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Chapter 3. Dipoles and Dielectrics 

In contrast to conductors, the motion of charges in dielectrics is restricted to the atom/molecule 
interiors, so the electric polarization of these materials by an external field takes a different form. This 
issue is the main subject of this chapter, but in preparation for its analysis, we have to start with a 
general discussion of the electric field induced by spatially restricted systems of charges.  

 

3.1. Electric dipole 

 Let us consider a localized system of charges, of a linear scale a, and derive a simple 
approximate expression for the electrostatic field induced by the system at a distant point r. For that, let 
us select a reference frame with the origin either somewhere inside the system, or at a distance of the 
order of a from it (Fig. 1).  

 

 

 

 

  

 

 

Then the positions of all charges of the system satisfy the following condition: 

            rr'  .      (3.1) 

Using this condition, we can expand the general expression (1.38) for the electrostatic potential  (r) of 
the system into the Taylor series in small parameter r’. For any function of type f (r – r’), the expansion 
may be represented as1 
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Applying this formula to the fraction 1/r – r’ in Eq. (1.38) (i.e. essentially to the free-space Green’s 
function), we get the so-called multipole expansion of the electrostatic potential: 
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1 See, e.g., MA Eq. (2.11b). 

  whose r-independent parameters are defined as follows: 
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for the electrostatic field of a localized system 
of charges at a distant point (r >> r’ ~ a). 
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 (Indeed, the two leading terms of the expansion (2) may be rewritten in the vector form f(r) – r’f(r), 
and the gradient of such a spherically-symmetric function f(r) = 1/r is just nrdf/dr, so 
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immediately giving the two first terms of Eq. (3). The proof of the third, quadrupole term in Eq. (3) is 
similar but a bit longer, and is left for the reader’s exercise.)  

 Evidently, the scalar parameter Q in Eqs. (3)-(4) is just the total charge of the system. The 
constants pj may be considered as Cartesian components of the following vector: 

               r''d' 3)( rrp  ,     (3.6) 

called the system’s electric dipole moment, and Qjj’ are Cartesian elements of a tensor – system’s electric 
quadrupole moment.  If Q  0, all higher terms on the right-hand side of Eq. (3), at large distances (1), 
are just small corrections to the first one, and in many cases may be ignored. However,  the net charge of 
many systems is exactly zero, the most important examples being neutral atoms and molecules. For such 
neural systems, the second (dipole) term in Eq. (3) is, most frequently, the leading one. Such systems are 
called electric dipoles. Due to their importance, let us rewrite the expression for the dipole term in three 
other, mathematically equivalent forms:  
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that are more convenient for some applications. Here   is the angle between the vectors p and r, and in 
the last (Cartesian) representation, the z-axis is directed along the vector p. Fig. 2a shows equipotential 
surfaces of the dipole field – or rather their cross-sections by any plane in which the vector p resides. 
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Fig. 3.2. (a) The equipotential surfaces and (b) the electric field lines of a dipole. (Panel (b) 
adapted from  http://en.wikipedia.org/wiki/Dipole under the GNU Free Documentation License.) 
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 The simplest example of a system whose field, at large distances, approaches the dipole field (7), 
is two equal but opposite point charges (“poles”), +q and –q, with the radius vectors, respectively, r+ 
and r–: 
             )()()()(   rrrrr  qq .    (3.8) 

For this system (sometimes called the physical dipole), Eq. (4) yields 

         arrrrp qqqq   )()()( ,    (3.9) 

where a is the vector connecting the points r- and r+. Note that in this case (and indeed for all systems 
with Q = 0), the dipole moment does not depend on the choice of the reference frame’s origin. 

 A less trivial example of a dipole is a conducting sphere of radius R in a uniform external electric 
field E0. As a reminder, its field was calculated in Sec. 2.8, and its result is expressed by Eq. (2.176). 
The first term in the parentheses of that relation describes just the external field (2.173), so the field of 
the sphere itself (i.e. that of the surface charge induced by E0) is given by the second term:  
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Comparing this expression with the second form of Eq. (7), we see that the sphere has an induced dipole 
moment 
       .4 3

00 REp       (3.11) 

This is an interesting example of a virtually pure dipole field: at all points outside the sphere (r > R), the 
field has neither a quadrupole moment nor any higher moments.  

 Other examples of dipole fields are given by two more systems discussed in Chapter 2 – see Eqs. 
(2.215) and (2.219). Those systems, however, do have higher-order multipole moments, so for them, Eq. 
(7) gives only the long-distance approximation. 

 Now returning to the general properties of the dipole field (7), let us calculate its major 
characteristics. First of all, we may use Eq. (7) to calculate the electric field of a dipole: 
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This differentiation is easiest in the spherical coordinates, using the well-known expression for the 
gradient of a scalar function in these coordinates2 and taking the z-axis parallel to the dipole moment p. 
From the last form of Eq. (12), we immediately get 
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Fig. 2b above shows the electric field lines given by Eqs. (13). The most important features of this result 
are a faster drop of the field’s magnitude (Ed  1/r3, rather than E  1/r2 for a point charge), and the 
change of the signs of its radial component as a function of the polar angle   [0, ]. 

2 See, e.g., MA Eq. (10.8) with / = 0. 
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 Next, let us use Eq. (1.55) to calculate the potential energy of interaction between a dipole and 
an external electric field. Assuming that this field does not change much at distances of the order of a 
(Fig. 1), we may expand its potential ext(r) into the Taylor series, and keep only two leading terms: 
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The first term is the potential energy the system would have if it were just a point charge. If the net 
charge Q is zero, that term disappears, and the leading contribution is due to the dipole moment: 

             constfor  ,ext  pEpU .    (3.15a) 

Note that this result is only valid for a fixed dipole, with p independent of Eext. In the opposite limit, 
when the dipole is induced by the field, i.e. p  Eext (you may have one more look at Eq. (11) to see an 
example of such a proportionality), we need to start with Eq. (1.60) rather than Eq. (1.55), getting 
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In particular, combining Eqs. (13) and Eq. (15a), we may get the following important formula for 
the interaction of two independent dipoles: 
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where r is the vector connecting the dipoles, and the z-axis is directed along this vector. It is easy to 
prove (this exercise is left for the reader) that if the magnitude p of each dipole moment is fixed (the 
approximation valid, in particular, for weak interaction of so-called polar molecules), this potential 
energy reaches its minimum at the parallel orientation of the dipoles along the line connecting them. 
Note also that in this case, Uint is proportional to 1/r3. On the other hand, if each moment p has a random 
value plus a component due to its polarization by the electric field of its counterpart: p1,2  E2,1  1/r3, 
their average interaction energy (which may be calculated from Eq. (16) with the additional factor ½) is 
always negative and is proportional to 1/r6. Such negative potential describes, in particular, the long-
range, attractive part (the so-called London dispersion force) of the interaction between electrically 
neutral atoms and molecules.3 

 According to Eqs. (15), the electric field should “try” to reach the minimum of U by aligning the 
dipole vector’s direction with its own. The direct quantitative description of this effect is the torque  
exerted by the field. The simplest way to calculate it is to sum up all the elementary torques d = rdFext 
= rEext(r)(r)d3r exerted on all elementary charges of the system: 
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3
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where at the last step, the spatial dependence of the external field Eext(r) was again neglected. This 
dependence cannot, however, be ignored at the calculation of the total force exerted by the field on the 
dipole (with Q = 0). Indeed, Eqs. (15) shows that if the field is constant, the dipole’s energy is 

3 Several calculations of this force, using various models, are described in the QM and SM parts of this series. 
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independent of its spatial location and hence the net force is zero. However, if the field has a non-zero 
gradient, a total force does appear; for a field-independent dipole, 

           )( extEpF  U ,     (3.18) 

where the derivative has to be taken at the dipole’s position (in our notation, at r =  0). If the dipole that 
is being moved in a field retains its magnitude and orientation, then the last formula is equivalent to4  

         extEpF  .     (3.19) 

Alternatively, the last expression may be obtained similarly to Eq. (14):  
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 Finally, let me add a note on the so-called coarse-grain model of the dipole. The dipole 
approximation explored above is asymptotically correct only at large distances, r >> a. However, for 
some applications (including the forthcoming discussion of the molecular field effects in Sec. 3) it is 
beneficial to have an expression that might be formally used everywhere in space, though maybe 
without exact details at r ~ a, giving the correct result for the space average of the electric field, 
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where V is a regularly-shaped volume much larger than a3, for example, a sphere of radius R >> a, with 
the dipole at its center. For the field Ed given by Eq. (13), such an average is zero. Indeed, let us 
consider the Cartesian components of that vector in a reference frame with the z-axis directed along the 
vector p. Due to the axial symmetry of the field, the averages of the components Ex and Ey vanish. Let 
us use Eq. (13) to spell out the “vertical” component of the field (parallel to the dipole moment vector): 
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Integrating this expression over the whole solid angle  = 4, at fixed r, using a convenient variable 
substitution cos   , we get 
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 On the other hand, the exact electric field of an arbitrary charge distribution, with the total 
dipole moment p, obeys the following equality: 
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where the integration is over any sphere containing all the charges. (A proof of this formula by using 
Eqs. (1.9) and (1.22) is left for the reader’s exercise.) The origin of the difference is illustrated in Fig. 3 
on the example of a physical dipole, i.e. a system of two equal but opposite charges – see Eqs. (8)-(9). 

4 The equivalence may be proved, for example, by using MA Eq. (11.6) with f = p = const and g = Eext, taking 
into account that according to the general Eq. (1.28), Eext = 0. 
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The zero average (23) of the dipole field (13) does not take into account the contribution from the region 
between the charges where Eq. (13) is not valid, and the field is directed mostly against the dipole vector 
(9).  

 

 

 

 

 

 

  

So, in order to be used as a reasonable coarse-grain model, Eq. (13) may be modified as follows: 
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with the average (21) satisfying Eq. (24). Evidently, such a modification does not change the field at 
large distances r >> a, i.e. in the region where the expansion (3), and hence Eq. (13), are valid. 

 

3.2. Dipole media 

 Now let us generalize Eq. (7) to the case of several (possibly, many) dipoles pj located at 
arbitrary points rj. Using the linear superposition principle, we get 

     





j
j

j
j 3

0
d 4

1
)(

rr

rr
pr


 .    (3.26) 

If our system (medium) contains many similar dipoles, distributed in space with density n(r), we may 
approximate the last sum with a macroscopic potential, which is the average of the genuine 
(“microscopic”) potential (26) over a local volume much larger than the distance between the dipoles, 
and as a result, is given by the integral 
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where the vector P(r), called the electric polarization, has the physical meaning of the net dipole 
moment per unit volume. (Note that by its definition, P(r) is also a “macroscopic” field.) 

 Now comes a very impressive trick, which is the basis of all the theory of “macroscopic” 
electrostatics (and eventually, “macroscopic” electrodynamics). Just as was done at the derivation of Eq. 
(5), Eq. (27) may be rewritten in the equivalent form 
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Fig. 3.3. A sketch illustrating the origin 
of Eq. (24) for a physical dipole. 
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where ’ means the del operator (in this particular case, the gradient) acting in the “source space” of 
vectors r’. The right-hand side of Eq. (28), applied to any volume V limited by a closed surface S, may 
be readily integrated by parts to give5 
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If the surface does not carry an infinitely dense (-functional) sheet of additional dipoles,6 or it is just 
very distant, the first term on the right-hand side is negligible. Now comparing the second term with the 
basic equation (1.38) for the electric potential, we see that this term may be interpreted as the field of 
certain effective electric charges with density 

       P ef .      (3.30) 

 Figure 4 illustrates the physics of this key relation for a cartoon model of a simple multi-dipole 
system: a layer of uniformly distributed two-point-charge units oriented normally to the layer’s surface. 
(In this case, P = dP/dx.) One can see that the ef defined by Eq. (30) may be interpreted as the 
density of the uncompensated surface charges of polarized elementary dipoles.  

   

 

 

 

 

 

 

 

 

  
 Next, from Sec. 1.2, we already know that Eq. (1.38) is equivalent to the inhomogeneous 
Maxwell equation (1.27) for the electric field, so the macroscopic electric field of the dipoles (defined as 
Ed = –d, where d is given by Eq. (27)) obeys a similar equation, with the effective charge density 
(30).  

 Now let us consider a more general case when a system, besides the compensated charges of the 
dipoles, also has certain stand-alone charges – not parts of the dipoles already taken into account in the 
polarization P. As was discussed in Sec. 1.1, if we average this charge over the inter-point-charge 
distances, i.e. approximate it with a continuous “macroscopic” density (r), then its macroscopic 

5 To prove this (almost evident) formula strictly, it is sufficient to apply the divergence theorem given by MA Eq. 
(12.2), to the vector function f = P(r’)/r – r’, in the “source space” of radius-vectors r’. 
6 Just like in the case of Eq. (1.9), we may always describe such a dipole sheet using the second term in Eq. (29), 
by including a delta-functional part into the polarization distribution P(r’). 

Fig. 3.4. The spatial distributions of the 
polarization and effective charges in a layer of 
similar elementary dipoles (schematically). 
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electric field also obeys Eq. (1.27), but with the stand-alone charge density. Due to the linear 
superposition principle, for the total macroscopic field E of these charges and dipoles, we may write  
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 This is already the main result of the “macroscopic” electrostatics. However, it is evidently 
tempting (and very convenient for applications) to rewrite Eq. (31) in a different form by carrying the 
dipole-related term of this equality over to its left-hand side. The resulting formula is called the 
macroscopic Maxwell equation for D: 

          D ,      (3.32) 

where D(r) is a new “macroscopic” field, called the electric displacement (in some older texts, “electric 
induction”), defined as7 
        PED  0 .      (3.33) 

The comparison of Eqs. (32) and (1.27) shows that D (or more strictly, the fraction D/0) may be 
interpreted as the “would-be electric field” that would be created by stand-alone charges in the absence 
of the dipole medium polarization. If should be distinguished from the E participating in Eqs. (31) and 
(33), i.e. from the genuine electric field, if averaged over a spatial scale of the order of the distance 
between elementary charges and dipoles. 

 In order to get an even better gut feeling of the fields E and D, let us first rewrite the 
macroscopic Maxwell equation (32) in the integral form. Applying the divergence theorem to an 
arbitrary volume V limited by surface S, we get the following macroscopic Gauss law: 

          QrdrdD
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n   32  ,     (3.34) 

where Q is the stand-alone charge inside volume V.  

 This general result may be used to find the boundary conditions for D at a sharp interface 
between two different dielectrics. (The analysis is applicable to a dielectric/free-space boundary as 
well.) For that, let us apply Eq. (34) to a flat pillbox formed at the interface (see the solid rectangle in 
Fig. 5), which is sufficiently small on the spatial scales of the dielectric’s nonuniformity and the 
interface’s curvature, but still contains many elementary dipoles. Assuming that the interface does not 
have stand-alone surface charges, we immediately get 

          21 nn DD  ,     (3.35) 

i.e. the normal component of the electric displacement has to be continuous. Note that a similar 
statement for the macroscopic electric field E is generally not valid, because the polarization vector P 
may have, and typically does have a leap at a sharp interface (say, due to the different polarizability of 

7 Note that according to its definition (33), the dimensionality of D in the SI units is different from that of E. In 
contrast, in the Gaussian units, the electric displacement is defined as D = E + 4P, so D = 4 (the relation ef 
= –P remains the same as in the SI units), and the dimensionalities of D and E coincide. This coincidence is a 
certain perceptional handicap because it is frequently convenient to consider the scalar components of E as 
generalized forces, and those of D as generalized coordinates (see Sec. 5 below), and it is somewhat comforting to 
have their dimensionalities different, as they are in the SI units. 
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the two different dielectrics), providing a surface layer of the effective charges (30) – see again the 
example shown in Fig. 4. 

 

 

 

 

 

 

 

 However, we still can make an important statement about the behavior of E at the interface. 
Indeed, the macroscopic electric fields defined by Eqs. (29) and (31), are evidently still potential ones, 
and hence obey the macroscopic Maxwell equation similar to Eq. (1.28):  

          0E .      (3.36) 

Integrating this equality along a narrow contour stretched along the interface (see the dashed rectangle 
in Fig. 5), we get 
                    21  EE  .     (3.37) 

Note that this condition is compatible with (and may be derived from) the continuity of the macroscopic 
electrostatic potential  related to the macroscopic field E by the relation similar to Eq. (1.33), E = –, 
at each point of the interface: 1 = 2.  

 In order to see how these boundary conditions work, let us consider the simple problem shown in 
Fig. 6. A very broad plane capacitor, with zero voltage between its conducting plates (as may be 
enforced, for example, by their connection with an external wire), is partly filled with a material with a 
uniform polarization P0,8 oriented normal to the plates. Let us calculate the spatial distribution of the 
fields E and D, and also the surface charge density of each conducting plate. 

 

 

 

 

 Due to the symmetry of the system, the vectors E and D are both normal to the plates and do not 
depend on the position in the capacitor’s plane, so we can limit the fields’ analysis to the calculation of 
their z-components E(z) and D(z). In this case, the Maxwell equation (32) is reduced to dD/dz = 0 inside 
each layer (but not at their border!), so within each of them, D is constant – say, some D1 in the layer 
with P = P0, and certain D2 in the free-space layer, where P = 0. As a result, according to Eq. (33), the 
(macroscopic) electric field inside each layer is also constant: 

8 As will be discussed in the next section, this is a good approximation for the so-called electrets, and also for 
hard ferroelectrics in not very high electric fields. 

1E

2D

1D

2E
Fig. 3.5. Deriving the boundary conditions at an interface 
between two dielectrics, using a Gauss pillbox (shown as 
a solid-line rectangle) and a circulation contour (dashed-
line rectangle). Here n and  are the unit vectors that are, 
respectively, normal and tangential to the interface. Note 
that due to the leap of polarization, the field lines are 
generally “refracted” at the interface – see Fig. 11b for an 
example. 
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Fig. 3.6. A simple system whose 
analysis requires Eq. (35). 
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              2020101 , EDPED   .    (3.38) 

Since the voltage between the plates is zero, we may also require the integral of E, taken along a path 
connecting the plates, to vanish. This gives us one more relation: 

                .02211  dEdE      (3.39) 

Still, the three equations (38)-(39) are insufficient to calculate the four fields in the system (E1,2 and 
D1,2). The decisive help comes from the boundary condition (35): 

            21 DD  .      (3.40) 

(Note that it is valid because the layer interface does not carry stand-alone electric charges, even though 
it has a polarization surface charge, whose areal density may be calculated by integrating Eq. (30) 
across the interface: ef = P0. Note also that in our simple system, Eq. (37) is identically satisfied due to 
the system’s symmetry, and hence does not give any additional information.)  

 Now solving the resulting system of four equations (38)-(40), we readily get 

    .,,
21

1
021

21

1

0

0
2

21

2

0

0
1 dd

d
PDDD

dd

dP
E

dd

dP
E











  (3.41) 

The areal densities of the electrode surface charges may now be readily calculated by the integration of 
Eq. (32) across each surface: 

       .
21

1
021 dd

d
PD


       (3.42) 

 Note that due to the spontaneous polarization of the lower layer’s material, the capacitor plates 
are charged even in the absence of voltage between them and that this charge is a function of the second 
electrode’s position (d2).9 Also notice a substantial similarity between this system (Fig. 6), and the one 
whose analysis was the subject of Problem 2.6. 

  

3.3. Polarization of dielectrics 

 The general relations derived in the previous section may be used to describe the electrostatics of 
any dielectrics – materials with bound electric charges (and hence with negligible dc electric 
conduction). However, to form a full system of equations necessary to solve electrostatics problems, 
they have to be complemented by certain constitutive relations between the vectors P  and E.10 

 In most materials, in the absence of an external electric field, the elementary dipoles p either 
equal zero or have a random orientation in space, so the net dipole moment of each macroscopic volume 

9 This effect is used in most modern microphones. In such a device, the sensed sound wave’s pressure bends a 
thin conducting membrane playing the role of one of the capacitor’s plates, and thus modulates the thickness (in 
Fig. 6, d2) of the air gap adjacent to the electret layer. This modulation produces proportional variations of the 
charges (42), and hence the corresponding electric current flowing between the plates, which is picked up by 
readout electronics. According to J. West (who, together with G. Sessler, invented the electret microphone in 
1962), currently more than 2 billion of these devices are fabricated each year. 
10 In the problem solved at the end of the previous section, the role of such relation was played by the equality P0 
= const.  
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(still containing many such dipoles) equals zero: P = 0 at E = 0. Moreover, if the field changes are 
sufficiently slow, most materials may be characterized by a unique dependence of P on E. Then using 
the Taylor expansion of function P(E), we may argue that in relatively low electric fields the function 
should be well approximated by a linear dependence between these two vectors. Such dielectrics are 
called linear (or “simple”). In an isotropic media, the coefficient of proportionality should be just a 
scalar.  In the SI units, this scalar is defined by the following relation: 

        EP 0e ,      (3.43) 

with the dimensionless constant e called the electric susceptibility. However, it is much more common 
to use, instead of e, another dimensionless parameter,11 

                    e1   ,      (3.44) 

which is sometimes called the “relative electric permittivity”, but much more often, the dielectric 
constant. This parameter is very convenient, because combining Eqs. (43) and (44),  

        E.P 01        (3.45) 

and then plugging the resulting relation into the general Eq. (33), we get simply 

        ,or  ,0 EDED        (3.46) 

where another popular parameter,12  

                    0e0 1   .     (3.47) 

 is called the electric permittivity of the material.13 Table 1 gives the approximate values of the 
dielectric constant for several representative materials. 

 In order to understand the range of these values, let me discuss (briefly and rather superficially14) 
the two simplest mechanisms of electric polarization. The first of them is typical for liquids and gases of 
polar atoms/molecules, which have their own, spontaneous dipole moments p. (A typical example is the 
water molecule H2O, with the negative oxygen ion offset from the line connecting two positive 
hydrogen ions, thus producing a spontaneous dipole moment p = ea, with a  0.3810-10m ~ rB.) In the 
absence of an external electric field, the orientation of such dipoles may be random, with the average 
polarization P = np equal to zero – see the top panel of Fig. 7a. 

11 In older physics literature, the dielectric constant is often denoted by the letter r (with the index “r” meaning 
“relative”), while in electrical engineering publications, its notation is frequently K.  
12 The reader may be perplexed by the use of three different but uniquely related parameters (e,   1 + e, and   
 0) for the description of just one scalar property. Unfortunately, such redundancy is typical for physics, whose 
different sub-field communities have different, well-entrenched traditions.  
13 In the Gaussian units, e is defined by the following relation: P = eE, while  is defined just as in the SI units, 
D = E. Because of that, in the Gaussian units, the constant  is dimensionless and equals (1 + 4e). As a result, 
Gaussian = (/0)SI  , so (e)Gaussian = (e)SI/4, sometimes creating confusion between the numerical values of the 
latter parameter – dimensionless in both systems.  
14 While I believe this discussion is very useful, it is quantitatively valid only for relatively sparse media, with low 
concentration (n << 1/a3) of elementary atomic/molecular dipoles of size scale a. Indeed, in some condensed 
materials, with na3 ~ 1, even the notion of the dipole moment p with a single atomic cell is ambiguous.  
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 A relatively weak external field does not change the magnitude of the dipole moments 
significantly, but according to Eqs. (15a) and (17), tries to orient them along the field, creating a non-
zero vector average p directed along the vector Em, where Em is the microscopic field at the point of 
the dipole’s location – cf. two panels of Fig. 7a. If the field is not two high (pEm << kBT), the induced 
average polarization p is proportional to Em. If we write this proportionality relation in the following 
traditional form, 

                    mEp  ,      (3.48) 

where  is called the atomic (or, sometimes, “molecular”) polarizability, this means that  is positive. If 
the concentration n of such elementary dipoles is low, the contribution of their own fields into the 

Table 3.1. Dielectric constants of a few representative (and/or practically important) dielectrics 

Material  

Air (at ambient conditions) 1.00054 

Teflon (polytetrafluoroethylene, [C2F4]n) 2.1 

Silicon dioxide (amorphous) 3.9 

Glasses (of various compositions) 3.7–10 

Castor oil 4.5 

Silicon(a) 11.7 

Water (at 100C) 55.3 

Water (at 20C) 80.1 

Barium titanate (BaTiO3 , at 20C ) ~1,600 
(a) Anisotropic materials, such as silicon crystals, require a susceptibility tensor to give an exact description of the 
linear relation of the vectors P and E. However, most important crystals (including Si) are only weakly anisotropic, so 
they may be reasonably well characterized with a scalar (angle-average) susceptibility.

Fig. 3.7. Crude cartoons of two 
mechanisms of the induced 
electrical polarization: (a) a partial 
ordering of spontaneous elementary 
dipoles, and (b) an elementary 
dipole induction. The upper two 
panels correspond to E = 0,  and 
the lower two panels, to E  0. 
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microscopic field acting on each dipole is negligible, and we may identify Em with the macroscopic field 
E. As a result, the second of Eqs. (27) yields 

                EpP nn  .     (3.49) 

Comparing this relation with Eq. (45), we get 

                     
0

1

 n

 ,      (3.50) 

so  > 1 (i.e. e = n/0 > 0). Note that at this particular polarization mechanism (illustrated on the lower 
panel of Fig. 7a), the thermal motion “tries” to randomize the dipole orientation, i.e. reduce its ordering 
by the field, so we may expect , and hence e   – 1 to increase as temperature T is decreased – the 
so-called paraelectricity. Indeed, the basic statistical mechanics15 shows that in this case, the electric 
susceptibility follows the so-called Curie law e  1/T. 

 The materials of the second, much more common class consist of non-polar atoms without 
intrinsic spontaneous polarization. A crude classical image of such an atom is an isotropic cloud of 
negatively charged electrons surrounding a positively charged nucleus – see the top panel of Fig. 7b. 
The external electric field shifts the positive charge in the direction of the vector E, and the negative 
charges in the opposite direction, thus creating a similarly directed average dipole moment p.16 At 
relatively low fields, this average moment is proportional to E, so we again arrive at Eq. (48), with  > 
0, and if the dipole concentration n is sufficiently low, also at Eq. (50), with  – 1 > 0. So, the dielectric 
constant is larger than 1 for both polarization mechanisms – please have one more look at Table 1. 

 In order to make a crude but physically transparent estimate of the difference  – 1, let us 
consider the following toy model of a non-polar dielectric: a set of similar conducting spheres of radius 
R, distributed in space with a low density n << 1/R3. At such density, the electrostatic interaction of the 
spheres is negligible, and we can use Eq. (11) for the induced dipole moment of a single sphere. Then 
the polarizability definition (48) yields  = 40R

3, so Eq. (50) gives 

                               nR341   .     (3.51) 

Let us use this result for a crude estimate of the dielectric constant of air at the so-called ambient 
conditions, meaning the normal atmospheric pressure P = 1.013105 Pa and temperature T = 300 K. At 
these conditions the molecular density n may be, with a few-percent accuracy, found from the well-
known equation of state of an ideal gas:17 n  P /kBT  (1.013105)/(1.3810-23300)  2.451025 m-3. 

The molecule of the air’s main component, N2, has a van-der-Waals radius18 of 1.5510-10 m. Taking 
this radius for the R of our crude model, we get e    – 1   1.1510-3. Comparing this number with the 

15 See, e.g., SM Chapter 2. 
16 Realistically, these effects are governed by quantum mechanics, so the average here should be understood not 
only in the statistical-mechanical but also (and mostly) in the quantum-mechanical sense. Because of that, for 
non-polar atoms,   is typically a very weak function of temperature, at least on the usual scale T ~ 300K. 
17 If needed, see, e.g., SM Secs. 1.4 and 3.1. 
18 Such radius is defined by the requirement that the volume of the corresponding sphere, if used in the van-der-
Waals equation (see, e. g., SM Sec. 4.1), gives the best fit to the experimental equation of state n = n (P, T).  
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first line of Table 1, we see that the model gives a surprisingly reasonable result: to get the experimental 
value, it is sufficient to decrease the effective R of the sphere by just ~30%, to ~1.210-10 m.19 

 This result may encourage us to try using Eq. (51) for a larger density n. For example, as a crude 
model for a non-polar crystal, let us assume that the conducting spheres form a simple cubic lattice with 
the period a = 2R (i.e., the neighboring spheres virtually touch). With this, n = 1/a3 = 1/8R3 and Eq. (44) 
yields  = 1 + 4/8  2.5. This estimate provides a reasonable semi-qualitative explanation for the 
values of  listed in a few middle rows of Table 1. However, at such small distances, the electrostatic 
dipole-dipole interaction should be already essential, so this simple model cannot even approximately 
describe the values of  much larger than 1, listed in the last rows of the table. 

 Such high values may be explained by the so-called molecular field effect: each elementary 
dipole is polarized not only by the external field, as Eq. (49) assumes, but by the field of neighboring 
dipoles as well. Ottavino-Fabrizio Mossotti in 1850 and (almost 30 years later) Rudolf Clausius 
suggested what is now known, rather unfairly, as the Clausius-Mossotti formula,20 which describes this 
effect reasonably well in many non-polar materials. In our notation, it reads21 

                    
0
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0 3/1
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1  so,
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
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
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





.   (3.52) 

If the dipole density is low in the sense n << 0/, this relation is reduced to Eq. (50) corresponding to 
independent dipoles. However, at higher dipole density,  and hence e   – 1 increase faster and tend 
to infinity as the density-polarizability product approaches some critical value nc, equal to 30/ in the 
Clausius-Mossotti approximation.22 This means that the zero-polarization state becomes unstable even 
in the absence of an external electric field.  

 This instability is a linear-theory (i.e. low-field) manifestation of a substantially nonlinear effect  
– the formation, in some materials, of spontaneous polarization even in the absence of an external 
electric field. Such materials are called ferroelectrics, and may be experimentally recognized by the 
hysteretic behavior of their polarization as a function of the applied (external) electric field – see Fig. 8. 
As the plots show, the polarization of a ferroelectric depends on the applied field’s history. For example, 
the direction of its spontaneous remnant polarization PR may be switched by first applying, and then 
removing a sufficiently high field (larger than the so-called coercive field EC – see Fig. 8) of the 
opposite orientation. The physics of this switching is rather involved; the polarization vector P of a 
ferroelectric material is typically constant only within each of the spontaneously formed spatial regions 
(called domains), with a typical size of a few tenths of a micron, and different (frequently, opposite) 
directions of the vector P in adjacent domains. The change of the applied electric field results not in the 

19 As will be discussed in QM Chapter 6, for a hydrogen atom in its ground state, the low-field polarizability may 
be calculated analytically:  = (9/2)40rB

3, corresponding to our metallic-ball model with a close value of the 
effective radius: R = (9/2)1/3rB  1.65 rB  0.8710–10 m. 
20 Applied to the high-frequency electric field, with  replaced by the square of the refraction coefficient at the 
field’s frequency (see Chapter 7), this formula is known as the Lorenz-Lorentz relation.  
21 The proof of Eq. (52), by using Eq. (24) for the molecular field’s evaluation, is left for the reader’s exercise. 
22 The Clausius-Mossotti formula does not give quantitatively correct results for many condensed materials, 
notably including ferroelectrics. For a review of modern approaches to the theory of their polarization, see, e.g., 
the paper by R. Resta and D. Vanderbilt in the review collection by K. Rabe, C. Ahn, and J.-M. Triscone (eds.), 
Physics of Ferroelectrics: A Modern Perspective, Springer, 2010. 

Clausius-
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switching of the direction of P inside each domain, but rather in a shift of the domain walls, resulting in 
the change of the average polarization of the sample. 

 

 

 

 

 

 

 

 

 

 Depending on the ferroelectric’s material, temperature, and the sample’s geometry (a solid 
crystal, a ceramic material, or a thin film), the hysteretic loops may be rather different, ranging from a 
rather smooth form in the so-called soft ferroelectrics (which include most ferroelectric thin films) to an 
almost rectangular form in hard ferroelectrics – see Fig. 8. In low fields, soft ferroelectrics behave 
essentially as linear paraelectrics, but with a very high average dielectric constant – see the bottom line 
of Table 1 for such a classical material as BaTiO3 (which is a soft ferroelectric at temperatures below Tc 
 120C, and a paraelectric above this critical temperature). On the other hand, the polarization of a hard 
ferroelectric in the fields below its coercive field remains virtually constant, and the analysis of their 
electrostatics may be based on the condition P = PR = const – already used in the problem discussed in 
the end of the previous section.23 This condition is even more applicable to the so-called electrets – 
synthetic polymers with a spontaneous polarization that remains constant even in very high electric 
fields. 

 Some materials exhibit even more complex polarization effects, for example, antiferroelectricity, 
helielectricity, and (practically very valuable) piezoelectricity. Unfortunately, I do not have time for a 
discussion of these exotic phenomena in this course;24 the main reason I am mentioning them is to 
emphasize again that the constitutive relation P = P(E) is material-specific rather than fundamental. 
However, most insulators, in practicable fields, behave as linear dielectrics, so the next section will be 
committed to the discussion of their electrostatics. 

23 Due to this property, hard ferroelectrics, such as the lead zirconate titanate (PZT) and strontium bismuth 
tantalite (SBT), with high remnant polarization PR (up to ~1 C/m2), may be used in nonvolatile random-access 
memories (dubbed either FRAM or FeRAM) – see, e.g., J. Scott, Ferroelectric Memories, Springer, 2000. In a 
cell of such a memory, binary information is stored in the form of one of two possible directions of spontaneous 
polarization at E = 0 (see Fig. 8). Unfortunately, the time of spontaneous depolarization of ferroelectric thin films 
is typically well below 10 years – the industrial standard for data retention in nonvolatile memories, and this time 
may be decreased even more by “fatigue” from the repeated polarization recycling at information recording. Due 
to these reasons, the industrial production of FRAM is currently just a tiny fraction of the nonvolatile memory 
market, which is dominated by floating-gate memories – see, e.g., Sec. 4.2 below.  
24 For detailed coverage of ferroelectrics, I can recommend the encyclopedic monograph by M. Lines and A. 
Glass, Principles and Applications of Ferroelectrics and Related Materials,  Oxford U. Press, 2001, and the 
recent review collection edited by K. Rabe et al., that was cited above. 

Fig. 3.8. The average polarization of soft 
and hard ferroelectrics as functions of the 
applied electric field (schematically). 
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3.4. Electrostatics of linear dielectrics 

 First, let us consider the simplest but very important problem: how is the electrostatic field of a 
set of stand-alone charges of density (r) modified if it is placed into a uniform linear dielectric medium 
that obeys Eq. (46) with a dielectric constant  constant in the whole region we are interested in. In this 
case, we may combine Eqs. (32) and (46) to write 

               



E .      (3.53) 

As a reminder, in the free space, we had a similar equation (1.27), but with a different constant, 0 = /. 
Hence all the results discussed in Chapter 1 are valid inside a uniform linear dielectric, for the 
macroscopic field the E (and the corresponding macroscopic electrostatic potential ), if they are 
reduced by the factor of  > 1. Thus, the most straightforward result of the induced polarization of a 
dielectric medium is the electric field reduction. This is a very important effect, especially taking into 
account the very high values of   in such common dielectrics as water – see Table 1. Indeed, it is the 
reduction of the attraction between positive and negative ions (called, respectively, cations and anions) 
in water that enables their substantial dissociation and hence almost all biochemical reactions, which are 
the basis of the biological cell functions – and hence of the life itself. 

 Let us apply this general result to the important particular case of the plane capacitor (Fig. 2.3) 
filled with a linear, uniform dielectric. Applying the macroscopic Gauss law (34) to a pillbox-shaped 
volume on the conductor surface, we get the following relation, 

            
n

ED nn 



 ,     (3.54) 

which differs from Eq. (2.3) only by the replacement 0    0. Hence, for a fixed field En, the 
charge density calculated for the free-space case should be increased by the factor of  – that’s it. In 
particular, this means that the capacitance (2.28) has to be increased by this factor: 

              
d

A

d

A
C


 0 .     (3.55) 

(As a reminder, this increase of C by  has been already incorporated, without proof, into some 
estimates made in Secs. 2.1 and 2.2, to make them realistic.)  

 If a linear dielectric is nonuniform, the situation is more complex. For example, let us consider 
the case of a sharp interface between two otherwise uniform dielectrics, free of stand-alone charges. In 
this case, we still may use Eq. (37) for the tangential component of the macroscopic electric field, and 
also Eq. (36), with Dn = En, for its normal component, getting 

          
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 .    (3.56) 

 Let us apply these boundary conditions, first of all, to consider how carving a slit of some width 
d and a much smaller thickness t << d from inside a dielectric, changes an initially uniform electric field 
E0, depending on its orientation – see Fig. 9.  
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 First of all, intuition tells us that regardless of its orientation, a slit cannot change the field far 
from it; moreover, at t  0, it cannot modify substantially even the field right outside its “major” 
(broader) surfaces. This conclusion may be supported either by direct calculations (see, e.g., the problem 
illustrated by Fig. 11 below), or by energy arguments: at t << d, any potential energy decrease due to the 
field change inside the slit’s volume (proportional to td) cannot compensate its increase in the outer 
volume proportional to d2. However, it may induce some local field changes – inside the slit, and even 
outside it, close to its “minor” surfaces.  

 To calculate the inner field for case A, with the slit’s plane normal to the applied field, we may 
apply Eq. (56) to its major surfaces (shown horizontal), to prove that the vector D should be continuous. 
But according to Eq. (46), this means that in the free space inside the slit, the electric field should equal 
D/0, and hence be  times higher than the field E0 = D/0 far from the slit. This field, and hence D, 
may be measured by a sensor placed inside the gap, so the electric displacement is not an entirely 
mathematical construct.25  On the contrary, for case B, with the slit’s plane parallel to the initial field, 
we may apply Eq. (37) to the major (now, vertical) interfaces of the slit, to see that now the electric field 
E is continuous, while the electric displacement D = 0E inside the gap is a factor of  lower than its 
value in the dielectric. (Similarly to case A, any perturbations of the field uniformity, caused by the 
compliance with Eq. (56) at the minor surfaces, settle down at distances ~t  from them.) 

 For other problems with piecewise-constant , with more complex geometries, we may need to 
apply the methods studied in Chapter 2. In particular, in the simplest cases, we can select such a set of 
orthogonal coordinates that the electrostatic potential depends on just one of them. Consider, for 
example, two types of filling a plane capacitor with two different dielectrics – see Fig. 10.  

 

 

 

 

 
 In case (a), the voltage V between the electrodes is the same for each part of the capacitor, telling 
us that at least far from the dielectric interface, the electric field is vertical, uniform, and constant (E = 
V/d). Hence the boundary condition (37) is satisfied even if such a distribution is valid near the surface 

25 Superficially, this result violates the boundary condition (37) at the vertical (“minor”) surfaces of the gap. This 
apparent contradiction is resolved by the fact the thin slit can deform the field both inside and outside it, at 
distances of the order of t around these interfaces, but not far beyond them, so the above relations for E and D are 
valid at most of the slit area. 

Fig. 3.10. Plane capacitors filled 
with two different dielectrics. 

(a)          (b) 
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as well, i.e. at any point of the system. The only effect of different values of  in the two parts is that the 
electric displacement D = E and hence electrodes’ surface charge density  = D are different in them. 
Thus we can calculate the electrode charges Q1,2 of the two parts independently, and then add up the 
results to get the total mutual capacitance 

               2211
21 1

AA
dV

QQ
C  


 .    (3.57) 

Note that this formula may be interpreted as the total capacitance of two separate lumped capacitors 
connected (by wires) in parallel. This is natural, because we may cut the system along the dielectric 
interface, without any effect on the fields in either part, and then connect the corresponding electrodes 
by external wires, again without any effect on the system – besides very close vicinities of the 
capacitor’s edges, where the fringe 

 Case (b) may be analyzed just as in the problem illustrated by Fig. 6, by applying Eq. (34) to a 
Gaussian pillbox with one lid inside the (for example) bottom electrode, and the other lid inside any of 
the layers. As a result, we see that D anywhere inside the system should be equal to the surface charge 
density  of the electrode, i.e. constant. Hence, according to Eq. (46), the electric field E inside each 
dielectric layer is also constant: in the top layer,  it is E1 = D1/1 = /1, while in bottom layer, E2 = D2/2 
= /2. Integrating the field E across the whole capacitor, we get 
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so the mutual capacitance per unit area  
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Note that this result is similar to the total capacitance of an in-series connection of two plane capacitors 
based on each of the layers. This is also natural because we could insert an uncharged, thin conducting 
sheet (rather than a cut as in the previous case) at the layer interface, which is an equipotential surface, 
without changing the field distribution in any part of the system. Then we could thicken the conducting 
sheet as much as we liked (and possibly shape its internal part into a thin wire), also without changing 
the fields in the dielectric parts of the system, and hence the capacitance. 

 Proceeding to problems with more complex geometry, let us consider the system shown in Fig. 
11a: a dielectric sphere placed into an initially uniform external electric field E0. According to Eq. (53) 
for the macroscopic electric field, and the definition of the macroscopic electrostatic potential, E = –, 
the potential satisfies the Laplace equation both inside and outside the sphere, though not at its border. 
Due to the spherical symmetry of the dielectric sample, this problem invites the variable separation 
method in spherical coordinates, which was discussed in Sec. 2.8. From that discussion, we already 
know, in particular, the general solution (2.172) of the Laplace equation outside of the sphere. To satisfy 
the uniform-field condition at r  , we have to reduce this solution to 

          



 

1
10 )(coscos

l
ll

l
Rr r

b
rE  P .    (3.60) 

Inside the sphere, we can also use Eq. (2.172), but keeping only the radial functions finite at r  0: 
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         

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lRr ra  P .     (3.61) 

Now, spelling out the boundary conditions (37) and (56) at r = R, we see that for all coefficients al and 
bl with l  2, we get homogeneous linear equations (just like for the conducting sphere discussed in Sec. 
2.8) that have only trivial solutions. Hence, all these terms may be dropped, while for the only surviving 
terms with l = 1, proportional to the Legendre polynomial P1(cos)  cos, we get two equations: 
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E      (3.62) 

Solving this simple system of linear equations for a1 and b1, and plugging the result into Eqs. (60) and 
(61), we get the final solution of the problem: 
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 Figure 11b shows the equipotential surfaces given by this solution, for a particular value of the 
dielectric constant . Note that according to Eq. (62), at r  R the dielectric sphere, just as the 
conducting sphere in a similar problem, produces (on top of the uniform external field) a pure dipole 
field, with the dipole moment 
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This is an evident generalization of Eq. (11), to which Eq. (64) tends at   . By the way, this 
property is common: for their electrostatic properties, conductors may be adequately described as 
dielectrics with   . 

 Another remarkable feature of Eqs. (63) is that the electric field and polarization inside the 
sphere are uniform, with R-independent values 

0E

R



z

0

Fig. 3.11. A dielectric sphere in an initially uniform electric field: (a) the problem, and (b) the 
equipotential surfaces, as given by Eq. (63), for  = 3. 
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In the limit   1 (for example, the “sphere made of free space”, i.e. no sphere at all), the electric field 
inside it naturally tends to the external one, and its polarization vanishes. In the opposite limit   , 
the electric field inside the sphere vanishes. Curiously enough, in this limit the electric displacement 
inside the sphere remains finite: D  30E0. 

 More complex problems with piecewise-uniform dielectrics also may be addressed by the 
methods discussed in Chapter 2, and hopefully, the reader will be able to use them to solve a few such 
problems offered in Sec. 6, on their own. Let me discuss just one of such problems because it exhibits a 
new feature of the charge image method that was discussed in Secs 2.9 (and is the basis of Green’s 
function approach – see Sec. 2.10). Consider the system shown in Fig. 12: a point charge near a 
dielectric half-space; it obviously parallels the system discussed in Sec. 2.9 – see Fig. 2.26. 

   

 

 

 

 

 

 

 

 

 As for the case of a conducting half-space, the Laplace equation for the electrostatic potential in 
the upper half-space z > 0 (besides the charge point  = 0, z = d) may be satisfied using a single image 
charge q’ at the point with  = 0 and z = – d, but now q’ may differ from (–q). In addition, in contrast to 
the case analyzed in Sec. 2.9, we should also calculate the field inside the dielectric (at z  0). This field 
cannot be contributed by the image charge q’, because that would give a potential divergence at its 
location. Thus, in the dielectric-filled half-space we should try to use the real point source only, but with 
a re-normalized charge q” rather than the genuine charge q – see Fig. 12. As a result, we may look for 
the potential distribution in the form 

        

 































,0for                                   ,

)(

,0for,
)()(

4

1
),(

2/122

2/1222/122

0 z
dz

q''

z
dz

q'

dz

q

z






    (3.66) 

at this stage of solution, with unknown q’ and q”. Plugging this equality into the boundary conditions 
(37) and (56) at z = 0 (with /n = /z), we see that they are indeed satisfied (so Eq. (66) does express 
the solution of the boundary problem), provided that the effective charges q’ and q’’ obey the following 
relations: 

Fig. 3.12. Charge images for a dielectric half-space. 
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      q''q'qq''q'q  , .    (3.67) 

Solving this simple system of linear equations, we get 
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 If   1, then q’  0, and q’’  q – both facts very natural because in this limit (no polarization 
at all) we have to recover the unperturbed field of the initial point charge in both semi-spaces. In the 
opposite limit     (which, as was discussed above, may describe a conducting half-space),  q’  –q 
(repeating the result we have discussed in detail in Sec. 2.9), and q’’  0. The last result means that in 
this limit, the electric field E in the dielectric tends to zero – as it should.   

 In conclusion of this section, please note that if the permittivity  of a linear dielectric is a 
continuous rather than piecewise function of coordinates, the distribution of the electrostatic potential  
may be found from Eq. (32) with the electric displacement given by Eq. (46): D = (r)E = –(r). 
However, analytical solutions of the resulting partial differential equation of the second order may be 
found only for rare particular cases; one of them is offered in Sec. 6 for the reader’s exercise. 

  

3.5. Electric field energy in a dielectric 

 In Chapter 1, we have obtained two key results for the electrostatic energy: Eq. (1.55) for a 
charge interaction with an independent (“external”) field, and a similarly structured formula (1.60), but 
with an additional factor ½, for the field induced by the charges under consideration. These relations are 
universal, i.e. valid for dielectrics as well, provided that the charge density includes all charges –
including those bound into the elementary dipoles. However, for most applications, it is convenient to 
recast them into a form where these bound charges participate not explicitly, but only via the 
macroscopic polarization effects they create. 

 If a field is created only by the stand-alone charges under consideration and is proportional to 
(r) (requiring that we deal with linear dielectrics), we can repeat all the argumentation of the beginning 
of Sec. 1.3, and again arrive at Eq. (1.60), provided that  is now the macroscopic field’s potential. Now 
we can recast this result in the terms of fields – essentially as this was done in Eqs. (1.62)-(1.64), but 
now making a clear difference between the macroscopic electric field E = – and the electric 
displacement field D, which obeys the macroscopic Maxwell equation (32). Plugging (r) expressed 
from that equation, into Eq. (1.60), we get 

               rdU 3

2

1 D .     (3.69) 

Using the fact26 that for differentiable functions  and D, 

               DDD  )()()(   ,    (3.70) 

we may rewrite Eq. (69) as 

            rdrdU 33 )(
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2

1
  DD   .    (3.71) 

26 See, e.g., MA Eq. (11.4a). 
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The divergence theorem, applied to the first term on the right-hand side, reduces it to a surface integral 
of Dn. (As a reminder, in Eq. (1.63) the integral was of ()n  En.) If the surface of the volume we 
are considering is sufficiently far, this surface integral vanishes. On the other hand, the gradient in the 
second term of Eq. (71) is just (minus) field E, so it gives  

           rdErdEErdU 32033 )()(
2

)()()(
2

1

2

1
rrrrrDE 


 .  (3.72) 

This expression is a natural generalization of Eq. (1.65), and shows that we can, as we did in free space, 
represent the electrostatic energy in a local form:27 
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As a sanity check, in the trivial case  = 0 (i.e.  = 1), this result is reduced to Eq. (1.65). 

 Of course, Eq. (73) is valid only for linear dielectrics, because our starting point, Eq. (1.60), is 
only valid if  is proportional to . To make our calculation more general, we should intercept the 
calculations of Sec. 1.3 at an earlier stage, at which this proportionality had not yet been used. For 
example, the first of Eqs. (1.56) may be rewritten, in the continuous form,  as  

              rdU 3)()( rr  ,     (3.74) 

where the symbol  means a small variation of the function – e.g., its change in time, sufficiently slow to 
ignore the relativistic and magnetic-field effects. Applying such variation to Eq. (32), and plugging the 
resulting relation  =  D into Eq. (74), we get 

                rdU 3 D .     (3.75) 

(Note that in contrast to Eq. (69), this expression does not have the front factor ½.) Now repeating the 
same calculations as in the linear case, for the energy density’s variation we get a remarkably simple 
(and general!) formula, 
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where the last expression uses the Cartesian components of the vectors E and D. This is as far as we can 
go for the general dependence D(E). If the dependence is linear and isotropic, as in Eq. (46), then D = 
E and 

          









2

2E
u  EE .     (3.77)  

The integration of this expression over the whole variation, from the field equal to zero to a certain final 
distribution E(r), brings us back to Eq. (73).  

An important role of Eq. (76), in its last form, is to indicate that from the point of view of 
analytical mechanics, the Cartesian coordinates of E may be interpreted as generalized forces, and those 

27 In the Gaussian units, each of the last three expressions should be divided by 4. 
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of D as generalized coordinates of the field’s effect on a unit volume of the dielectric. This allows one, 
in particular, to form the proper Gibbs potential energy28 of a system with an electric field E(r) fixed, at 
every point, by some external source: 

         rDrErrr   uurduU
V

G
3

GG , .   (3.78) 

The essence of this notion is that if the generalized external force (in our case, E) is fixed, the stable 
equilibrium of the system corresponds to the minimum of UG, rather than of the potential energy U as 
such – in our case, that of the field in our system.  

 As the simplest illustration of this important concept, let us consider a very long cylinder (with 
an arbitrary cross-section shape), made of a uniform linear dielectric, placed into a uniform external 
electric field parallel to the cylinder’s axis – see Fig. 13.    

 

 

           

 

 

 

 
 For this simple problem, the equilibrium value of D inside the cylinder may be, of course, readily 
found without any appeal to energies. Indeed, the solution of the Laplace equation inside the cylinder, 
with the boundary condition (37) is evident: E(r) = Eext, and so Eq. (46) immediately yields D(r) = 
Eext. One may wonder why the minimum of the potential energy U, given by Eq. (73) in its last form, 
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 ,      (3.79) 

corresponds to a different (zero) value of D, but let us recall that Eq. (73) was derived for the case when 
the electric field is created by the stand-alone charges in the system under consideration. If it is created 
by external sources, we have to use the Gibbs potential energy (78) instead. For our current uniform 
case, this energy per unit volume of the cylinder is 
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and its minimum as a function of every Cartesian component of D corresponds to the correct value of 
the displacement:  Dj = Ej, i.e. to D = E = Eext. So, the systems’ equilibrium indeed corresponds to the 
minimum of the Gibbs potential energy (78) rather than of the energy (73). 

28 See, e.g., CM Sec. 1.4, in particular Eq. (1.41). Note that as Eq. (78) clearly illustrates, once again, that the 
difference between the potential energies UG and U, usually discussed in courses of thermodynamics and 
statistical physics as the difference between the Gibbs and Helmholtz free energies (see, e.g., SM 1.4), is much 
more general than the effects of random thermal motion addressed by these disciplines. 
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Fig. 3.13. A cylindrical dielectric sample 
in a longitudinal external electric field. 
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 Now note that Eq. (80), at this equilibrium point (only!), may be rewritten as 
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i.e. formally coincides with Eq. (79), besides the (perhaps, somewhat counter-intuitive) opposite sign. A 
similar but more general relation (not limited to linear dielectrics and uniform fields) may be obtained 
by taking the variation of the uG expressed by Eq. (78), and then using Eq. (76): 

          EDDEDEDEDE   uuG .   (3.82) 

In order to see how this expression works, let us plug D from Eq. (33): 
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 So far, this relation is general. In the particular case when the polarization P is field-independent, 
we may integrate Eq. (83) over the full electric field’s variation, say from 0 to some finite value E, 
getting 
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.     (3.84) 

Again, the Gibbs energy is relevant only if E is dominated by an external field Eext independent of the 
orientation of P. If, in addition, P(r)  0 only in some finite volume V, we may integrate Eq. (84) over 
that volume, getting 
    

V

rdU 3
extG )(with  const, rPpEp ,   (3.85) 

where the “const” means the terms independent of p. In this expression, we may readily recognize Eq. 
(15a) for an electric dipole p of a fixed magnitude, which was obtained in Sec. 1 in a different way. This 
comparison illustrates again that UG is nothing mysterious; it is just the relevant part of the potential 
energy of the system in a fixed external field, including the energy of its interaction with the field. 

 Finally, in the other important case of a linear dielectric, when according to Eqs. (45) and (47), P 
= ( - 0)E, the similar integration of the general Eq. (83) over the field yields the additional factor ½: 

     const
2

1 3
extG  

V

rdU EP .    (3.86) 

This expression may be very convenient for analyses of the forces exerted by electric fields on linear 
dielectric media – see, for, example, a few exercises on this topic, offered at the end of this chapter. 

 

3.6. Exercise problems 

 3.1. Prove Eqs. (3)-(4), starting from Eqs. (1.38) and (3.2). 
 
 3.2. A thin ring of radius R is charged with a constant linear density . Calculate the exact 
electrostatic potential distribution along the symmetry axis of the ring, and prove that at large distances, 
r >> R, the three leading terms of its multipole expansion are indeed correctly described by Eqs. (3)-(4). 
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 3.3. In suitable reference frames, calculate the dipole and quadrupole moments of the following 
systems (see the figures below): 

 (i) four point charges of the same magnitude but alternating signs, placed in the corners of a 
square;  
 (ii) a similar system but with a pair charge sign alternation; and 
 (iii) a point charge in the center of a thin ring carrying a similar but opposite charge uniformly 
distributed along its circumference. 
 
 

 

 

 

 

 
  
 3.4. Calculate the dipole and quadrupole moments of a thin spherical shell of radius R, carrying 
an electric charge with the areal density  = 0cos. Discuss the relation between the results and the 
solution of Problem 2.28. 
 
 3.5. For a regular cubic lattice of similarly oriented identical dipoles, calculate the electric field it 
creates at the location of each dipole. 

 3.6. Without carrying out an exact calculation, can you predict the spatial dependence of the 
interaction between various electric multipoles, including point charges (in this context, frequently 
called electric monopoles), dipoles, and quadrupoles? Based on these predictions, what is the functional 
dependence of the interaction between homonuclear diatomic molecules such as H2, N2, O2, etc., on the 
distance between them when the distance is much larger than the molecular size? 
 
 3.7. Two similar electric dipoles, of a fixed magnitude p, located at a fixed distance r from each 
other, are free to change their directions. What stable equilibrium position(s) they may take as a result of 
their electrostatic interaction? 
 
 3.8. An electric dipole is located above a grounded infinite 
conducting plane (see the figure on the right). Calculate: 

 (i) the distribution of the induced charge in the conductor, 
 (ii) the dipole-to-plane interaction energy, and 
 (ii) the force and the torque exerted on the dipole. 
 
 
 
 3.9. Calculate the net charge Q induced in a grounded conducting sphere 
of radius R by a dipole p located at point r outside the sphere – see the figure on 
the right.  
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 3.10. Use two different approaches to calculate the energy of interaction between a grounded 
conductor and an electric dipole p placed in the center of a spherical cavity of radius R, carved in the 
conductor. 
  
 3.11. A plane separating two halves of otherwise free space is densely and uniformly (with a 
constant areal density n) filled with electric dipoles, with similar moments p oriented normally to the 
plane.  

 (i) Use two different approaches to calculate the electrostatic potential at distances d >> 1/n1/2 on 
both sides of the plane.  
 (ii) Give a physical interpretation of your result. 
 (iii) Use the result to calculate the potential distribution created in space by a spherical surface of 
radius R, densely and uniformly filled with radially oriented dipoles. 
 
 3.12. Prove Eq. (24). 

 Hint: You may like to use the basic Eq. (1.9) to spell out the left-hand side of Eq. (1.24), change 
the order of integration over r and r’, and then contemplate the physical sense of the inner integral. 
 
 3.13. A sphere of radius R is made of a material with a uniform spontaneous polarization P0. 
Calculate the electric field everywhere in space – both inside and outside the sphere, and compare the 
result for the internal field with Eq. (24). 
 
 3.14. Calculate the electric field at the center of a cube made of a material with the uniform 
spontaneous polarization P0 of arbitrary orientation. 
 
 3.15. Derive the Clausius-Mossotti formula (52) by combining Eq. (24) with the result of the 
solution of Problem 5. 
 
 3.16. Stand-alone charge Q is distributed, in some way, within the volume of a body made of a 
uniform linear dielectric with a dielectric constant . Calculate the total polarization charge Qef residing 
on the surface of the body, provided that it is surrounded by free space. 
 

3.17.  In two separate experiments, a thin plane sheet of a linear dielectric with  = const is 
placed into a uniform external electric field E0, in two different ways: 

 (i) with the sheet’s surfaces parallel to the electric field, and 
 (ii) with its surfaces normal to the field. 

 For each case, find the electric field E, the electric displacement D, and the polarization P inside 
the dielectric, sufficiently far from the sheet’s edges. 
 
 3.18. A fixed dipole p is placed in the center of a spherical cavity of radius R, carved inside a 
uniform linear dielectric. Calculate the electric field distribution everywhere in the system.  

 Hint: You may start with the assumption that the field at r > R has a distribution typical for a 
dipole. However, be ready for surprises. 
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 3.19. A spherical capacitor (see the figure on the right) is filled with a 
linear dielectric whose permittivity  depends on the spherical angles  and , 
but not on the distance r from the system’s center. Derive an explicit 
expression for its capacitance C. 
 
 
 
 3.20. A spherical capacitor similar to that considered in the previous problem is now filled with a 
linear dielectric whose permittivity depends only on the distance from the center. Obtain an explicit 
expression for its capacitance, and spell it out for the particular case (r) = (a)(r/a)n. 
 
 
 
 3.21. A uniform electric field E0 has been created (by distant external 
sources) inside a uniform linear dielectric. Find the electric field’s change 
created by carving out a cavity in the shape of a round cylinder of radius R, 
with its axis normal to the external field – see the figure on the right.  

 
 
 
3.22. Similar small spherical particles, made of a linear dielectric, are dispersed in free space 

with a low concentration n << 1/R3, where R is the particle's radius. Calculate the average dielectric 
constant of such a medium. Compare the result with the apparent but wrong answer 

               nV11   ,  (WRONG!) 

(where  is the dielectric constant of the particle's material and V = (4/3)R3 is its volume), and explain 
the origin of the difference. 
 
 3.23. A straight thin filament, uniformly charged with linear density , is positioned parallel to 
the plane separating two uniform linear dielectrics, at a distance d from it. Calculate the electric 
potential’s distribution everywhere in the system. 
 
 3.24. A point charge q is located at a distance d > R from the center of a sphere of radius R, made 
of a uniform linear dielectric with permittivity .  
 (i) Calculate the electrostatic potential’s distribution in all the space, for an arbitrary ratio d/R. 
 (ii) For large d/R, use two different approaches to calculate the interaction force and the energy 
of interaction between the sphere and the charge, in the first nonzero approximation in R/d << 1. 

 Hint: Task (i) cannot be carried out using the method of charge images, so you may like to use 
the expansion of the function 1/ r – r’  in the series over the Legendre polynomials, whose proof was 
the subject of Problem 2.40. 
 
 
 

R


0E

ab 

a

  ,
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 3.25. Calculate the spatial distribution of the electrostatic potential induced by 
a point charge q located at distance d from a very wide parallel plate, of thickness D, 
made of a uniform linear dielectric – see the figure on the right. 

 
  
 3.26. Discuss the physical nature of Eq. (76). Apply your conclusions to a material with a fixed 
(field-independent) polarization P0(r), and calculate the electric field’s energy of a uniformly polarized 
sphere (see Problem 13 above). 
 
 3.27. Use Eqs. (73) and (82) to calculate the force of attraction of a plane capacitor’s plates (per 
unit area), for two cases: 

 (i) the capacitor is charged to voltage V, and then disconnected from the battery,29 and 
 (ii) the capacitor remains connected to the battery. 
 
  3.28. A slab made of a linear dielectric is partly inserted into 
a plane capacitor – see the figure on the right. Assuming the 
simplest (cylindrical) geometry of the system, calculate the force 
exerted by the field on the slab, for the same two cases as in the 
previous problem 
 
 3.29. For each of the two capacitors shown in Fig. 10, calculate the electric force exerted on the 
interface between two different dielectrics, in terms of the fields in the system. 
 
 
 3.30. One half of a conducting sphere of radius R, carrying electric 
charge Q, is submerged into a half-space filled with a linear dielectric with 
permittivity  – see the figure on the right. Calculate the electric force 
exerted on the sphere by the dielectric. 

29 “Battery” is a common if misleading term for what is usually a single galvanic element. (The last term stems 
from the name of Luigi Galvani, a pioneer of electric current studies. Another term derived from his name is the 
galvanic connection, meaning a direct connection of two conductors, enabling a dc current flow – see the next 
chapter.) The term “battery” had to be, in all fairness, reserved for the connection of several galvanic elements in 
series – as was pioneered in 1800 by L. Galvani’s friend Alexander Volta. 
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