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Chapter 1. Electric Charge Interaction 

This chapter reviews the basics of electrostatics – the description of interactions between stationary (or 
relatively slowly moving) electric charges. Much of this material should be known to the reader from 
their undergraduate studies;1 because of that, the explanations are very brief. 

 

1.1. The Coulomb law 

 A quantitative discussion of classical electrodynamics, starting from the electrostatics, requires 
common agreement on the meaning of the following notions:2 

 - electric charges qk, as revealed, most explicitly, by observation of electrostatic interaction 
between the charged particles;  
 - point charges – the charged particles so small that their position in space, for the given 
problem, may be completely described (in the given reference frame) by their radius-vectors rk; and 
 - electric charge conservation – the fact that the algebraic sum of all charges qk  inside any 
closed volume is conserved unless the charged particles cross the volume’s border. 

  I will assume that these notions are well known to the reader. Using them, the Coulomb law3 for 
the interaction of two stationary point charges may be formulated as follows: 
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   (1.1) 

where Fkk’ denotes the electrostatic (Coulomb) force exerted on the charge number k by the charge 
number k’, separated from it by distance Rkk’ – see Fig. 1.  

 

 

 

 

 

 

1 For remedial reading, I can recommend, for example, D. Griffiths, Introduction to Electrodynamics, 4th ed., 
Pearson, 2015. 
2 On top of the more general notions of the classical Newtonian space, point particles and forces, as used in 
classical mechanics – see, e.g., CM Sec. 1.1. 
3 Formulated in 1785 by Charles-Augustin de Coulomb, on the basis of his earlier experiments, in turn rooted in 
prior studies of electrostatic phenomena, with notable contributions by William Gilbert, Otto von Guericke, 
Charles François de Cisternay Du Fay, Benjamin Franklin, and Henry Cavendish. 
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Fig. 1.1. Coulomb force directions (for the case qkqk’ > 0). 
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 I am confident that this law is very familiar to the reader, but a few comments may still be due: 

(i) Flipping the indices k and k’, we see that Eq. (1) complies with the 3rd Newton law: the 
reciprocal force is equal in magnitude but opposite in direction: Fk’k = –Fkk’. 

 (ii) Since the vector Rkk’  rk – rk’, by its definition, is directed from point rk’ toward point rk 
(Fig. 1), Eq. (1) correctly describes the experimental fact that charges of the same sign (i.e. with qkqk’ > 
0) repulse, while those with opposite signs (qkqk’ < 0) attract each other.  

(iii) In some textbooks, the Coulomb law (1) is given with the qualifier “in free space” or “in 
vacuum”. However, actually, Eq. (1) remains valid even in the presence of any other charges – for 
example, of internal charges in a quasi-continuous medium that may surround the two charges (number 
k and k’) under consideration.  The confusion stems from the fact, to be discussed in detail in Chapter 3 
below, that in some cases it is convenient to formally represent the effect of the other charges as an 
effective (rather than actual!) modification of the Coulomb law.  

 (iv) The constant  in Eq. (1) depends on the system of units we use. In the Gaussian units,  is 
set to 1, for the price of introducing a special unit of charge (the statcoulomb) that would make 
experimental data compatible with Eq. (1) if the force Fkk’ is measured in the Gaussian units (dynes). On 
the other hand, in the International  System (“SI”) of units, the charge’s unit is one coulomb 
(abbreviated C), and  is different from 1: 
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where 0  8.85410-12 is called the electric constant.4  

 Unfortunately, the continuing struggle between zealous proponents of these two systems of units 
bears all the not-so-nice features of a religious war, with a similarly slim chance for any side to win it in 
any foreseeable future. In my humble view, each of these systems has its advantages and handicaps (to 
be noted on several occasions below), and every educated physicist should have no problem with using 
any of them. Following insisting recommendations of international scientific unions, I am using the SI 
units throughout my series. However, for the readers’ convenience, in this course (where the difference 
between the Gaussian and SI systems is especially significant) I will write the most important formulas 
with the constant (2) clearly displayed – for example, the combination of Eqs. (1) and (2) as 
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so the formal transfer to the Gaussian units may be performed just by dropping the front fraction. (In the 
rare cases when the transfer is not obvious, I will duplicate formulas in the Gaussian units.)  

Besides Eq. (3), another key experimental law of electrostatics is the linear superposition 
principle: the electrostatic forces exerted on some point charge (say, qk) by other charges add up as 
vectors, forming the net force 

4 Since 2018, one coulomb is defined, in the “legal” metrology, as a certain exactly fixed number of the 
fundamental electric charges e, and the “legal” SI value of 0 is not more exactly equal to 107/4c2 (where c is the 
speed of light) as it was before, but remains extremely close to that fraction, with the relative difference of the 
order of 10-10 – see appendix UCA: Selected Units and Constants. In this series, this minute difference is ignored. 

 in  
SI units 
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where the summation is extended over all charges but qk, and the partial force Fkk’ is described by Eq. 
(3). The fact that the sum is restricted to k’  k means that a point charge, in statics, does not interact 
with itself. This fact may look obvious from Eq. (3), whose right-hand side diverges at rk  rk’, but 
becomes less evident (though still true) in quantum mechanics – where the charge of even an elementary 
particle is effectively spread around some volume, together with the particle’s wavefunction.5 

Now we may combine Eqs. (3) and (4) to get the following expression for the net force F acting 
on a probe charge q located at point r: 
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This equality implies that it makes sense to introduce the notion of the electric field (as an entity 
independent of q), whose distribution in space is characterized by the following vector: 
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formally called the electric field strength – but much more frequently, just the “electric field”. In these 
terms, Eq. (5) becomes 

                
 




rr rr

rr
rE

'

3'
04

1
)(

k k'

k'
kq


.    (1.7) 

Being just convenient is electrostatics, the notion of the field becomes unavoidable for the description of 
time-dependent phenomena (such as electromagnetic waves, see Chapter 7 and on), where the 
electromagnetic field shows up as a specific form of matter, different from the usual “material” particles 
– even though quantum electrodynamics (to be reviewed in QM Chapter 9) offers their joint description. 

 Many real-world problems involve multiple point charges located so closely that it is possible to 
approximate them with a continuous charge distribution. Indeed, let us consider a group of many (dN >> 
1) close charges, located at points rk’, all within an elementary volume d3r’. For relatively distant field 
observation points, with r – rk’  >> dr’, the geometrical factor in the corresponding terms of Eq. (7) is 
essentially the same. As a result, these charges may be treated as a single elementary charge dQ(r’). 
Since at dN >> 1, this elementary charge is proportional to the elementary volume d3r’, we can define 
the local 3D charge density (r’) by the following relation: 
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and rewrite Eq. (7) as an integral (over the volume containing all essential charges): 
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5 Note that some widely used approximations, e.g., the density functional theory (DFT) of multiparticle systems, 
essentially violate this law, thus limiting their accuracy and applicability – see, e.g., QM Sec. 8.4. 
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Note that for a continuous, smooth charge density (r’), the integral in Eq. (9) does not diverge at R  
r – r’  0, because in this limit, the fraction under the integral increases as R-2, i.e. slower than the 
decrease of the elementary volume d3r’, proportional to R3. 

 Let me emphasize the dual use of Eq. (9). In the case when (r) is a continuous function 
representing the average charge defined by Eq. (8), Eq. (9) is not valid at distances r – rk’   of the order 
of the distance between the adjacent point charges, i.e. does not describe rapid variations of the electric 
field at these distances. Such approximate, smoothly changing field E(r), is called macroscopic; we will 
repeatedly return to this notion in the following chapters. On the other hand, Eq. (9) may be also used 
for the description of the exact (frequently called microscopic) field of discrete point charges, by 
employing the notion of Dirac’s delta function, which is the mathematical description of a very sharp 
function equal to zero everywhere but one point, and still having a finite integral (equal to 1).6 Indeed, in 
this formalism, a set of point charges qk’ located in points rk’ may be represented by the pseudo-
continuous density  
         .)()(
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k
kk 'q' rrr       (1.10) 

Plugging this expression into Eq. (9), we return to its exact, discrete version (7). In this sense, Eq. (9) is 
exact, and we may use it as the general expression for the electric field. 

  

1.2. The Gauss law 

 Due to the extension of Eq. (9) to point (“discrete”) charges, it may seem that we do not need 
anything besides it to solve any problem of electrostatics. In practice, however, this is not quite true – 
first of all, because the direct use of Eq. (9) frequently leads to complex calculations. Indeed, let us try 
to solve a problem that is conceptually very simple: find the electric field induced by a spherically 
symmetric charge distribution with density (r’) – see Fig. 2.  

 

  

 

 

 

 

 
 We may immediately use the problem’s symmetry to argue that the electric field should be also 
spherically symmetric, with only one component in the spherical coordinates: E(r)= E(r)nr, where nr  
r/r is the unit vector in the direction of the field observation point r. Taking this direction for the polar 
axis of a spherical coordinate system, we can use the evident axial symmetry of the system to reduce Eq. 
(9) to 

6 See, e.g., MA Sec. 14. The 2D (areal) charge density  and the 1D (linear) density  may be defined absolutely 
similarly to the 3D (volumic) density  :  dQ = d2r, dQ = dr. Note that the approximations in that either   0 
or   0 imply that   is formally infinite at the charge location; for example, the model in that a plane z = 0 is 
charged with areal density    0, means that  = (z), where (z) is Dirac’s delta function. 

Fig. 1.2. One of the simplest problems of 
electrostatics: the electric field produced by 
a spherically-symmetric charge distribution. 
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where , ’, and R are the geometrical parameters marked in Fig. 2. Since  and R may be readily 
expressed via r’ and ’, using the auxiliary parameters a and h,  
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Eq. (11) may be eventually reduced to an explicit integral over r’ and ’,  and worked out analytically, 
but that would require some effort. 

  For other problems, the integral (9) may be much more complicated, defying an analytical 
solution. One could argue that with the present-day abundance of computers and numerical algorithm 
libraries, one can always resort to numerical integration. This argument may be enhanced by the fact 
that numerical integration is based on the replacement of the required integral by a discrete sum, and the 
summation is much more robust to the (unavoidable) rounding errors than the finite-difference schemes 
typical for the numerical solution of differential equations. These arguments, however, are only partly 
justified, since in many cases the numerical approach runs into a problem sometimes called the curse of 
dimensionality – the exponential dependence of the number of needed calculations on the number of 
independent parameters of the problem.7 Thus, despite the proliferation of numerical methods in 
physics, analytical results have an everlasting value, and we should try to get them whenever we can. 
For our current problem of finding the electric field generated by a fixed set of electric charges, large 
help may come from the so-called Gauss law. 

 To derive it, let us consider a single point charge q inside a smooth closed surface S (Fig. 3), and 
calculate the product End

2r, where d2r is an elementary area of the surface (which may be well 
approximated with a plane fragment of that area), and En  En is the component of the electric field at 
that point, normal to the plane.  

  

 

 

 

 

  

  

 

 

 

 This component may be calculated as Ecos, where   is the angle between the vector E and the 
unit vector n normal to the surface. Now let us notice that the product cos d2r is nothing more than the 

7 For a more detailed discussion of this problem, see, e.g., CM Sec. 5.8. 

(a)       (b) 

Fig. 1.3. Deriving the Gauss law: a point charge q (a) inside the volume V, and (b) outside of that volume. 

E

r

d
cos2

2

rd

r'd



rd 2


q

nE
outE

0d

q

inE

0d

S S



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 1                Page 6 of 20 

area d2r’ of the projection of d2r onto the plane normal to the vector r connecting the charge q with the 
considered point of the surface (Fig. 3), because the angle between the elementary areas d2r’ and d2r is 
also equal to . Using the Coulomb law for E, we get 
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But the ratio d2r’/r2 is nothing more than the elementary solid angle d under which the areas d2r’ and 
d2r are seen from the charge point, so End

2r may be represented just as a product of d by a constant 
(q/40). Summing these products over the whole surface, we get 
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since the full solid angle equals 4. (The integral on the left-hand side of this relation is called the  flux 
of electric field through the surface S.)  

Relation (14) expresses the Gauss law for one point charge. However, it is only valid if the 
charge is located inside the volume V limited by the surface S. To find the flux created by a charge 
located outside of this volume, we still can use Eq. (13), but have to be careful with the signs of the 
elementary contributions EndA. Let us use the common convention to direct the unit vector n out of the 
closed volume we are considering (the so-called outer normal), so the elementary product End

2r = 
(En)d2r and hence d = End

2r’/r2 is positive if the vector E is pointing out of the volume (like in the 
example shown in Fig. 3a and at the upper-right area in Fig. 3b), and negative in the opposite case (for 
example, at the lower-left area in Fig. 3b). As the latter panel shows, if the charge is located outside of 
the volume, for each positive contribution d there is always an equal and opposite contribution to the 
integral. As a result, at the integration over the solid angle, the positive and negative contributions 
cancel exactly, so 
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 The real power of the Gauss law is revealed by its generalization to the case of several, 
especially many charges. Since the calculation of flux is a linear operation, the linear superposition 
principle (4) means that the flux created by several charges is equal to the (algebraic) sum of individual 
fluxes from each charge, for which either Eq. (14) or Eq. (15) are valid, depending on whether the 
charge is in or out of the volume. As a result, for the total flux, we get: 
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where QV is the net charge inside volume V. This is the full version of the Gauss law.8  

In order to appreciate the problem-solving power of the law, let us revisit the problem shown in  
Fig. 2, i.e. the field of a spherical charge distribution. Due to its symmetry, which had already been 
discussed above, if we apply Eq. (16) to a sphere of a certain radius r, the electric field has to be normal 

8 The law is named after the famed Carl Gauss (1777-1855), even though it was first formulated earlier (in 1773) 
by Joseph-Louis Lagrange who was also the father-founder of analytical mechanics – see, e.g., CM Chapter 2. 

Gauss  
law 
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to the sphere at each point (i.e., En = E), and its magnitude has to be the same at all points: En = E(r). As 
a result, the flux calculation is elementary: 
      

)(4 22 rErrdEn 
.     (1.17) 

Now applying the Gauss law (16), we get: 
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so, finally, 
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where Qr is the full charge inside the sphere of radius r: 
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In particular, this formula shows that the field outside of a sphere of a finite radius R is exactly 
the same as if all its charge Q = Q(R) is concentrated in the sphere’s center. (Note that this important 
result is only valid for a spherically symmetric charge distribution.) For the field inside the sphere, 
finding the electric field still requires the explicit integration (20), but this 1D integral is much simpler 
than the 2D integral (11), and in some important cases may be readily worked out analytically. For 
example, if the charge Q is uniformly distributed inside a sphere of radius R, 
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then the integration is elementary: 
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We see that in this case, the field is growing linearly from the center to the sphere’s surface, and only at 
r > R starts to decrease in agreement with Eq. (19) with constant Q(r) = Q. Note also that the electric 
field is continuous for all r (including r = R) – as for all systems with finite volumic density,  

 In order to underline the importance of the last condition, let us consider one more elementary 
but very important example of Gauss law’s application. Let a thin plane sheet (Fig. 4) be charged 
uniformly, with a finite areal density  = const. In this case, it is fruitful to use the Gauss volume in the 
form of a planar “pillbox” of thickness 2z (where z is the Cartesian coordinate perpendicular to the 
plane) and certain area A – see the dashed lines in Fig. 4. Due to the symmetry of the problem, it is 
evident that the electric field should be: (i) directed along the z-axis, (ii) constant on each of the upper 
and bottom sides of the pillbox, (iii) equal and opposite on these sides, and (iv) parallel to the side 
surfaces of the box. As a result, the full electric field flux through the pillbox’s surface is just 2AE(z), so 
the Gauss law (16) yields 2AE(z) = QA/0  A/0, and we get a very simple but important formula 
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 Notice that, somewhat counter-intuitively, the field magnitude does not depend on the distance 
from the charged plane. From the point of view of the Coulomb law (5), this result may be explained as 
follows: the farther the observation point from the plane, the weaker the effect of each elementary 
charge, dQ = d2r, but the more such elementary charges give contributions to the z-component of 
vector E, because they are “seen” from the observation point at relatively small angles to the z-axis.  

Note also that though the magnitude E   E of this electric field is constant, its component En 
normal to the plane (for our coordinate choice, Ez) changes its sign at the plane, experiencing a 
discontinuity (jump) equal to  
             
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This jump disappears if the surface is not charged. Returning for a split second to our charged sphere 
problem (Fig. 2), solving it we have considered the volumic charge density  to be finite everywhere, 
including the sphere’s surface, so on it  = 0, and the electric field should be continuous – as it is.  

 Admittedly, the integral form (16) of the Gauss law is immediately useful only for highly 
symmetrical geometries, such as in the two problems discussed above. However, it may be recast into an 
alternative, differential form whose field of useful applications is much wider. This form may be 
obtained from Eq. (16) using the divergence theorem of the vector algebra, which is valid for any space-
differentiable vector, in particular E, and for the volume V limited by any closed surface S:9 
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S V
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where  is the del (or “nabla”) operator of spatial differentiation.10 Combining Eq. (25) with the Gauss 
law (16), we get 
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For a given spatial distribution of electric charge (and hence of its electric field), this equation should be 
valid for any choice of the volume V. This can hold only if the function under the integral vanishes at 
each point, i.e. if11 

9 See, e.g., MA Eq. (12.2). Note also that the scalar product under the volumic integral in Eq. (25) is nothing else 
than the divergence of the vector E – see, e.g., MA Eq. (8.4), hence the theorem’s name. 
10 See, e.g., MA Secs. 8-10. 
11 In the Gaussian units, just as in the initial Eq. (6), 0 has to be replaced with 1/4, so the Maxwell 
equation (27) looks like E = 4, while Eq. (28) stays the same. 

Fig. 1.4. The electric field of 
a charged plane.
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Note that in sharp contrast with the integral form (16),  Eq. (27) is local: it relates the electric field’s 
divergence to the charge density at the same point. This equation, being the differential form of the 
Gauss law, is frequently called one of the famed Maxwell equations12 – to be discussed again and again 
later in this course.  

 In the mathematical terminology, Eq. (27) is inhomogeneous, because it has a right-hand side 
independent (at least explicitly) of the field E that it describes. Another, homogeneous Maxwell 
equation’s “embryo”  (this one valid for the stationary case only!) may be obtained by noticing that the 
curl of the point charge’s field, and hence that of any system of charges, equals zero:13 

          0E .      (1.28) 

(We will arrive at two other Maxwell equations, for the magnetic field, in Chapter 5, and then generalize 
all the equations to their full, time-dependent form at the end of Chapter 6. However, Eq. (27) will stay 
the same.) 

 Just to get a better gut feeling of Eq. (27), let us apply it to the same example of a uniformly 
charged sphere (Fig. 2). Vector algebra tells us that the divergence of a spherically symmetric vector 
function E(r) = E(r)nr may be simply expressed in spherical coordinates:14 E = [d(r2E)/dr]/r2. As a 
result, Eq. (27) yields a linear ordinary differential equation for the scalar function E(r): 
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which may be readily integrated on each of these segments: 
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To determine the integration constant c1, we can use the following boundary condition: E(0) = 0. (It 
follows from the problem’s spherical symmetry: in the center of the sphere, the electric field has to 
vanish, because otherwise, where would it be directed?) This requirement gives c1 = 0. The second 
constant, c2, may be found from the continuity condition E(R – 0) = E(R + 0), which has already been 
discussed above, giving c2 = R3/3  Q/4. As a result, we arrive at our previous results (19) and (22).   

 We can see that in this particular, highly symmetric case, using the differential form of the Gauss 
law is a bit more complex than its integral form. (For our second example, shown in Fig. 4, it would be 
even less natural.) However, Eq. (27) and its generalizations are more convenient for asymmetric charge 

12 Named after the genius of classical electrodynamics and statistical physics, James Clerk Maxwell (1831-1879). 
13 This follows, for example, from the direct application of MA Eq. (10.11) to any spherically-symmetric vector 
function of type f(r) = f(r)nr (in particular, to the electric field of a point charge placed at the origin), giving f = f 
= 0 and fr/ = fr/ = 0 so all components of the vector  f vanish. Since nothing prevents us from placing 
the reference frame’s origin at the point charge’s location, this result remains valid for any position of the charge. 
14 See, e.g., MA Eq. (10.10) for the particular case / = / = 0. 
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distributions, and are invaluable in cases where the distribution (r) is not known a priori and has to be 
found in a self-consistent way. (We will start discussing such cases in the next chapter.) 

 

1.3. Scalar potential and electric field energy 

 One more help for solving problems of electrostatics (and electrodynamics as a whole) may be 
obtained from the notion of the electrostatic potential, which is just the electrostatic potential energy U 
of a probe point charge q placed into the field in question, normalized by its charge: 

            
q

U
 .      (1.31) 

As we know from classical mechanics,15 the notion of U (and hence ) makes the most sense for the 
case of potential forces – for example, those depending just on the particle’s position. Eqs. (6) and (9) 
show that stationary electric fields fall into this category. For such a field, the potential energy may be 
defined as a scalar function U(r) that allows the force to be calculated as its gradient (with the opposite 
sign): 
          UF .      (1.32) 

Dividing both sides of this equation by the probe charge, and using Eqs. (6) and (31), we get16 

          E .      (1.33) 

To calculate the scalar potential, let us start from the simplest case of a single point charge q 
placed at the origin. For it, Eq. (7) takes the simple form 

        
2

0
3

0 4

1

4

1

r
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r
q rnr

E
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 .    (1.34) 

It is straightforward to verify that the last fraction in the last form of Eq. (34) is equal to –(1/r).17 
Hence, according to the definition (33), for this particular case 

         
r

q

04

1


  .      (1.35) 

(In the Gaussian units, this result is spectacularly simple:  = q/r.) Note that we could add an arbitrary 
constant to this potential (and indeed to any other distribution of  discussed below) without changing 
the field, but it is convenient to define the potential energy so it would approach zero at infinity. 

 In order to justify the introduction and the forthcoming exploration of U and , let me 
demonstrate (I hope, unnecessarily :-) how useful the notions are, on a very simple example. Let two 
similar charges q  be launched from afar, with the same initial speed v0 << c each, straight toward each 
other (i.e. with the zero impact parameter) – see Fig. 5. Since, according to the Coulomb law, the 

15 See, e.g., CM Sec. 1.4. 
16 Eq. (28) could be also derived from this relation because according to vector algebra, any gradient field has no 
curl –  see, e.g., MA Eq. (11.1). 
17 This may be done either by Cartesian components or using the well-known expression f = (df/dr)nr valid for 
any spherically-symmetric scalar function f(r) – see, e.g., MA Eq. (10.8) for the particular case / = / = 0. 
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charges repel each other with increasing force, they will stop at some minimum distance rmin from each 
other, and then fly back. We could of course find rmin directly from the Coulomb law. However, for that, 
we would need to write the 2nd Newton law for each particle (actually, due to the problem symmetry, 
they would be similar), then integrate them over time to find the particle velocity v as a function of 
distance, and only then recover rmin from the requirement v = 0. 

 

 

 

 

 The notion of potential allows this problem to be solved in one line. Indeed, in the field of 
potential forces, the system’s total energy E = T + U  T + q is conserved. In our non-relativistic case v 
<< c, the kinetic energy T is just mv2/2. Hence, equating the total energy of two particles at the points r 
=  and r = rmin, and using Eq. (35) for , we get 

        
min
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r
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
 ,     (1.36) 

immediately giving us the final answer: rmin = q2/40mv0
2. So, the notion of scalar potential is indeed 

very useful. 

 With this motivation, let us calculate  for an arbitrary configuration of charges. For a single 
charge in an arbitrary position (say, at point rk’), r   r  in Eq. (35) should be evidently replaced with 
r – rk’. Now, the linear superposition principle (3) allows for an easy generalization of this formula to 
the case of an arbitrary set of discrete charges, 

        
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
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 .     (1.37) 

Finally, using the same arguments as in Sec. 1, we can use this result to argue that in the case of an 
arbitrary continuous charge distribution 
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 .     (1.38) 

Again, Dirac’s delta function allows using the last equation to recover Eq. (37) for discrete charges as 
well, so Eq. (38) may be considered as the general expression for the electrostatic potential. 

For most practical calculations, using this expression and then applying Eq. (33) to the result, is 
preferable to using Eq. (9), because   is a scalar, while E is a 3D vector, mathematically equivalent to 
three scalars. Still, this approach may lead to technical problems similar to those discussed in Sec. 2. For 
example, applying it to the spherically symmetric distribution of charge (Fig. 2), we get the integral 
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which is not much simpler than Eq. (11). 
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Fig. 1.5. A simple problem of charged particle motion. 
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The situation may be much improved by recasting Eq. (38) into a differential form. For that, it is 
sufficient to plug the definition of , Eq. (33), into Eq. (27):   

            .)(
0
         (1.40) 

The left-hand side of this equation is nothing else than the Laplace operator of  (with the minus sign), 
so we get the famous Poisson equation18 for the electrostatic potential:  

  .
0

2


        (1.41) 

(In the Gaussian units, the Poisson equation is 2 = –4.) This differential equation is so convenient 
for applications that even its particular case for  = 0, 

           02   ,      (1.42) 

has earned a special name – the Laplace equation.19 

 In order to get a gut feeling of the Poisson equation’s value as a problem-solving tool, let us 
return to the spherically-symmetric charge distribution (Fig. 2) with a constant charge density . 
Exploiting this symmetry, we can represent the potential as (r), and hence use the following simple 
expression for its Laplace operator:20 
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so for the points inside the charged sphere (r  R) the Poisson equation yields 
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Integrating the last form of the equation over r once, with the natural boundary condition d/drr = 0 = 0 
(because of the condition E(0) =0, which has been discussed above), we get 
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Since this derivative is nothing more than –E(r), in this formula we can readily recognize our previous 
result (22). Now we may like to carry out the second integration to calculate the potential itself: 
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18 Named after Siméon Denis Poisson (1781-1840), also famous for the Poisson distribution – one of the central 
results of the probability theory – see, e.g., SM Sec. 5.2.  
19 Named after the famous mathematician (and astronomer) Pierre-Simon Laplace (1749-1827) who, together with 
Alexis Clairault, is credited for the development of the very concept of potential. 
20 See, e.g., MA Eq. (10.8) for / = / = 0. 
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 Before making any judgment on the integration constant c1, let us solve the Poisson equation (in 
this case, just the Laplace equation) for the range outside the sphere (r > R): 
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Its first integral, 
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also gives the electric field (with the minus sign). Now using Eq. (45) and requiring the field to be 
continuous at r = R, we get  
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in an evident agreement with Eq. (19). Integrating this result again, 
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we can select c3 = 0, so () = 0, in accordance with the usual (though not compulsory) convention. 
Now we can finally determine the constant c1 in Eq. (46) by requiring that this equation and Eq. (50) 
give the same value of  at the boundary r = R. (According to Eq. (33), if the potential had a jump, the 
electric field at that point would be infinite.) The final answer may be represented as  
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 This calculation shows that using the Poisson equation to find the electrostatic potential 
distribution for highly symmetric problems may be a bit more cumbersome than directly finding the 
electric field – say, from the Gauss law. However, we will repeatedly see below that if the electric 
charge distribution is not fixed in advance, using Eq. (41) may be the only practicable way to proceed. 

Returning now to the general theory of electrostatic phenomena, let us calculate the potential 
energy U of an arbitrary system of point electric charges qk. Despite the apparently simple relation (31) 
between U and  , the result is not that straightforward. Indeed, let us assume that the charge distribution 
has a finite spatial extent, so at large distances from it (formally, at r = ) the electric field tends to zero, 
so the electrostatic potential tends to a constant. Selecting this constant, for convenience, to equal zero, 
we may calculate U as a sum of the energy increments Uk created by bringing the charges, one by one, 
from infinity to their final positions rk – see Fig. 6.21 According to the integral form of Eq. (32), such a 
contribution is  
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k qdqdU rrrErrF
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)( )( ,   (1.52) 

21 Indeed, by the very definition of the potential energy of a system, it should not depend on the way we are 
arriving at its final configuration. 
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where E(r) is the total electric field, and (r) is the total electrostatic potential during this process, 
besides the field created by the very charge qk that is being moved.  

 

 

 

 

 

 

 
  
 This expression shows that the increment Uk, and hence the total potential energy U, depends 
on the source of the electric field E. If the field is dominated by an external field Eext, induced by some 
external charges, not being a part of the charge configuration under our analysis (whose energy we are 
calculating, see Fig. 6), then the spatial distribution (r) is determined by this field, i.e. does not depend 
on how many charges we have already brought in, so Eq. (52) is reduced to 

            



r

rrrr         .)()(  where, extextext 'd'EqU kkk    (1.53) 

Summing up these contributions, we get what is called the charge system’s energy in the external 
field:22 
       

k
kk

k
k qUU rextext  .    (1.54) 

Now repeating the argumentation that has led us to Eq. (9), we see that for a continuously distributed 
charge, this sum turns into an integral: 

      rdU 3
extext )()( rr  .     (1.55) 

(As was discussed above, using the delta-functional representation of point charges, we may always 
return from here to Eq. (54), so Eq. (55) may be considered as a final, universal result.)  

The result is different in the opposite limit when the electric field E(r) is created only by the very 
charges whose energy we are calculating. In this case, (rk) in Eq. (52) is the potential created only by 
the charges with numbers k’ = 1, 2, …, (k – 1)  that are already in place when the kth charge is moved in 
(in Fig. 6, the charges inside the dashed boundary), and we may use the linear superposition principle to 
write 
        
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This result is so important that it is worthy of rewriting in several other forms. First, we may use Eq. 
(35) to represent Eq. (56) in a more symmetric form: 

22 An alternative, perhaps more accurate term for Uext is the energy of the system’s interaction with the external 
field.  
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The expression under this sum is evidently symmetric with respect to the index swap, so it may be 
extended into a different form, 
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where the interaction between each couple of charges is described by two equal terms under the sum, 
and the front coefficient ½ is used to compensate for this double-counting. The convenience of the last 
form is that it may be readily generalized to the continuous case: 

              


'

'
r'drdU

rr

rr )()(

2

1

4

1 33

0




.    (1.59) 

(As before, in this case, the restriction expressed in the discrete charge case as k  k’ is not important, 
because if the charge density is a continuous function, the integral (59) does not diverge at point r = r’.) 

 To represent this result in one more form, let us notice that according to Eq. (38), the inner 
integral over r’ in Eq. (59), divided by 4 0, is just the full electrostatic potential at point r, and hence 

             rdU 3)()(
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1
rr  .     (1.60) 

For the discrete charge case, this result is  
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k
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r ,     (1.61) 

but here it is important to remember that the “full” potential’s value (rk) should exclude the (infinite) 
contribution from the point charge k itself. Comparing the last two formulas with Eqs. (54) and (55), we 
see that the electrostatic energy of charge interaction within the system, as expressed via the charge-by-
potential product, is twice less than that of the energy of charge interaction with a fixed (“external”) 
field. This is the result of the fact that in the case of mutual interaction of the charges, the electric field E 
in the basic Eq. (52) is proportional to the charge’s magnitude, rather than constant.23 

 Now we are ready to address an important conceptual question: can we locate this interaction 
energy in space? This task may seem trivial: Eqs. (58)-(61) seem to imply that non-zero contributions to 
U come only from the regions where the electric charges are located. However, one of the most beautiful 
features of physics is that sometimes completely different interpretations of the same mathematical 
result are possible. To get an alternative view of our current result, let us write Eq. (60) for a volume V 
so large that the electric field on the limiting surface S is negligible, and plug into it the charge density 
expressed from the Poisson equation (41): 

             
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rdU 320
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.     (1.62) 

23 The nature of this additional factor ½ is absolutely the same as in the well-known formula U = (½)x2 for the 
potential energy of an elastic spring providing the returning force F = –x, proportional to its displacement x from 
the equilibrium position.
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This expression may be integrated by parts as24 
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According to our condition of negligible field E = –  at the surface, the first integral vanishes, and we 
get a very important formula 
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This result, if represented in the following equivalent form:25 
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certainly invites an interpretation very much different than Eq. (60): it is natural to consider u(r) as the 
spatial density of the electric field energy, which is continuously distributed over all the space where the 
field exists – rather than just its part where the charges are located.  

Let us have a look at how these two alternative pictures work for our testbed problem, a 
uniformly charged sphere. If we start with Eq. (60), we may limit the integration by the sphere volume 
(0  r  R) where   0. Using Eq. (51), and the spherical symmetry of the problem (giving d3r = 
4r2dr), we get  
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On the other hand, if we use Eq. (65), we need to integrate the energy density everywhere, i.e. both 
inside and outside of the sphere: 
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Using Eqs. (19) and (22) for, respectively, the external and internal regions, we get 
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This is (fortunately :-) the same answer as given by Eq. (66), but to some extent, Eq. (68) is more 
informative because it shows how exactly the electric field’s energy is distributed between the interior 
and exterior of the charged sphere.26 

24 This transformation follows from the divergence theorem MA (12.2) applied to the vector function f = , 
taking into account the differentiation rule MA Eq. (11.4a): () = ()() + () = ()2 + 2. 
25 In the Gaussian units, the standard replacement 0  1/4  turns the last of Eqs. (65) into u(r) = E2/8. 
26 Note that U   at R  0. Such divergence appears at the application of Eq. (65) to any point charge. Since it 
does not affect the force acting on the charge, the divergence does not create any technical difficulty for analysis 
of charge statics or non-relativistic dynamics, but it points to a possible conceptual problem of classical 
electrodynamics as a whole at describing point charges. This issue will be discussed at the very end of the course 
(Sec. 10.6). 
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We see that, as we could expect, within the realm of electrostatics, Eqs. (60) and (65) are 
equivalent. However, when we examine electrodynamics (in Chapter 6 and beyond), we will see that the 
latter equation is more general and that it is more adequate to associate the electric energy with the field 
itself rather than its sources – in our current case, the electric charges. 

Finally, let us calculate the potential energy of a system of charges in the general case when both 
the internal interaction of the charges and their interaction with an external field are important. One 
might fancy that such a calculation should be very hard since, in both ultimate limits, when one of these 
interactions dominates, we have gotten different results. However, once again we get help from the 
almighty linear superposition principle: in the general case, for the total electric field we may write  

                       ,, extintextint rrrrErErE      (1.69) 

where the index “int” now marks the field induced by the charge system under analysis, i.e. the variables 
participating (without indices) in Eqs. (56)-(65). Now let us imagine that our system is being built up in 
the following way: first, the charges are brought together at Eext = 0, giving the potential energy Uint 
expressed by Eq. (60), and then Eext is slowly increased. Evidently, the energy contribution from the 
latter process cannot depend on the internal interaction of the charges, and hence may be expressed in 
the form (55). As a result, the total potential energy27 is the sum of these two components:  

                           rdrdUUU 3
ext

3
intextint )()()()(

2

1
rrrr  .  (1.70) 

Now making the transition from the potentials to the fields, absolutely similar to that performed in Eqs. 
(62)-(65), we may rewrite this expression as 

                rErErrr extint
2
int

03 2)(
2

)(with  ,)(   EurduU


.  (1.71) 

 One might think that this result, more general than Eq. (65) and perhaps less familiar to the 
reader, is something entirely new; however, it is not. Indeed, let us add to, and subtract Eext

2(r) from the 
sum in the brackets, and use Eq. (69) for the total electric field E(r); then Eq. (71) takes the form 

                rdErdEU 32
ext

0320

22
rr


.    (1.72) 

Hence, in the most important case when we are using the potential energy to analyze the statics and 
dynamics of a system of charges in a fixed external field, i.e. when the second term on the right-hand 
side of Eq. (72) may be considered as a constant, we may still use for U an expression similar to the 
familiar Eq. (65), but with the field E(r) being the sum (69) of the internal and external fields. 

 Let us see how this works in a very simple situation. A uniform external electric field Eext is 
applied normally to a very broad, plane layer that contains a very large and equal number of free electric 
charges of both signs – see Fig. 7. What is the equilibrium distribution of the charges over the layer? 

27 This total U (or rather its part dependent on our system of charges) is sometimes called the Gibbs potential 
energy of the system. (I will discuss this notion in detail in Sec. 3.5.) 
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 Since any area-uniform distribution of the charge inside the layer does not affect the field (and 
hence its energy) outside it, and the equilibrium distribution has to minimize the total potential energy of 
the system, Eq. (72) immediately gives the answer: the distribution should provide E  Eint + Eext = 0 
inside the whole layer – the effect called the electric field screening. The only way to ensure this 
equality is to have enough free charges of opposite signs residing on the layer’s surfaces to induce a 
uniform field Eint = –Eext, exactly compensating the external field at each point inside the layer – see 
Fig. 7. According to Eq. (24), the areal density of these surface charges should equal , with  = 
Eext/0. This is a rudimentary but reasonable model of conductors’ polarization – to be discussed in 
detail in the next chapter. 

 

1.4. Exercise problems 

 1.1. Calculate the electric field of a thin, long, straight filament, electrically charged with a 
constant linear density , by using two approaches: 

  (i) directly from the Coulomb law, and 
  (ii) from the Gauss law.  

 
1.2. Two thin, straight, parallel filaments separated by distance d carry 

equal and opposite uniformly distributed charges with linear density  – see the 
figure on the right. Calculate the force (per unit length) of the Coulomb interaction 
of the filaments. Compare its functional dependence on d with the Coulomb law 
for two point charges, and interpret their difference. 
 
 1.3. Calculate the electric field of the following spherically symmetric charge distribution: (r) = 
0exp{–r}. 
 
 1.4. A sphere of radius R, whose volume had been charged with a constant density , is split with 
a very narrow planar gap passing through its center. Calculate the force of the mutual electrostatic 
repulsion of the resulting two hemispheres. 
 
 1.5. A thin spherical shell of radius R, which had been charged with a constant areal density , is 
split into two equal halves with a very thin planar cut passing through the sphere’s center. Calculate the 
force of electrostatic repulsion between the resulting hemispheric shells, and compare the result with 
that of the previous problem. 
 
 1.6. Calculate the spatial distribution of the electrostatic potential created by a straight thin 
filament of a finite length 2l, charged with a constant linear density , and explore the result in the limits 
of very small and very large distances from the filament. 



d

Fig. 1.7. A simple model of the electric 
field screening in a conductor. Here 
(and in all figures below) the red and 
blue colors are used to denote the 
opposite charge signs. 

extE
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
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 1.7. A thin planar sheet, perhaps of an irregular shape, carries an electric charge with a constant 
areal density .  

 (i) Express the electric field’s component normal to the plane, at a certain distance from it, via 
the solid angle  at which the sheet is visible from the observation point.  
 (ii) Use the result to calculate the field in the center of a cube with one face charged with a 
constant density . 
 

1.8. Can one create, in an extended region of space, electrostatic fields with the Cartesian 
components proportional to the following products of the Cartesian coordinates {x, y, z}:  

 
 

   ?,,ii

,,,)i(

yzxyxy

xyxzyz
 

 
 1.9. Distant sources have been used to create different uniform electrostatic fields in two half-
spaces:  

 











 ,0at ,

,0at ,

zE

zE
zRr nrE  

except for a transitional region of scale R near the origin, where the field is 
perturbed but still axially symmetric. (As will be discussed in the next 
chapter, this may be done, for example, using a thin conducting membrane 
with a round hole of radius R in it – see the figure on the right.) Prove that 
such field may serve as an electrostatic lens for charged particles flying along the z-axis, at distances  
<< R from it, and calculate the focal distance f of this lens. Spell out the conditions of validity of your 
result.  

 
 1.10. Eight equal point charges q are located in the corners of a cube of 
side a. Calculate all Cartesian components Ej of the electric field, and their spatial 
derivatives Ej/rj’, in the cube’s center, where rj are the Cartesian coordinates 
oriented along the cube’s sides – see the figure on the right. Are all of your results 
valid for the center of a planar square, with four equal charges at its corners?  

 
 1.11. By a direct calculation, find the average electric potential of a spherical surface of radius R, 
created by a point charge q located at a distance r > R from the sphere’s center. Use the result to prove 
the following general mean value theorem: the electric potential at any point is always equal to its 
average value on any spherical surface with the center at that point while containing no electric charges 
inside it. 

 
 1.12. Two similar thin, circular, coaxial disks of radius R, separated 
by distance 2d, are uniformly charged with equal and opposite areal 
densities  – see the figure on the right. Calculate and sketch the 
distribution of the electrostatic potential and the electric field of the disks 
along their common axis. 
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 1.13. The electrostatic potential, created by some electric charge distribution, is 

 


















00

exp
2

11

r

r

rr
Cr , 

where C and r0 are constants, and r   r is the distance from the origin. Calculate the charge 
distribution in space. 
 
 1.14. A thin, flat, rectangular sheet of size ab is electrically charged with a constant areal 
density . Without an explicit calculation of the spatial distribution (r) of the electrostatic potential 
induced by this charge, find the ratio of its values in the center and in the corners of the rectangle. 

 Hint: Consider partitioning the rectangle into several similar parts and using the linear 
superposition principle. 

 
1.15. Calculate the electrostatic energy per unit area of the system of two thin, parallel planes 

with equal and opposite charges of a constant areal density , separated by distance d. 
 
 1.16. The system analyzed in the previous problem (two thin, 
parallel, oppositely charged planes) is now placed into an external, 
uniform, normal electric field Eext = /0 – see the figure on the right. Find 
the force (per unit area) acting on each plane, by two methods: 

 (i) directly from the electric field distribution, and 
 (ii) from the potential energy of the system. 
  
 1.17. Explore the relationship between the Laplace equation (42) and the minimum of the 
electrostatic field energy (65). 
  
 1.18. Prove the following reciprocity theorem of electrostatics:28 if two spatially-confined charge 
distributions 1(r) and 2(r) create, respectively, electrostatic potentials 1(r) and 2(r), then 

        rdrd 3
12

3
21 rrrr    . 

 Hint: Consider the integral   rd 3
21 EE . 

 1.19. Calculate the energy of the electrostatic interaction of two spheres, of radii R1 and R2,  each 
with a spherically symmetric charge distribution, separated by distance d > R1 + R2. 
  
 1.20. Calculate the electrostatic energy U of a (generally, thick) spherical shell, 
with charge Q uniformly distributed through its volume – see the figure on the right. 
Interpret the dependence of U on the inner cavity’s radius R1, at fixed Q and R2. 

28 This is only the simplest one of several reciprocity theorems in electromagnetism – see, e.g., Sec. 6.8 below. 
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