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Chapter 2. Charges and Conductors 

This chapter starts our discussion of the very common situations when the electric charge distribution in 
space is not known a priori, but rather should be calculated in a self-consistent way together with the 
electric field it creates. The simplest situations of this kind involve conductors and lead to the so-called 
boundary problems in that the partial differential equations describing the field distribution have to be 
solved with appropriate boundary conditions. Such problems are also typical for other parts of 
electrodynamics (and indeed for other fields of physics as well), so following tradition, I will use this 
chapter’s material as a playground for a discussion of various methods of boundary problem solution, 
and the special functions most frequently encountered on that way. 

 

2.1. Polarization and screening 

 The basic principles of electrostatics outlined in Chapter 1 present the conceptually full solution 
of the problem of finding the electrostatic field (and hence Coulomb forces) induced by electric charges 
distributed over space with some density (r). However, in most practical situations, this function is not 
known but should be found self-consistently with the field. For example, if a sample of relatively dense 
material is placed into an external electric field, it is typically polarized, i.e. acquires some local charges 
of its own, which contribute to the total electric field E(r) inside, and even outside it – see Fig. 1a.  

 

 

 

 

 

 

 

 The full solution of such problems should satisfy not only the fundamental Eq. (1.7) but also the 
so-called constitutive relations between the macroscopic variables describing the sample’s material.  
Due to the atomic character of real materials, such relations may be very involved. In this part of my 
series, I will have time to address these relations, for various materials, only rather superficially,1 
focusing on their simple approximations. Fortunately, in most practical cases such approximations work 
very well. 

1 A more detailed discussion of the electrostatic field screening may be found, e.g., in SM Sec. 6.4. (Alternatively, 
see either Sec. 13.5 of J. Hook and H. Hall, Solid State Physics, 2nd ed., Wiley, 1991; or Chapter 17 of N. 
Ashcroft and N. Mermin, Solid State Physics, Brooks Cole, 1976.) 

In particular, for the polarization of good conductors, a very reasonable approximation is given 
by the so-called macroscopic model, in which the free charges in the conductor are treated as a charged 
continuum that is free to move under the effect of the force F = qE exerted by the macroscopic electric 
field E, i.e. the field averaged over space on the atomic scale – see also the discussion at the end of Sec. 

Fig. 2.1. Two typical electrostatic 
situations involving conductors: 
(a) polarization by an external 
field, and (b) re-distribution of the 
conductor’s own charge over its 
surface – schematically. Here and 
below, the red and blue points 
denote charges of opposite signs. 

(a)     (b) 
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1.1.  In electrostatics (which excludes the case dc currents, to be discussed in Chapter 4 below), there 
should be no such motion, so everywhere inside the conductor the macroscopic electric field should 
vanish: 
             0E .      (2.1a) 

This is the electric field screening2 effect, meaning, in particular, that conductors’ polarization in an 
external electric field has the extreme form shown (rather schematically) in Fig. 1a, with the field of the 
induced surface charges completely compensating the external field in the conductor’s bulk. Note that 
Eq. (1a) may be rewritten in another, frequently more convenient form:  

         const ,      (2.1b) 

where  is the macroscopic electrostatic potential related to the macroscopic field by Eq. (1.33).3  (If a 
problem includes several unconnected conductors, the constant in Eq. (1b) may be specific for each of 
them.)  

 Now let us examine what we can say about the electric field in free space just outside a 
conductor, within the same macroscopic model. At close proximity, any smooth surface (in our current 
case, that of a conductor) looks planar. Let us integrate Eq. (1.28) over a narrow (d << l) rectangular 
loop C encircling a part of such plane conductor’s surface (see the dashed line in Fig. 2a), and apply it to 
the electric field vector E the well-known vector algebra equality – the Stokes theorem4 

            
CS

n drd rEE 2 ,     (2.2) 

where S is any surface limited by the contour C.  

  

 

 

 

 

 

 
 

 In our current case, the contour is dominated by two straight lines of length l, so if l is much 
smaller than the characteristic spatial scale of the field’s changes but much larger than the interatomic 
distances, the right-hand side of Eq. (2) may be well approximated as [(E)in – (E)out]l, where E is the 
tangential component of the corresponding macroscopic field, parallel to the surface. On the other hand, 
according to Eq. (1.28), the left-hand side of Eq. (2) equals zero. Hence, the macroscopic field’s 

2 This term, used for the electric field, should not be confused with shielding – the term used for the description of 
magnetic field’s reduction by magnetic materials – see Chapter 5 below.   
3 Since averaging of a function over space is a linear operation, any linear relation between genuine (microscopic) 
variables, including Eq. (1.33), is also valid for the corresponding macroscopic variables. 
4 See, e.g., MA Eq. (12.1). 
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Fig. 2.2. (a) The surface charge layer at a conductor’s surface, and 
(b) the electric field lines and equipotential surfaces near it. 
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component E should be continuous at the surface, and to satisfy Eq. (1a) inside the conductor, the 
component has to vanish immediately outside it: (E)out = 0. This means that the electrostatic potential 
immediately outside of a conducting surface cannot change along it. In other words, the equipotential 
surfaces outside a conductor should “lean” to the conductor’s surface, with their potential values 
approaching the constant potential of the conductor – see Fig. 2b. 

 So, the electrostatic field just outside any conductor has to be normal to its surface. To find this 
normal field, we may apply the universal relation (1.24) to our macroscopic field E. Since in our current 
case En = 0 inside the conductor, we get   

             
n

E nn 



 00out0  ,    (2.3) 

where  is the macroscopic areal density of the conductor’s surface charge. Note that deriving this 
universal relation between the normal component of the field and the surface charge density, we have 
not used any cause-vs-effect arguments, so Eq. (3) is valid regardless of whether the surface charge is 
induced by an externally applied field (as in the case of conductor’s polarization, shown in Fig. 1a), or 
the electric field is induced by the electric charge placed on the conductor and then self-redistributed 
over its surface (Fig. 1b), or it is some combination of both effects. 

Before starting to use the macroscopic model for the solution of particular problems of 
electrostatics, let me use the balance of this section to briefly discuss its limitations. (The reader in a 
rush may skip this discussion and proceed to Sec. 2; however, I believe that every educated physicist has 
to understand when this model works, and when it does not.) 

 Since the argumentation which has led us to Eq. (1.24) and hence to Eq. (3) is valid for any 
thickness d of the Gauss pillbox, within the macroscopic model, the whole surface charge is located 
within an infinitely thin surface layer. This is of course impossible physically: for one, this would 
require an infinite volumic density  of the charge. In reality, the charged layer (and hence the region of 
the electric field’s crossover from the finite value (3) to zero) has a nonzero thickness . At least three 
effects contribute to . 

 (i) Atomic structure of matter. Within each atom, and frequently between the adjacent atoms as 
well, the genuine (“microscopic”) electric field is highly non-uniform. Thus, as was already stated 
above, Eq. (1) is valid only for the macroscopic field, i.e. the field averaged over distances of the order 
of the atomic size scale a0 ~ 10-10 m,5 and cannot be applied to the field changes on that scale. As a 
result, the surface layer of charges cannot be much thinner than a0. 

 (ii) Thermal excitation. According to Eq. (1.9), in the whole field-free bulk of a conductor, the 
net charge density,  = e(n – ne), 6 has to vanish, so the numbers of protons in atomic nuclei (n) and 
electrons (ne) per unit volume have to be balanced. However, if an external electric field penetrates a 
conductor, free electrons can shift in or out of its affected part, depending on the field’s contribution to 
their potential energy, U = qe = –e. (Here the arbitrary constant in   is chosen to give  = 0 well 
inside the conductor.) In classical statistics, this change is described by the Boltzmann distribution:7 

5 This scale originates from the quantum-mechanical effects of electron motion, characterized by the Bohr radius 
rB  2/me(e

2/40)  0.5310-10 m – see, e.g., QM Eq. (1.10). It also defines the scale EB = e/40rB
2 ~ 1012 SI 

units (V/m) of the microscopic electric fields inside atoms. (Please note how large these fields are.) 
6 In this series, e denotes the fundamental charge, e  1.610-19 C > 0, so that the electron’s charge equals (–e). 
7 See, e.g., SM Sec. 3.1. 
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where T is the absolute temperature in kelvins (K), and kB  1.3810-23 J/K is the Boltzmann constant. 
As a result, the net charge density is 
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The penetrating electric field polarizes the atoms as well. As will be discussed in the next chapter, such 
polarization results in the reduction of the electric field by a material-specific dimensionless factor  
(larger, but typically not too much larger than 1), called the dielectric constant. As a result, the Poisson 
equation (1.41) takes the so-called Poisson-Boltzmann form,8  
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where we have taken advantage of the 1D geometry of the system to simplify the Laplace operator, with 
the z-axis normal to the surface.  

 Even with this simplification, Eq. (6) is a nonlinear differential equation allowing an analytical 
but rather bulky solution. Since our current goal is just to estimate the field penetration depth , let us 
simplify the equation further by considering the low-field limit: e  ~ e E  << kBT. In this limit, we 
may extend the exponent into the Taylor series, and keep only two leading terms (of which the first one 
cancels with the following unity). As a result, Eq. (6) becomes linear, 

        ,
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where the constant , in this case, is called the Debye (or “Debye-Hückel”) screening length D: 
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  .      (2.8) 

 As the reader certainly knows, Eq. (7) describes an exponential decrease of the electric potential, 
with the characteristic length D:   exp{-z/D}, where the z-axis is directed into the conductor. 
Plugging in the involved fundamental constants into Eq. (8), we get the following estimate: D[m]  
70( T[K]/n[m-3])1/2. According to this formula, in semiconductors at room temperature, the Debye 
length may be rather substantial. For example, in silicon (  12) doped to the free charge carrier 
concentration n = 31018 cm-3 (the value typical for modern integrated circuits),9 D  2 nm, still well 

8 This equation and/or its straightforward generalization to the case of charged particles (ions) of several kinds is 
also (especially in the theories of electrolytes and plasmas) called the Debye-Hückel equation.  
9 There is a good reason for making an estimate of D for this case: the electric field created by the gate electrode 
of a field-effect transistor, penetrating into doped silicon by a depth ~D, controls the electric current in this most 
important electronic device – on whose back all our information technology rides. Because of that, D establishes 
the possible scale of semiconductor circuit shrinking, which is the basis of the well-known Moore’s law. 
(Practically, the scale is determined by integrated circuit patterning techniques, and Eq. (8) may be used to find 
the proper charge carrier density n and hence the necessary level of silicon doping – see, e.g., SM Sec. 6.4.) 
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above the atomic size scale a0, thus justifying the estimate  However, for typical good metals (n ~ 1029 
m-3,  ~ 10) the same formula gives D ~ 10-11 m, less than a0. In this case, Eq. (8) should not be taken 
literally, because it is based on the assumption of a continuous charge distribution. 

 (iii) Quantum statistics. Actually, the last estimate is not valid for good metals (and highly doped 
semiconductors) for one more reason: their free electrons obey the quantum (Fermi-Dirac) statistics 
rather than the Boltzmann distribution (4).10 As a result, at all realistic temperatures, the electrons form a 
degenerate quantum gas, occupying all available energy states below some energy level EF >> kBT, 
called the Fermi energy. In these conditions, the screening of a relatively low electric field may be 
described by replacing Eq. (5) with 

                      ,)())(( F
2

Fe  EE geUegnne     (2.9) 

where g(E) is the density of quantum states (per unit volume per unit energy) at the electron’s energy E. 
At the Fermi surface, the density is of the order of n/EF.11 As a result, we again get the second of Eqs. 
(7), but with a different characteristic scale , defined by the following relation: 
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and called the Thomas-Fermi screening length. Since for most good metals, n is of the order of 1029 m-3, 
and EF is of the order of 10 eV, Eq. (10) typically gives TF close to a few a0, and makes the Thomas-
Fermi screening theory valid at least semi-quantitatively. 

 To summarize, the electric field penetration into good conductors is limited to a depth  ranging 
from a fraction of a nanometer to a few nanometers, so for problems with a characteristic linear size 
much larger than that scale, the macroscopic model (1) gives very good accuracy, and we will use them 
in the rest of this chapter. However, the reader should remember that in many situations involving 
semiconductors, as well as at some nanoscale experiments with metals, the electric field penetration 
should be taken into account.  

 Another important condition of the macroscopic model’s validity is imposed on the electric 
field’s magnitude, which is especially significant for semiconductors. Indeed, as Eq. (6) shows, Eq. (7) 
is only valid if e   << kBT, so E  ~   /D should be much lower than kBT/eD. In the example given 
above (D  2 nm, T = 300 K), this means E  << Et ~107V/m  105V/cm – the value readily reachable 
in the lab. In larger fields, the field penetration becomes nonlinear, leading in particular to the very 
important effect of carrier depletion; it will be discussed in SM Sec. 6.4. For typical metals, such 
linearity limit,  Et ~ EF/eTF is much higher, ~1011 V/m, but the model may be violated at lower fields by 
other effects, such as the impact-ionization leading to electric breakdown, which may start at ~106 V/m. 

 

2.2. Capacitance 

 Let us start using the macroscopic model from systems consisting of charged conductors only, 
with no so-called stand-alone charges in the free space outside them.12 Our goal here is to calculate the 

10 See, e.g., SM Sec. 2.8. For a more detailed derivation of Eq. (10), see SM Chapter 3. 
11 See, e.g., SM Sec. 3.3.  
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distributions of the electric field E and potential   in space, and the distribution of the surface charge 
density  over the conductor surfaces. However, before doing that for particular situations, let us see if 
there are any integral measures of these distributions, which should be our primary focus. 

 The simplest case is of course a single conductor in the otherwise free space. According to Eq. 
(1b), all its volume should have the same electrostatic potential , evidently providing one convenient 
global measure of the situation. Another integral measure is provided by the total charge 

           
V S

rdrdQ 23  ,     (2.11) 

where the last integral is extended over the whole surface S of the conductor. In the general case, what 
can we tell about the relation between Q and ? At Q = 0, there is no electric field in the system, and it is 
natural (though not absolutely necessary) to select the arbitrary constant in the electrostatic potential to 
have  = 0 everywhere. Then, if the conductor is charged with a non-zero Q, according to the linear Eq. 
(1.7), the electric field at any point of space has to be proportional to that charge. Hence the electrostatic 
potential at all points, including its value  inside the conductor, is also proportional to Q: 

           Qp .      (2.12) 

The proportionality coefficient p, which depends on the conductor’s size and shape, but on neither  nor 
Q, is called its reciprocal capacitance (or, not too often, “electric elastance”). Usually, Eq. (12) is 
rewritten in a different form,  

         ,
1

with  ,
p

 CCQ       (2.13) 

where C is called self-capacitance. (Frequently, C is called just capacitance, but as we will see very 
soon, for more complex situations the latter term may be ambiguous.) 

 Before calculating C for particular geometries, let us have a look at the electrostatic energy U of 
a single conductor. To calculate it, of the several relations discussed in Chapter 1, Eq. (1.61) is most 
convenient, because all elementary charges qk are now parts of the conductor charge, and hence reside at 
the same potential  – see Eq. (1b) again. As a result, the equality becomes very simple: 

          QqU
k

k 
2

1

2

1
  .      (2.14) 

Moreover, using the linear relation (13), the same result may be re-written in two more forms: 

               .
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Q
U       (2.15) 

 We will discuss several ways to calculate C in the next sections, and right now will have a quick 
look at just the simplest example for that we have calculated everything necessary in the previous 
chapter: a conducting sphere of radius R. Indeed, we already know the electric field distribution: 
according to Eq. (1), E = 0 inside the sphere, while Eq. (1.19), with Q(r) = Q, describes the field 
distribution outside it, because of the evident spherical symmetry of the surface charge distribution. 

12 In some texts, these charges are called “free”. This term is somewhat misleading, because they may well be 
bound, i.e. unable to move freely. 
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Moreover, since the latter formula is exactly the same as for the point charge placed in the sphere’s 
center, the potential’s distribution in space may be obtained from Eq. (1.35) by replacing q with the 
sphere’s full charge Q. Hence, on the surface of the sphere (and, according to Eq. (1b), through its 
interior),  

        
R

Q

04

1


  .      (2.16) 

Comparing this result with the definition (13), for the sphere’s self-capacitance we obtain a very simple 
formula13 
                RC 04 .      (2.17) 

This formula, which should be well familiar to the reader, is convenient to get some feeling of 
how large the SI unit of capacitance (1 farad, abbreviated as F) is: the self-capacitance of Earth (RE  
6.34106 m) is below 1 mF! Another important note is that while Eq. (17) is not exactly valid for a 
conductor of arbitrary shape, it implies an important general estimate 

          aC 02~        (2.18) 

where a is the scale of the linear size of any conductor.14 

 Now proceeding to a system of two arbitrary conductors, we immediately see why we should be 
careful with the capacitance definition: one constant C is insufficient to describe all electrostatic 
properties of such a system. Indeed, here we have two, generally different conductor potentials, 1 and 
2, that may depend on both conductor charges, Q1 and Q2. Using the same arguments as for the single-
conductor case, we may conclude that the dependence is always linear: 

             
,
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but now has to be described by more than one coefficient. Actually, it turns out that there are three 
rather than four different coefficients in these relations, because  

          .2112 pp        (2.20) 

This equality may be proved in several ways, for example, using the general reciprocity theorem of 
electrostatics (whose proof was the subject of Problem 1.17): 

                     rdrd 31
2

32
1 rrrr    ,    (2.21) 

13 In the Gaussian units, using the standard replacement 40  1, this relation takes an even simpler form: C = 
R, very easy to remember. Generally, in the Gaussian units (but not in the SI system!) the capacitance has the 
dimensionality of length, i.e. is measured in centimeters. Note also that a fractional SI unit, 1 picofarad (10-12 F), 
is very close to the Gaussian unit: 1 pF = [(110-12)/(4010-2)] cm  0.8998 cm. So, 1 pF is close to the 
capacitance of a metallic ball with a 1-cm radius, making this unit very convenient for human-scale systems. 
14 These arguments are somewhat insufficient to say which size should be used for a in the case of narrow, 
extended conductors, e.g., a thin, long wire. Very soon we will see that in such cases the electrostatic energy, and 
hence C, depends mostly on the larger size of the conductor. 
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where (1)(r) and (2)(r) are the potential distributions induced, respectively, by two electric charge 
distributions, 1(r) and 2(r). In our current case, each of these integrals is limited to the volume (or, 
more exactly, the surface) of the corresponding conductor, where each potential is constant and may be 
taken out of the integral. As a result, Eq. (21) is reduced to 

                   2
1

21
2

1 rr  QQ  .     (2.22) 

In terms of Eq. (19), (2)(r1) is just p12Q2, while (1)(r2) equals p21Q1. Plugging these expressions into Eq. 
(22), and canceling the product Q1Q2, we arrive at Eq. (20).  

 Hence the 22 matrix of coefficients pjj’ (called the reciprocal capacitance matrix) is always 

symmetric, and using the natural notation p11  p1, p22  p2, p12 = p21  p, we may rewrite it in a simpler 
form: 
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Plugging the relation (19), in this new notation, into Eq. (1.61), we see that the full electrostatic energy 
of the system may be expressed as a quadratic form of its charges: 
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It is evident that the middle term on the right-hand side of this equality describes the electrostatic 
coupling of the conductors. (Without it, the energy would be just a sum of two independent electrostatic 
energies of conductors 1 and 2.)15 Still, even with this simplification, Eqs. (19) and (20) show that in the 
general case of arbitrary charges Q1 and Q2, the system of two conductors should be characterized by 
three, rather than just one coefficient (“the capacitance”). This is why we may attribute a single 
capacitance to the system only in some particular cases.  

 For practice, the most important of them is when the system as the whole is electrically neutral: 
Q1 = –Q2  Q. In this case, the most important function of Q is the difference between the conductors’ 
potentials, called the voltage:16 

        ,21  V       (2.25) 

For that function, the subtraction of two Eqs. (19) gives  

            
ppp 2

1
with  ,

21 
 C

C

Q
V ,    (2.26) 

where the coefficient C is called the mutual capacitance between the conductors – or, again, just 
“capacitance” if the term’s meaning is absolutely clear from the context. The same coefficient describes 

15 This is why systems with p << p1, p2  are called weakly coupled, and may be analyzed using approximate 
methods – see, e.g., Fig. 4 and its discussion below. 
16 A word of caution: in condensed matter physics and electrical engineering, voltage is most commonly defined 
as the difference between electrochemical rather than electrostatic potentials. These two notions coincide if the 
conductors have equal workfunctions – for example, if they are made of the same material. In this course, this 
condition will be implied, and the difference between the two voltages ignored – to be discussed in detail in SM 
Sec. 6.3. 
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the electrostatic energy of the system. Indeed, plugging Eqs. (19) and (20) into Eq. (24), we see that 
both forms of Eq. (15) are reproduced if  is replaced with V, Q1 with Q, and with C meaning the mutual 
capacitance: 

                .
22
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2
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Q
U       (2.27) 

 The best-known system for which the mutual capacitance C may be readily calculated is the 
plane (or “parallel-plate”) capacitor: a system of two conductors separated with a narrow plane gap of a 
constant thickness d and an area A ~ a2 >> d2 – see Fig. 3.  

 

 

 

 

 

 Since the surface charges that contribute to the opposite charges Q of the conductors of this 
system, attract each other, in the limit d << a they sit entirely on the opposite surfaces limiting the gap, 
so there is virtually no electric field outside of the gap, while (according to the discussion in Sec. 1) 
inside the gap it is normal to the surfaces. According to Eq. (3), the magnitude of this field is E = /0. 
Integrating this field across thickness d of the narrow gap, we get V  1 – 2 = Ed = d/0, so  = 0V/d. 
However, due to the constancy of the potential of each electrode, V should not depend on the position in 
the gap area. As a result,   should be also constant over all the gap area A, regardless of the external 
geometry of the conductors (see Fig. 3 again), and hence Q = A = 0V/d. Thus we may write V = Q/C, 
with 

          
d

A
C 0 .      (2.28) 

 Let me offer a few comments on this well-known formula. First, it is valid even if the gap is not 
quite planar – for example, if it gently curves on a scale much larger than d, but retains its thickness. 
Second, Eq. (28), which is valid only if A ~ a2 is much larger than d2, ignores the nonuniform electric 
fields spreading to distances ~d beyond the gap edges. Such fringe fields result in an additional stray 
capacitance C’ ~ 0a << C ~ 0a(a/d).17 Finally, the same condition (A >> d2) assures that C is much 
larger than the self-capacitance Cj of each conductor – see Eq. (18).  

 The opportunities opened by the last fact for electronic engineering and experimental physics 
practice are rather astonishing. For example, a very realistic 3-nm layer of high-quality aluminum oxide, 
which may provide nearly perfect electric insulation between two thin conducting films, with an area of 
0.1 m2 (a typical area of silicon wafers used in the semiconductor industry) provides C ~ 1 mF,18 larger 
than the self-capacitance of the whole planet Earth!  

17 The exact value of C’ depends on the shape of the conductors. In a rare case when it has been calculated 
analytically, two thin round concentric disks of radius R, C’ = 0R [ln(16R/d) – 1]. 
18 Just as in Sec. 1, for the estimate to be realistic, I took into account the additional factor  (for aluminum oxide, 
close to 10) which should be included in the numerator of Eq. (28) to make it applicable to dielectrics – see 
Chapter 3 below. 

Capacitor’s 
energy 

ad 

a

Q

Q Fig. 2.3. Plane capacitor 
– schematically. A

C: Plane 
capacitor 
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 In a plane capacitor with d << a, the electrostatic coupling of the two conductors is evidently 
very strong. As an opposite example of a weakly coupled system, let us consider two conducting spheres 
of the same radius R, separated by a much larger distance d (Fig. 4). 

 

 

 

In this case, the diagonal components of the matrix (23) may be approximately found from Eq. 
(16), i.e. by neglecting the coupling altogether: 

               .
4

1

0
21 R
 pp      (2.29) 

Now, if we had just one sphere (say, number 1), the electric potential at distance d from its center would 
be given by Eq. (16):  = Q1/40d. If we move to this point a small (R << d) sphere without its own 
charge, we may expect that its potential should not be too far from this result, so 2  Q1/40d. 
Comparing this expression with the second of Eqs. (19) (taken for Q2 = 0), we get 

              .
4

1
2,1

0

pp 
d

     (2.30) 

From here and Eq. (26), the mutual capacitance 

           RC 0
21

2
1 



pp

.     (2.31) 

We see that (somewhat counter-intuitively), in this limit C does not depend substantially on the distance 
between the spheres, i.e. does not describe their electrostatic coupling. The off-diagonal coefficients of 
the reciprocal capacitance matrix (20) play this role much better – see Eq. (30). 

 Now let us consider the case when only one conductor of the two is charged, for example, Q1  
Q, while Q2 = 0. Then Eqs. (19)-(20) yield 

          .111 Qp       (2.32) 

Now, we may follow Eq. (13) and define C1  1/p1 (and C2  1/p2), just to see that such partial 
capacitances of the conductors of the system differ from its mutual capacitance C – cf. Eq. (26). For 
example, in the case shown in Fig. 4, C1 = C2  40R  2C. 

 Finally, let us consider one more frequent case when one of the conductors carries a certain 
charge (say, Q1 = Q), but the potential of its counterpart is sustained constant, say 2 = 0.19 (This 
condition is especially easy to implement if the second conductor is much larger than the first one. 
Indeed, as the estimate (18) shows, in this case, it would take a much larger charge Q2 to make the 
potential 2 comparable with 1.) In this case the second of Eqs. (19), with the account of Eq. (20), 
yields Q2 = – (p/p2)Q1. Plugging this relation into the first of those equations, we get 

19 In electrical engineering, such a constant-potential conductor is called the ground. This term stems from the fact 
that in many cases the electrostatic potential of the (weakly) conducting ground at the Earth’s surface is virtually 
unaffected by laboratory-scale electric charges. 

R R
Rd  Fig. 2.4. A system of two far-separated, 

similar conducting spheres. 
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Thus, this effective capacitance of the first conductor is generally different from both its partial 
capacitance C1 and the mutual capacitance C of the system, emphasizing again how accurate one should 
be using the term “capacitance” without a qualifier. 

 Note also that none of these capacitances is equal to any element of the matrix reciprocal to the 
matrix (23): 

       















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pp
pp
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.    (2.34) 

Because of this reason, this physical capacitance matrix, which expresses the vector of conductor 
charges via the vector of their potentials, is less convenient for most applications than the reciprocal 
capacitance matrix (23). The same conclusion is valid for multi-conductor systems, which are most 
conveniently characterized by an evident generalization of Eq. (19). Indeed, in this case, even the 
mutual capacitance between two selected conductors may depend on the electrostatic conditions of other 
components of the system. 

 Logically, at this point I would need to discuss the particular, but practically very important case 
when the regions where the electric field between each pair of conductors is most significant do not 
overlap – such as in the example shown in Fig. 5a. In this case, the system’s properties may be discussed 
using the equivalent-circuit language, representing each such region as a lumped (localized) capacitor, 
with a certain mutual capacitance C, and the whole system as some connection of these capacitors by 
conducting “wires”, whose length and geometry are not important – see Fig. 5b. 

 

 

 

 

 

 

 
  

 Since the analysis of such equivalent circuits is covered in typical introductory physics courses, I 
will save time by skipping their discussion. However, since such circuits are very frequently met in 
physical experiment and electrical engineering practice, I would urge the reader to self-test their 
understanding of this topic by solving a couple of problems offered at the end of this chapter,20 and if 
their solution presents any difficulty, review the corresponding section in an undergraduate textbook.  

 

20 These problems have been selected to emphasize the fact that not every circuit may be reduced to the simplest 
connections of the component capacitors and/or their groups in parallel and/or in series. 

Fig. 2.5. (a) A simple system of 
conductors, with three well-
localized regions of high electric 
field (and hence surface charge) 
concentration, and (b) its 
representation with an equivalent 
circuit of three lumped capacitors.  

(a)       (b) 
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2.3. The simplest boundary problems 

 In the general case when the electric field distribution in the free space between the conductors 
cannot be easily found from the Gauss law or a particular symmetry, the best approach is to try to solve 
the differential Laplace equation (1.42), with the boundary conditions (1b):  

                k
kS   ,02 ,                (2.35) 

where Sk is the surface of the kth conductor of the system. After this boundary problem has been solved, 
i.e. the spatial distribution (r) has been found at all points outside the conductors, it is straightforward 
to use Eq. (3) to find the surface charge density, and finally the total charge  

      
k

k

S
rdQ 2       (2.36) 

of each conductor, and hence any component of the reciprocal capacitance matrix. As an illustration, let 
us implement this program for three very simple problems. 

(i) Plane capacitor (Fig. 3). In this case, the easiest way to solve the Laplace equation is to use 
the linear (Cartesian) coordinates with one axis (say, z) normal to the conductor surfaces  – see Fig. 6.  

 

 

 

 
 

In these coordinates, the Laplace operator is just the sum of three second derivatives.21 It is 
evident that due to the problem’s translational symmetry within the [x, y] plane, deep inside the gap (i.e. 
at any lateral distance from the edges much larger than d) the electrostatic potential may only depend on 
the coordinate normal to the gap surfaces: (r) = (z). For such a function, the derivatives over x and y 
vanish, and the boundary problem (35) is reduced to a very simple ordinary differential equation 

        ,0)(
2

2

z
dz

d 
      (2.37) 

with boundary conditions 
            .)(,0)0( Vd        (2.38) 

(For the sake of notation simplicity, I have used the discretion of adding a constant to the potential, to 
make one of the potentials vanish, and also the definition (25) of the voltage V.) The general solution of 
Eq. (37) is a linear function:  (z) = c1z + c2, whose constant coefficients c1,2 may be readily found from 
the boundary conditions (38). The final solution is 

          .
d

z
V       (2.39) 

21 See, e.g. MA Eq. (9.1). 

Typical 
boundary 
problem 

Fig. 2.6. The plane capacitor as the system for the 
simplest illustration of the boundary problem 
(35) and its solution. 

x

z

0

d
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From here the only nonzero component of the electric field is  

              
d

V

dz

d
Ez 


,     (2.40) 

and the surface charge of the capacitor plates is 

     
d

V
EE zn 000    ,     (2.41) 

where the upper and lower signs correspond to the upper and lower plates, respectively. Since  does 
not depend on x and y, we can get the full charges Q1 = –Q2  Q of the surfaces by its multiplication by 
the gap area A, giving us again the already obtained result (28) for the mutual capacitance C  Q/V. I 
believe that this calculation, though very easy, may serve as a good illustration of the boundary problem 
solution approach, which will be used below for more complex cases. 

(ii) Coaxial-cable capacitor. Coaxial cable is a system of two round cylindrical, coaxial 
conductors, with the cross-section shown in Fig. 7.  

 

 

 

 

 

 
 
Evidently, in this case, the cylindrical coordinates {, , z}, with the z-axis coinciding with the 

common axis of the cylinders, are most convenient.22 Due to the axial symmetry of the problem, in these 
coordinates E(r) = nE(), (r) = (), so in the general expression for the Laplace operator23 we  may 
take /  = /z = 0. As a result, only the radial term of the operator survives, and the boundary 
problem (35) takes the form 

   0)(,)(,0
1









bVa

d

d

d

d 




.   (2.42) 

The sequential double integration of this ordinary linear differential equation is elementary (and similar 
to that of the Poisson equation in spherical coordinates, carried out in Sec. 1.3), giving 

           21211 ln, c
a

cc
"

"d
cc

d

d

a

 










.   (2.43) 

The constants c1,2 may be found using boundary conditions (42): 

22 I am sorry for using, for the 2D radius, the same letter  as for the volumic density of charge. (Both notations 
are too common to refuse.) I do not believe this may lead to confusion, because the letter will not be used in two 
different meanings during any particular discussion.  
23 See, e.g., MA Eq. (10.3). 

ab 

a0

Fig. 2.7. The cross-section of a coaxial cable. 
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 0ln, 212  c
a

b
cVc ,      (2.44) 

giving c1 = –V/ln(b/a), so Eq. (43) takes the following form: 
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
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
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1

ab

a
V

 .     (2.45) 

 Next, for our axial symmetry, the general expression for the gradient of a scalar function is 
reduced to its radial derivative, so 

   
 ab

V

d

d
E

/ln
  .     (2.46) 

This expression, plugged into Eq. (2), allows us to find the density of the conductors’ surface charge. 
For example, for the inner electrode 

        aba

V
aEa /ln

0
0


  ,     (2.47) 

so its full charge (per unit length of the system) is 

      
)/(ln

2
2 0

ab

V
a

l

Q
a


  .     (2.48) 

(It is straightforward to check that the charge of the outer electrode is equal and opposite.) Hence, by  
the definition of the mutual capacitance, its value per unit length is 

        
)/(ln

2 0

ablV

Q

l

C 
 .     (2.49) 

This expression shows that the total capacitance C is proportional to the systems length l (if l >> 
a, b), while being only logarithmically dependent on is the dimensions of its cross-section. Since the 
logarithm of a large argument is an extremely slow function (sometimes called a quasi-constant), if the 
external conductor is made very large (b >> a), the capacitance diverges, but very weakly. Such 
logarithmic divergence may be cut by any minuscule additional effect, for example by the finite length l 
of the system. This fact yields the following very useful estimate of the self-capacitance of a single 
round wire of radius a: 

al
al

l
C  for ,

)/(ln

2 0
.     (2.50) 

 On the other hand, if the gap d between the conductors is very narrow: d  b – a << a, then 
ln(b/a)  ln(1 + d/a) may be approximated as d/a, and Eq. (49) is reduced to C  20al/d, i.e. to Eq. 
(28) for the plane capacitor, of the appropriate area A = 2al. 

 (iii) Spherical capacitor. This is a system of two conductors, with a central cross-section similar 
to that of the coaxial cable (Fig. 7), but now with spherical rather than axial symmetry. This symmetry 
implies that we may be better off using spherical coordinates, so the potential  depends only on one of 
them: the distance r from the common center of the conductors: (r) = (r). As we already know from 
Sec. 1.3, in this case the general expression for the Laplace operator is reduced to its first (radial) term, 

C: Coaxial 
cable 
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so the Laplace equation takes the simple form (1.47). Moreover, we have already found the general 
solution of this equation – see Eq. (1.50): 

            ,)( 2
1 c
r

c
r       (2.51) 

Now acting exactly as above, i.e. determining the (only essential) constant c1 from the boundary 
condition (a) – (b) =V, we get 
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 Next, we can use the spherical symmetry to find the electric field, E(r) = nrE(r), with 
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and hence its values on conductors’ surfaces, and then the surface charge density  from Eq. (3). For 
example, for the inner conductor’s surface, 
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so, finally, for the full charge of that conductor, we get the following result: 
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(Again, the charge of the outer conductor is equal and opposite.) Now we can use the definition (26) of 
the mutual capacitance to get the final result: 
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 For b >> a, it coincides with Eq. (17) for the self-capacitance of the inner conductor. On the 
other hand, if the gap d between two conductors is narrow, d  b – a << a, then 

               ,4
)(

4
2

00 d
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d

daa
C  


     (2.57) 

i.e. the capacitance approaches that of the planar capacitor of the area A = 4a2 – as it should. 

 All this seems (and indeed is) very straightforward, but let us contemplate what was the reason 
for such easy successes. In each of the cases (i)-(iii) we have managed to find such coordinates that both 
the Laplace equation and the boundary conditions involved only one of them. The necessary condition 
for the former fact is for the coordinates to be orthogonal. This means that the three vector components 
of the local differential dr, due to small variations of the new coordinates (say, dr, d, and d for the 
spherical coordinates), are mutually perpendicular.  

 

2.4. Using other orthogonal coordinates 

 The cylindrical and spherical coordinates used above are only the simplest examples of the 
curvilinear orthogonal (or just “orthogonal”) coordinates, and that approach may be extended to other 

C: Spherical 
capacitor 
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coordinate systems of this type. As an example, let us calculate the self-capacitance of a thin, round 
conducting disk. The cylindrical or spherical coordinates would not give much help here, because while 
they have the appropriate axial symmetry, they would make the boundary condition on the disk too 
complicated: involving two coordinates, either  and z, or r and . Help comes from noting that the flat 
disk, i.e. the area with z = 0, r < R,  may be viewed as the limiting case of an axially-symmetric ellipsoid 
(or “degenerate ellipsoid”, or “ellipsoid of rotation”, or “spheroid”) – the surface formed by rotation of 
the usual ellipse about one of its major axes – which would be also the symmetry axis of the disk – in 
Fig. 8, the z-axis.  

 

 

 

– 

 

 

 Analytically, this ellipsoid may be described by the following equation: 

                 1
2

2

2

22
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

b

z

a

yx
,     (2.58) 

where a and b are the so-called major semi-axes, whose ratio determines the ellipse’s eccentricity – the 
degree of its “squeezing”. For our problem, we will only need oblate ellipsoids with a  b; according to 
Eq. (58), they may be represented as surfaces of constant  in the oblate spheroidal (also called 
“degenerate ellipsoidal”) coordinates {, , } that are related to the Cartesian coordinates as follows:24 
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Such spheroidal coordinates are an evident generalization of the spherical coordinates, which 
correspond to the limit   >> 1 (i.e. r >> R). In the opposite limit, the surface of constant  = 0 describes 
our thin disk of radius R, with the coordinate  describing the distance   (x2 + y2)1/2 = Rsin of its 
point from the z-axis. It is almost evident (and easy to prove) that the curvilinear coordinates (59) are 
also orthogonal; the Laplace operator in them is: 
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 Though this expression may look a bit intimidating, let us notice that since in our current 
problem, the boundary conditions depend only on :25 

24 For solution of some problems, it is convenient to use Eqs. (59) with – <  < + and 0    /2. 
25 I have called the disk’s potential V, to distinguish it from the potential  at an arbitrary point of space. 

Fig. 2.8. Solving the disk’s capacitance problem. (The 
cross-section of the system by the vertical plane y = 0.) 
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         0,0     V ,     (2.61) 

there is every reason to assume that the electrostatic potential in all space is a function of  alone; in 
other words, that all ellipsoids  = const are the equipotential surfaces. Indeed, acting on such a function 
() by the Laplace operator (60), we see that the two last terms in the square brackets vanish, and the 
Laplace equation (35) is reduced to a simple ordinary differential equation 
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Integrating it twice, just as we did in the three previous problems, we get 
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This integral may be readily worked out using the substitution   sinh  (which gives d  cosh d, 
i.e. d = d/cos, and cosh2 = 1 + sinh2   1 +  2): 
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The integration constants c1,2 may be simply found from the boundary conditions (61), and we arrive at 
the following final expression for the electrostatic potential: 
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This solution satisfies both the Laplace equation and the boundary conditions. Mathematicians tell us 
that the solution of any boundary problem of the type (35) is unique, so we do not need to look any 
further.  

Now we may use Eq. (3) to find the surface density of electric charge, but in the case of a thin 
disk, it is more natural to add up such densities on its top and bottom surfaces at the same distance  = 
(x2 + y2)1/2 from the disk’s center. The densities are evidently equal, due to the problem symmetry about 
the plane z = 0, so the total density is  = 20Enz=+0. According to Eq. (65), and the last of Eqs. (59), the 
electric field on the upper surface is 
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and we see that the charge is distributed over the disk very nonuniformly: 
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with a singularity at the disk edge. Below we will see that such singularities are very typical for sharp 
edges of conductors. Fortunately, in our current case the divergence is integrable, giving a finite disk 
charge: 
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Thus, for the disk’s self-capacitance we get a very simple result, 

           ,4
2

8 00 RRC 


       (2.69) 

a factor of /2  1.57 lower than that for the conducting sphere of the same radius, but still complying 
with the general estimate (18). 

 Can we always find such a “good” system of orthogonal coordinates? Unfortunately, the answer 
is no, even for highly symmetric geometries. This is why the practical value of this approach is limited, 
and other, more general methods of boundary problem solution are clearly needed. Before proceeding to 
their discussion, however, let me note that in the case of 2D problems (i.e. cylindrical geometries26), the 
orthogonal coordinate method gets much help from the following conformal mapping approach. 

 Let us consider a pair of Cartesian coordinates {x, y} of the cylinder’s cross-section plane as a 
complex variable z  x + iy,27 where i is the imaginary unit (i2 = –1), and let w(z) = u + iv be an analytic 
complex function of z.28 For our current purposes, the most important property of an analytic function is 
that its real and imaginary parts obey the following Cauchy-Riemann relations:29 
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For example, for the function 

              ixyyxiyx 22222  zw ,    (2.71) 

whose real and imaginary parts are 

       xyvyxu 2Im,Re 22  ww ,    (2.72) 

we immediately see that u/x = 2x = v/y, and  v/x = 2y = –u/y, in accordance with Eq. (70). 

 Let us differentiate the first of Eqs. (70) over x again, then change the order of differentiation, 
and after that use the latter of those equations:  
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26 Let me remind the reader that the term cylindrical describes any surface formed by a translation,  along a 
straight line, of an arbitrary curve, and hence more general than the usual circular cylinder. (In this terminology, 
for example, a prism is also a cylinder of a particular type, formed by a translation of  a polygon.)   
27 The complex variable z should not be confused with the (real) 3rd spatial coordinate z! We are considering 2D 
problems now, with the potential independent of z. 
28 An analytic (or “holomorphic”) function may be defined as one that may be expanded into the Taylor series in 
its complex argument, i.e. is infinitely differentiable in the given point. (Almost all “regular” functions, such as 
zn, z1/n, exp z, ln z, etc., and their linear combinations are analytic at all z, maybe besides certain special points.) 
If the reader needs to brush up on their background on this subject, I can recommend a popular textbook by M. 
Spiegel et al., Complex Variables, 2nd ed., McGraw-Hill, 2009. 
29 These relations may be used, in particular, to prove the Cauchy integral formula – see, e.g., MA Eq. (15.1). 
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and similarly for v. This means that the sum of second-order partial derivatives of each of the real 
functions u(x, y) and v(x, y) is zero, i.e. that both functions obey the 2D Laplace equation. This 
mathematical fact opens a nice way of solving problems of electrostatics for (relatively simple) 2D 
geometries. Imagine that for a particular boundary problem we have found a function w(z) for that either 
u(x, y) or v(x, y) is constant on all electrode surfaces. Then all lines of constant u (or v) represent 
equipotential surfaces, i.e. the problem of the potential distribution has been essentially solved.  

 As a simple example, let us consider a problem important for practice: the quadrupole 
electrostatic lens – a system of four cylindrical electrodes with hyperbolic cross-sections, whose 
boundaries are described by the following relations: 
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voltage-biased as shown in Fig. 9a.  

 

 

 

 

 

 

 

 

 

 Comparing these relations with Eqs. (72), we see that each electrode surface corresponds to a 
constant value of the real part u(x, y) of the function given by Eq. (71): u = a2. Moreover, the potentials 
of both surfaces with u = +a2 are equal to +V/2, while those with u = –a2 are equal to –V/2. Hence we 
may conjecture that the electrostatic potential at each point is a function of u alone; moreover, a simple 
linear function,  
     2

22
121 )( cyxccuc  ,    (2.75) 

is a valid (and hence the unique) solution of our boundary problem. Indeed, it does satisfy the Laplace 
equation, while the constants c1,2 may be readily selected in a way to satisfy all the boundary conditions 
shown in Fig. 9a: 
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so the boundary problem has been solved. 

According to Eq. (76), all equipotential surfaces are hyperbolic cylinders, similar to those of the 
electrode surfaces. What remains is to find the electric field at an arbitrary point inside the system: 
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(a)        (b) 

Fig. 2.9. (a) The quadrupole electrostatic lens’ cross-section and (b) its conformal mapping. 
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These formulas show, in particular, that if charged particles (e.g., electrons in an electron-optics system) 
are launched to fly ballistically through such a lens, along the z-axis, they experience a force pushing 
them toward the symmetry axis and proportional to the particle’s deviation from the axis (and thus 
equivalent in action to an optical lens with a positive refraction power) in one direction, and a force 
pushing them out (negative refractive power) in the perpendicular direction. One can show that letting 
the particles fly through several such lenses, with alternating voltage polarities, in series, enables beam 
focusing.30 

 Hence, we have reduced the 2D Laplace boundary problem to that of finding the proper analytic 
function w(z). This task may be also understood as that of finding a conformal map, i.e. a 
correspondence between components of any point pair, {x, y} and {u, v}, residing, respectively, on the 
initial Cartesian plane z and the plane w of the new variables. For example, Eq. (71) maps the real 
electrode configuration onto a plane capacitor of an infinite area (Fig. 9b), and the simplicity of Eq. (75) 
is due to the fact that for the latter system the equipotential surfaces are just parallel planes u = const. 

 For more complex geometries, the suitable analytic function w(z) may be hard to find. However, 
for conductors with piece-linear cross-section boundaries, substantial help may be obtained from the 
following Schwarz-Christoffel integral 

     
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kk xxx

d
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that provides a conformal mapping of the interior of an arbitrary N-sided polygon onto the plane w = u 
+ iv, onto the upper half (y > 0) of the plane z = x + iy. In Eq. (78), xj  (j = 1, 2, N – 1) are the points of 
the y = 0 axis (i.e., of the boundary of the mapped region on plane z) to which the corresponding 
polygon vertices are mapped, while kj are the exterior angles at the polygon vertices, measured in the 
units of , with –1  kj  +1 – see Fig. 10.31 Of the points xj, two may be selected arbitrarily (because 
their effects may be compensated by the multiplicative constant in Eq. (78), and the additive constant of 
integration), while all the others have to be adjusted to provide the correct mapping. 

  

  

 

 

 

 

 

  

 

30 See, e.g., textbook by P. Grivet, Electron Optics, 2nd ed., Pergamon, 1972. 
31 The integral (78) includes only (N – 1) rather than N poles because a polygon’s shape is fully determined by (N 
– 1) positions wj of its vertices and (N – 1) angles kj. In particular, since the algebraic sum of all external angles 
of a polygon equals 2, the last angle parameter kj = kN is uniquely determined by the set of the previous ones. 
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Fig. 2.10. The Schwartz-Christoffel mapping of 
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 In the general case, the complex integral (78) may be hard to tackle. However, in some important 
cases, in particular those with right angles (kj = ½) and/or with some points wj at infinity, the integrals 
may be readily worked out, giving explicit analytical expressions for the mapping functions w(z). For 
example, let us consider a semi-infinite strip defined by restrictions –1  u  +1 and 0  v, on the w-
plane – see the left panel of Fig. 11.  

 

 

 

 

 

 

 

 

  
 The strip may be considered as a triangle, with one vertex at the infinitely distant vertical point 
w3 = 0 +  i . Let us map the polygon onto the upper half of plane z, shown on the right panel of Fig. 11, 
with the vertex w1 = –1 + i 0 mapped onto the point z1 = –1 + i 0, and the vertex w2 = +1 + i 0 mapped 
onto the point z2 = +1 + i 0. Since the external angles at these vertices  are equal to +/2, and hence k1 = 
k2 = +½, Eq.  (78) is reduced to 
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This complex integral may be worked out, just as for real z, with the substitution z = sin, giving  

             
.sinconst)( 2

 1-
1

-1 sin
ccd'w   zz

z


    (2.80) 

Determining the constants c1,2 from the required mapping, i.e. from the conditions w(-1 + i 0) = –1 + i 0 
and  w(+1+ i 0)= +1+ i 0 (see the arrows in Fig. 11), we finally get32 
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Using the well-known expression for the sine of a complex argument,33 we may rewrite this elegant 
result in either of the following two forms for the real and imaginary components of z and w: 
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32 Note that this function differs only by a linear transformation of variables from the function z = c cosh w, which 
is the canonical form of the definition of the so-called elliptic (not ellipsoidal!) orthogonal coordinates.  
33 See, e.g., MA Eq. (3.5). 
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It is amazing how perfectly the last formula manages to keep y  0 at the different borders of our w-
region (Fig. 11): at its side borders (u = 1, 0  v < ), this is performed by the first multiplier, while at 
the bottom border (–1  u  +1, v = 0), the equality is enforced by the second multiplier. 

This mapping may be used to solve several electrostatics problems with the geometry shown in 
Fig. 11a; probably the most surprising of them is the following one. A straight gap of width 2t is cut in a 
very thin conducting plane, and voltage V is applied between the resulting half-planes – see the bold 
straight lines in Fig. 12.  

 

 

 

 

 

 

 

 

 

Selecting a Cartesian coordinate system with the z-axis directed along the cut, the y-axis normal 
to the plane, and the origin in the middle of the cut (Fig. 12), we can write the boundary conditions of 
this Laplace problem as 
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(Due to the problem’s symmetry, we may expect that in the middle of the gap, i.e. at –t < x < +t and y = 
0, the electric field is parallel to the plane and hence /y = 0.)  The comparison of Figs. 11 and 12 
shows that if we normalize our coordinates {x, y} to t, Eqs. (81) provide the conformal mapping of our 
system onto the plane z to a plane capacitor on the plane w, with the voltage V between two conducting 
planes located at u = 1. Since we already know that in that case  = (V/2)u, we may immediately use 
the first of Eqs. (81b) to write the final solution of the problem:34 
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 The thin lines in Fig. 12 show the corresponding equipotential surfaces;35 it is evident that the 
electric field concentrates at the gap edges, just as it did at the edge of the thin disk (Fig. 8). Let me 

34 This result may be also obtained by the Green’s function method, to be discussed in Sec. 10 below.  
35 Another graphical representation of the electric field distribution, by field lines, is less convenient. (It is  more 
useful for the magnetic field, which may be represented by a scalar potential only in particular cases, so there is 
no surprise that the field lines were introduced only by Michael Faraday in the 1830s.) As a reminder, the field 
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tt Fig. 2.12. The equipotential surfaces of 
the electric field between two thin 
conducting semi-planes (or rather their 
cross-sections by the plane z = const). 
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leave the remaining calculation of the surface charge distribution and the mutual capacitance between 
the half-planes (per unit length of the system in the z-direction) for the reader’s exercise. 

 

2.5. Variable separation – Cartesian coordinates 

 The general approach of the methods discussed in the last two sections was to satisfy the Laplace 
equation by a function of a single variable that also satisfies the boundary conditions. Unfortunately, in 
many cases this cannot be done – at least, using reasonably simple functions. In this case, a very 
powerful method called the variable separation,36 may work, typically producing “semi-analytical” 
results in the form of series (infinite sums) of either elementary or well-studied special functions. Its 
main idea is to look for the solution of the boundary problem (35) as the sum of partial solutions, 

      
k

kkc  ,      (2.84) 

where each function k satisfies the Laplace equation, and then select the set of coefficients ck to satisfy 
the boundary conditions. More specifically, in the variable separation method, the partial solutions k 
are looked for in the form of a product of functions, each depending on just one spatial coordinate. 

 Let us discuss this approach on the classical example of a rectangular box with conducting walls 
(Fig. 13), with the same potential (that I will take for zero) at all its sidewalls and the lower lid, but a 
different potential V at the top lid (z = c). Moreover, to demonstrate the power of the variable separation 
method, let us carry out all the calculations for a more general case when the top lid’s potential is an 
arbitrary 2D function V(x, y).37  

 

 

 

 

 

 

 
 

For this geometry, it is natural to use the Cartesian coordinates {x, y, z}, representing each of the 
partial solutions in Eq. (84) as the following product 

line is the curve to which the field vectors are tangential at each point. Hence the electric field lines are always 
normal to the equipotential surfaces, so it is always straightforward to sketch them, if desirable, from the 
equipotential surface pattern – like the one shown in Fig. 12.  
36 This method was already discussed in CM Sec. 6.5 and then used also in Secs. 6.6 and 8.4 of that course. 
However, it is so important that I need to repeat its discussion in this part of my series, for the benefit of the 
readers who have skipped the Classical Mechanics course for whatever reason. 
37 Such voltage distributions may be implemented in practice, for example, using the so-called mosaic electrodes 
consisting of many electrically-insulated and individually-biased panels. 
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Fig. 2.13. The standard playground for the 
variable separation discussion: a rectangular box 
with five conducting, grounded walls and a fixed 
potential distribution V(x, y) on the top lid.  
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Plugging it into the Laplace equation expressed in the Cartesian coordinates, 
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and dividing the result by XYZ, we get 
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 Here comes the punch line of the variable separation method: since the first term of this sum may 
depend only on x, the second one only of y, etc., Eq. (87) may be satisfied everywhere in the volume 
only if each of these terms equals a constant. In a minute we will see that for our current problem (Fig. 
13), these constant x- and y-terms have to be negative; hence let us denote these variable separation 
constants as (-2) and (-2), respectively. Now Eq. (87) shows that the constant z-term has to be 
positive; denoting it as 2 we get the following relation: 

      222   .      (2.88) 

Now the variables are separated in the sense that for the functions X(x), Y(y), and Z(z) we got separate 
ordinary differential equations, 
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which are related only by Eq. (88) for their constant parameters.  

 Let us start with the equation for X(x). Its general solution is the sum of functions sinx and 
cosx, multiplied by arbitrary coefficients. Let us select these coefficients to satisfy our boundary 
conditions. First, since   X should vanish at the back vertical wall of the box (i.e., with the coordinate 
origin choice shown in Fig. 13, at x = 0 for any y and z), the coefficient at cosx should be zero. The 
remaining coefficient (at sinx) may be included in the general factor ck in Eq. (84), so we may take X 
in the form 
         xX sin .      (2.90)  

This solution satisfies the boundary condition at the opposite wall (x = a) only if the product a is a 
multiple of , i.e. if  is equal to any of the following numbers (commonly called eigenvalues):38 

                ,...2,1with  ,  nn
an

     (2.91) 

(Terms with negative values of n would not be linearly-independent from those with positive n and may 
be dropped from the sum (84). The value n = 0 is formally possible but would give X = 0, i.e. k = 0, at 

38 Note that according to Eqs. (91)-(92), as the spatial dimensions a and b of the system are increased, the 
distances between the adjacent eigenvalues tend to zero. This fact implies that for spatially infinite systems, the 
eigenvalue spectra are continuous, so the sums of the type (84) become integrals; however, the general approach 
remains the same. A few problems of this type are provided in Sec. 9 for the reader’s exercise. 
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any x, i.e. no contribution to sum (84),  so it may be dropped as well.) Now we see that we indeed had to 
take   real, i.e. 2 positive – otherwise, instead of the oscillating function (90), we would have a sum of 
two exponential functions, which cannot equal zero at two independent points of the x-axis. 

 Since the equation (89) for function Y(y) is similar to that for X(x), and the boundary conditions 
on the walls perpendicular to axis y (y = 0 and y = b) are similar to those for x-walls, the absolutely 
similar reasoning gives 

            ,...2,1with  ,,sin  mm
b

yY m

 ,   (2.92) 

where the integer m may be selected independently of n. Now we see that according to Eq. (88), the 
separation constant   depends on two integers n and m, so the relationship may be rewritten as 
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The corresponding solution of the differential equation for Z  may be represented as a linear 
combination of two exponents exp{nmz}, or alternatively of two hyperbolic functions, sinhnmz and 
coshnmz, with arbitrary coefficients. At our choice of coordinate origin, the latter option is preferable 
because coshnmz cannot satisfy the zero boundary condition at the bottom lid of the box (z = 0). Hence 
we may take Z in the form 

      zZ nmsinh ,      (2.94) 

which automatically satisfies that condition. 

 Now it is the right time to merge Eqs. (84)-(85) and (90)-(94),  replacing the temporary index k 
with the full set of possible eigenvalues, in our current case of two integer indices n and m: 
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where nm is given by Eq. (93). This solution satisfies not only the Laplace equation but also the 
boundary conditions on all walls of the box, besides the top lid, for arbitrary coefficients cnm. The only 
job left is to choose these coefficients from the top-lid requirement: 
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It may look bad to have just one equation for the infinite set of coefficients cnm. However, the decisive 
help comes from the fact that the functions of x and y that participate in Eq. (96), form full, orthogonal 
sets of 1D functions. The last term means that the integrals of the products of the functions with 
different integer indices over the region of interest equal zero. Indeed, direct integration gives 
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where nn’ is the Kronecker symbol, and similarly for y (with the evident replacements a  b, and n  
m). Hence, a fruitful way to proceed is to multiply both sides of Eq. (96) by the product of the basis 
functions, with arbitrary indices n’ and m’, and integrate the result over x and y: 

Variable 
separation 
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(example) 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 2                Page 26 of 68 

    
b

m'y

a

n'x
yxVdydxdy

b

m'y

b

my
dx

a

n'x

a

nx
cc

baba

nm
mn

nm

 sinsin),(sinsinsinsinsinh
00001,
 





.  (2.98) 

Due to Eq. (97), all terms on the left-hand side of the last equation, besides those with n = n’ and m = 
m’, vanish, and (replacing n’ with n, and m’ with m, for notation brevity) we finally get 
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The relations (93), (95), and (99) give the complete solution of the posed boundary problem; we 
can see both good and bad news here. The first bit of bad news is that in the general case, we still need 
to work out the integrals (99) – formally, the infinite number of them. In some cases, it is possible to do 
this analytically, in one shot. For example, if the top lid in our problem is a single conductor, i.e. has a 
constant potential V0, we may take V(x,y) = V0 = const, and both 1D integrations are elementary; for 
example 
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and similarly for the integral over y, so 
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The second bad news is that even on such a happy occasion, we still have to sum up the series (95), so 
our result may only be called analytical with some reservations because in most cases we need to 
perform numerical summation to get the final numbers or plots.  

 Now the first good news. Computers are very efficient for both operations (95) and (99), i.e. for 
the summation and integration. (As was discussed in Sec. 1.2, random errors are averaged out at these 
operations.) As an example, Fig. 14 shows the plots of the electrostatic potential in a cubic box (a = b = 
c), with an equipotential top lid (V = V0 = const), obtained by a numerical summation of the series (95), 
using the analytical expression (101). The remarkable feature of this calculation is a very fast 
convergence of the series; for the middle cross-section of the cubic box (z/c = 0.5), already the first term 
(with n = m = 1) gives an accuracy of about 6%, while the sum of four leading terms (with n, m = 1, 3) 
reduces the error to just 0.2%. (For a longer box, c > a, b, the convergence is even faster – see the 
discussion below.) Only very close to the corners between the top lid and the sidewalls, where the 
potential changes rapidly, several more terms are necessary to get a reasonable accuracy. 

 The related piece of good news is that our “semi-analytical” result allows its ultimate limits to be 
explored analytically. For example, Eq. (93) shows that for a very flat box (with c << a, b), n,mz    n,mc  
<< 1 at least for the lowest terms of series (95), with n, m << c/a, c/b. In this case, the sinh functions in 
Eqs. (96) and (99) may be well approximated with their arguments, and their ratio by z/c. So if we limit 
the summation to these terms, Eq. (95) gives a very simple result 
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which means that each elementary segment of the flat box behaves just as a plane capacitor. Only near 
the sidewalls, the higher terms in the series (95) are important, producing some deviations from Eq. 
(102). (For the general problem with an arbitrary function V(x,y), this is also true in all regions where 
this function changes sharply.) 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the opposite limit (a, b << c), Eq. (93) shows that on the contrary, n,mc  >> 1 for all n and m. 
Moreover, the ratio sinhn,mz/sinhn,mc drops sharply if either n or m is increased, provided that z is not 
too close to c. Hence in this case a very good approximation may be obtained by keeping just the 
leading term, with n = m = 1, in Eq. (95), so the challenge of summation disappears. (As was discussed 
above, this approximation works reasonably well even for a cubic box.) In particular, for the constant 
potential of the upper lid, we can use Eq. (101) and the exponential asymptotic for both sinh functions, 
to get a very simple formula: 
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 These results may be readily generalized to some other problems. For example, if all walls of the 
box shown in Fig. 13 have an arbitrary potential distribution, we may use the linear superposition 
principle to represent the electrostatic potential distribution as the sum of six partial solutions of the type 
of Eq. (95), each with one wall biased by the corresponding voltage, and all other grounded ( = 0). 

 To summarize, the results given by the variable separation method in the Cartesian coordinates 
are closer to what we could call a genuinely analytical solution than to a purely numerical solution. 
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Fig. 2.14. The electrostatic potential’s distribution inside a cubic box (a = b = c) with a constant voltage V0 
on the top lid (Fig. 13), calculated numerically from Eqs. (93), (95), and (101). The dashed line on the left 
panel shows the contribution of the main term of the series (with n = m = 1) to the full result, for z/c = 0.5. 
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Now, let us explore the issues that arise when this method is applied in other orthogonal coordinate 
systems. 

 

2.6. Variable separation – polar coordinates 

 If a system of conductors is cylindrical, the potential distribution is independent of the z-
coordinate along the cylinder axis: /z =0, and the Laplace equation becomes two-dimensional. If the 
conductor’s cross-section is rectangular, the variable separation method works best in Cartesian 
coordinates {x, y}, and is just a particular case of the 3D solution discussed above. However, if the 
cross-section is circular, much more compact results may be obtained by using the polar coordinates {, 
}. As we already know from Sec. 3(ii), these 2D coordinates are orthogonal, so the two-dimensional 
Laplace operator is a sum of two separable terms.39 Requiring, just as we have done above, each 
component of the sum  (84) to satisfy the Laplace equation, we get  
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In a full analogy with Eq. (85), let us represent each particular solution k as a product R()F(). 

Plugging this expression into Eq. (104) and then dividing all its parts by RF /2, we get 
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Following the same reasoning as for the Cartesian coordinates, we get two separated ordinary 
differential equations 
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where 2 is the variable separation constant. 

 Let us start their analysis from Eq. (106), plugging into it a probe solution R  = c where c and 

 are some constants. The elementary differentiation shows that if   0, the equation is indeed satisfied 
for any c, with just one requirement imposed on the constant , namely 2 = 2. This means that the 
following linear superposition 
            ,0for ,    




 baR     (2.108) 

with any constant coefficients a and b, is also a solution of Eq. (106). Moreover, the general theory of 
linear ordinary differential equations tells us that the solution of a second-order equation like Eq. (106) 
may only depend on just two constant factors that scale two linearly independent functions. Hence, for 
all values 2  0, Eq. (108) presents the general solution of that equation. The case when  = 0, in which 
the functions  + and  – are just constants and hence are not linearly independent, is special, but in 
this case, the integration of Eq. (106) is straightforward,40 giving 

39 See, e.g., MA Eq. (10.3) with /z = 0. 
40 Actually, we have already performed it in Sec. 3 – see Eq. (43). 
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                 0.for ,ln00  baR     (2.109) 

 In order to specify the separation constant, let us explore Eq. (107), whose general solution is 
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There are two possible cases here. In many boundary problems solvable in cylindrical coordinates, the 
free-space region, in which the Laplace equation is valid, extends continuously around the origin point   
= 0. In this region, the potential has to be continuous and uniquely defined, so F  has to be a 2-periodic 

function of . For that, one needs the product ( +2) to equal  + 2n, with n being an integer, 
immediately giving us a discrete spectrum of possible values of the variable separation constant: 

               ,...2,1,0  n      (2.111) 

In this case, both functions R and F  may be labeled with the integer index n. Taking into account that 
the terms with negative values of n may be summed up with those with positive n, and that s0 has to 
equal zero (otherwise the 2-periodicity of function F would be violated), we see that the general 
solution of the 2D Laplace equation for such geometries may be represented as 
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 Let us see how all this machinery works on the famous problem of a round cylindrical conductor 
placed into an electric field that is uniform and perpendicular to the cylinder’s axis at large distances 
(see Fig. 15a), as if it is created by a large plane capacitor. First of all, let us explore the effect of the 
system’s symmetries on the coefficients in Eq. (112). Selecting the coordinate system as shown in Fig. 
15a, and taking the cylinder’s potential for zero, we immediately get a0 = 0.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.15. A conducting cylinder inserted into an initially uniform electric field perpendicular to its 
axis: (a) the problem’s geometry, and (b) the equipotential surfaces given by Eq. (117). 
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 Moreover, due to the mirror symmetry about the plane [x, z],  the solution has to be an even 
function of the angle , and hence all coefficients sn should also equal zero. Also, at large distances ( 
>> R) from the cylinder, its effect on the electric field should vanish, and the potential should approach 
that of the uniform external field E = E0nx: 

          for ,cos00 ExE .    (2.113) 

This is only possible if in Eq. (112), b0 = 0, and also all coefficients an with n  1 vanish, while the 
product a1c1 should be equal to (–E0). Thus the solution is reduced to the following form 
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in which the coefficients Bn  bncn should be found from the boundary condition at  = R:   
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This requirement yields the following equation, 
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which should be satisfied for all . This equality, read backward, may be considered as an expansion of 
a function identically equal to zero into a series over mutually orthogonal functions cosn. It is 
evidently valid if all coefficients of the expansion, including (–E0R + B1/R), and all Bn for n  2 are 
equal to zero. Moreover, mathematics tells us that such expansions are unique, so this is the only 
possible solution of Eq. (116). So, B1 = E0R

2, and our final answer (valid only outside of the cylinder, 
i.e. for   R), is 
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This result, which may be graphically represented with the equipotential surfaces shown in Fig. 
15b, shows a smooth transition between the uniform field (113) far from the cylinder, to the 
equipotential surface of the cylinder (with  = 0). Such smoothening is very typical for Laplace 
equation solutions. Indeed, as we know from Chapter 1, these solutions correspond to the lowest integral 
of the potential gradient’s square, i.e. to the lowest potential energy (1.65) possible at the given 
boundary conditions. 

 To complete the problem, let us use Eq. (3) to calculate the distribution of the surface charge 
density over the cylinder’s cross-section: 
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This very simple formula shows that with the field direction shown in Fig. 15a (E0 > 0), the surface 
charge is positive on the right-hand side of the cylinder and negative on its left-hand side, thus creating a 
field directed from the right to the left, which exactly compensates the external field inside the 
conductor, where the net field is zero. (Please take one more look at the schematic Fig. 1a.) Note also 
that the net electric charge of the cylinder is zero, in correspondence with the problem symmetry. 
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Another useful by-product of the calculation (118) is that the surface electric field equals 2E0cos, and 
hence its largest magnitude is twice the field far from the cylinder. Such electric field concentration is 
very typical for all convex conducting surfaces. 

 The last observation gets additional confirmation from the second possible topology when Eq. 
(110) is used to describe problems with no angular periodicity. A typical example of this situation is a 
cylindrical conductor with a cross-section that features a corner limited by two straight-line segments 
(Fig. 16). Indeed, we may argue that at  < R (where R is the radial extension of the planar sides of the 
corner, see Fig. 16), the Laplace equation may be satisfied by a sum of partial solutions R()F(), if the 
angular components of the products satisfy the boundary conditions on the corner sides. Taking (just for 
the simplicity of notation) the conductor’s potential to be zero, and one of the corner’s sides as the x-
axis (  = 0), these boundary conditions are 

               0)()0(  FF ,      (2.119) 

where the angle  may be anywhere between 0 and 2 – see Fig. 16.  

 

 

 

 

 

 

 

 Comparing this condition with Eq. (110), we see that it requires s0 and all c  to vanish, and   to 
take one of the values of the following discrete spectrum:  
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Hence the full solution of the Laplace equation for this geometry takes the form 
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where the constants s have been incorporated into am. The set of coefficients am cannot be universally 
determined, because it depends on the exact shape of the conductor outside the corner, and the 
externally applied electric field. However, whatever the set is, in the limit   0, the solution (121) is 
almost41 always dominated by the term with the lowest m = 1: 
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because the higher terms tend to zero faster. This potential distribution corresponds to the surface charge 
density 

41 Exceptions are possible only for highly symmetric configurations when the external field is specially crafted to 
make a1 = 0. In this case, the solution at   0 is dominated by the first nonzero term of the series (121). 

Fig. 2.16. The cross-sections 
of cylindrical conductors with 
(a) a corner and (b) a wedge. 
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(It is similar, with the opposite sign, on the opposite face of the angle.) 

 The result (123) shows that if we are dealing with a concave corner ( < , see Fig. 16a), the 
charge density (and the surface electric field) tends to zero. On the other hand, at a “convex corner” with 
  >  (actually, a wedge – see Fig. 16b), both the charge and the field’s strength concentrate, formally 
diverging at   0. (So, do not sit on a roof’s ridge during a thunderstorm; rather hide in a ditch!) We 
have already seen qualitatively similar effects for the thin round disk and the split plane. 

  

2. 7. Variable separation – cylindrical coordinates 

 Now, let us discuss how to generalize the approach discussed in the previous section to problems 
whose geometry is still axially symmetric, but where the electrostatic potential depends not only on the 
radial and angular coordinates but also on the axial coordinate: /z  0. The classical example of such 
a problem is shown in Fig. 17. Here the sidewall and the bottom lid of a hollow round cylinder are kept 
at a fixed potential (say,  = 0), but the potential V fixed at the top lid is different. Evidently, this 
problem is qualitatively similar to the rectangular box problem solved above (Fig. 13), and we will also 
try to solve it first for the case of arbitrary voltage distribution over the top lid: V = V(, ). 

 

 

 

 
  
  
 
 
 Following the main idea of the variable separation method, let us require that each partial 
function k in Eq. (84) satisfies the Laplace equation, now in the full cylindrical coordinates {, , z}:42 
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Plugging k in the form of the product R()F()Z(z) into Eq. (124) and then dividing all resulting terms 
by this product, we get 
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Since the first two terms of Eq. (125) can only depend on the polar variables  and , while the third 
term, only on z,  at least that term should equal a constant. Denoting it (just like we did in the 
rectangular box problem) by 2, we get the following set of two equations: 

42 See, e.g., MA Eq. (10.3). 

Fig. 2.17. A cylindrical volume 
with conducting walls. 
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Now, multiplying all the terms of Eq. (127) by 2, we see that the last term of the result, (d2F/d2)/F, 

may depend only on , and thus should equal a constant. Calling that constant 2 (just as in Sec. 6 
above), we separate Eq. (127) into an angular equation, 
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and a radial equation: 
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We see that the ordinary differential equations for the functions Z(z) and F() (and hence their 
solutions) are identical to those discussed earlier in this chapter. However, Eq. (129) for the radial 
function R() (called the Bessel equation) is more complex than in the 2D case and depends on two 

independent constant parameters,  and .  The latter challenge may be readily overcome if we notice 
that any change of  may be reduced to the corresponding re-scaling of the radial coordinate . Indeed, 
introducing a dimensionless variable   ,43 Eq. (129) may be reduced to an equation with just one 
parameter, : 
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Moreover, we already know that for angle-periodic problems, the spectrum of eigenvalues of Eq. (128) 
is discrete:  = n, with integer n. 

 Unfortunately, even in this case, Eq. (130), which is the canonical form of the Bessel equation, 
cannot be satisfied by a single “elementary” function. The solutions that we need for our current 
problem are called the Bessel function of the first kind of order , commonly denoted as J(). Let me 
review in brief those properties of these functions that are most relevant to our problem – and many 
other problems discussed in this series.44 

 First of all, the Bessel function of a negative integer order is very simply related to that of the 
positive order: 
           )()1()(  n

n
n JJ  ,     (2.131) 

enabling us to limit our discussion to the functions with n  0. Figure 18 shows four of these functions 
with the lowest positive n.  

43 Note that this normalization is specific for each value of the variable separation parameter . Also, please notice 
that the normalization is meaningless for   = 0, i.e. for the case Z(z) = const. However, if we need partial 
solutions for this particular value of , we can always use Eqs. (108)-(109). 
44 For a more complete discussion of these functions, see the literature listed in MA Sec. 16, for example, Chapter 
6 (written by F. Olver) in the famous collection compiled and edited by Abramowitz and Stegun, available online.  

Bessel 
equation 
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 As its argument is increased, each function is initially close to a power law: J0()  1, J1()  
/2, J2()  2/8, etc. This behavior follows from the Taylor series  
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 ,    (2.132) 

which is formally valid for any , and may even serve as an alternative definition of the functions Jn(). 
However, the series is converging fast only at small arguments,  << n, where its leading term is 

              .
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       (2.133) 

At   n + 1.86n1/3, the Bessel function reaches its maximum45 

             
3/1

675.0
)(max

n
J n  ,     (2.134) 

and then starts to oscillate with a period gradually approaching 2, a phase shift that increases by /2 
with each unit increment of n, and an amplitude that decreases as –1/2. All these features are described 
by the following asymptotic formula: 
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which starts to give a reasonable approximation soon after the function peaks – see Fig. 18.46 

45 These two approximations for the Bessel function peak are strictly valid for n >> 1, but may be used for 
reasonable estimates starting already from n = 1. For example, max [J1()] is close to 0.58 and is reached at    
2.4, just about 30% away from the values given by the asymptotic formulas. 
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Fig. 2.18. Several Bessel functions 
Jn() of integer order. The dashed 
lines show the envelope of the 
asymptotes (135). 
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 Now we are ready for our case study (Fig. 17). Since the functions the Z(z) have to satisfy not 
only Eq. (126) but also the bottom-lid boundary condition Z(0) = 0, they are proportional to sinhz – cf. 
Eq. (94). Then Eq. (84) becomes 

               





0

sinhsincos
n

nnn znsncJ


  .   (2.136) 

Next, we need to satisfy the zero boundary condition at the cylinder’s side wall ( = R). This may be 
ensured by taking 
      0)( RJ n  .      (2.137) 

Since each function Jn(x) has an infinite number of positive zeros (see Fig. 18 again), which may be 
numbered by an integer index m = 1, 2, …, Eq. (137) may be satisfied with an infinite number of 
discrete values of the parameter :  
      

R
nm

nm


  ,      (2.138) 

where nm is the m-th zero of the function Jn(x) – see the top numbers in the cells of Table 1. (Very soon 
we  will see what we need the bottom numbers for.)  

  

 

 

 

 

 

 

 

 

 

 

 

 Hence, Eq. (136) may be represented in a more explicit form: 
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.  (2.139) 

46 Eq. (135) and Fig. 18 clearly show the close analogy between the Bessel functions and the usual trigonometric 
functions, sine and cosine. To emphasize this similarity, and help the reader to develop more gut feeling of the 
Bessel functions, let me mention one result of the elasticity theory: while the sinusoidal functions describe, in 
particular, transverse standing waves on a guitar string, the functions Jn() describe, in particular, transverse 
standing waves on an elastic round membrane (say, a round drum), with J0() describing their lowest 
(fundamental) mode – the only mode with a nonzero amplitude of the membrane center’s oscillations. 

Table 2.1. Approximate values of a few first zeros, nm, of a few lowest-order Bessel functions Jn() 
(the top number in each cell), and the values of dJn()/d  at these points (the bottom number). 

  m = 1 2 3 4 5 6 

n = 0 2.40482 
-0.51914 

5.52008 
+0.34026 

8.65372 
-0.27145 

11.79215 
+0.23245 

14.93091 
-0.20654 

18.07106 
+0.18773 

1 3.83171 
-0.40276 

7.01559 
+0.30012 

10.17347 
-0.24970 

13.32369 
+0.21836 

16.47063 
-0.19647 

19.61586 
+0.18006 

2 5.13562 
-0.33967 

8.41724 
+0.27138 

11.61984 
-0.23244 

14.79595 
+0.20654 

17.95982 
-0.18773 

21.11700 
+0.17326 

3 6.38016 
-0.29827 

9.76102 
+0.24942 

13.01520 
-0.21828 

16.22347 
+0.19644 

19.40942 
-0.18005 

22.58273 
+0.16718 

4 7.58834 
-0.26836 

11.06471 
+0.23188 

14.37254 
-0.20636 

17.61597 
+0.18766 

20.82693 
-0.17323 

24.01902 
+0.16168 

5 8.77148 
-0.24543 

12.33860 
+0.21743 

15.70017 
-0.19615 

18.98013 
+0.17993 

22.21780 
-0.16712 

25.43034 
+0.15669 

Variable 
separation in 

cylindrical  
coordinates 

(example) 
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Here the coefficients cnm and snm have to be selected to satisfy the only remaining boundary condition – 
that on the top lid: 
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To use it, let us multiply both sides of Eq. (140) by the product Jn(nm’/R) cos n’, integrate the result 
over the lid area, and use the following property of the Bessel functions: 
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 As a small but important detour, the last relation expresses a very specific (“2D”) orthogonality 
of the Bessel functions with different indices m – do not confuse them with the function order indices n, 
please!47 Since it relates two Bessel functions of the same order n, it is natural to ask why its right-hand 
side contains the function with a different order (n + 1). Some gut feeling of that may come from one 
more very important property of the Bessel functions, the so-called recurrence relations:48 
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which in particular yield the following formula (convenient for working out some Bessel function 

integrals): 
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Let us apply the recurrence relations at the special points nm. At these points, Jn vanishes, and the 
system of two equations (142) may be readily solved to get, in particular, 

             nm
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 1 ,     (2.144) 

so the square bracket on the right-hand side of Eq. (141) is just (dJn/d)2 at  = nm. Thus the values of 
the Bessel function derivatives at the zero points of the function, given by the lower numbers in the cells 
of Table 1, are as important for boundary problem solutions as the zeros themselves. 

  Now returning to our problem: since the angular functions cos n  are also orthogonal – both to 
each other, 

47 The Bessel functions of the same argument but different orders are also orthogonal, but differently: 

nn'n'n n'n
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48 These relations provide, in particular, a convenient way for numerical computation of all Jn() – after J0() has 
been computed. (The latter task is usually performed using Eq. (132) for smaller   and an extension of Eq. (135) 
for larger .) Note that most mathematical software packages, including all those listed in MA Sec. 16(iv), include 
ready subroutines for calculation of the functions Jn() and other special functions used in this lecture series. In 
this sense, the conditional line separating these “special functions” from “elementary functions” is rather fine. 
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                '
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  ,    (2.145) 

and to all functions sinn, the integration over the lid area kills all terms of both series in Eq. (140), 
besides just one term proportional to cn’m’, and hence gives an explicit expression for that coefficient. 
The counterpart coefficients sn’m’ may be found by repeating the same procedure with the replacement of 
cos n’ by sin n’. This evaluation (left for the reader’s exercise) completes the solution of our problem 
for an arbitrary lid potential V(,). 

 Still, before leaving the Bessel functions behind (for a while only :-), let me address two 
important issues. First, we have seen that in our cylinder problem (Fig. 17), the set of functions 
Jn(nm/R) with different indices m (which characterize the degree of Bessel function’s stretch along 
axis ) play a role similar to that of functions sin(nx/a) in the rectangular box problem shown in Fig. 
13. In this context, what is the analog of functions cos(nx/a) – which may be important for some 
boundary problems? In a more formal language, are there any functions of the same argument   
nm/R, that would be linearly independent of the Bessel functions of the first kind, while satisfying the 
same Bessel equation (130)? 

 The answer is yes. For the definition of such functions, we first need to generalize our prior 
formulas for Jn(), and in particular Eq. (132), to the case of arbitrary, not necessarily real order . 
Mathematics says that the generalization may be performed in the following way: 
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where (s) is the so-called gamma function that may be defined as49 
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The simplest, and the most important property of the gamma function is that for integer values of its 
argument, it gives the factorial of the number smaller by one: 

          nnn  ...21!)1( ,     (2.148) 

so it is essentially a generalization of the notion of the factorial to all real numbers. 

 The Bessel functions defined by Eq. (146) satisfy, after the replacements n   and n!  (n + 
1), virtually all the relations discussed above, including the Bessel equation (130), the asymptotic 
formula (135), the orthogonality condition (141), and the recurrence relations (142). Moreover, it may 
be shown that   n, functions J() and J-() are linearly independent of each other, and hence their 
linear combination may be used to represent the general solution of the Bessel equation. Unfortunately, 
as Eq. (131) shows, for  = n this is not true, and a solution linearly independent of Jn() has to be 
formed differently. The most common way to do that is first to define, for all   n, the following 
functions:  
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49 See, e.g., MA Eq. (6.7a). Note that (s)   at s  0, –1, –2,… 
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called the Bessel functions of the second kind, or more often the Weber functions,50 and then to follow 
the limit   n. At this, both the numerator and denominator of the right-hand side of Eq. (149) tend to 
zero, but their ratio tends to a finite value called Yn(x). It may be shown that the resulting functions are 
still the solutions of the Bessel equation and are linearly independent of Jn(x), though are related just as 
those functions if the sign of n changes: 

             )()1()(  n
n

n YY  .     (2.150) 

Figure 19 shows a few Weber functions of the lowest integer orders.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 The plots show that their asymptotic behavior is very similar to that of the functions Jn( ): 

          ,for ,
24

sin
2

)(
2/1







 








 


 n

Yn    (2.151) 

but with the phase shift necessary to make these Bessel functions orthogonal to those of the first order – 
cf. Eq. (135). However, for small values of argument , the Bessel functions of the second kind behave 
completely differently from those of the first kind: 
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where  is the so-called Euler constant, defined as follows: 

50 Sometimes, they are called the Neumann functions and denoted as N(). 

Fig. 2.19. A few Bessel 
functions of the second kind 
(a.k.a. the Weber functions, 
a.k.a. the Neumann functions). 
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As Eqs. (152) and Fig. 19 show, the functions Yn( ) diverge at    0 and hence cannot describe the 
behavior of any physical variable, in particular the electrostatic potential.  

 One may wonder: if this is true, when do we need these functions in physics? Figure 20 shows an 
example of a simple boundary problem of electrostatics, whose solution by the variable separation 
method involves both functions Jn( ) and Yn( ). 
 
   
 

 

 

 

 
  
 Here two round, conducting coaxial cylindrical tubes are kept at the same (say, zero) potential, 
but at least one of two lids has a different potential. The problem is almost completely similar to that 
discussed above (Fig. 17), but now we need to find the potential distribution in the free space between 
the tubes, i.e. for R1 <  < R2. If we use the same variable separation as in the simpler counterpart 
problem, we need the radial functions R() to satisfy two zero boundary conditions: at  = R1 and  = 

R2. With the Bessel functions of just the first kind, Jn(), it is impossible to do, because the two 
boundaries would impose two independent (and generally incompatible) conditions, Jn(R1) = 0, and 
Jn(R2) = 0, on one “stretching parameter” . The existence of the Bessel functions of the second kind 
immediately saves the day, because if the radial function solution is represented as a linear combination, 

       ),()(  nYnJ YcJc R      (2.154) 

two zero boundary conditions give two equations for  and the ratio c  cY/cJ.51 (Due to the oscillating 
character of both Bessel functions, these conditions would be typically satisfied by an infinite set of 
discrete pairs {, c}.) Note, however, that generally none of these pairs would correspond to zeros of 
either Jn or Yn, so having an analog of Table 1 for the latter function would not help much. Hence, even 
the simplest problems of this kind (like the one shown in Fig. 20) typically require the numerical 
solution of transcendental algebraic equations.  

51 A pair of independent linear functions, used for the representation of the general solution of the Bessel 
equation, may be also chosen differently, using the so-called Hankel functions 

        )()()()2,1(  nnn iYJH  .     

For representing the general solution of Eq. (130), this alternative is completely similar, for example, to using the 
pair of complex functions exp{ix}  cos x  isin x instead of the pair of real functions {cos x, sin x} for 
the representation of the general solution of Eq. (89) for X(x). 

Fig. 2.20. A simple boundary 
problem that cannot be solved 
using just one kind of Bessel 
functions. 
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 In order to complete the discussion of variable separation in the cylindrical coordinates, one 
more issue to address is the so-called modified Bessel functions: of the first kind, I(), and of the second 
kind, K(). They are two linearly independent solutions of the modified Bessel equation,  

     01
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which differs from Eq. (130) “only” by the sign of one of its terms. Figure 21 shows a simple problem 
that leads (among many others) to this equation: a round thin conducting cylindrical pipe is sliced, 
perpendicular to its axis, to rings of equal height h, which are kept at equal but sign-alternating 
potentials.  

 

 

 

 

 

 

 

 If the system is very long (formally, infinite) in the z-direction, we may use the variable 
separation method for the solution of this problem, but now evidently need periodic (rather than 
exponential) solutions along the z-axis, i.e. linear combinations of sin kz and cos kz with various real 
values of the constant k. Separating the variables, we arrive at a differential equation similar to Eq. 
(129), but with the negative sign before the separation constant: 
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The same radial coordinate’s normalization,   k, immediately leads us to Eq. (155), and hence (for  
= n) to the modified Bessel functions In() and Kn().  

 Figure 22 shows the behavior of such functions, of a few lowest orders. One can see that at   
0 the behavior is virtually similar to that of the “usual” Bessel functions – cf. Eqs. (132) and (152), with 
Kn() multiplied (by purely historical reasons) by an additional coefficient, /2: 
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However, the asymptotic behavior of the modified functions is very much different, with In(x) 
exponentially growing, and Kn() exponentially dropping at   : 

Fig. 2.21. A typical boundary problem whose 
solution may be conveniently described in 
terms of the modified Bessel functions. 
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 This behavior is completely natural in the context of the problem shown in Fig. 21, in which the 
electrostatic potential may be represented as a sum of terms proportional to In() inside the thin pipe, 
and of terms proportional to Kn() outside it.  

 To complete our brief survey of the Bessel functions, let me note that all of them discussed so far 
may be considered as particular cases of Bessel functions of the complex argument, say Jn(z) and Yn(z), 
or, alternatively, Hn

(1,2)(z)  Jn(z)  iYn(z).52 At that, the “usual” Bessel functions Jn() and Yn() may be 
considered as the sets of values of these generalized functions on the real axis (z = ), while the 
modified functions as their particular case on the imaginary axis, i.e. at z = i, also with real : 
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Moreover, this generalization of the Bessel functions to the whole complex plane z enables the use of 
their values along other directions on that plane, for example under angles /4  /2. As a result, one 
arrives at the so-called Kelvin functions: 
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which are also useful for some important problems in physics and engineering. Unfortunately, I do not 
have time/space to discuss these problems in this course.53 

52 These complex functions still obey the general relations (143) and (146), with   replaced with z. 
53 In the QM part of this series we will run into the so-called spherical Bessel functions jn() and yn(), which may 
be expressed via the Bessel functions of semi-integer orders. Surprisingly enough, these functions turn out to be 
simpler than Jn() and Yn(). 

Fig. 2.22. The modified Bessel 
functions of the first kind (left 
panel) and the second kind 
(right panel). 
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2. 8. Variable separation – spherical coordinates 

 The spherical coordinates are very important in physics, because of the (at least approximate) 
spherical symmetry of many physical objects – from nuclei and atoms, to water drops in clouds, to 
planets and stars. Let us again require each component k of Eq. (84) to satisfy the Laplace equation. 
Using the full expression for the Laplace operator in spherical coordinates,54 we get 
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Let us look for a solution of this equation in the following variable-separated form: 
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Separating the variables one by one, starting from , just like this has been done in cylindrical 
coordinates, we get the following equations for the partial functions participating in this solution: 
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where   cos  is a new variable used in lieu of  (so –1    +1), while 2 and l(l+1) are the 
separation constants. (The reason for the selection of the latter one in this form will be clear in a 
minute.)  

 One can see that Eq. (165) is very simple, and is absolutely similar to the Eq. (107) we have got 
for the polar and cylindrical coordinates. Moreover, the equation for the radial functions is simpler than 
in the cylindrical coordinates. Indeed, let us look for its partial solution in the form cr – just as we have 
done with Eq. (106). Plugging this solution into Eq. (163), we immediately get the following condition 
on the parameter : 
                  )1(1  ll .     (2.166) 

This quadratic equation has two roots,  = l + 1 and  = – l, so the general solution of Eq. (163) is 
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b
ra  1R .     (2.167) 

 However, the general solution of Eq. (164) (called either the general or associated Legendre 
equation) cannot be expressed via what is usually called elementary functions.55 Let us start its 
discussion from the axially-symmetric case when / =0. This means F() = const, and thus   = 0, so 
Eq. (164) is reduced to the so-called Legendre differential equation: 

54 See, e.g., MA Eq. (10.9). 
55 Again, there is no generally accepted line between the “elementary” and “special” functions. 
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One can readily verify that the solutions of this equation for integer values of l are specific (Legendre) 
polynomials56 that may be described by the following Rodrigues’ formula: 
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According to this formula, the first few Legendre polynomials are pretty simple: 
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though such explicit expressions become more and more bulky as l is increased. As Fig. 23 shows, all 
these polynomials, which are defined on the [-1, +1] segment, end at the same point: Pl(+1) = + 1, while 
starting either at the same point or at the opposite point: Pl(-1) = (-1)l. Between these two endpoints, the 
lth Legendre polynomial has l zeros. It is straightforward to use Eq. (169) to prove that these 
polynomials form a full, orthogonal set of functions, with the following normalization rule: 
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so any function f() defined on the segment [-1, +1] may be represented as a unique series over the 
polynomials.57 

 Thus, taking into account the additional division by r in Eq. (162), the general solution of any 
axially symmetric Laplace problem may be represented as 
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Note a strong similarity between this solution and Eq. (112) for the 2D Laplace problem in the polar 
coordinates. However, besides the difference in the angular functions, there is also a difference (by one) 
in the power of the second radial function, and this difference immediately shows up in problem 
solutions.  

56 Just for reference: if l is not an integer, the general solution of Eq. (2.168) may be represented as a linear 
combination of the so-called Legendre functions (not polynomials!) of the first and second kind, Pl() and Ql().  
57 This is why, at least for the purposes of this course, there is no good reason for pursuing (more complicated) 
solutions to Eq. (168) for non-integer values of l, mentioned in the previous footnote. 
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 Indeed, let us solve a problem similar to that shown in Fig. 15: find the electric field around a 
conducting sphere of radius R, placed into an initially uniform external field E0 (whose direction I will 
now take for the z-axis) – see Fig. 24a.  

 

 

 

 

 

 

 

 

 

 

 

 

 If we select the arbitrary constant in the electrostatic potential so that z=0 = 0, then in Eq. (172) 
we should take a0 = b0 = 0. Now, just as has been argued for the cylindrical case, at r >> R the potential 
should approach that of the uniform field: 

         cos00 rEzE  ,     (2.173) 

so in Eq. (172), only one of the coefficients al survives: al = –E0l,1. As a result, from the boundary 
condition on the surface, (R,) = 0, we get the following equation for the coefficients bl: 
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Fig. 2.23. A few lowest Legendre 
polynomials Pl(). 
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Fig. 2.24. Conducting sphere in a uniform electric field: (a) the problem’s geometry, and (b) the 
equipotential surface pattern given by Eq. (176). The pattern is qualitatively similar but 
quantitatively different from that for the conducting cylinder in a perpendicular field – cf. Fig. 15. 
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Now repeating the argumentation that led to Eq. (117), we may conclude that Eq. (174) is satisfied if  
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so, finally, Eq. (172) is reduced to 
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This distribution, shown in Fig. 24b, is very similar to Eq. (117) for the cylindrical case (cf. Fig. 15b, 
with the account for a different plot orientation), but with a different power of the radius in the second 
term. This difference leads to a quantitatively different distribution of the surface electric field: 
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so its maximal value is a factor of 3 (rather than 2) larger than the external field.  

 Now let me briefly (mostly just for the reader’s reference) mention the Laplace equation 
solutions in the general case – with no axial symmetry. If the conductor-free space surrounds the origin 
from all sides, the solutions to Eq. (165) have to be 2-periodic, and hence  = n = 0, 1, 2,… 
Mathematics says that Eq. (164) with integer   = n and a fixed integer l  has a solution only for a 
limited range of n:58 
        lnl  .      (2.178) 

These solutions are called associated Legendre functions (generally, they are not polynomials). For n  
0, these functions may be defined via the Legendre polynomials, using the following formula:59 
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On the segment   [-1, +1], each set of the associated Legendre functions with a fixed index n and non-
negative values of l form a full, orthogonal set, with the normalization relation, 
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that is evidently a generalization of Eq. (171).  

 Since these relations may seem a bit intimidating, let me write down explicit expressions for a 
few Pl

n (cos) with the three lowest values of l and n  0, which are most important for applications.  

      1cos   :0 0
0  Pl ;      (2.181) 

58 In quantum mechanics, the letter n is typically reserved for the “principal quantum number”, while the 
azimuthal functions are numbered by index m. However, here I will keep using n as their index because, for this 
course’s purposes, this seems more logical, in view of the similarity of the spherical and cylindrical functions. 
59 Note that some texts use different choices for the front factor (called the Condon-Shortley phase) in the 
functions Pl

m, which do not affect the final results for the spherical harmonics Yl
m.   
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The reader should agree there is not much to fear in these functions – they are just certain sums of 
products of cos    and sin  (1 – 2)1/2. Fig. 25 shows the plots of a few lowest functions Pl

n (). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Using the associated Legendre functions, the general solution (162) to the Laplace equation in 
the spherical coordinates may be expressed as 
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Since the difference between the angles  and   is somewhat artificial, physicists prefer to think not in 
terms of the functions P and F  in separation, but directly about their products that participate in this 
solution.60  

60 In quantum mechanics, it is more convenient to use a slightly different alternative set of basic functions of the 
same problem, namely the following complex functions called the spherical harmonics: 
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which are defined for both positive and negative n (within the limits –l  n  +l) – see, e.g., QM Secs. 3.6 and 5.6. 
(Note again that in that field, our index n is traditionally denoted as m, and called the magnetic quantum number.) 
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Fig. 2.25. A few lowest 
associated Legendre functions. 
(Adapted from an original by 
Geek3, available at 
https://en.wikipedia.org/wiki/Ass
ociated_Legendre_polynomials, 
under the GNU Free 
Documentation License.) 
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 As a rare exception for my courses, to save time I will skip giving an example of using the 
associated Legendre functions in electrostatics, because quite a few examples of these functions’ 
applications will be given in the quantum mechanics part of this series. 

  

2.9. Charge images 

 So far, we have discussed various methods of solution of the Laplace boundary problem (35). 
Let us now move on to the discussion of its generalization, the Poisson equation (1.41). We need it 
when besides conductors, we also have stand-alone charges with a known spatial distribution (r). (Its 
discussion will also allow us, better equipped, to revisit the Laplace problem in the next section.)  

 Let us start with a somewhat limited, but very useful charge image (or “image charge”) method. 
Consider a very simple problem: a single point charge near a conducting half-space – see Fig. 26.  

 

 

  

 

 

 

 

 

Let us prove that its solution, above the conductor’s surface (z   0), may be represented as: 
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or in a more explicit form, using the cylindrical coordinates shown in Fig. 26: 
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where  is the distance of the field observation point r from the “vertical” line on which the charge is 
located. Indeed, this solution satisfies both the boundary condition  = 0 at the surface of the conductor 
(z = 0), and the Poisson equation (1.41), with the single -functional source at point r’ = {0, 0, +d} on 
its right-hand side, because the second singularity of the solution, at point r” = {0, 0, –d}, is outside the 
region of the solution’s validity (z  0). Physically, this solution may be interpreted as the sum of the 
fields of the actual charge (+q) at point r’, and an equal but opposite charge (–q) at the “mirror image” 
point r” (Fig. 26). This is the basic idea of the charge image method.  

 Before moving on to more complex problems, let us discuss the situation shown in Fig. 26 in a 
little bit more detail, due to its fundamental importance. First, we can use Eqs. (3) and (186) to calculate 
the surface charge density: 

Fig. 2.26. The simplest problem readily solvable by the 
charge image method. The points’ colors are used, as 
before, to denote the charges of the original (red) and 
opposite (blue) sign. 

z


0

q

q

1r

2r

r

0

'rd

d
"r



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 2                Page 48 of 68 

           2/3222/1222/1220

2

4)(

1

)(

1

4
0

0
d

dq

dzdzz

q

z
z

z































 .  (2.187) 

From this, the total surface charge is 
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This integral may be easily worked out using the substitution   2/d2 (giving d = 2d/d2): 
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This result is very natural: the conductor brings as much surface charge from its interior to the surface as 
necessary to fully compensate for the initial charge (+q) and hence kill the electric field at large 
distances as efficiently as possible, hence reducing the total electrostatic energy (1.65) to the lowest 
possible value. 

 For a better feeling of this polarization charge of the surface, let us take our calculations to the 
extreme – to the q equal to one elementary change e, and place a particle with this charge (for example, 
a proton) at a macroscopic distance – say 1 m – from the conductor’s surface. Then, according to Eq. 
(189), the total polarization charge of the surface equals that of an electron, and according to Eq. (187), 
its spatial extent is of the order of d2 = 1 m2. This means that if we consider a much smaller part of the 
surface, A << d2, its polarization charge magnitude Q = A is much less than one electron! For 
example, Eq. (187) shows that the polarization charge of quite a macroscopic area A = 1 cm2 right 
under the initial charge ( = 0) is eA/2d2  1.610-5 e. Can this be true, or our theory is somehow 
limited to the charges q much larger than e? (After all, the theory is substantially based on the 
approximate macroscopic model (1); maybe it is the culprit?) 

 Surprisingly enough, the answer to this question has become clear (at least to some physicists :-) 
only as late as in the mid-1980s when several experiments demonstrated, and theorists accepted (some 
of them rather grudgingly) that the usual polarization charge formulas are valid for elementary charges 
as well, i.e., such the polarization charge Q of a macroscopic surface area may differ from a multiple 
of e. The underlying reason for this paradox is the physical nature of the polarization charge of a 
conductor’s surface: as was discussed in Sec. 1, it is due not to new charged particles brought into the 
conductor (such charge would be in fact a multiple of e), but to a small shift of the free charges of a 
conductor by a very small distance from their equilibrium positions that they had in the absence of the 
external field induced by charge q. This shift is not quantized, at least on the scale relevant to our 
problem, and hence neither is Q.  

 This understanding has paved the way for the invention and experimental demonstration of 
several new devices including so-called single-electron transistors,61 which may be used,  in particular, 
for ultrasensitive measurement of polarization charges as small as ~10-6 e. Another important class of 
single-electron devices is the dc and ac current standards based on the fundamental relation I = –ef, 

61 Actually, this term (for which the author of these notes may be blamed :-) is misleading: the operation of the 
“single-electron transistor” is based on the interplay of discrete charges (multiples of e) transferred between 
conductors, and sub-single-electron polarization charges – see, e.g., K. Likharev, Proc. IEEE  87, 606 (1999). 
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where I is the dc current carried by electrons transferred with the frequency f.  The experimentally 
achieved62 relative accuracy of such standards is of the order of 10-7, and is not too far from that 
provided by the competing approach based on a combination of the Josephson effect and the quantum 
Hall effect.63 

 Second, let us find the potential energy U of the charge-to-surface interaction. For that, we may 
use the value of the electrostatic potential (185) at the point of the charge itself (r = r’), of course 
ignoring the infinite potential created by the real charge, so the remaining potential is that of the image 
charge 
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Looking at the electrostatic potential’s definition given by Eq. (1.31), it may be tempting to immediately 
write U = qimage = – (1/40)(q

2/2d) [WRONG!], but this would be incorrect. The reason is that the 
potential image is not independent of q, but is actually induced by this charge. This is why the correct 
approach is to calculate U from Eq. (1.61), with just one term: 
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giving twice lower energy than the wrong result cited above. To double-check Eq. (191), and also get a 
better feeling of the factor ½ that distinguishes it from the wrong guess, we can calculate U as the 
integral of the force exerted on the charge by the conductor’s surface charge (i.e., in our formalism, by 
the image charge): 
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This calculation clearly accounts for the gradual build-up of the force F, as the real charge is being 
brought from afar (where we have opted for U =0) toward the surface. 

 This result has several important applications. For example, let us plot the electrostatic energy U 
of an electron, i.e. a particle with charge q = –e, near a metallic surface, as a function of d. For that, we 
may use Eq. (191) until our macroscopic model (1) becomes invalid, and U transitions to some negative 
constant value (-)  inside the conductor – see Fig. 27a. Since our calculation was for an electron with 
zero potential energy at infinity, at relatively low temperatures, kBT << , electrons in metals may 
occupy only the states with energies below – (the so-called Fermi level64). The positive constant  is 
called the workfunction because it describes the smallest work needed to remove the electron from a 
metal. As was discussed in Sec. 1, in good metals the electric field screening takes place at interatomic 
distances  a0 ~ 10-10 m. Plugging d =110-10 m and q = –e  –1.610-19 C into Eq. (191), we get   
610–19 J  3.5 eV. This crude estimate is in surprisingly good agreement with the experimental values 
of the workfunction, ranging between 4 and 5 eV for most metals.65 

 

62 See, e.g., M. Keller et al., Appl. Phys. Lett. 69, 1804 (1996) ; F. Stein et al., Metrologia 54, 1 (2017). 
63 J. Brun-Pickard et al., Phys. Rev. X 6, 041051 (2016). 
64 More discussion of these states may be found in SM Secs. 3.3 and 6.3. 
65 More discussion of the workfunction, and its effect on the electrons’ kinetics, is given in SM Sec. 6.3. 
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 Next, let us consider the effect of an additional uniform external electric field E0 applied 
normally to a metallic surface, on this potential profile. For that, we may the potential energy that the 
field gives to the electron at distance d from the surface, Uext = –eE0d, to that created by the image 
charge. (As we know from Eq. (1.53), since the field E0 is independent of the electron’s position, its 
recalculation into the potential energy does not require the coefficient ½.) As a result, the potential 
energy of an electron near the surface becomes  

d

e
deEdU

44

1
)(

2

0
0 

 ,  for d >> a0,   (2.193) 

with a similar crossover to U = –  inside the conductor – see Fig. 27b. One can see that at the 
appropriate sign, and a sufficient magnitude of the applied field, it lowers the potential barrier that 
prevents electrons from leaving the conductor. At E0 ~ /a0 (for metals, ~1010 V/m), this suppression 
becomes so strong that electrons with energies at, and just below the Fermi level start quantum-
mechanical tunneling through the remaining thin barrier. This is the field electron emission (or just 
“field emission”) effect, which is used in vacuum electronics to provide efficient cathodes that do not 
require heating to high temperatures.66   

 Returning to the basic electrostatics, let us find some other conductor geometries where the 
method of charge images may be effectively applied. First, let us consider a right-angle corner (Fig. 
28a). Reflecting the initial charge in the vertical plane, we get the image shown in the top left corner of 
that panel. This image makes the boundary condition  = const satisfied on the vertical surface of the 
corner. However, for the same to be true on the horizontal surface, we have to reflect both the initial 
charge and the image charge in the horizontal plane, flipping their signs. The final configuration of four 
charges, shown in Fig. 28a, satisfies all boundary conditions. The resulting potential distribution may be 
readily written as an evident generalization of  Eq. (185). From it, the electric field and electric charge 
distributions, and the potential energy and forces acting on the charge may be calculated exactly as 
above – an easy exercise left for the reader. 

 Next, consider a corner with the angle /4 (Fig. 28b). Here we need to repeat the reflection 
operation not two but four times before we arrive at the final pattern of eight positive and negative 
charges. (Any attempt to continue this process would lead to overlap with the already existing charges.) 

66 The practical use of such “cold” cathodes is affected by the fact that, as it follows from our discussion in Sec. 4, 
any nanoscale irregularity of a conducting surface (a protrusion, an atomic cluster, or even a single “adatom” 
stuck to it) may cause a strong increase of the local field well above the applied uniform field E0, making the 
electron emission reproducibility and stability in time significant challenges. In addition, the impact-ionization 
effects may lead to avalanche-type electric breakdown at dc fields as low as ~3106 V/m. 

Fig. 2.27. (a) The origin 
of the workfunction, and 
(b) the field emission of 
electrons (schematically). 
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This reasoning may be readily extended to corners of angles  = /n, with any integer n, which require 
2n charges (including the initial one) to satisfy all the boundary conditions. 

 

  

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 Some configurations require an infinite number of images but are still tractable. The most 
important of them is a system of two parallel conducting surfaces, i.e. an unbiased plane capacitor of 
infinite area (Fig. 28c). Here the repeated reflection leads to an infinite system of charges q at points 

dajx j  2 ,     (2.194) 

where d (with 0 < d < a) is the position of the initial charge, and j is an arbitrary integer. The resulting 
infinite sum for the potential of the real charge q, created by the field of its images, 
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is converging (in its last form) very fast. For example, the exact value, (a/2) = –2ln2(q/40a), differs 
by less than 5% from the approximation using just the first term of the sum. 

Fig. 2.28. The charge images for (a, b) the corners with angles /2  and /4, (c) a plane capacitor, 
and (d) a rectangular box; (e) typical equipotential surfaces for the last system.  
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 The same method may be applied to 2D (cylindrical) and 3D rectangular conducting boxes that 
require, respectively, 2D or 3D infinite rectangular lattices of images; for example in a 3D box with 
sides a, b, and c, charges q are located at points (Fig. 28d) 

       'lckbjajkl rr  222 ,     (2.196) 

where r’ is the location of the initial (real) charge, and j, k, and l are arbitrary integers. Figure 28e shows 
a typical result of the summation of the potentials of this charge set, including the real one, in a 2D box 
(within the plane of the real charge). One can see that the equipotential surfaces, concentric near the 
charge, are naturally leaning along the conducting walls of the box, which have to be equipotential.  

 Even more surprisingly, the image charge method works very efficiently not only for rectilinear 
geometries but also for spherical ones. Indeed, let us consider a point charge q at distance d from the 
center of a conducting, grounded sphere of radius R (Fig. 29a), and try to satisfy the boundary condition 
 = 0 for the electrostatic potential on the sphere’s surface using an imaginary charge q’ located at some 
point beyond the surface, i.e. inside the sphere. 

 

 

 

 

 

 

 

 
 
 

 From the problem’s symmetry, it is clear that the point should be at the line passing through the 
real charge and the sphere’s center, at some distance d’ from the center. Then the total potential created 
by the two charges at an arbitrary point of free space, i.e. at r  R (Fig. 29a) is 
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This expression shows that we can make the two involved fractions equal and opposite at all points on 
the sphere’s surface (i.e. for any   at r = R) if we take67 

         q
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2

.     (2.198) 

Since the solution of any Poisson boundary problem is unique, Eqs. (197) and (198) give us the final 
solution for this problem. Fig. 29b shows a typical equipotential pattern following from this solution. It 
may be surprising how formulas that simple may describe such an elaborate field distribution. 

67 In geometry, such points with dd’ = R2, are referred to as the result of mutual inversion in a sphere of radius R. 

dq,

d'q',
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(a)      (b) 

Fig. 2.29. Method of charge images for 
a conducting sphere: (a) the idea, and 
(b) the resulting potential distribution 
in the central plane containing the 
charge, for the particular case d = 2 R. 
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 Now we can calculate the total charge Q on the grounded sphere’s surface, induced by the 
external charge q. We could do this, as we have done for the conducting plane, by the brute-force 
integration of the surface charge density  = –0/rr = R. It is more elegant, however, to use the 
following Gauss law argument. Equality (197) is valid (at r  R) regardless of whether we are dealing 
with our real problem (charge q and the conducting sphere) or with the equivalent charge configuration 
– with the point charges q and q’, but no sphere at all. Hence, according to Eq. (1.16), the Gaussian 
integral over a surface with radius r = R + 0, and the total charge inside the sphere should be also the 
same. Hence we immediately get 

      q
d

R
q'Q  .     (2.199) 

A similar argumentation may be used to calculate the charge-to-sphere interaction force: 
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(Note that this expression is legitimate only at d > R.) At large distances, d >> R, this attractive force 
decreases as 1/d3. This unusual dependence arises because, as Eq. (199) specifies, the induced charge of 
the sphere, responsible for the force, is not constant but decreases as 1/d. In the next chapter, we will see 
that such force is also typical for the interaction between a point charge and a dipole. 

 All previous formulas were for a sphere that is grounded to keep its potential equal to zero. But 
what if we keep the sphere galvanically insulated, so its net charge is fixed, for example, equals zero? 
Instead of solving this problem from scratch, let us use (again!) the almighty linear superposition 
principle. For that, we may add to the previous problem an additional charge, equal to –Q = –q’, to the 
sphere, and argue that this addition gives, at all points, an additional, spherically symmetric potential 
that does not depend on the potential induced by the external charge q, and was calculated in Sec. 1.2 – 
see Eq. (1.19). For the interaction force, such addition yields 
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At large distances, the two terms proportional to 1/d3  cancel each other, giving F  1/d5, so the 
potential energy of such interaction behaves as U  1/d4. Such a rapid force decay is due to the fact that 
the field of the uncharged sphere is equivalent to that of two (equal and opposite) induced charges +q’ 
and –q’, and the distance between them (d – d’ = d – R2/d) tends to zero at d  .  

 

2.10. Green’s functions 

 I have spent so much time/space discussing potential distributions created by a single point 
charge in various conductor geometries because for any of the geometries, the generalization of these 
results to the arbitrary distribution (r) of free charges is straightforward. Namely, if a single charge q, 
located at some point r’, creates at point r the electrostatic potential 
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then, due to the linear superposition principle, an arbitrary charge distribution creates the potential 
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The function G(r, r’) is called the (spatial) Green’s function – the notion very fruitful and hence popular 
in all fields of physics.68 Evidently, as Eq. (1.35) shows, in the unlimited free space 
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),( ,     (2.204) 

i.e. the Green’s function depends only on one scalar argument – the distance between the field-
observation point r and the field-source (charge) point r’. However, as soon as there are conductors 
around, the situation changes. In this course, I will only discuss Green’s functions defined to vanish as 
soon as the radius-vector r points to the surface (S) of any conductor:69  

      .0),( S'G rrr      (2.205) 

 With this definition, it is straightforward to deduce the Green’s functions for the solutions of the 
last section’s problems in which conductors were grounded, i.e. had potential  = 0. For example, for a 
semi-space z  0 limited by a grounded conducting plane z = 0 (Fig. 26),  Eq. (185) yields 

       z'z"'"
"'

G 





   and  with ,
11

ρρ
rrrr

,   (2.206) 

where  is the 2D radius vector. We see that in the presence of conductors (and, as we will see later, any 
other polarizable media), Green’s function may depend not only on the difference r – r’, but on each of 
these two arguments in a specific way.  

  So far, this is just re-naming our old results. The really non-trivial result of the Green’s function 
formalism in electrostatics is that, somewhat counter-intuitively, the knowledge of this function for a 
system with grounded conductors (Fig. 30a) enables the calculation of the field created by voltage-
biased conductors (Fig. 30b), with the same geometry. To show this, let us use the so-called Green’s 
theorem of the vector calculus.70 The theorem states that for any two scalar, differentiable functions f(r) 
and g(r), and any volume V, 
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rdfggfrdfggf 2322  ,   (2.207) 

where S is the surface limiting the volume. Applying the theorem to the electrostatic potential (r) and 
the Green’s function G (also considered as a function of r), let us use the Poisson equation (1.41) to 
replace 2  with (-/0), and notice that G, considered as a function of r, obeys the Poisson equation 
with the -functional source:  

        )(4),(2 ''G rrrr   .     (2.208) 

68 See, e.g., CM Sec. 5.1, QM Secs. 2.2 and 7.4, and SM Sec. 5.5. Note that the numerical coefficient in Eq. (202) 
(and hence all resulting formulas) is the matter of convention; this choice does not affect the final results. 
69 G so defined is sometimes called the Dirichlet function. 
70 See, e.g., MA Eq. (12.3). Actually, this theorem is a ready corollary of the better-known divergence (“Gauss”) 
theorem, MA Eq. (12.2). 
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(Indeed, according to its definition (202), this function may be formally considered as the field of a 
point charge q = 40.) Now swapping the notation of the radius-vectors, r  r’, and using the Green’s 
function symmetry, G(r, r’) = G(r’, r),71 we get 
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Let us apply this relation to the volume V of free space between the conductors, and the 
boundary S drawn immediately outside of their surfaces. In this case, by its definition, Green’s function 
G(r, r’) vanishes at the conductor surface, i.e. at r  S – see Eq. (205). Now changing the sign of ∂n’ (so 
it would be the outer normal for conductors, rather than free space volume V), dividing all terms by 4, 
and partitioning the total surface S into the parts (numbered by index j) corresponding to different 
conductors (possibly, kept at different potentials k), we finally arrive at the famous result:72 
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While the first term on the right-hand side of this relation is a direct and evident expression of 
the superposition principle, given by Eq. (203), the second term is highly non-trivial: it describes the 
effect of conductors with arbitrary potentials k (Fig. 30b), using the Green’s function calculated for the 
similar system with grounded conductors, i.e. with all k = 0 (Fig. 30a). Let me emphasize that since our 
volume V excludes conductors, the first term on the right-hand side of Eq. (210) includes only the stand-
alone charges in the system (in Fig. 30, marked q1, q2, etc.), but not the surface charges of the conductors 
– which are taken into account, indirectly, by the second term.  

 In order to illustrate what a powerful tool Eq. (210) is, let us use to calculate the electrostatic 
field in two systems. In the first of them, a plane, circular, conducting disk of radius R, separated with a 
very thin cut from the remaining conducting plane, is biased with potential  = V, while the rest of the 
plane is grounded – see Fig. 31.  

 

71 This symmetry, evident for the particular cases (204) and (206), may be readily proved for the general case by 
applying Eq. (207) to the functions f (r)  G(r, r’) and g(r)  G(r, r”). With this substitution, the left-hand side of 
that equality becomes equal to –4[G(r”, r’) – G(r’, r”)], while the right-hand side is zero, due to Eq. (205). 
72 In some textbooks, the sign before the surface integral is negative, because their authors use the outer normal to 
the free-space region V rather than those occupied by conductors – as I do. 

Potential  
via Green’s 

function 

Fig. 2.30. Green’s function method allows the solution of a simpler boundary problem (a) to be 
used for the solution of a more complex problem (b), for the same conductor geometry. 
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 If the width of the gap between the disk and the rest of the plane is negligible, we may apply Eq. 
(210) without stand-alone charges, (r’) = 0, and the Green’s function for the uncut plane – see Eq. 
(206).73 In the cylindrical coordinates, with the origin at the disk’s center (Fig. 31), the function is 
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(The sum of the first three terms under each square root in Eq. (211) is just the squared distance between 
the horizontal projections  and ’ of the vectors r and r’ (or r”) correspondingly, while the last terms 
are the squares of their vertical displacements.)  

 Now we can readily calculate the derivative participating in Eq. (210), for z  0: 
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Due to the axial symmetry of the system, we may take   for zero. With this, Eqs. (210) and (212) yield 
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This integral is not overly pleasing, but may be readily worked out at least for points on the symmetry 
axis ( = 0, z  0):74 

      ,1
12 2/122

/

0
2/3

0
2/322

22

















  zR

z
V

dV

z'

''d
Vz

zRR






 (2.214) 

This result shows that if z  0, the potential tends to V (as it should), while at z >> R,  
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73 Indeed, if all parts of the cut plane are grounded, a narrow cut does not change the field distribution, and hence 
the Green’s function, significantly. 
74 There is no need to repeat the calculation for z  0: from the symmetry of the problem, (–z) = (z). 

Fig. 2.31. A voltage-biased conducting disk separated from the rest of a conducting plane. 
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 Now let us use the same Eq. (210) to solve the (in :-)famous problem of the cut sphere (Fig. 32). 
Again, if the gap between the two conducting semi-spheres is very thin (t << R), we may use Green’s 
function for the grounded (and uncut) sphere. For a particular case r’ = dnz, this function follows from 
Eqs. (197)-(198); generalizing the former relation for an arbitrary direction of vector r’, we get 
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where   is the angle between the vectors r and r’, and hence r” – see Fig. 32. 

 

 

 

 

 

 

 

 

 

 Now, calculating the Green’s function’s derivative,  
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and plugging it into Eq. (210), we see that the integration is again easy only for the field on the 
symmetry axis (where r = znz, and   = ’), giving: 
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For z  R, this relation yields   V/2  (as it should), while for z/R  ,  
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As will be discussed in the next chapter, such a field is typical for an electric dipole. 

   

2.11. Numerical methods 

 Despite the richness of analytical methods, for many boundary problems (especially in 
geometries without a high degree of symmetry), the numerical approach is the only way to the solution. 
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Fig. 2.32. A system of two separated, oppositely 
biased semi-spheres. 
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Though software packages offering their automatic numerical solution are abundant nowadays,75 it is 
important for every educated physicist to understand “what is under the hood”, at least because most 
universal programs exhibit mediocre performance in comparison with custom codes written for 
particular problems, and sometimes do not converge at all, especially for fast-changing (say, 
exponential) functions. The very brief discussion presented here76 is a (hopefully, useful) fast glance 
under the hood, though it is certainly insufficient for professional numerical research work. 

 The simplest of the numerical approaches to the solution of partial differential equations, such as 
the Poisson or the Laplace equations  (1.41)-(1.42), is the finite-difference method,77 in which the sought 
continuous scalar function f(r), such as the potential (r), is represented by its values in discrete points 
of a rectangular grid (frequently called mesh) of the corresponding dimensionality – see Fig. 33.  

 Each partial second derivative of the function is approximated by the formula that readily 
follows from linear approximations of the function f and then its partial derivatives – see Fig. 33a: 
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where f  f(rj + h) and f  f(rj – h). (The relative error of this approximation is of the order of 
h4∂4f/∂rj

4.) As a result, the action of a 2D Laplace operator on the function f may be approximated as 
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and of the 3D operator, as 
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(The notation used in Eqs. (221)-(222) should be clear from Figs. 33b and 33c, respectively.) 

75 See, for example, MA Secs. 16 (iii) and (iv). 
76 It is almost similar to that given in CM Sec. 8.5 and is reproduced here for the reader’s convenience, illustrated 
with examples from this (EM) course. 
77 For more details see, e.g., R. Leveque, Finite Difference Methods for Ordinary and Partial Differential 
Equations, SIAM, 2007. 

Fig. 2.33. The general idea of the finite-difference method in (a) one, (b) two, and (c) three dimensions. 
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  As a simple example, let us use this scheme to find the electrostatic potential distribution inside 
a cylindrical box with conducting walls and square cross-section aa, using an extremely coarse mesh 
with step 2/ah   (Fig. 34). In this case, our function, the electrostatic potential (x, y), equals zero at 
the side and bottom walls, and V0 at the top lid, so, according to Eq. (221), the 2D Laplace equation may 
be approximated as 

            .0
)2/(

4000
2

0 


a

V 
     (2.223)  

The resulting value for the potential in the center of the box is  = V0/4.  

  

 

 

 

 

 

 

 Surprisingly, this is the exact value! This may be proved either by solving this problem by the 
variable separation method, just as this has been done for a similar 3D problem in Sec. 5, or just from 
the following Green’s-function argument. If all four walls of our 2D volume were biased to the voltage 
V0, there would be no electric field in it at all, so the middle-point potential would be equal to V0 as well. 
However, from the point of view of Eq. (210) with no bulk charge, (r) = 0, this result may be 
legitimately viewed as the linear superposition of the four contributions of the potentials k = V0 of each 
wall. Since for this symmetric geometry, the corresponding geometrical factors are equal, the 
contribution of one wall, with k = 0 on all other walls (as in our current problem), has to equal V0/4. 

 For a similar 3D problem (a cubic box), with a similar 3D mesh, Eq. (222) yields 

     0
)2/(

600000
2

0 
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a

V 
,    (2.226) 

so  = V0/6. Using the same Green’s-function argument, now for six walls of the cube, we see that this 
result is also exact! (This fact also follows from our variable-separation result expressed by Eqs. (95) 
and (99) with a = b = c.)  

 Though such exact results should be considered as a happy coincidence rather than the general 
law, they still show that numerical methods, even with relatively crude meshes, may be more 
computationally efficient than some “analytical” approaches, like the variable separation method with 
its infinite-sum results that, in most cases, require computers anyway – at least for the result’s 
comprehension and analysis.  

 A more powerful (but also much more complex) approach is the finite-element method in which 
the discrete point mesh, typically with triangular cells, is (automatically) generated in accordance with 
the system geometry.78 Such mesh generators provide higher point concentration near sharp convex 

78 See, e.g., CM Fig. 8.14. 

Fig. 2.34. Numerically solving an internal 2D boundary 
problem for a conducting, cylindrical box with a square 
cross-section, using a very coarse mesh (with h = a/2). 
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parts of conductor surfaces, where the field concentrates and hence the potential changes faster, thus 
ensuring a better accuracy-to-speed tradeoff than the finite-difference methods on a uniform grid. The 
price to pay for this improvement is the algorithm’s complexity which makes its adjustments much 
harder. Unfortunately, in this series, I do not have time for going into the details of that method and have 
to refer the reader to the special literature on this subject.79 

 

2.12. Exercise problems 

 2.1. Calculate the force (per unit area) exerted on a conducting surface by an external electric 
field normal to it. Compare the result with the electric field’s definition given by Eq. (1.6), and 
comment. 
 
  

 2.2. Electric charges QA and QB have been placed on two conducting 
concentric spherical shells – see the figure on the right. What is the full 
charge of each of the surfaces S1-S4? 

  
  
 

 2.3. Calculate the mutual capacitance between the terminals of the 
lumped-capacitor circuit shown in the figure on the right. Analyze and 
interpret the result for major particular cases. 
 
  
  
 
 2.4. Calculate the mutual capacitance between the terminals 
of the semi-infinite lumped-capacitor circuit shown in the figure on 
the right, and find the law of the applied voltage’s decay along the 
system. Analyze and interpret the result. 
 
 
 2.5. A system of two thin conducting plates is located over a 
ground plane as shown in the figure on the right, where A1 and A2 are 
the areas of the indicated plate parts, while d’ and d” are the distances 
between them. Neglecting the fringe effects, calculate: 

 (i) the effective capacitance of each plate, and 
 (ii) their mutual capacitance. 
 

79 See, e.g., either C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element 
Method, Dover, 2009, or T. Hughes, The Finite Element Method, Dover, 2000. 
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 2.6. A wide and thin film carrying a uniformly distributed  
electric charge of areal density  is placed inside a plane capacitor 
whose plates are connected with a wire – see the figure on the right. 
Neglecting the fringe effects, calculate the surface charges of the plates 
and the net force exerted on the film (per unit area). 
  
 2.7. A relatively small conductor (possibly, of an 
irregular shape) with self-capacitance C is located at distance 
r from the center of a conducting sphere of radius R – see the 
figure on the right. In the first approximation in C,  find the 
reciprocal capacitance matrix of the system. Use the matrix to 
calculate its potential energy and the force of the conductor 
interaction for two cases: 

 (i) the conductor charges Q are equal, and 
 (ii) the conductor potentials  are kept equal.  
 
 2.8. Use the Gauss law to calculate the mutual capacitance of the 
following two-electrode systems, both with the cross-section shown in Fig. 7 
(reproduced on the right): 

 (i) a conducting sphere in the center of a spherical cavity inside 
another conductor, and 

(ii) a long conducting round cylinder on the axis of a cylindrical cavity 
inside another conductor, i.e. a coaxial cable. (In this case, we speak about the 
capacitance per unit length).  

Compare the results with those obtained in Sec. 2.2 using the Laplace 
equation. 

  

 2.9. Calculate the electrostatic potential distribution around two barely 
separated conductors in the form of coaxial round cones (see the figure on the 
right), with voltage V between them. Compare the result with that of a similar 2D 
problem, with the cones replaced with plane-face wedges. Can you calculate the 
mutual capacitances between the conductors in these systems? If not, can you 
estimate them? 
 
 
 2.10. Calculate the mutual capacitance between two 
rectangular planar electrodes of area A = al, with a very small 
angle  0 between them – see the figure on the right.  
 
  
 2.11. Using the results for a single thin round disk, obtained in Sec. 4, 
consider a system of two such disks at a small distance d << R from each other 
– see the figure on the right. In particular, calculate: 

 (i) the reciprocal capacitance matrix of the system, 
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 (ii) the mutual capacitance between the disks, 
 (iii) the partial capacitance of one disk, and 
 (iv) the effective capacitance of one disk, 

– all in the first nonvanishing approximation in d/R << 1. Compare the results (ii)-(iv) and interpret their 
similarities and differences. 
 
 2.12.* Calculate the mutual capacitance (per unit length) between 
two cylindrical conductors forming a system with the cross-section shown 
in the figure on the right, in the limit t << w << R. 

Hint: You may like to use the elliptic coordinates mentioned in Sec. 
4. They are  defined by the following equality: 

           ),cosh(  iciyx      (*) 

where c is a constant.  
 

2.13. Calculate the mutual capacitance (per unit length) between two similar, long, parallel 
wires, each with a round cross-section of radius R, whose axes are separated by distance d > 2R. Explore 
and interpret the result in the limits R  0 and R  2d.  

 Hint: You may like to use the 2D orthogonal bipolar coordinates {, } defined by the following 
relations with the Cartesian coordinates {x, y}: 
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2.14. Formulate 2D electrostatic problems that may be simply solved using each of the following 

analytic functions of the complex variable z  x + iy: 

 (i) w = ln z, 
 (ii) w = z1/2, 
 (iii) w = z + 1/z, 

and solve these problems. 
 
 2.15. On each side of a cylindrical volume with a rectangular cross-section ab, with no electric 
charges inside it, the electric field’s component normal to the side’s plane is constant, and also equal and 
opposite to that on the opposite side. Calculate the distribution of the electric potential inside the 
volume, provided that the magnitude of the normal components on the sides of length b equals E. 
Suggest a practicable method to implement such potential distribution. 
  
 2.16. Complete the solution of the problem shown in Fig. 12, by calculating the distribution of 
the surface charge on the semi-planes. Can you calculate the mutual capacitance between the semi-
planes (per unit length of the system)? If not, can you estimate it? 
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2.17. A straight, long, thin, round-cylindrical conducting pipe has been 
cut, along its axis, into two equal parts – see the figure on the right. 

 (i) Use the conformal mapping method to calculate the distributions of 
the electrostatic potential created by voltage V applied between the two parts, 
both outside and inside the pipe, and of the surface charge.  
 (ii)* Calculate the mutual capacitance between the pipe’s halves (per 
unit length), taking into account a small width 2t << R of the cut. 

 Hints: In Task (i), you may like to use the complex function 

z
z

w




R

R
ln , 

while in Task (ii), you may use the solution of the previous problem. 
 
 
 2.18. A gap of constant width w between two grounded conducting semi-spaces 
is closed, from one side, with a conducting plunger biased with voltage V, so that the 
cross-section of the system looks like the figure on the right shows. Use the variable 
separation method to calculate the distribution of the electrostatic potential within the 
gap.  
 
 
 
 
 2.19. Use the variable separation method to calculate the electrostatic 
potential’s distribution inside a very long thin-wall metallic box with a quadratic 
cross-section, cut and voltage-biased as shown in the figure on the right. (Assume 
that the cut’s width is negligibly small.) 
 
 
 2.20. Solve Problem 17(i) by using the variable separation method, and compare the results. 
 
 2.21. Use the variable separation method to calculate the potential distribution above the plane 
surface of a conductor, with a strip of width w separated by very thin cuts, and biased with voltage V – 
see the figure below. 
 
 
 
 

 2.22. The previous problem is now modified: the cut-out and voltage-biased part of the 
conducting plane is now not a strip, but a square with side w. Calculate the potential distribution above 
the conductor’s surface.  
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 2.23. Each electrode of a large plane capacitor is cut into 
parallel long strips of equal width w, with very narrow gaps 
between them. These strips are kept at alternating potentials, as 
shown in the figure on the right. Use the variable separation 
method to calculate the electrostatic potential distribution in space, 
and explore the limit w << d. 
 
 2.24. Complete the cylinder problem started in Sec. 7 (see Fig. 17), for the cases when the top 
lid’s voltage is fixed as follows:  

 (i) V = V0 J1(11/R) sin, where 11  3.832 is the first root of the Bessel function J1(); 
  (ii) V = V0 = const. 

 For both cases, calculate the electric field at the centers of the lower and upper lids. (For Task 
(ii), an answer including series and/or integrals is acceptable.) 

 
2.25. For the infinitely long periodic system sketched in Fig. 21, assuming that t << h, R: 

 (i) calculate and sketch the electrostatic potential’s distribution inside the system for various 
values of the ratio R/h, and 

(ii) simplify the results for the limit R/h  0. 
  
 2.26. A long round cylindrical conducting pipe is split, with a 
very narrow cut normal to its axis, into two parts that are voltage-
biased as the figure on the right shows. Use two different approaches 
to calculate the force exerted by the resulting field upon a charged 
particle flying along the pipe close to its axis. Can the system work as 
an electrostatic lens? 
 
 2.27. Use the variable separation method to find the potential distribution inside and outside of a 
thin spherical shell of radius R, with a fixed potential distribution on it: (R,,) = V0 sin cos. 
 
 2.28. A thin spherical shell carries an electric charge with areal density  = 0cos. Calculate the 
spatial distribution of the electrostatic potential and the electric field, both inside and outside the shell. 
 
 2.29. Use the variable separation method to solve the problem already considered in Sec. 10: 
calculate the potential distribution both inside and outside of a thin spherical shell of radius R, separated 
with a very thin cut along the central plane z = 0 into two halves, with voltage V applied between them – 
see Fig. 32. Analyze the solution; in particular, compare the field at the z-axis, for z > R, with Eq. (218). 

 Hint: You may like to use the following integral of a Legendre polynomial with an odd index l = 
1, 3, 5…= 2n – 1:80 

80 As a reminder, the double factorial (also called “semifactorial”) operator (!!) is similar to the usual factorial 
operator (!), but with the product limited to numbers of the same parity as its argument – in our particular case, of 
the odd numbers in the numerator and even numbers in the denominator. 
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 2.30. Calculate, up to terms O(1/r2), the long-range electric field induced by 
a split and voltage-biased conducting sphere – similar to that discussed in Sec. 10 
(see Fig. 32) and in the previous problem, but with the cut’s plane at an arbitrary 
distance d < R from the center – see the figure on the right. 
  
 
 
 2.31. Calculate the field distribution in the simple electrostatic lens that was the subject of 
Problem 1.9, provided that the separation of the two field regions is provided by a thin conducting 
membrane, with a round hole of radius R. 

 Hint: You may like to use the fact that the general axially symmetric solution of the Laplace 
equation in the oblate ellipsoidal coordinates (59) may be represented in the following variable-
separation form: 
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where pn and qn are constants, Pn are the Legendre polynomials (2.169), which are sometimes called the 
Legendre functions of the first kind, while Qn are the Legendre functions of the second kind (briefly 
mentioned, in a different context,  in Sec. 2.8) that may be defined by the following recurrence relations: 
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 2.32. A small conductor (in this context, usually called a single-
electron island) is placed between two conducting electrodes, with 
voltage V applied between them. The gap between the island and one of 
the electrodes is so narrow that electrons may tunnel quantum-
mechanically through this “junction” – see the figure on the right. 
Neglecting thermal excitation effects, calculate the equilibrium charge of 
the island as a function of V. 

Hint: To solve this problem, you do not need to know much about 
the quantum-mechanical tunneling between conductors, besides that such tunneling of an electron, 
together with energy relaxation of the resulting excitations, may be considered a single inelastic 
(energy-dissipating) event.81 At negligible thermal excitations, such an event takes place only if it 
decreases the total potential energy of the system. 

81 Strictly speaking, this statement, implying negligible quantum-mechanical coherence of the tunneling events, is 
correct only if the junction transparency is so low that its effective electric resistance is much higher than the 
fundamental quantum unit of resistance, RQ  /2e2  6.5 k (see, e.g., QM Sec. 3.2). However,  this condition 
is satisfied in most experimental tunnel junctions. 
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2.33. The system discussed in the previous problem is now 

generalized as the figure on the right shows. If the voltage V’ applied between 
the two bottom electrodes is sufficiently large, electrons can successively 
tunnel through two junctions of this system (called the single-electron 
transistor), carrying dc current between these electrodes. Neglecting thermal 
excitations, calculate the region of voltages V and V’ where such a current is 
fully suppressed (Coulomb-blocked). 

 
 
2.34. Use the charge image method to calculate the full surface charges induced in the plates of a 

very broad, voltage-unbiased plane capacitor of thickness D by a point charge q separated from one of 
the electrodes by distance d. Suggest at least one alternative method to obtain the same result. 
 
 2.35. Use the charge image method to calculate the potential energy of the electrostatic 
interaction between a point charge placed in the center of a spherical cavity that had been carved inside 
a grounded conductor, and the cavity’s walls. Looking at the result, could it be obtained in a simpler 
way (or ways)? 

 
2.36. Use the method of charge images to find the Green’s 

function of the system shown in the figure on the right, where the 
bulge on the (otherwise, plane) surface of a conductor has the shape 
of a semi-sphere of radius R. 

 
2.37.* Use the spherical inversion expressed by Eq. (198), to develop an iterative method for a 

more and more precise calculation of the mutual capacitance between two similar conducting spheres of 
radius R, with their centers separated by distance d  > 2R. 

 
  

 2.38.* A conducting sphere of radius R1, carrying an electric charge Q, is 
placed inside a spherical cavity of radius R2 > R1, carved inside another bulk 
conductor. Calculate the electric force exerted on the sphere if its center is 
displaced by a small distance  << R1, R2 – R1 from that of the cavity – see the 
figure on the right. 

 
 
2.39. Within the simple models of the electric field screening in conductors, discussed in Sec. 

2.1, analyze the partial screening of the electric field of a point charge q by a planar conducting film of 
constant thickness t << , where  is (depending on charge carrier statistics) either the Debye or the 
Thomas-Fermi screening length – see, respectively, Eqs. (8) or (10). Assume that the distance d between 
the charge and the film is much larger than t. 

 

 2.40. Prove the following expansion of the simplest Green’s function (204) into a series over the 
Legendre polynomials: 
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where r> is the largest of the two scalars r   r   0 and r’   r’   0, while r< is the smallest of them. 
 

 2.41. Use the expansion that was the subject of the previous problem to confirm the analysis, in 
Sec. 2.9 of the lecture notes, of the system shown in Fig. 29: a grounded conducting sphere of radius R, 
and a point charge q located at distance d > R from its center. 

 
2.42. Suggest a convenient definition of the Green’s function for 2D electrostatic problems, and 

calculate it for: 

  (i) the unlimited free space, and 
  (ii) the free space above a conducting plane. 

Use the latter result to re-solve Problem 21. 
 

2.43. A conducting plane is separated into two parts with a very narrow straight cut, and voltage 
V is applied between the resulting half-planes – see the figure below. Use the Green’s function method 
to find the distribution of the electrostatic potential and the electric field everywhere in the space. 
Compare the result with Eq. (83). In hindsight, could the problem be solved in an even simpler way (or 
ways)? 

 

 
 

 2.44. Use the last result of Problem 42  and one of the conformal mappings discussed in Sec. 4 to 
find one more solution of Problem 18.  
  
 2.45. Calculate the 2D Green’s functions for the free spaces: 

 (i) outside a round conducting cylinder, and 
 (ii) inside a round cylindrical hole in a conductor. 
 
 2.46. Solve Problem 17(i) using the Green’s function method. 
  
 2.47. Solve the 2D boundary problem that was discussed in Sec. 11 (Fig. 34) by using: 

  (i) the finite difference method with the finer square mesh h = a/3, and 
  (ii) the variable separation method. 

Compare the results at the mesh points, and comment. 
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