   k3/2, are called the 
capillary waves – or just “ripples”. 

  

8.5. Dynamics: Viscous fluids 

 The viscosity of many fluids, at not overly high velocities, may be described surprisingly well by 
adding, to the static stress tensor (2), additional elements proportional to the velocity v  dq/dt: 

            )(~
''' vjjjjjj   P .     (8.51) 

In view of our experience with Hooke’s law (7.32) expressing a stress tensor proportional to particle 
displacements q, we may expect a similar expression with the replacement q  v = dq/dt: 
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where ejj’ are the elements of the symmetrized strain derivative tensor: 
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Experiment confirms that Eq. (52) gives a good description of the viscosity effects in a broad range of 
isotropic fluids. The coefficient  is called either the shear viscosity, or the dynamic viscosity, or just 
viscosity, while   is called the second (or bulk) viscosity. 

 In the most frequent case of virtually incompressible fluids, Tr (e) = d[Tr (s)]/dt = (dV/dt)/V = 0, 
so the term proportional to   vanishes, and  is the only important viscosity parameter.34 Table 1 shows 
the approximate values of the viscosity, together with the mass density , for several representative 
fluids.  

 

 

 

 

 

 

 

 

 
 

34 Probably the most important effect we miss by neglecting  is the attenuation of the (longitudinal) acoustic 
waves, into which the second viscosity makes a major contribution – whose (rather straightforward) analysis is 
left for the reader’s exercise. 

 Table 8.1. Important parameters of several representative fluids (approximate values) 

Fluid (all at 300 K, until indicated otherwise)  (mPas)  (kg/m3) 

Glasses 1021–1024 2,200–2,500 

Earth magmas (at 800 to 1,400 K) 104–1014 2,200–2,800 

Machine oils (SAE 10W – 40 W) 65-320 900 

Water 0.89 1,000 

Mercury  1.53 13,530 

Liquid helium 4 (at 4.2K, 105 Pa) 0.019 130 

Air (at 105 Pa) 0.018 1.3 
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 One can see that  may vary in very broad limits; the extreme cases of fluids are glasses (which, 
somewhat counter-intuitively, are not stable solids even at room temperature, but rather may “flow”, 
though extremely slowly, until they eventually crystallize) and liquid helium (whose viscosity is of the 
order of that of gases,35 despite its much higher density). 

 Incorporating the additional elements of jj’ to the equation (23) of fluid motion, absolutely 
similar to how it was done at the derivation of Eq. (7.107) of the elasticity theory, and with the account 
of Eq. (19), we arrive at the famous Navier-Stokes equation:36 
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 The apparent simplicity of this equation should not mask a big range of phenomena that are 
described by it (notably turbulence – see the next section), and the enormous complexity of some 
solutions even for some simple geometries. In most problems interesting for practice, the only option is 
to use numerical methods, but due to a large number of parameters (, , , plus geometrical parameters 
of the involved bodies, plus the distribution of bulk forces f, plus boundary conditions), this way is 
strongly plagued by the curse of dimensionality that was discussed in the end of Sec. 5.8.   

 Let us see how the Navier-Stokes equation works, on several simple examples. As the simplest 
case, let us consider the so-called Couette flow of an incompressible fluid layer between two wide, 
horizontal plates (Fig. 10), caused by their mutual sliding with a constant relative velocity v0. 

 

 

 

 

 

 

 Let us assume a laminar (vorticity-free) fluid flow. (As will be discussed in the next section, this 
assumption is only valid within certain limits.) Then we may use the evident symmetry of the problem, 
to take, in the coordinate frame shown in Fig. 10, v = nzv(y). Let the bulk forces be vertical, f = nyf, so 
they do not give an additional drive to the fluid flow. Then for the stationary flow (v/t = 0), the 
vertical, y-component of the Navier-Stokes equation is reduced to the static Pascal equation (6), showing 
that the pressure distribution is not affected by the plate (and fluid) motion. In the horizontal, z-
component of the equation, only one term, 2v, survives, so for the only Cartesian component of the 
fluid’s velocity we get the 1D Laplace equation 
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35 Actually, at even lower temperatures (for He 4, at T < T  2.17 K), helium becomes a superfluid, i.e. loses its 
viscosity completely, as a result of the Bose-Einstein condensation – see, e.g., SM Sec. 3.4. 
36 Named after Claude-Louis Navier (1785-1836) who had suggested the equation, and Sir George Gabriel Stokes 
(1819-1903) who has demonstrated its relevance by solving the equation for several key situations. 
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 In contrast to the ideal fluid (see, e.g., Fig. 8b), the relative velocity of a viscous fluid and a solid 
wall it flows by should approach zero at the wall,37 so Eq. (54) should be solved with boundary 
conditions 
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Using the evident solution to this boundary problem, v(y) = (y/d)v0, illustrated by the arrows in Fig. 10, 
we can now calculate the horizontal drag force acting on a unit area of each plate. For the bottom plate, 
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(For the top plate, the derivative v/y has the same value, but the sign of dAy has to be changed to 
reflect the direction of the outer normal to the solid surface, so we get a similar force but with the 
negative sign.) The well-known result (56) is often used, in undergraduate physics courses, for a 
definition of the dynamic viscosity , and indeed shows its meaning very well.38 

 As the next, slightly less trivial example let us consider the so-called Poiseuille problem:39 
finding the relation between the constant external pressure gradient   -P/z applied along a round 
pipe with internal radius R (Fig. 11) and the so-called discharge Q – defined as the mass of fluid flowing 
through the pipe’s cross-section in unit time. 

 

 

 

  

 

 Again assuming a laminar flow, we can involve the problem’s uniformity along the z-axis and its 
axial symmetry to infer that v = nzv(), and P  = -z + f(, ) + const (where  = {, } is again the 2D 
radius vector rather than the fluid density), so the Navier-Stokes equation (53) for an incompressible 
fluid (with v = 0) is reduced to the following 2D Poisson equation:  

           v2
2 .      (8.57) 

After spelling out the 2D Laplace operator in polar coordinates for our axially-symmetric case / = 0, 
Eq. (57) becomes a simple ordinary differential equation, 

37 This is essentially an additional experimental fact, which that may be understood as follows. The tangential 
component of the velocity should be continuous at the interface between two viscous fluids, in order to avoid 
infinite stress – see Eq. (52), and solid may be considered as an ultimate case of fluid, with infinite viscosity. 
38 The very notion of viscosity  was introduced (by nobody other than the same Sir Isaac Newton) via a formula 
similar to Eq. (56), so any effect resulting in a drag force proportional to velocity is frequently called Newtonian 
viscosity. 
39 It was solved by G. Stokes in 1845 to explain the experimental results obtained by Gotthilf Hagen in 1839 and 
(independently) by Jean Poiseuille in 1840-41. 

Fig. 8.11. The Poiseuille problem. 
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              
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,     (8.58) 

which has to be solved on the segment 0    R, with the following boundary conditions: 
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     (8.59) 

(The latter condition is required by the axial symmetry.) A straightforward double integration yields: 

               ,
4

22  Rv



      (8.60) 

so the (easy) integration of the mass flow density over the cross-section of the pipe, 

        ,)(
4

2
0

222  
R

A

dRrvdQ

     (8.61) 

immediately gives us the so-called Poiseuille (or “Hagen-Poiseuille”) law for the fluid’s discharge: 

                 .
8

4RQ



      (8.62) 

The most prominent (and practically important) feature of this result is a very strong dependence of the 
discharge on the pipe’s radius.  

 Of course, the 2D Poisson equation (57) is so readily solvable not for each cross-section shape. 
For example, consider a very simple, square-shaped cross-section with side a (Fig. 12).  

 

 

 

 

 

 

 

 In this case, it is natural to use the Cartesian coordinates aligned with the cross-section’s sides, 
so Eq. (57) becomes 
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    (8.63) 

and has to be solved with boundary conditions 

         ayxv ,0,at  ,0  .     (8.64) 

 For this boundary problem, analytical methods such as the variable separation lead to answers in 
the form of infinite sums (series), which ultimately require computers anyway – at least for their plotting 

Poiseuille  
law 

Fig. 8.12. Application of the finite-difference 
method with a very coarse mesh (with step h 
= a/2) to the problem of viscous fluid flow in 
a pipe with a square cross-section. 
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and comprehension. Let me use this pretext to discuss how explicitly numerical methods may be used 
for such problems – or for any partial differential equations involving the Laplace operator. The simplest 
of them is the finite-difference method40 in which the function to be calculated, f(r), is represented by its 
values f(r1), f(r2), … in discrete points of a rectangular grid (frequently called mesh) of the 
corresponding dimensionality – Fig. 13.  

 

   

 

 

 

 

 
  
 In Sec. 5.7, we have already discussed how to use such a grid to approximate the first derivative 
of the function – see Eq. (5.97). Its extension to the second derivative is straightforward – see Fig. 13a:41 
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The relative error of this approximation is of the order of h24f/rj
4, quite acceptable in many cases. As a 

result, the left-hand side of Eq. (63), treated on a square mesh with step h (Fig. 13b), may be 
approximated with the so-called five-point scheme: 
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(The generalization to the seven-point scheme, appropriate for 3D problems, is straightforward.) Let us 
apply this scheme to the tube with the square cross-section, using an extremely coarse mesh with step h 
= a/2, shown in Fig. 12. In this case, the fluid velocity v should equal zero at the walls, i.e. at all points 
of the five-point scheme except for the central point (in which the velocity obviously reaches its 
maximum), so Eqs. (63) and (66) yield42 

          

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   (8.67) 

40 For more details see, e.g., R. Leveque, Finite Difference Methods for Ordinary and Partial Differential 
Equations, SIAM, 2007. 
41 As a reminder, at the beginning of Sec. 6.4 we have already discussed the reciprocal transition – from a similar 
sum to the second derivative in the continuous limit (h  0). 
42 Note that the value (67) of vmax is exactly the same as given by the analytical formula (60) for the round cross-
section with the radius R = a/2. This is not an occasional coincidence. The velocity distribution given by (60) is a 
quadratic function of both x and y. For such functions, with all derivatives higher than 2f/rj

2 equal to zero, 
equation (66) is exact rather than approximate. 
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Fig. 8.13. The idea of the finite-
difference method in (a) one and 
(b) two dimensions. 
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 This result for the maximal velocity is only ~20% different from the exact value. Using a slightly 
finer mesh with h = a/4, which gives a readily solvable system of three linear equations for three 
different velocity values (the exercise left for the reader), brings us within just a couple of percent from 
the exact result. So numerical methods may be practically more efficient than the “analytical” ones, 
even if the only available tool is a calculator app on your smartphone rather than an advanced computer.  

 Of course, many practical problems of fluid dynamics do require high-performance computing, 
especially in conditions of turbulence with its complex, irregular spatial-temporal structure – see the 
next section). In such cases, the finite-difference approach discussed above may become unsatisfactory, 
because it implies the same accuracy of the derivative approximation through the whole area of interest. 
A more powerful (but also much more complex for implementation) approach is the finite-element 
method in which the discrete-point mesh is based on triangles with unequal sides and is (in most cases, 
automatically) generated from the system geometry, giving more mesh points at the location(s) of the 
higher gradients of the calculated function (Fig. 14), and hence a better calculation accuracy for the 
same total number of points. Unfortunately, I do not have time/space to go into the details of that 
method, so the interested reader is referred to the special literature on this subject.43 

  

 

 

 

 

 

 

 

 

  
  
 
 Before proceeding to our next topic, let me mention one more important problem that is 
analytically solvable using the Navier-Stokes equation: a slow motion of a solid sphere of radius R, with 
a constant velocity v0, through an incompressible viscous fluid – or equivalently, a slow flow of the 
fluid (uniform at large distances) around an immobile sphere. In the limit v  0, the second term on the 
left-hand side of Eq. (53) is negligible (just as at the surface wave analysis in Sec. 3), the equation takes 
the form 

         ,for  ,02  rRvP     (8.68) 

and should be complemented with the incompressibility condition v = 0 and the boundary conditions 

43 I can recommend, e.g., C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element 
Method, Dover, 2009, or T. Hughes, The Finite Element Method, Dover, 2000. 

Fig. 8.14. A typical finite-element 
mesh generated automatically for a 
system with relatively complex 
geometry – a round cylindrical shell 
inside another one, with mutually 
perpendicular axes. (Adapted from 
the original by I. Zureks, 
https://commons.wikimedia.org/w/in
dex.php?curid=2358783, under the 
CC license BY-SA 3.0.) 
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In spherical coordinates, with the polar axis directed along the vector v0, this boundary problem has 
axial symmetry (so v/ = 0 and v = 0), and allows the following analytical solution: 
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Now calculating the tensor elements (52b) at r = R, using them to find the stress tensor elements from 
Eq. (52a), and integrating the elementary forces (7.18) over the surface of the sphere, it is 
straightforward to obtain the famous Stokes formula  for the drag force acting on the sphere:44 

       .6 0RvF        (8.71) 

For water drops with a 1-micron diameter, usually taken for the border between aerosols and droplets, 
descending in the ambient-condition air under their own weight, it predicts an equilibrium velocity v of 
close to 0.1 meters per hour, with the further scaling v  R2.45 (Note, however, that at R below ~10 m, 
corrections due to air molecule discreteness become noticeable.) 

 For what follows in the next section, it is convenient to recast this result into the following form: 

          
eR

C
24

d 
,      (8.72) 

where Cd is the drag coefficient defined as 

               ,
2/2

0
d Av

F
C


      (8.73) 

with A  R2 being the sphere’s cross-section “as seen by the incident fluid flow”, and Re is the so-
called Reynolds number.46 In the general case, the number is defined as 

              

vl

eR  ,      (8.74) 

where l is the linear-size scale of the problem, and v is its velocity scale. (In the particular case of Eq. 
(72) for the sphere, l is identified with the sphere’s diameter D = 2R, and v with v0). The physical sense 
of these two definitions will be discussed in the next section. 

 

44 This formula played an important role in the first precise (better than 1%) calculation of the fundamental 
electric charge e by R. Millikan and H. Fletcher from their famous oil drop experiments in 1909-1913. 
45 These numbers are of key importance not only for the recent heated discussions of contagious disease 
transmission, but also for many other fields including atmospheric physics. For example, for an average water 
droplet in clouds, with R ~ 10 m, Eq. (71) (even with a due account of a slightly lower air viscosity at typical 
cloud heights) yields the descent velocity of the order of 10 m/hr, substantiating the correct answer to the popular 
high-school question, “Why clouds do not fall?” (The answer is: water droplets do descend, but so slowly that 
they has ample time to evaporate near the lower surface of the cloud, so the cloud as a whole may maintain its 
height.) 
46 This notion was introduced in 1851 by the same G. Stokes but eventually named after O. Reynolds who 
popularized it three decades later. 
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8.6. Turbulence 

 As Fig. 15 shows, the Stokes result (71)-(72) is only valid at Re << 1, while for larger values of 
the Reynolds number, i.e. at higher velocities v0, the drag force is larger. This very fact is not quite 
surprising, because at the derivation of the Stokes’ result, the nonlinear term (v)v in the Navier-Stokes 
equation (53), which scales as v2, was neglected in comparison with the linear terms, scaling as v. What 
is more surprising is that the function Cd(Re) exhibits such a complicated behavior over many orders of 
the velocity’s magnitude, giving a hint that the fluid flow at large Reynolds numbers should be also very 
complicated. Indeed, the reason for this complexity is a gradual development of very intricate, time-
dependent fluid patterns, called turbulence, rich with vortices – for example, see Fig. 16. These vortices 
are especially pronounced in the region behind the moving body (the so-called wake), while the region 
before the body remains almost unperturbed. As Fig. 15 indicates, the turbulence exhibits rather 
different behaviors at various velocities (i.e. values of Re), and sometimes changes rather abruptly – see, 
for example, the significant drag’s drop at Re  5105. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 In order to understand the conditions of this phenomenon, let us estimate the scale of various 
terms of the Navier-Stokes equation (53) for a generic body with characteristic size l, moving in an 
otherwise static incompressible fluid, with velocity v. In this case, the time scale of possible non-
stationary phenomena is given by the ratio l/v,47 so we arrive at the following estimates: 

47 The time scale of phenomena in externally-driven systems may be different; for example, for forced oscillations 
with frequency , it may be the oscillation period T   2/. For such problems, the ratio S  (l/v)/T, commonly 
called either the Strouhal number or the reduced frequency, serves as another dimensionless constant. 

Fig. 8.15. The drag coefficient for a sphere and a thin round disk as functions of the Reynolds number. 
Adapted from F. Eisner, Das Widerstandsproblem, Proc. 3rd Int. Cong. on Appl. Mech., Stockholm, 1931. 
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uniform 

fluid flow 

solid  
sphere 

Fig. 8.16. A snapshot of the turbulent tail (wake) behind a sphere moving in a fluid with a high Reynolds 
number, showing the so-called von Kármán vortex street. Adapted from the original (actually, a very nice 
animation, http://www.mcef.ep.usp.br/staff/jmeneg/cesareo/vort2.gif) by Cesareo de La Rosa Siqueira, as 
a copyright-free material, available at https://commons.wikimedia.org/w/index.php?curid=87351. 
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(I have skipped the term P because as we have seen in the previous section, in typical fluid flow 
problems, it balances the viscosity term, and hence is of the same order of magnitude.)  

  

 

 

 

 

 

 

 

 

 Estimates (75) show that the relative importance of the terms may be characterized by two 
dimensionless ratios.48 The first of them is the so-called Froude number49 
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which characterizes the relative importance of the gravity – or, upon appropriate modification, of other 
bulk forces. In most practical problems (with the important exception of surface waves, see Sec. 4 
above), F >> 1 so the gravity effects may be neglected. 

 Much more important is another ratio, the Reynolds number (74), which may be rewritten as 
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 ,     (8.77)  

and hence is a measure of the relative importance of the fluid particle’s inertia in comparison with the 
viscosity effects.50 So again, it is natural that for a sphere, the role of the vorticity-creating term (v)v 

48 For substantially compressible fluids (e.g., gases), the most important additional dimensionless parameter is the 
Mach number M  v/vl,  where vl = (K/)1/2  is the velocity of the longitudinal sound – which is, as we already 
know from Chapter 7, the only wave mode possible in an infinite fluid. Especially significant for practice are 
supersonic effects (including the shock wave in the form of the famous Mach cone with half-angle M = sin-1M-1) 
that arise at M > 1. For a more thorough discussion of these issues, I have to refer the reader to more specialized 
texts – either  Chapter IX of the Landau-Lifshitz volume cited above or Chapter 15 in I. Cohen and P. Kundu, 
Fluid Mechanics, 4th ed., Academic Press, 2007 – which is generally a good book on the subject. 
49 Named after William Froude (1810-1879), one of the applied hydrodynamics pioneers. 
50 Note that the “dynamic” viscosity   participates in this number (and many other problems of fluid dynamics) 
only in the combination /, which thereby has deserved a special name of kinematic viscosity.  

Equation term: 
 
Order of magnitude: 
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becomes noticeable already at Re ~ 1 – see Fig. 15. What is very counter-intuitive is the onset of 
turbulence in systems where the laminar (turbulence-free) flow is formally an exact solution to the 
Navier-Stokes equation for any Re. For example, at Re > Ret   2,100 (with l  2R and v  vmax) the 
laminar flow in a round pipe, described by Eq. (60), becomes unstable, and the resulting turbulence 
decreases the fluid discharge Q in comparison with the Poiseuille law (62). Even more strikingly, the 
critical value of Re is rather insensitive to the pipe wall roughness and does not diverge even in the limit 
of perfectly smooth walls. 

 Since Re >> 1 in many real-life situations, turbulence is very important for practice. (Indeed, the 
values of  and  for water listed in Table 1 imply that even for a few-meter-sized object, such as a 
human body or a small boat, Re > 1,000 at any speed above just ~1 mm/s.) However, despite nearly a 
century of intensive research, there is no general, quantitative analytical theory of this phenomenon, and 
most results are still obtained either by rather approximate analytical treatments, or by the numerical 
solution of the Navier-Stokes equations using the approaches discussed in the previous section, or in 
experiments (e.g., on scaled models51 in wind tunnels). A rare exception is the relatively recent 
theoretical result by S. Orszag (1971) for the turbulence threshold in a flow of an incompressible fluid 
through a gap of thickness t between two parallel plane walls (see Fig. 10): Ret  5,772 (for l  t/2 and v 
 vmax). However, even for this simplest geometry, the analytical theory still cannot predict the 
turbulence patterns at Re > Ret. Only certain general, semi-quantitative features of turbulence may be 
understood from simple arguments.  

 For example, Fig. 15 shows that within a very broad range of Reynolds numbers, from ~102 to 
~3105, Cd of a thin round disk perpendicular to the incident flow, Cd is very close to 1.1 for any Re > 
103, and that of a sphere is not too far away. The approximate equality Cd  1, meaning that the drag 
force F is close to v0

2A/2, may be understood (in the picture where the object is moved by an external 
force F with the velocity v0 through a fluid that was initially at rest) as the equality of the force-
delivered power Fv0 and the fluid’s kinetic energy (v0

2/2)V created in volume V = v0A in unit time. This 
relation would be exact if the object gave its velocity v0 to each and every fluid particle its cross-section 
runs into, for example by dragging all such particles behind itself. In reality, much of this kinetic energy 
goes into vortices, where the particle velocity may differ from v0, so the equality Cd  1 is only 
approximate. 

 Another important general effect is that at very high values of Re, fluid flow at the leading 
surface of solid objects forms a thin, highly turbulent boundary layer that matches the zero relative 
velocity of the fluid at the surface with its substantial velocity in the outer region, which is almost free 
of turbulence and many cases, of other viscosity effects. This fact, clearly visible in Fig. 16, enables 
semi-quantitative analyses of several effects, for example, the so-called Magnus lift force52 Fl exerted 
(on top of the usual drag force Fd) on rotating objects, and directed across the fluid flow – see Fig. 17.  

 An even more important application of this concept is an approximate analysis of the forces 
exerted on non-rotating airfoils (such as aircraft wings) with special cross-sections forming sharp angles 
at their back ends. Such a shape minimizes the airfoil’s contacts with the vortex street it creates in its 

51 The crucial condition of correct modeling is the equality of the Reynolds numbers (74) (and if relevant, also of 
the Froude numbers and/or the Mach numbers) of the object of interest and its model. 
52 Named after G. Magnus, who studied this effect in detail in 1852, though it had been described much earlier (in 
1672) by I. Newton, and by B. Robins after him (in 1742). 
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wake, and allows the thin boundary layer to extend over virtually all of its surface, enhancing the lift 
force. 

 

 

 

 
 

Unfortunately, due to the time/space restrictions, for a more detailed discussion of these results I 
have to refer the reader to more specialized literature,53 and will conclude this chapter with a brief 
discussion of just one issue: can turbulence be explained by a single mechanism? (In other words, can it 
be reduced, at least on a semi-quantitative level, to a set of simpler phenomena that are commonly 
considered “well understood”?) Apparently, the answer is no,54 though nonlinear dynamics of simpler 
systems may provide some useful insights.  

 In the middle of the last century, the most popular qualitative explanation of turbulence had been 
the formation of an “energy cascade” that would transfer the energy from the regular fluid flow to a 
hierarchy of vortices of various sizes.55 With our background, it is easier to retell that story in the time-
domain language (with the velocity v serving as the conversion factor), using the fact that in a rotating 
vortex, each Cartesian component of a particle’s radius vector oscillates in time, so to some extent the 
vortex plays the role of an oscillatory motion mode.  

 Let us consider the passage of a solid body between two, initially close, small parts of the fluid. 
The body pushes them apart, but after its passage, these partial volumes are free to return to their initial 
positions. However, the dominance of inertia effects at motion with Re >> 1 means that the volumes 
continue to oscillate for a while about those equilibrium positions. (Since elementary volumes of an 
incompressible fluid cannot merge, these oscillations take the form of rotating vortices – see Fig. 16 
again.)  

Now, from Sec. 5.8 we know that intensive oscillations in a system with the quadratic 
nonlinearity, in this case, provided by the convective term (v)v, are equivalent, for small 
perturbations, to the oscillation of the system’s parameters at the corresponding frequency. On the other 
hand, as was briefly discussed in Sec. 6.7, in a system with two oscillatory degrees of freedom, a 
periodic parameter change with frequency p may lead to the non-degenerate parametric excitation 
(“down-conversion”) of oscillations with frequencies 1,2 satisfying the relation 1 + 2 = p. 
Moreover, the spectrum of oscillations in such a system also has higher combinational frequencies such 
as (p + 1),  thus pushing the oscillation energy up the frequency scale (“up-conversion”). In the 
presence of other oscillatory modes, these oscillations may in turn produce, via the same nonlinearity, 
even higher frequencies, etc. In a fluid, the spectrum of these “oscillatory modes” (actually, vortex 

53 See, e.g., P. Davidson, Turbulence, Oxford U. Press, 2004.  
54 The following famous quote is attributed to Werner Heisenberg on his deathbed: “When I meet God, I will ask 
him two questions: Why relativity? And why turbulence? I think he will have an answer for the first question.” 
Though probably inaccurate, this story reflects rather well the frustration of the fundamental physics community, 
renowned for their reductionist mentality, with the enormous complexity of phenomena that obey simple (e.g., the 
Navier-Stokes) equations, i.e. from the reductionist point of view, do not describe any new physics. 
55 This picture was suggested in 1922 by Lewis F. Richardson. 
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Fig. 8.17. The Magnus effect. 
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structures) is essentially continuous, so the above arguments make very plausible a sequential transfer of 
the energy from the moving body to a broad range of oscillatory modes – whose frequency spectrum is 
limited from above by the energy dissipation due to the fluid’s viscosity. When excited, these modes 
interact (in particular, mutually phase-lock) via the system’s nonlinearity, creating the complex motion 
we call turbulence.   

 Though not having much quantitative predictive power, such handwaving explanations, which 
are essentially based on the excitation of a large number of effective degrees of freedom, had been 
dominating the turbulence reviews until the mid-1960s. At that point, the discovery (or rather re-
discovery) of quasi-random motions in classical dynamic systems with just a few degrees of freedom 
altered the discussion substantially. Since this phenomenon, called deterministic chaos, extends well 
beyond the fluid dynamics, I will devote to it a separate (albeit short) next chapter, and in its end will 
briefly return to the discussion of turbulence. 

 

8.7. Exercise problems 
  
 8.1. For a mirror-symmetric but otherwise arbitrary shape of a ship’s hull, derive an explicit 
expression for the height of its metacenter M – see Fig. 3. Spell out this expression for a rectangular 
hull. 
 
 
 8.2. Neglecting surface tension, find the stationary shape of the open 
surface of an incompressible heavy fluid in a container rotated about its 
vertical axis with a constant angular velocity   – see the figure on the right. 

8.3. In the first order in the so-called flattening f  (Re – Rp)/Rp << 1 of the Earth (where Re and 
Rp are, respectively, its equatorial and polar radii), calculate it within a simple model in that our planet is 
a uniformly-rotating nearly-spherical fluid ball, whose gravity field is dominated by a relatively small 
spherical core. Compare your result with the experimental value of f, and discuss the difference.  

 Hint: You may use experimental values Re  6,378 km, Rp  6,357 km, and g  9.807 m/s2. 
 

 8.4.* Use two different approaches to calculate the stationary shape of the 
surface of an incompressible liquid of density  near a vertical plane wall, in a 
uniform gravity field – see the figure on the right. In particular, find the height h 
of the liquid’s rise at the wall surface as a function of the contact angle c. 
 
 

8.5.* A soap film with surface tension   is stretched between two 
similar, coaxial, thin, round rings of radius R – see the figure on the right. 
Neglecting gravity, calculate the equilibrium shape of the film, and the external 
force needed for keeping the rings at distance d. 
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8.6. A solid sphere of radius R has been placed into a vorticity-free steady flow, with velocity v0, 
of an ideal incompressible fluid. Find the spatial distribution of the fluid’s velocity and pressure, and in 
particular their extreme values. Compare the results with those obtained in Sec. 4 for a round cylinder. 

 
 8.7.* Solve the same problem for a long and thin solid strip of width 2w, with its plane normal to 
the unperturbed fluid flow. 

 Hint: You may like to use the so-called elliptic coordinates {, } defined by their relations with 
the Cartesian coordinates {x, y}: 

  ,0with  ,sinsinh,coscosh CyCx , 

where C is a constant; in these coordinates, 



















2

2

2

2

222
2

)cos(cosh

1

C
. 

 
8.8. A small source, located at distance d from a plane wall of a container 

filled with an ideal incompressible fluid of density , injects additional fluid 
isotropically, with a time-independent mass current (“discharge”) Q  dM/dt – 
see the figure on the right.  Calculate the fluid’s velocity distribution and its 
pressure on the wall, created by the flow. 

 Hint: Recall the charge image method in electrostatics,56 and contemplate 
its possible analog. 
 
 8.9. Calculate the average kinetic, potential, and full energies (per unit area) of a traveling 
sinusoidal wave, of a small amplitude qA, on the surface of an ideal, incompressible, deep liquid of 
density , in a uniform gravity field g. 

 
8.10. Calculate the average power carried by the surface wave discussed in the previous problem 

(per unit width of its front), and relate the result to the wave’s energy. 
 
 8.11. Derive Eq. (48) for the surface waves on a finite-thickness layer of an incompressible ideal 
liquid. 
 

8.12. The utmost simplicity of Eq. (49) for the velocity of waves on a relatively shallow (h << ) 
layer of an ideal incompressible liquid implies that they may be described using a very simple physical 
picture. Develop such a picture, and verify that it yields the same expression for the velocity. 
 
 8.13. Extend the solution of the previous problem to calculate the energy and power of the 
shallow-layer waves, and use the result to explain the high tides on some ocean shores, for two models: 

 (i) the water depth h decreases gradually toward the shore, and 
 (ii) h decreases sharply, at some distance l from the shore – as it does on the ocean shelf border. 
 

56 See, e.g., EM Secs. 2.9, 3.3, and 4.3. 
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 8.14.* Derive the differential equation describing 2D propagation of relatively long ( >> h) 
surface waves in a plane layer of thickness h, of an ideal incompressible liquid. Use this equation to 
calculate the longest standing wave modes in a layer covering a spherical planet of radius R >> h, and 
their frequencies. 

 Hint: The second task requires some familiarity with the basic properties of spherical 
harmonics.57 
 

8.15. Calculate the velocity distribution and the dispersion relation of the waves propagating 
along the horizontal interface of two ideal, incompressible liquids of different densities. 
 
 8.16. Derive Eq. (50) for the capillary waves (“ripples”). 
 

8.17. Use the finite-difference approximation for the Laplace operator, with the mesh step h = 
a/4, to find the maximum velocity and the total discharge Q of an incompressible viscous fluid’s flow 
through a long tube with a square-shaped cross-section of side a. Compare the results with those 
described in Sec. 5 for the same problem with the mesh step h = a/2 and for a pipe with a circular cross-
section of the same area. 

 

8.18. A layer, of thickness h, of a heavy, viscous, 
incompressible liquid flows down a long and wide inclined plane, 
under its own weight – see the figure on the right. Calculate the 
liquid’s stationary velocity distribution profile and its discharge per 
unit width. 
 

 8.19. An external force moves two coaxial round disks of radius R, with an incompressible 
viscous fluid in the gap between them, toward each other with a constant velocity u. Calculate the 
applied force in the limit when the gap’s thickness t is already much smaller than R. 
 
 8.20. Calculate the drag torque exerted on a unit length of a solid round cylinder of radius R that 
rotates about its axis with an angular velocity , inside an incompressible fluid with viscosity , kept 
static far from the cylinder. 
 

8.21. Solve a similar problem for a sphere of radius R, rotating about one of its principal axes. 

 Hint: You may like to use the following expression for the relevant element of the strain 
derivative tensor ejj’ in spherical coordinates: 
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 8.22. Calculate the tangential force (per unit area) exerted by an incompressible fluid, with 
density  and viscosity , on a broad solid plane placed over its surface and forced to oscillate along it 
with amplitude a and frequency . 

  

57 See, e.g., EM Sec. 2.8 and/or QM Sec. 3.6. 

g

?)( xv

h

,


0

x



Essential Graduate Physics                 CM: Classical Mechanics 
 

 

Chapter 8            Page 30 of 30 

  
 8.23. Calculate the frequency and the damping factor of longitudinal 
oscillations of a mercury column, of the total length l, in a U-shaped mercury 
manometer (see the figure on the right), assuming that its tube has a round cross-
section with a relatively small radius R. Formulate the quantitative conditions of 
validity of your result and check whether they are fulfilled for the following 
parameters: l = 1 m and R = 0.25 mm. 
 
 8.24. A barge, with a flat bottom of area A,  
floats in shallow water, with clearance h << A1/2 – see 
the figure on the right. Analyze the time dependence of 
the barge’s velocity V(t), and the water’s velocity 
profile, after the barge’s engine has been turned off. 
Discuss the limits of large and small values of the 
dimensionless parameter M/Ah. 

 
 8.25.* Derive a general expression for mechanical energy loss rate in an incompressible fluid that 
obeys the Navier-Stokes equation, and use this expression to calculate the attenuation coefficient of the 
surface waves, assuming that the viscosity is small. (Quantify this condition). 

 
 8.26. Use the Navier-Stokes equation to calculate the coefficient of attenuation of a sinusoidal 
plane acoustic wave. 
 
 8.27.* Use two different approaches for a semi-quantitative calculation of the Magnus lift force 
Fl exerted by an incompressible fluid of density  on a round cylinder of radius R, with its axis normal 
to the fluid’s velocity v0, which rotates about the axis with an angular velocity  – see Fig. 17. Discuss 
the relation of the results. 
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