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Chapter 10. A Bit More of Analytical Mechanics 

This concluding chapter reviews two alternative approaches to analytical mechanics, whose major 
value is a closer parallel to quantum mechanics in general and its quasiclassical (WKB) approximation 
in particular. One of them, the Hamiltonian formalism, is also convenient for the derivation of an 
important asymptotic result, the adiabatic invariance, for classical systems with slowly changing 
parameters.  

 

10.1. Hamilton equations 

Throughout this course, we have seen how analytical mechanics, in its Lagrangian form, is 
invaluable for solving various particular problems of classical mechanics. Now let us discuss several 
alternative formulations1 that may not be much more useful for this purpose, but shed additional light on 
possible extensions of classical mechanics, most importantly to quantum mechanics. 

 As was already discussed in Sec. 2.3, the partial derivative pj  L/ jq  participating in the 

Lagrange equation (2.19), 
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may be considered as the generalized momentum corresponding to the generalized coordinate qj, and the 
full set of these momenta may be used to define the Hamiltonian function (2.32): 
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Now let us rewrite the full differential of this function2 in the following form:  
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According to the definition of the generalized momentum, the second terms of each sum over j in the 
last expression cancel each other, while according to the Lagrange equation (1), the derivative L/qj is 
equal to jp , so 
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 So far, this is just a universal identity. Now comes the main trick of Hamilton’s approach: let us 
consider H as a function of the following independent arguments: time t, the generalized coordinates qj,  

1 Due to not only William Rowan Hamilton (1805-1865), but also Carl Gustav Jacob Jacobi (1804-1851).  
2 Actually, this differential was already spelled out (but partly and implicitly) in Sec. 2.3 – see Eqs. (2.33)-(2.35). 
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and the generalized momenta pj – rather than generalized velocities jq  as in the Lagrangian formalism. 

With this new commitment, the general “chain rule” of differentiation of a function of several arguments 
gives 
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where dt, dqj, and dpj are independent differentials. Since Eq. (5) should be valid for any choice of these 
argument differentials, it should hold in particular if they correspond to the real law of motion, for 
which Eq. (4) is valid as well. The comparison of Eqs. (4) and (5) gives us three relations: 
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Comparing the first of them with Eq. (2.35), we see that 
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meaning that the function H(t, qj, pj) can change in time only via its explicit dependence on t. Two Eqs. 
(7) are even more substantial: provided that such function H(t, qj, pj) has been calculated, they give us 
two first-order differential equations (called the Hamilton equations) for the time evolution of the 
generalized coordinate and generalized momentum of each degree of freedom of the system.3  

Let us have a look at these equations for the simplest case of a system with one degree of 
freedom, with the Lagrangian function (3.3): 
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In this case, qmqLp  ef/  , and .),(2/ ef
2

ef tqUqmLqpH    To honor our new commitment, 

we need to express the Hamiltonian function explicitly via t, q, and p (rather than q ). From the above 

expression for p, we immediately have ;/ efmpq   plugging this expression back to Eq. (9), we get 
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Now we can spell out Eqs. (7) for this particular case: 
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3 Of course, the right-hand side of each equation (7) may include coordinates and momenta of other degrees of 
freedom as well, so the equations of motion for different j are generally coupled. 

Hamilton 
equations 
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 While the first of these equations just repeats the definition of the generalized momentum 
corresponding to the coordinate q, the second one gives the equation of momentum’s change. 
Differentiating Eq. (11) over time, and plugging Eq. (12) into the result, we get: 
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So, we have returned to the same equation (3.4) that had been derived from the Lagrangian approach.4  

 Thus, Hamiltonian formalism does not give much help for the solution of this problem – and 
indeed most problems of classical mechanics. (This is why its discussion had been postponed until the 
very end of this course.) Moreover, since the Hamiltonian function H(t, qj, pj) does not include 
generalized velocities explicitly, the phenomenological introduction of dissipation in this approach is 
less straightforward than that in the Lagrangian equations, whose precursor form (2.17) is valid for 
dissipative forces as well. However, the Hamilton equations (7), which treat the generalized coordinates 
and momenta in a manifestly symmetric way, are heuristically fruitful – besides being very appealing 
aesthetically. This is especially true in the cases where these arguments participate in H in a similar way. 
For example, in the very important case of a dissipation-free linear (“harmonic”) oscillator, for which 
Uef = efq

2/2, Eq. (10) gives the symmetric form 
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The Hamilton equations (7) for this system preserve that symmetry, especially evident if we introduce 
the normalized momentum  Ñ   p/mef0 (already used in Secs. 5.6 and 9.2): 
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 More practically, the Hamilton approach gives additional tools for the search for the integrals of 
motion. To see that, let us consider the full time derivative of an arbitrary function f(t, qj, pj): 
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Plugging in jq  and jp  from the Hamilton equations (7), we get 
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The last term on the right-hand side of this expression is the so-called Poisson bracket,5 and is defined, 
for two arbitrary functions f(t, qj, pj) and g(t, qj, pj), as 

4 The reader is strongly encouraged to perform a similar check for a few more problems, for example those listed 
at the end of the chapter, to get a better feeling of how the Hamiltonian formalism works. 
5 Named after Siméon Denis Poisson (1781-1840), of the Poisson equation and the Poisson statistical distribution 
fame. 
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From this definition, one can readily verify that besides evident relations {f, f} = 0 and {f, g} = –{g, f}, 
the Poisson brackets obey the following important Jacobi identity: 

                  .0,,,,,,  gfhfhghgf     (10.19) 

 Now let us use these relations for a search for integrals of motion. First, Eq. (17) shows that if a 
function f does not depend on time explicitly, and 

           ,0, fH       (10.20) 

then df/dt = 0, i.e. that function is an integral of motion. Moreover, it turns out that if we already know 
two integrals of motion, say f and g, then the following function, 

          gfF , ,      (10.21) 

is also an integral of motion – the so-called Poisson theorem. In order to prove it, we may use the Jacobi 
identity (19) with h = H. Next, using Eq. (17) to express the Poisson brackets {g, H}, {H, g}, and {H,{f, 
g}} = {H, F} via the full and partial time derivatives of the functions f , g, and F, we get 
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so if f and g are indeed integrals of motion, i.e., df/dt = dg/dt = 0, then 
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Plugging Eq. (21) into the first term of the right-hand side of this equation, and differentiating it by 
parts, we get dF/dt = 0, i.e. F is indeed an integral of motion as well. 

 Finally, one more important role of the Hamilton formalism is that it allows one to trace the 
close formal connection between classical and quantum mechanics. Indeed, using Eq. (18) to calculate 
the Poisson brackets of the generalized coordinates and momenta, we readily get  

           .,,0,,0, jj'j'jj'jj'j pqppqq     (10.24) 

In quantum mechanics, the operators of these variables (“observables”) obey commutation relations6 

            ,ˆ,ˆ,0ˆ,ˆ,0ˆ,ˆ '''' jjjjjjjj ipqppqq     (10.25) 

where the definition of the commutator,   gffgfg ˆˆˆˆˆ,ˆ  , is to a certain extent7 similar to that (18) of 
the Poisson bracket. We see that the classical relations (24) are similar to the quantum-mechanical 
relations (25) if the following parallel has been made: 

6 See, e.g., QM Sec. 2.1. 
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 This analogy extends well beyond Eqs. (24)-(25). For example, by making the replacement (26) 
in Eq. (17), we get 
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which is the correct equation of operator evolution in the Heisenberg picture of quantum mechanics.8 
The parallel (26) may give important clues in the search for the proper quantum-mechanical operator of 
a given observable – which is not always elementary. 

 

10.2. Adiabatic invariance 

 One more application of the Hamiltonian formalism in classical mechanics is the solution of the 
following problem.9 Earlier in the course, we already studied some effects of time variation of 
parameters of a single oscillator (Sec. 5.5) and coupled oscillators (Sec. 6.5). However, those 
discussions were focused on the case when the parameter variation speed is comparable with the own 
oscillation frequency (or frequencies) of the system. Another practically important case is when some 
system’s parameter (let us call it ) is changed much more slowly (adiabatically10), 

         
T
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,      (10.28) 

where T  is a typical period of oscillations in the system. Let us consider a 1D system whose 

Hamiltonian H(q, p, ) depends on time only via such a slow evolution of such parameter  = (t), and 
whose initial energy restricts the system’s motion to a finite coordinate interval – see, e.g., Fig. 3.2c.  

 Then, as we know from Sec. 3.3, if the parameter  is constant, the system performs a periodic 
(though not necessarily sinusoidal) motion back and forth the q-axis, or, in a different language, along a 
closed trajectory on the phase plane [q, p] – see Fig. 1.11 According to Eq. (8), in this case, H is constant 
along the trajectory. (To distinguish this particular value of H from the Hamiltonian function as such, I 
will call it E, implying that this constant coincides with the full mechanical energy E – as does for the 
Hamiltonian (10), though this assumption is not necessary for the calculation made below.) 

The oscillation period T  may be calculated as a contour integral along this closed trajectory: 

7 There is, of course, a conceptual difference between the “usual” products of the function derivatives 
participating in the Poisson brackets, and the operator “products” (meaning their sequential action on a state 
vector) forming the commutator.  
8 See, e.g., QM Sec. 4.6. 
9 Various aspects of this problem and its quantum-mechanical extensions were first discussed by L. Le Cornu 
(1895), Lord Rayleigh (1902), H. Lorentz (1911), P. Ehrenfest (1916), and M. Born and V. Fock (1928).
10 This term is also used in thermodynamics and statistical mechanics, where it implies not only a slow parameter 
variation (if any) but also thermal insulation of the system – see, e.g., SM Sec. 1.3. Evidently, the latter condition 
is irrelevant in our current context. 
11 As a reminder, we discussed such phase-plane representations in Chapter 5 – see, e.g., Figs. 5.5, 5.9, and 5.16. 

CM  QM 
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Using the first of the Hamilton equations (7), we may represent this integral as  
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At each given point q, H = E is a function of p alone, so we may flip the partial derivative in the 
denominator just as the full derivative, and rewrite Eq. (30) as 
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For the particular Hamiltonian (10), this relation is immediately reduced to Eq. (3.27), now in the form 
of a contour integral: 
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 Naively, it may look that these formulas may be also used to find the motion period’s change 
when the parameter  is being changed adiabatically, for example, by plugging the given functions 
mef() and Uef(q, ) into Eq. (32). However, there is no guarantee that the energy E in that integral 
would stay constant as the parameter changes, and indeed we will see below that this is not necessarily 
the case. Even more interestingly, in the most important case of the harmonic oscillator (Uef = efq

2/2), 
whose oscillation period T  does not depend on E (see Eq. (3.29) and its discussion), its variation in the 

adiabatic limit (28) may be readily predicted: T () = 2/0() = 2[mef()/ef()]1/2, but the dependence 

of the oscillation energy E (and hence of the oscillation amplitude) on  is not immediately obvious. 

 In order to address this issue, let us use Eq. (8) (with E = H) to represent the rate of the energy 
change with (t), i.e. in time, as 
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Since we are interested in a very slow (adiabatic) time evolution of energy, we can average Eq. (33) 
over fast oscillations in the system, for example over one oscillation period T, treating d/dt as a 
constant during this averaging. (This is the most critical point of this argumentation, because at any non-

Fig. 10.1. Phase-plane representation of periodic 
oscillations of a 1D Hamiltonian system, for two 
values of energy (schematically). 
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vanishing rate of parameter change the oscillations are, strictly speaking, non-periodic.12) The averaging 
yields 
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Transforming this time integral to the contour one, just as we did at the transition from Eq. (29) to Eq. 
(30), and then using Eq. (31) for T , we get 
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 At each point q of the contour, H is a function of not only , but also of p, which may be also -
dependent, so if E is fixed, the partial differentiation of the relation E = H over  yields 
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Plugging the last relation to Eq.(35), we get 
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Since the left-hand side of Eq. (37) and the derivative d/dt do not depend on q, we may move them into 
the integrals over q as constants, and rewrite Eq. (37) as 
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 Now let us consider the following integral over the same phase-plane contour, 

                  pdqJ
2
1

,      (10.39) 

called the action variable. Just to understand its physical sense, let us calculate J for a harmonic 
oscillator (14). As we know very well from Chapter 5, for such an oscillator, q = Acos, p = –
mef0Asin (with  = 0t + const), so J may be easily expressed either via the oscillations’ amplitude 
A, or via their energy E = H = mef0

2A2/2: 
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12 Because of the implied nature of this conjecture (which is very close to the assumptions made at the derivation 
of the reduced equations in Sec. 5.3), new, more strict (but also much more cumbersome) proofs of the final Eq. 
(42) are still being offered in literature – see, e.g., C. Wells and S. Siklos, Eur. J. Phys. 28, 105 (2007) and/or A. 
Lobo et al., Eur. J. Phys. 33, 1063 (2012). 
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 Returning to a general system with adiabatically changed parameter ,  let us use the definition 
of J, Eq. (39), to calculate its time derivative, again taking into account that at each point q of the 
trajectory, p is a function of E and : 
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Within the accuracy of our approximation, in which the contour integrals (38) and (41) are calculated 
along a closed trajectory, the factor dE/dt is indistinguishable from its time average, and these integrals 
coincide, so the result (38) is applicable to Eq. (41) as well. Hence, we have finally arrived at a very 
important result: at a slow parameter variation, dJ/dt = 0, i.e. the action variable remains constant: 

          constJ .      (10.42) 

This is the famous adiabatic invariance.13 In particular, according to Eq. (40), in a harmonic oscillator, 
the energy of oscillations changes proportionately to its own (slowly changed) frequency. 

Before moving on, let me briefly note that the adiabatic invariance is not the only application of 
the action variable J. Since the initial choice of generalized coordinates and velocities (and hence the 
generalized momenta) in analytical mechanics is arbitrary (see Sec. 2.1), it is almost evident that J may 
be taken for a new generalized momentum corresponding to a certain new generalized coordinate ,14 
and that the pair {J, } should satisfy the Hamilton equations (7), in particular, 
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Following the commitment of Sec. 1 (made there for the “old” arguments qj, pj), before the 
differentiation on the right-hand side of Eq. (43), H should be expressed as a function (besides t) of the 
“new” arguments J and . For time-independent Hamiltonian systems, H is uniquely defined by J – see, 
e.g., Eq. (40). Hence in this case the right-hand side of Eq. (43) does not depend on either t or , so 
according to that equation,  (called the angle variable) is a linear function of time: 

               const



 t
J

H
.     (10.44) 

For a harmonic oscillator, according to Eq. (40), the derivative H/J = E/J is just 0  2/T, 

so  = 0t + const, i.e. it is just the full phase  that was repeatedly used in this course – especially in 
Chapter 5. It may be shown that a more general form of this relation, 

       
T
2





J

H
,      (10.45) 

13 For certain particular oscillators, e.g., a point pendulum, Eq. (42) may be also proved directly – an exercise 
highly recommended to the reader. 
14 This, again, is a plausible argument but not a strict proof. Indeed: though, according to its definition (39), J is 
nothing more than a sum of several (formally, the infinite number of) values of the momentum p, they are not 
independent, but have to be selected on the same closed trajectory on the phase plane. For more mathematical 
vigor, the reader is referred to Sec. 45 of Mechanics by Landau and Lifshitz (which was repeatedly cited above), 
which discusses the general rules of the so-called canonical transformations from one set of Hamiltonian 
arguments to another one – say from {p, q} to {J, }.  

Adiabatic 
invariance 
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is valid for an arbitrary system described by Eq. (10). Thus, Eq. (44) becomes 

               const2Θ 
T
t .     (10.46) 

 This means that for an arbitrary (nonlinear) 1D oscillator, the angle variable  is a convenient 
generalization of the full phase . Due to this reason, the variables J and  present a convenient tool for 
discussion of certain fine points of the dynamics of strongly nonlinear oscillators – for whose discussion 
I, unfortunately, do not have time/space.15 

 

10.3. The Hamilton principle 

 Now let me show that the Lagrange equations of motion, which were derived in Sec. 2.1 from 
the Newton laws, may be also obtained from the so-called Hamilton principle,16 namely the condition of 
a minimum (or rather an extremum) of  the following integral called action: 
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where tini and tfin are, respectively, the initial and final moments of time, at which all generalized 
coordinates and velocities are considered fixed (not varied) – see Fig. 2. 

 

 

 

 

 

 

 

 The proof of that statement is rather simple. Considering, similarly to Sec. 2.1, a possible virtual 
variation of the motion, described by infinitesimal deviations { )(tq j , )(tq j } from the real motion, the 

necessary condition for S to be minimal is 
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where S and L are the variations of the action and the Lagrange function, corresponding to the set 
{ )(tq j , )(tq j }. As has been already discussed in Sec. 2.1, we can use the operation of variation just 

15 An interested reader may be referred, for example, to Chapter 6 in J. Jose and E. Saletan, Classical Dynamics, 
Cambridge U. Press, 1998. 
16 It is also called the “principle of least action”. (This name may be fairer in the context of a long history of the 
development of the principle, starting from its simpler particular forms, which includes the names of P. de Fermat, 
P. Maupertuis, L. Euler, and J.-L. Lagrange.) 

Fig. 10.2. Deriving the Hamilton 
principle. 
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as the usual differentiation (but at a fixed time, see Fig. 2), swapping these two operations if needed – 
see Fig. 2.3 and its discussion. Thus, we may write 
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  (10.49) 

After plugging the last expression into Eq. (48), we can integrate the second term by parts: 
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Since the generalized coordinates in the initial and final points are considered fixed (not affected 
by the variation), all qj(tini) and qj(tfin) vanish, so the second term in the last form of Eq. (50) vanishes 
as well. Now multiplying and dividing the last term of that expression by dt, we finally get 
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 (10.51) 

This relation should hold for an arbitrary set of functions qj(t), and for any time interval, and this is 
only possible if the expressions in the square brackets equal zero for all j, giving us the set of the 
Lagrange equations (2.19). So, the Hamilton principle indeed gives the Lagrange equations of motion.  

 It is fascinating to see how the Hamilton principle works for particular cases. As a very simple 
example, let us consider the usual 1D linear oscillator, with the Lagrangian function used so many times 
before in this course: 
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  .     (10.52) 

As we know very well, the Lagrange equations of motion for this L are exactly satisfied by any 
sinusoidal function with the frequency 0, in particular by a symmetric function of time 

              tAtqtAtq 00e0e sin that  so,cos    .   (10.53) 

On a limited time interval, say 0  0t  +/2, this function is rather smooth and may be well 
approximated by another simple, reasonably selected functions of time, for example  

          tAtqtAtq  2 that  so,1 a
2

a   ,   (10.54) 

provided that the parameter  is also selected reasonably. Let us take  = (/20)
2, so the approximate 

function qa(t) coincides with the exact function qe(t) at both ends of our time interval (Fig.3): 
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 tttqtqAtqtq , (10.55) 

and check which of them the Hamilton principle “prefers”, i.e. which function gives the least action.  
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 An elementary calculation of the action (47) corresponding to these two functions, yields 
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with the first terms in all the parentheses coming from the time integrals of the kinetic energy, and the 
second terms, from those of the potential energy.  

 This result shows, first, that the exact function of time, for which these two contributions exactly 
cancel,17 is indeed “preferable” for minimizing the action. Second, for the approximate function, the two 
contributions to the action are rather close to the exact ones, and hence almost cancel each other, 
signaling that this approximation is very reasonable. It is evident that in some cases when the exact 
analytical solution of the equations of motion cannot be found, the minimization of S by adjusting one or 
more free parameters, incorporated into a guessed “trial” function, may be used to find a reasonable 
approximation for the actual law of motion.18 

 It is also very useful to make the notion of action S, defined by Eq. (47), more transparent by 
calculating it for the simple case of a single particle moving in a potential field that conserves its energy 
E = T + U. In this case, the Lagrangian function L = T – U may be represented as 

             ,2)(2 2 EmvETUTTUTL     (10.57) 

with a time-independent E, so 

                const.2 EtdtmvLdtS     (10.58) 

Recasting the expression under the remaining integral as mvvdt = p(dr/dt)dt = pdr, we finally get 

                  constconst 0   EtSEtdS rp ,              (10.59) 

17 Such cancellation, i.e. the equality S = 0, is of course not the general requirement; it is specific only for this 
particular example, with a specific choice of the arbitrary constant in the potential energy of the system. 
18 This is essentially a classical analog of the variational method of quantum mechanics – see, e.g., QM Sec. 2.9. 
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Fig. 10.3. Plots of the functions 
q(t) given by Eqs. (53) and (54). 
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where the time-independent integral 

          rp dS0       (10.60) 

is frequently called the abbreviated action.19  

 This expression may be used to establish one more important connection between classical and 
quantum mechanics – now in its Schrödinger picture. Indeed, in the quasiclassical (WKB) 
approximation of that picture20 a particle of fixed energy E is described by a de Broglie wave 

           ,constexp),(Ψ   tdit rkr     (10.61) 

where the wave vector k is proportional to the particle’s momentum (which is possibly a slow function 
of r) and the frequency , to its energy: 

      .,


E
 p

k      (10.62) 

Plugging these expressions into Eq. (61) and comparing the result with Eq. (59), we see that the WKB 
wavefunction may be represented as 

       ./expΨ iS      (10.63) 

 Hence the Hamilton principle (48) means that the total phase of the quasiclassical wavefunction 
should be minimal along the particle’s real trajectory. But this is exactly the so-called eikonal minimum 
principle well known from the optics (though it is valid for any other waves as well), where it serves to 
define the ray paths in the geometric optics limit – similar to the WKB approximation. Thus, the ratio 
S/ may be considered just as the eikonal, i.e. the total phase accumulation, of the de Broglie waves.21  

 Now, comparing Eq. (60) with Eq. (39), we see that the action variable J is just the change of the 
abbreviated action S0 along a single phase-plane contour, divided by 2. This means, in particular, that 
in the WKB approximation, J is the number of de Broglie waves along the classical trajectory of a 
particle, i.e. an integer value of the corresponding quantum number. If the system’s parameters are 
changed slowly, the quantum number has to stay integer, and hence J cannot change, giving a quantum-
mechanical interpretation of the adiabatic invariance. The reader should agree that this is really 
fascinating: a fact of classical mechanics may be “derived” (or at least understood) more easily from the 
quantum mechanics’ standpoint. (As a reminder, we have run into a similarly pleasant surprise at our 
discussion of the non-degenerate parametric excitation in Sec. 6.7.) 

 

 

 

19 Comparing Eq. (59) with the Hamilton principle (48), we see that if the variational trajectories are limited to 
those of only one (actual) energy E, the real motion corresponds to the minimum of not only S but S0 as well. This 
fact is called the Maupertuis principle. (Historically, this result rather than Eq. (48), was called the “principle of 
least action”, and some authors still use this terminology, so the reader’s caution is advised.) 
20 See, e.g., QM Sec. 3.1. 
21 Indeed, Eq. (63) was the starting point for R. Feynman’s development of his path-integral formulation of 
quantum mechanics – see, e.g., QM Sec. 5.3.   
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10.4. The Hamilton-Jacobi equation 

 The action S, defined by Eq. (47), may be used for one more analytical formulation of classical 
mechanics. For that, we need to make one more, different commitment: S has to be considered as a 
function of the following independent arguments: the final time point tfin (which I will, for brevity, 
denote as t in this section), and the set of generalized coordinates (but not of the generalized velocities!) 
at that point:  

            )(,
ini

tqtSLdtS j

t

t
  .     (10.64) 

 Let us calculate the variation of this (from the variational point of view, new!) function, resulting 
from an arbitrary combination of variations of the final values qj(t) of the coordinates while keeping t 
fixed. Formally this may be done by repeating the variational calculations described by Eqs. (49)-(51), 
besides that now the variations qj at the finite point (t) do not necessarily equal zero. As a result, we get 
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For the motion along the real trajectory, i.e. satisfying the Lagrange equations (2.19), the second term of 
this expression equals zero. Hence Eq. (65) shows that, for (any) fixed time t,  

          .
jj q

L

q

S







      (10.66) 

But the last derivative is nothing else than the generalized momentum pj, so 

            j
j

p
q

S





.      (10.67) 

(As a reminder, both parts of this relation refer to the final moment t of the trajectory.) As a result, the 
full derivative of the action S[t, qj(t)] over time takes the form 
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 Now, by the definition of S, the full derivative dS/dt is nothing more than the Lagrangian 
function L, so Eq. (67) yields 

              



j
jj qpL

t

S
.      (10.69) 

However, according to the definition (2) of the Hamiltonian function H, the right-hand side of Eq. (69) 
is just (–H), and we get an extremely simply-looking Hamilton-Jacobi equation 

          .H
t

S





      (10.70) 

 This simplicity is, however, rather deceiving, because to use this equation for the calculation of 
the function S(t, qj) for any particular problem, the Hamiltonian function has to be first expressed as a 
function of time t, generalized coordinates qj, and the generalized momenta pj (which may be, according 

Hamilton- 
Jacobi  
action 

Hamilton- 
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equation 
 



Essential Graduate Physics                 CM: Classical Mechanics 

    
Chapter 10             Page 14 of 16

to Eq. (67), represented just as the derivatives S/qj). Let us see how this procedure works for the 
simplest case of a 1D system with the Hamiltonian function given by Eq. (10). In this case, the only 
generalized momentum is p = S/q, so 

              ),,(
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2 ef
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ef
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    (10.71) 

and Eq. (70) is reduced to the following partial differential equation, 
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Its solution may be readily found in the easiest case of time-independent potential energy Uef = 
Uef (q). In this case, Eq. (72) is evidently satisfied by the following variable-separated solution:  

         tqSqtS  const)(),( 0 .     (10.73) 

Plugging this solution into Eq. (72), we see that since the sum of the two last terms on the left-hand side 
of that equation represents the full mechanical energy E, the constant in Eq. (73) is nothing but (–E). 
Thus for the function S0(q) we get an ordinary differential equation 

             .0)(
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1
ef

2
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 qU

dq
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m
E     (10.74) 

Integrating it, we get 

             const,)(2 2/1
efef0 dqqUEmS     (10.75) 

so, finally, the action is equal to 

           const.)(2 2/1
efef EtdqqUEmS     (10.76) 

For the case of 1D motion of a single 1D particle, i.e. for q = x, mef = m, Uef(q) = U(x), this solution is 
just the 1D case of the more general Eqs. (59)-(60), which were obtained above in a much more simple 
way. (In particular, S0 is just the abbreviated action.)  

 This particular example illustrates that the Hamilton-Jacobi equation is not the most efficient 
way for the solution of most practical problems of classical mechanics. However, it may be rather useful 
for studies of certain mathematical aspects of dynamics.22 Moreover, in the early 1950s this approach 
was extended to a completely different field – the optimal control theory, in which the role of the action 
S is played by the so-called cost function – a certain functional of a system (understood in a very general 
sense of this term), that should be minimized by an optimal choice of a control signal – a function of 
time that affects the system’s evolution in time. From the point of view of this theory, Eq. (70) is a 
particular case of a more general Hamilton-Jacobi-Bellman equation.23  

22 See, e.g., Chapters 6-9 in I. C. Percival and D. Richards, Introduction to Dynamics, Cambridge U. Press, 1983. 
23 See, e.g., T. Bertsekas, Dynamic Programming and Optimal Control, vols. 1 and 2, Aetna Scientific, 2005 and 
2007. The reader should not be intimidated by the very unnatural term “dynamic programming”, which was 
invented by the founding father of this field, Richard Bellman, to lure government bureaucrats into funding his 
research, deemed too theoretical at that time. (Presently, it has a broad range of important applications.) 
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10.5. Exercise problems 

 In each of Problems 1-3, for the given system: 

  (i) derive the Hamilton equations of motion, and 
  (ii) check whether these equations are equivalent to those derived from the Lagrangian 
formalism. 

 

 
 10.1. Our “testbed” system: a bead on a ring rotated, with a fixed angular 
velocity , about its vertical diameter – see Fig.  2.1, partly reproduced on the right.  

 

 
 

 10.2. The system considered in Problem 2.3: a pendulum hanging from a point 
whose motion x0(t) in the horizontal direction is fixed – see the figure on the right. (No 
vertical-plane constraint.) 

10.3. The system considered in Problem 2.8: a block of mass m that 
can slide, without friction, along the inclined surface of a heavy wedge of 
mass m’. The wedge is free to move, also without friction, along a horizontal 
surface – see the figure on the right. (Both motions are within the vertical 
plane containing the steepest slope line.) 
 
 10.4. Derive and solve the equations of motion of a particle with the following Hamiltonian 
function: 

 2

2

1
rp a

m
H  , 

where a is a constant scalar. 
 
 10.5. Let L be the Lagrangian function, and H the Hamiltonian function, of the same system. 
What three of the following four statements, 

,0  (iv),0  (iii),0  (ii),0  )i( 
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are equivalent? Give an example of when those three equalities hold, but the fourth one does not. 

10.6. Calculate the Poisson brackets of a Cartesian component of the angular momentum L of a 
particle moving in a central force field and its Hamiltonian function H, and discuss the most evident 
implication of the result. 
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 10.7. After small oscillations had been initiated in the point pendulum shown in 
Fig. on the right, the supporting string is being pulled up slowly, so that the pendulum’s 
length l is being reduced. Neglecting dissipation,  

 (i) prove by a direct calculation that the oscillation energy is indeed changing 
proportionately to the oscillation frequency, as it follows from the constancy of the 
corresponding adiabatic invariant (40); and 
 (ii) find the l-dependence of the amplitudes of the angular and linear deviations 
from the equilibrium.  
 
 10.8. The mass m of a small body that performs 1D oscillations in the potential well U(x) = ax2n, 
with n > 0, is being changed slowly, without exerting any additional direct force. Calculate the 
oscillation energy E as a function of m. 
 
 10.9. A stiff ball is bouncing vertically from the floor of an elevator whose upward acceleration 
changes very slowly. Neglecting the energy dissipation, calculate how much the bounce height h 
changes during the acceleration’s increase from 0 to g. Is your result valid for an equal but abrupt 
increase of the elevator’s acceleration? 
 
 10.10.* A 1D particle of a constant mass m moves in a time-dependent potential U(q, t) = 
m2(t)q2/2, where (t) is a slow function of time, with .2   Develop the approximate method for 

the solution of the corresponding equation of motion, similar to the WKB approximation used in 
quantum mechanics.24 Use the approximation to confirm the conservation of the action variable (40) for 
this system. 

 Hint: You may like to look for the solution to the equation of motion in the form 

      tittq  exp , 

where  and  are some real functions of time, and then make proper approximations in the resulting 
equations for these functions. 

24 See, e.g., QM Sec. 2.4. 
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