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Chapter 5. Magnetism 

Even though this chapter addresses a completely new type of electric charge interaction, its discussion 
(for the stationary case) will take not too much time/space, because it recycles many ideas and methods 
of electrostatics, though with a twist or two. 

 

5.1. Magnetic interaction of currents 

 DC currents in conductors usually leave them electroneutral, (r) = 0, with very good precision, 
because even a minute imbalance of positive and negative charge density results in extremely strong 
Coulomb forces that restore the electroneutrality by a very fast additional shift of free charge carriers. 
This is why let us start the discussion of magnetism from the simplest case of two spatially separated, 
dc-current-carrying, electroneutral conductors (Fig. 1).  

 

 

 

 

 

 

 According to the Coulomb law, there is no electrostatic force between them. However, several 
experiments carried out in 18201 proved that there is a different, magnetic interaction between the 
currents. In the present-day notation, the results of all such experiments may be summarized with just 
one formula, in SI units expressed as 
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Here the coefficient 0/4 (where 0 is called either the magnetic constant or the free space 
permeability) equals almost exactly 10-7 SI units, with the product 00 equal to exactly 1/c2. 2 

1 Most notably, by Hans Christian Ørsted who discovered the effect of electric currents on magnetic needles, and 
André-Marie Ampère who extended this work by finding the magnetic interaction between two currents.  
2 For details, see Appendix UCA: Selected Units and Constants. In the Gaussian units, the coefficient 0/4 in 
Eq. (1) and beyond is replaced with 1/c2. 

 Note a close similarity of this expression to the Coulomb law (1.1) rewritten for  the interaction 
of two continuously distributed charges, with the account of the linear superposition principle (1.4): 
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Besides the different coefficient and a different sign, the “only” difference of Eq. (1) from Eq. (2) is the 
scalar product of the current densities, evidently necessary because of their vector character. We will see 
soon that this difference brings certain complications in applying the approaches discussed in the 
previous chapters, to magnetostatics.  

 Before going to their discussion, let us have one more glance at the coefficients in Eqs. (1) and 
(2). To compare them, let us consider two objects with uncompensated charge distributions (r) and 
’(r), moving parallel to each other with certain velocities v and v’, as measured in the same inertial 
(“laboratory”) reference frame. In this case, j(r) = (r)v, so j(r)j’(r) = (r)’(r)vv’, and the integrals in 
Eqs. (1) and (2) become functionally similar, differing only by the factor 

            
2

0

0

electric

magnetic

4

1

4 c

vv'vv'

F

F





.    (5.3) 

(The last expression is valid in any consistent system of units.) We immediately see that magnetism is 
an essentially relativistic phenomenon, very weak in comparison with the electrostatic interaction at the 
human scale velocities, v << c, and may dominate only if the latter interaction vanishes – as it does in 
electroneutral systems.3 The discovery and initial studies4 of such a subtle, relativistic phenomenon as 
magnetism were much facilitated by the relative abundance of natural ferromagnets: materials with a 
spontaneous magnetic polarization, whose strong magnetic field is due to relativistic effects (such as 
spin) inside the constituent atoms – see Sec. 5 below. 

 Also, Eq. (3) points to an interesting paradox. Consider two electron beams moving parallel to 
each other, with the same velocity v with respect to a lab reference frame. Then, according to Eq. (3), 
the net force of their total (electric plus magnetic) interaction is proportional to (1 – v2/c2), tending to 
zero in the limit v  c. However, in the reference frame moving together with the electrons, they are not 
moving at all, i.e. v = 0. Hence, from the point of view of such a moving observer, the electron beams 
should interact only electrostatically, with a repulsive force independent of the velocity v. Historically, 
this had been one of several paradoxes that led to the development of special relativity; its resolution 
will be discussed in Chapter 9 devoted to this theory. 

 Returning to Eq. (1), in some simple cases the double integration in it may be carried out 
analytically. First of all, let us simplify this expression for the case of two thin, long conductors 
(“wires”) separated by a distance much larger than their thickness. In this case, we may integrate the 
products jd3r and j’d3r’ over the wires’ cross-sections first, neglecting the corresponding change of the 
factor (r – r’). Since the integrals of the current density over the cross-sections of the wires are just the 
currents I and I’ flowing in the wires, and cannot change along their lengths (say, l and l’, respectively), 
they may be taken out of the remaining integrals, reducing Eq. (1) to 
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3 An important case when the electroneutrality may not hold is the motion of electrons in free space. (However, in 
this case, the electron speed is often comparable with the speed of light, so the magnetic forces may be 
comparable in strength with electrostatic forces, and hence important.) Minor local violations of electroneutrality 
also play an important role in some semiconductor devices – see, e.g., SM Chapter 6. 
4 The first detailed book on this subject, De Magnete by William Gilbert (a.k.a. Gilberd), was published as early 
as 1600. 
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As the simplest example, consider two straight, parallel wires (Fig. 2) separated by distance d, 
both with length l  >> d.  

 

 

 

 

 

 

 

Due to the symmetry of this system, the vector of the magnetic interaction force has to: 

(i) lie in the same plane as the currents, and  
(ii) be normal to the wires – see Fig. 2. 

Hence we may limit our calculations to just one component of the force – normal to the wires. Using the 
fact that with the coordinate choice shown in Fig. 2, the scalar product drdr’ is just dxdx’, we get 
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Now introducing, instead of x’, a new, dimensionless variable   (x – x’)/d, we may reduce the internal 
integral to a table one, which we have already encountered in this course: 
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The integral over x formally diverges, but it gives a finite interaction force per unit length of the wires: 
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Note that the force drops rather slowly (only as 1/d) as the distance d  between the wires is increased, 
and is attractive (rather than repulsive as in the Coulomb law) if the currents are of the same sign. 

 This is an important result,5 but again, the problems so simply solvable are few and far between, 
and it is intuitively clear that we would strongly benefit from the same approach as in electrostatics, i.e., 
from decomposing Eq. (1) into a product of two factors via the introduction of a suitable field. Such 
decomposition may be done as follows: 
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5 In particular, until very recently (2018), Eq. (7) was used for the legal definition of the SI unit of current, the 
ampere (A), via the SI unit of force (the newton, N), with the coefficient 0 considered exactly fixed. (A brief 
description of the recent changes in legal metrology is given in Appendix UCA.) 
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where the vector B is called the magnetic field.6  In the case when it is induced by the current j’:  
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The last relation is called the Biot-Savart law,7 while the force F expressed by Eq. (8) is sometimes 
called the Lorentz force.8 However, more frequently the latter term is reserved for the full force,  

       BvEF  q ,     (5.10) 

exerted by electric and magnetic fields field on a point charge q, moving with velocity v.9 

Now we have to prove that the new formulation, given by Eqs. (8)-(9), is equivalent to Eq. (1). 
At first glance, this seems unlikely. Indeed, first of all, Eqs. (8) and (9) involve vector products, while 
Eq. (1) is based on a scalar product. More profoundly, in contrast to Eq. (1), Eqs. (8) and (9) do not 
satisfy the 3rd Newton’s law applied to elementary current components jd3r and j’d3r’, if these vectors 
are not parallel to each other. Indeed, consider the situation shown in Fig. 3.  

 

 

 

 

Here the vector j’ is perpendicular to the vector (r – r’), and hence, according to Eq. (9), 
produces a non-zero contribution dB’ to the magnetic field directed (in Fig. 3) normally to the plane of 
the drawing, i.e. perpendicular to the vector j. Hence, according to Eq. (8), this field provides a non-zero 
contribution to F. On the other hand, if we calculate the reciprocal force F’ by swapping the prime 
indices in Eqs. (8) and (9), the latter equation immediately shows that dB(r’)  j(r’ – r) = 0, because 
the two operand vectors are parallel – see Fig. 3 again. Hence, the current component j’d3r’ does exert a 
force on its counterpart, while jd3r does not.  

6 The SI unit of the magnetic field is called tesla (T) – after Nikola Tesla, a pioneer of electrical engineering. In 
the Gaussian units, the already discussed constant 1/c2 in Eq. (1) is equally divided between Eqs. (8) and (9), so in 
them both, the constant before the integral is 1/c. The resulting Gaussian unit of the field B is called gauss (G); 
taking into account the difference of units of electric charge and length, and hence of the current density, 1 G 
equals exactly 10-4 T. Note also that in some textbooks, especially old ones, B is called either the magnetic 
induction or the magnetic flux density, while the term “magnetic field” is reserved for the field H that will be 
introduced in Sec. 5 below.  
7 Named after Jean-Baptiste Biot and Félix Savart who made several key contributions to the theory of magnetic 
interactions – in the same notorious 1820. 
8 Named after Hendrik Antoon Lorentz, famous mostly for his numerous contributions to the development of 
special relativity – see Chapter 9 below. To be fair, the magnetic part of the Lorentz force was implicitly 
described in a much earlier (1865) paper by J. C. Maxwell and then spelled out by Oliver Heaviside (another 
genius of electrical engineering – and mathematics!) in 1889, i.e. also before the 1895 work by H. Lorentz. 
9 From the magnetic part of Eq. (10), Eq. (8) may be derived by the elementary summation of all forces acting on 
n >> 1 particles in a unit volume, with j = qnv – see the footnote on Eq. (4.13a). On the other hand, the reciprocal 
derivation of Eq. (10) from Eq. (8) with j = qv(r – r0), where r0 is the current particle’s position (so dr0/dt = v), 
requires certain mathematical care and will be performed in Chapter 9.  
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 Fig. 5.3. The apparent violation of the 
3rd Newton law in magnetism. 
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Despite this apparent problem, let us still go ahead and plug Eq. (9) into Eq. (8): 
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This double vector product may be transformed into two scalar products, using the vector algebraic 
identity called the bac minus cab rule, a(bc) = b(ac) – c(ab).10 Applying this relation, with a = j, b 
= j’, and c = R  r – r’, to Eq. (11), we get 
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The second term on the right-hand side of this equality coincides with the right-hand side of Eq. (1), 
while the first term equals zero because its internal integral vanishes. Indeed, we may break the volumes 
V and V’ into narrow current tubes – the stretched elementary volumes whose walls are not crossed by 
current lines (so on their walls, jn = 0). As a result, the elementary current in each tube, dI = jdA = jd2r, 
is the same along its length, and, just as in a thin wire, jd2r may be replaced with dIdr, with the vector 
dr directed along j. Because of this, each tube’s contribution to the internal integral in the first term of 
Eq. (12) may be represented as 
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where the operator  acts in the r-space, and the integral is taken along the tube’s length l. Due to the 
current continuity expressed by Eq. (4.6), each loop should follow a closed contour, and an integral of a 
full differential of some scalar function (in our case, of 1/R) along such contour equals zero.  

 So we have recovered Eq. (1). Returning for a minute to the paradox illustrated in Fig. 3, we may 
conclude that the apparent violation of the 3rd Newton law was the artifact of our interpretation of Eqs. 
(8) and (9) as the sums of independent elementary components. In reality, due to the dc current 
continuity, these components are not independent. For the whole currents, Eqs. (8)-(9) do obey the 3rd 
law – as follows from their already proved equivalence to Eq. (1).  

 Thus it is possible to break the magnetic interaction into two effects: the induction of the 
magnetic field B by one current (in our notation, j’), and the effect of this field on the other current (j). 
Now comes an additional experimental fact: other elementary components jd3r’ of the current j(r) also 
contribute to the magnetic field (9) acting on the component jd3r.11 This fact allows us to drop the prime 
sign after j in Eq. (9), and rewrite Eqs. (8) and (9) as 
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10 See, e.g., MA Eq. (7.5). 
11 Just as in electrostatics, one needs to exercise due caution in transforming these expressions for the limit of 
discrete classical particles, and extended wavefunctions in quantum mechanics, to avoid the (non-existing) 
magnetic interaction of a charged particle with itself.  
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Again,  the field observation point r and the field source point r’ have to be clearly distinguished. We 
immediately see that these expressions are close to, but still different from the corresponding relations of 
the electrostatics, namely Eq. (1.9) and the distributed-charge version of Eq. (1.6):  
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(Note that the sign difference has disappeared, at the cost of the replacement of scalar-by-vector 
multiplications in electrostatics with cross-products of vectors in magnetostatics.) 

 For the frequent particular case of a thin wire of length l’, Eq. (14) may be re-written as 
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Let us see how this formula works for the simplest case of a straight wire (Fig. 4a). The magnetic field 
contributions dB due to all small fragments dr’ of the wire’s length are directed along the same line 
(perpendicular to both the wire and the shortest distance d from the observation point to the wire’s line), 
and its magnitude is 
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Summing up all such elementary contributions, we get 
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 This is a simple but important result. (Note that it is only valid for very long (l >> d), straight 
wires.) It is especially crucial to note the “vortex” character of the field: its lines go around the wire, 
forming rings with the centers on the current line. This is in sharp contrast to the electrostatic field lines, 
which can only begin and end on electric charges and never form closed loops (otherwise the Coulomb 
force qE would not be conservative). In the magnetic case, the vortex structure of the field may be 
reconciled with the potential character of the magnetic forces, which is evident from Eq. (1), due to the 
vector products in Eqs. (14)-(15). 

Fig. 5.4. Calculating magnetic fields: (a) of a straight current, and (b) of a current loop. 
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 Now we may readily use Eq. (15), or rather its thin-wire version 
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l
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to apply Eq. (20) to the two-wire problem (Fig. 2). Since for the second wire, the vectors dr and B are 
perpendicular to each other, we immediately arrive at our previous result (7), which was obtained 
directly from Eq. (1). 

 The next important example of the application of the Biot-Savart law (14) is the magnetic field at 
the axis of a circular current loop (Fig. 4b). Due to the problem’s symmetry, the net field B has to be 
directed along the axis, but each of its elementary components dB is tilted by the angle   = tan-1(z/R) to 
this axis, so its axial component is  
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Since the denominator of this expression remains the same for all wire components dr’, the integration 
over r’ is easy (dr’ = 2R), giving finally 
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Note that the magnetic field in the loop’s center (i.e., for z = 0), 
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is   times higher than that due to a similar current in a straight wire, at the distance d  = R from it. This 
difference is readily understandable, since all elementary components of the loop are at the same 
distance R from the observation point, while in the case of a straight wire, all its points but one are 
separated from the observation point by distances larger than d. 

 Another notable fact is that at large distances (z2 >> R2), the field (23) is proportional to z-3:  
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where A = R2 is the loop area. Comparing this expression with Eq. (3.13), for the particular case  = 0, 
we see that such field is similar to that of an electric dipole (at least along its direction), with the 
replacement of the electric dipole moment magnitude p with the m so defined – besides the front factor. 
Indeed, such a plane current loop is the simplest example of a system whose field, at distances much 
larger than R, is that of a magnetic dipole, with a dipole moment m – the notions to be discussed in 
much more detail in Sec. 4 below.  

 

5.2. Vector potential and the Ampère law 

 The reader could see that the calculations of the magnetic field using Eq. (14) or (18) are still 
somewhat cumbersome even for the very simple systems we have examined. As we saw in Chapter 1, 
similar calculations in electrostatics, at least for several important highly symmetric systems, could be 
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substantially simplified using the Gauss law (1.16). A similar relation exists in magnetostatics as well, 
but has a different form, due to the vortex character of the magnetic field.  

 To derive it, let us notice that in an analogy with the scalar case, the vector product under the 
integral (14) may be transformed as 
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where the operator  acts in the r-space. (This equality may be readily verified by Cartesian 
components, noticing that the current density is a function of r’ and hence its components are 
independent of r.) Plugging Eq. (26) into Eq. (14), and moving the operator  out of the integral over r’, 
we see that the magnetic field may be represented as the curl of another vector field – the so-called 
vector potential, defined as:12 
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Please note a beautiful analogy between Eqs. (27)-(28) and, respectively, Eqs. (1.33) and (1.38).13 This 
analogy implies that the vector potential A plays, for the magnetic field, essentially the same role as the 
scalar potential   plays for the electric field (hence the name “potential”), with due respect to the vortex 
character of B. This notion will be discussed in more detail below. 

 Now let us see what equations we may get for the spatial derivatives of the magnetic field. First, 
vector algebra says that the divergence of any curl is zero.14 In application to Eq. (27), this means that 
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Comparing this equation with Eq. (1.27), we see that Eq. (29) may be interpreted as the absence of a 
magnetic analog of an electric charge, on which magnetic field lines could originate or end. Numerous 
searches for such hypothetical magnetic charges, called magnetic monopoles, using very sensitive and 
sophisticated experimental setups,15 have not given any reliable evidence of their existence in Nature. 

 Proceeding to the alternative, vector derivative of the magnetic field, i.e. to its curl, and using 
Eq. (28), we obtain 
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This expression may be simplified by using the following general vector identity:16 
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applied to vector c(r)  j(r’)/r – r’: 

12 In the Gaussian units, Eq. (27) remains the same, and hence in Eq. (28), 0/4  is replaced with 1/c. 
13 In Eq. (1.38), there was no real need for the additional clarification provided by the integration volume label V’. 
14 See, e.g., MA Eq. (11.2). 
15 For a recent example, see B. Acharya et al., Nature 602, 63 (2022). 
16 See, e.g., MA Eq. (11.3). 
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As was already discussed during our study of electrostatics in Sec. 3.1, 
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so the last term of Eq. (32) is just 0j(r). On the other hand, inside the first integral, we can replace  
with (–’), where prime means the differentiation in the space of the radius vectors r’. Integrating that 
term by parts, we get 
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Applying this equality to the volume V’ limited by a surface S’ either sufficiently distant from the field 
concentration or with no current crossing it, we may neglect the first term on the right-hand side of Eq. 
(34), while the second term always equals zero in statics, due to the dc charge continuity – see Eq. (4.6). 
As a result, we arrive at a very simple differential equation17 

        jB 0 .      (5.35) 

 This is (the dc form of) the inhomogeneous Maxwell equation – which in magnetostatics plays a 
role similar to Eq. (1.27) in electrostatics. Let me display, for the first time in this course, this 
fundamental system of equations (at this stage, for statics only), and give the reader a minute to stare, in 
silence, at their beautiful symmetry – which has inspired so much of the later development of physics: 
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     (5.36) 

Their only asymmetry, two zeros on the right-hand sides (for the magnetic field’s divergence and 
electric field’s curl), is due to the absence in the Nature of magnetic monopoles and their currents. I will 
discuss these equations in more detail in Sec. 6.7, after the first two equations (for the fields’ curls) have 
been generalized to their full, time-dependent versions.  

 Returning now to our current, more mundane but important task of calculating the magnetic field 
induced by simple current configurations, we can benefit from an integral form of Eq. (35). For that, let 
us integrate this equation over an arbitrary surface S limited by a closed contour C, and apply to the 
result the Stokes theorem.18 The resulting expression, 

       Irdjd
C S

n 0
2

0   rB ,     (5.37) 

where I  is the net electric current crossing surface S, is called the Ampère law. 

17 As in all earlier formulas for the magnetic field, in the Gaussian units, the coefficient 0 in this relation is 
replaced with 4/c. 
18 See, e.g., MA Eq. (12.1) with f = B. 

Maxwell 
equations: 

statics 

Ampère  
law  



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 5                 Page 10 of 42 

 As the first example of its application, let us return to the current in a straight wire (Fig. 4a). 
With the Ampère law in our arsenal, we can readily pursue an even more ambitious goal than that 
achieved in the previous section, namely to calculate the magnetic field both outside and inside of a wire 
of an arbitrary radius R, with an arbitrary (albeit axially-symmetric) current distribution j() – see Fig. 5.  

 

 

 

 

 

 

 

 
 Selecting the Ampère-law contour C in the form of a ring of some radius in the plane normal to 
the wire’s axis z, we have Bdr = Bd, where  is the azimuthal angle, so Eq. (37) yields: 
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   (5.38) 

Thus we have not only recovered our previous result (20), with the notation replacement d  , in a 
much simpler way but also have been able to calculate the magnetic field’s distribution inside the wire. 
In the most common particular case when the current is uniformly distributed along its cross-section,  
j() = const, the first of Eqs. (38) immediately yields B    for   R. 

 Another important system is a straight, long solenoid (Fig. 6a), with dense winding: n2A >> 1, 
where n is the number of wire turns per unit length, and A is the area of the solenoid’s cross-section. 

 

 

 

 

 

 

 

 
 
From the symmetry of this problem, the longitudinal (in Fig. 6a, vertical) component Bz of the 

magnetic field may only depend on the distance  of the observation point from the solenoid’s axis. First 
taking a plane Ampère contour C1, with both long sides outside the solenoid, we get Bz(2) – Bz(1) = 0, 

Fig. 5.5. The simplest application of the Ampère 
law: the magnetic field of a straight current. 
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Fig. 5.6. Calculating 
magnetic fields of (a) straight 
and (b) toroidal solenoids. 
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because the total current piercing the contour equals zero. This is only possible if Bz = 0 at any  outside 
of the solenoid, provided that it is infinitely long.19 With this result on hand, from the Ampère law 
applied to the contour C2, we get the following relation for the only (z-) component of the internal field: 

      NIBl 0 ,      (5.39) 

where N is the number of wire turns passing through the contour of length l. This means that regardless 
of the exact position of the internal side of the contour, the result is the same: 

              nII
l

N
B 00   .     (5.40) 

Thus, the field inside an infinitely long solenoid (with an arbitrary shape of its cross-section) is uniform; 
in this sense, a long solenoid is a magnetic analog of a wide plane capacitor, explaining why this system 
is so widely used in physical experiment. 

 As should be clear from its derivation, the obtained results, especially that the field outside of the 
solenoid equals zero, are conditional on the solenoid length being very large in comparison with its 
lateral size. (From Eq. (25), we may predict that for a solenoid of a finite length l, the close-range 
external field is a factor of ~A/l2 lower than the internal one.) A much better suppression of such 
“fringe” fields may be obtained using toroidal solenoids (Fig. 6b). The application of the Ampère law to 
this geometry shows that in the limit of dense winding (N >> 1), there is no fringe field at all (for any 
relation between the two radii of the torus), while inside the solenoid, at distance  from the system’s 
axis, 

        



2

0 NI
B  .      (5.41) 

We see that a possible drawback of this system for practical applications is that the internal field does 
depend on , i.e. is not quite uniform; however, if the torus is relatively thin, this deficiency is minor. 

 Next let us discuss a very important question: how can we solve the problems of magnetostatics 
for systems whose low symmetry does not allow getting easy results from the Ampère law? (The 
examples are of course too numerous to list; for example, we cannot use this approach even to reproduce 
Eq. (23) for a round current loop.) From the deep analogy with electrostatics, we may expect that in this 
case, we could calculate the magnetic field by solving a certain boundary problem for the field’s 
potential – in our current case, the vector potential A defined by Eq. (28). However, despite the 
similarity of this formula and Eq. (1.38) for , which was noticed above, there is an additional issue we 
should tackle in the magnetic case – besides the obvious fact that calculating the vector potential 
distribution means determining three scalar functions (say, Ax, Ay, and Az), rather than just one ().  

 To reveal the issue, let us plug Eq. (27) into Eq. (35): 

                jA 0  ,     (5.42) 

and then apply to the left-hand side of this equation the same identity (31). The result is 

19 Applying the Ampère law to a circular contour of radius , coaxial with the solenoid, we see that the field 
outside (but not inside!) it has an azimuthal component B, similar to that of the straight wire (see Eq. (38) above) 
and hence (at N >> 1) much weaker than the longitudinal field inside the solenoid – see Eq. (40). 
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          jAA 0
2)(  .     (5.43) 

On the other hand, as we know from electrostatics (please compare Eqs. (1.38) and (1.41)), the vector 
potential A(r) given by Eq. (28) has to satisfy a simpler (“vector-Poisson”) equation 

         jA 0
2  ,     (5.44) 

which is just a set of three usual Poisson equations for each Cartesian component of A. 

 To resolve the difference between these results, let us note that Eq. (43) is reduced to Eq. (44) if 
A = 0. In this context, let us discuss what discretion we have in the choice of the potential. In 
electrostatics, we may add, to the scalar function ’ that satisfies Eq. (1.33) for the given field E, not 
only an arbitrary constant but even an arbitrary function of time: 

          E 'tf'   )( .     (5.45) 

Similarly, using the fact that the curl of the gradient of any scalar function equals zero,20 we may add to 
any vector function A’ that satisfies Eq. (27) for the given field B, not only any constant but even a 
gradient of an arbitrary scalar function (r, t), because 

            BAAA  '''  )()(  .   (5.46) 

Such additions, which keep the fields intact, are called gauge transformations.21 Let us see what such a 
transformation does to A’: 
      2)(  '' AA  .    (5.47) 

For any choice of such a function A’, we can always choose the function  in such a way that it satisfies 
the Poisson equation 2 = –A’, and hence makes the divergence of the transformed vector potential, 
A  A’ + , equal to zero everywhere, 

          0A ,      (5.48) 
thus reducing Eq. (43) to Eq. (44). 

 To summarize, the set of distributions A’(r) that satisfy Eq. (27) for a given field B(r), is not 
limited to the vector potential A(r) given by Eq. (44), but is reduced to it upon the additional Coulomb 
gauge condition (48). However, as we will see in a minute, even this condition still leaves some degrees 
of freedom in the choice of the vector potential. To illustrate this fact, and also to get a better gut feeling 
of the vector potential’s distribution in space, let us calculate A(r) for two very basic cases. 

 First, let us revisit the straight wire problem shown in Fig. 5. As Eq. (28) shows, in this case the 
vector potential A has just one component (along the axis z). Moreover, due to the problem’s axial 
symmetry, its magnitude may only depend on the distance from the axis: A = nzA(). Hence, the 
gradient of A is directed across the z-axis, so Eq. (48) is satisfied at all points. For our symmetry (/ = 
/z = 0), the Laplace operator, written in cylindrical coordinates, has just one term,22 reducing Eq. (44) 
to 

20 See, e.g., MA Eq. (11.1). 
21 The use of the term “gauge” (originally meaning “a measure” or “a scale”) in this context is purely historic, so 
the reader should not try to find too much hidden sense in it. 
22 See, e.g., MA Eq. (10.3). 
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Multiplying both sides of this equation by  and integrating them over the coordinate once, we get 
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Since in the cylindrical coordinates, for our symmetry, B = –dA/d,23 Eq. (50) is nothing else than our 
old result (38) for the magnetic field.24 However, let us continue the integration, at least for the region 
outside the wire, where the function A() depends only on the full current I rather than on the current 
distribution. Dividing both parts of Eq. (50) by , and integrating them over this argument again, we get 
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As a reminder, we had similar logarithmic behavior for the electrostatic potential outside a uniformly 
charged straight line. This is natural because the Poisson equations for both cases are similar. 

 Now let us find the vector potential for the long solenoid (Fig. 6a), with its uniform magnetic 
field. Since Eq. (28) tells us that the vector A should follow the direction of the inducing current, we 
may start by looking for it in the form A = n A(). (This is especially natural if the solenoid’s cross-
section is circular.) With this orientation of A, the same general expression for the curl operator in 
cylindrical coordinates yields  A = nz(1/)d(A)/d. According to Eq. (27), this expression should be 
equal to B – in our current case to nzB, with a constant B – see Eq. (40). Integrating this equality, and 
selecting such integration constant that A(0) is finite, we get  

               
 nA
2

  i.e.,
2

BB
A  .    (5.52) 

Plugging this result into the general expression for the Laplace operator in the cylindrical coordinates,25 
we see that the Poisson equation (44) with j = 0 (i.e. the Laplace equation) is satisfied again – which is 
natural since, for this distribution, the Coulomb gauge condition (48) is satisfied: A = 0.  

 However, Eq. (52) is not the unique (or even the simplest) vector potential that gives the same 
uniform field B = nzB. Indeed, using the well-known expression for the curl operator in Cartesian 
coordinates,26 it is straightforward to check that each of the vector functions A’ = nyBx and A”= –nxBy 
also has the same curl, and also satisfies the Coulomb gauge condition (48).27 If such solutions do not 
look very natural because of their anisotropy in the [x, y] plane, please consider the fact that they 
represent the uniform magnetic field regardless of its source – for example, regardless of the shape of 
the long solenoid’s cross-section. Such choices of the vector potential may be very convenient for some 

23 See, e.g., MA Eq. (10.5) with / = /z = 0. 
24 Since the magnetic field at the wire’s axis has to be zero (otherwise, being normal to the axis, where would it 
be directed?), the integration constant in Eq. (50) has to equal zero. 
25 See, e.g., MA Eq. (10.6). 
26 See, e.g., MA Eq. (8.5). 
27 The axially symmetric vector potential (52) is just a weighed sum of these two functions: A = (A’ + A”)/2. 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 5                 Page 14 of 42 

problems, for example for the quantum-mechanical analysis of the 2D motion of a charged particle in 
the perpendicular magnetic field, giving the famous Landau energy levels.28 

 

5.3. Magnetic energy, flux, and inductance 

 Considering the currents flowing in a system as generalized coordinates, the magnetic forces (1) 
between them are their unique functions, and in this sense, the energy U of their magnetic interaction 
may be considered the potential energy of the system. The apparent (but somewhat deceptive) way to 
derive an expression for this energy is to use the analogy between Eq. (1) and its electrostatic analog, 
Eq. (2). Indeed, Eq. (2) may be transformed into Eq. (1) with just three replacements: 

 (i) (r)’(r’) should be replaced with [j(r)j’(r’)], 

 (ii) 0 should be replaced with 1/0, and  

 (iii) the sign before the double integral has to be replaced with the opposite one. 

Hence we may avoid repeating the calculation made in Chapter 1, by making these replacements in Eq. 
(1.59), which gives the electrostatic potential energy of the system with (r) and ’(r’) describing the 
same charge distribution, i.e. with ’(r) = (r), to get the following expression for the magnetic 
potential energy in the system with, similarly, j’(r) = j(r):29  
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 But this is not the unique answer! Indeed, Eq. (53) describes the proper potential energy of the 
system (in particular, giving the correct result for the current interaction forces) only in the case when 
the interacting currents are fixed – just as Eq. (1.59) is adequate when the interacting charges are fixed. 
Here comes a substantial difference between electrostatics and magnetostatics: due to the fundamental 
fact of electric charge conservation (already discussed in Secs. 1.1 and 4.1), keeping electric charges 
fixed does not require external work, while the maintenance of currents generally does. As a result, Eq. 
(53) describes the energy of the magnetic interaction plus of the system keeping the currents constant – 
or rather of its part depending on the system under our consideration. In this situation, using the 
terminology already used in Sec. 3.5 (see also a general discussion in CM Sec. 1.4.), Uj may be called 
the Gibbs potential energy of our magnetic system.  

 Now to exclude from Uj the contribution due to the interaction with the current-supporting 
system(s), i.e. calculate the potential energy U of our system as such, we need to know this contribution. 
The simplest way to do this is to use the Faraday induction law that describes this interaction and will 
be discussed at the beginning of the next chapter. This is why let me postpone the derivation until that 
point, and for now, ask the reader to believe me that the removal of the interaction leads to an 
expression similar to Eq. (53), but with the opposite sign:   
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,    (5.54) 

28 See, e.g., QM Sec. 3.2. 
29 Just as in electrostatics, for the interaction of two independent current distributions j(r) and j’(r’), the factor ½ 
should be dropped. 
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I will prove this result in Sec. 6.2, but actually, this sign dichotomy should not be quite surprising to the 
attentive reader, in the context of a similar duality of Eqs. (3.73) and (3.81) for the electrostatic energies 
including and excluding the interaction with the field source. 

Due to the importance of Eq. (54), let us rewrite it in several other forms, convenient for various 
applications. First of all, just as in electrostatics, it may be recast into a potential-based form. Indeed, 
with the definition (28) of the vector potential A(r), Eq. (54) becomes 

             rdU 3)()(
2

1
rArj .      (5.55) 

This formula, which is a clear magnetic analog of Eq. (1.60) of electrostatics, is very popular among 
field theorists, because it is very handy for their manipulations; it is also useful for some practical 
applications. However, for many calculations, it is more convenient to have a direct expression of the 
energy via the magnetic field. Again, this may be done very similarly to what had been done for 
electrostatics in Sec. 1.3, i.e. by plugging into Eq. (55) the current density expressed from Eq. (35) and 
then transforming it as30 
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Now using the divergence theorem, the second integral may be transformed into a surface integral of 
(AB)n. According to Eqs. (27)-(28) if the current distribution j(r) is localized, this vector product 
drops, at large distances, faster than 1/r2, so if the integration volume is large enough, the surface 
integral is negligible. In the remaining first integral in Eq. (56), we may use Eq. (27) to rewrite A as 
B. As a result, we get a very simple and fundamental formula. 

                rdBU 32
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Just as with the electric field, this expression may be interpreted as a volume integral of the magnetic 
energy density u: 
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clearly similar to Eq. (1.65).31 Again, the conceptual choice between the spatial localization of magnetic 
energy – either at the location of electric currents only, as implied by Eqs. (54) and (55), or in all regions 
where the magnetic field exists, as apparent from Eq. (57b), cannot be done within the framework of 
magnetostatics, and only the electrodynamics gives a decisive preference for the latter choice. 

 For the practically important case of currents flowing in several thin wires, Eq. (54) may be first 
integrated over the cross-section of each wire, just as was done at the derivation of Eq. (4).  As before, 
since the integral of the current density over the kth  wire's cross-section is just the current Ik in the wire, 
and cannot change along its length, it may be taken from the remaining integrals, giving 

30 For that, we may use MA Eq. (11.7) with f = A and g = B, giving A(B) = B(A) – (AB). 
31 The transfer to the Gaussian units in Eqs. (57) may be accomplished by the usual replacement 0  4, thus 
giving, in particular, u = B2/8. 
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where lk is the full length of the kth wire loop. Note that Eq. (58) is valid if all currents Ik are independent 
of each other, because the double sum counts each current pair twice, compensating the coefficient ½ in 
front of the sum. It is useful to decompose this relation as 
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where the coefficients Lkk’ are independent of the currents: 
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 The coefficient Lkk’ with k  k’, is called the mutual inductance between current the kth and k’th 

loops, while the diagonal coefficient Lk  Lkk is called the self-inductance (or just inductance) of the kth 
loop.32 From the symmetry of Eq. (60) with respect to the index swap, k  k’, it is evident that the 
matrix of coefficients Lkk’ is symmetric:33 
           k'kkk' LL  ,      (5.61) 

so for the practically most important case of two interacting currents I1 and I2, Eq. (59) reads 
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where M  L12 = L21 is the mutual inductance coefficient. 

 These formulas clearly show the importance of the self- and mutual inductances, so I will 
demonstrate their calculation for at least a few basic geometries. Before doing that, however, let me 
recast Eq. (58) into one more form that may facilitate such calculations. Namely, let us notice that for 
the magnetic field induced by current Ik in a thin wire, Eq. (28) is reduced to 
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so Eq. (58) may be rewritten as 
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But according to the same Stokes theorem that was used earlier in this chapter to derive the Ampère law, 
and Eq. (27), the integral in Eq. (64) is nothing else than the magnetic field’s flux  (more frequently 
called just the magnetic flux) through a surface S limited by the contour l : 

32 As evident from Eq. (60), these coefficients depend only on the geometry of the system. Moreover, in the 
Gaussian units, in which Eq. (60) is valid without the factor 0/4, the inductance coefficients have the dimension 
of length (centimeters). The SI unit of inductance is called the henry, abbreviated H – after Joseph Henry, who in 
particular discovered the effect of electromagnetic induction (see Sec. 6.1) independently of Michael Faraday. 
33 Note that the matrix of the mutual inductances Ljj’ is very similar to the matrix of reciprocal capacitance 
coefficients pkk’ – for example, compare Eq. (62) with Eq. (2.21). 
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– in the particular case of Eq. (64), the flux kk’ of the field induced by the k’th current through the loop 
of the kth current.34 As a result, Eq. (64) may be rewritten as 
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Comparing this expression with Eq. (59), we see that 
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 This expression not only gives us one more means for calculating the coefficients Lkk’, but also 
shows their physical sense: the mutual inductance characterizes what part of the magnetic flux 
(colloquially, “what fraction of field lines”) induced by the current Ik' pierces the kth loop’s area Sk – see 
Fig. 7.  
 
 
 
 
 
 
 
 
 
 

Due to the linear superposition principle, the total flux piercing the kth loop may be represented as 

         
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kkk
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kkk IL '''ΦΦ      (5.68) 

For example, for the system of two currents, this expression is reduced to a clear analog of Eqs. (2.19): 
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     (5.69) 

For the even simpler case of a single current, 

           LI ,      (5.70) 

so the magnetic energy of the current may be represented in several equivalent forms: 

34 The SI unit of magnetic flux is called weber, abbreviated Wb – after Wilhelm Edward Weber (1804-1891), who 
in particular co-invented (with Carl Gauss) the electromagnetic telegraph. More importantly for this course, in 
1856 he was the first (together with Rudolf Kohlrausch) to notice that the value of (in modern terms) 1/(00)

1/2, 
derived from electrostatic and magnetostatic measurements, coincides with the independently measured speed of 
light c. This observation gave an important motivation for Maxwell’s theory. 
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Fig. 5.7. The physical sense of 
the mutual inductance coefficient 
Lkk’  kk’/Ik’ – schematically.  
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These relations, similar to Eqs. (2.14)-(2.15) of electrostatics, show that the self-inductance L of a 
current loop may be considered a measure of the system’s magnetic energy. However, as we will see in 
Sec. 6.1, this measure is adequate only if the flux , rather than the current I, is fixed.    

 Now we are well equipped for the calculation of inductance coefficients for particular systems, 
having three options. The first one is to use Eq. (60) directly.35 The second one is to calculate the 
magnetic field energy from Eq. (57) as the function of all currents Ik in the system, and then use Eq. (59) 
to find all coefficients Lkk’. For example, for a system with just one current, Eq. (71) yields 

           
2/2I

U
L  .      (5.72) 

Finally, if the system consists of thin wires, so the loop areas Sk and hence the fluxes kk’ are well 
defined, we may calculate them from Eq. (65), and then use Eq. (67) to find the inductances.   

 Usually, the third option is simpler, but the first two may be very useful even for thin-wire 
systems, especially if the notion of magnetic flux in them is not quite apparent. As an important 
example, let us find the self-inductance of a long solenoid – see Fig. 6a again. We have already 
calculated the magnetic field inside it – see Eq. (40) – so, due to the field uniformity, the magnetic flux 
piercing each turn of the wire is just 

              nIABA 01  ,     (5.73) 

where A is the area of the solenoid’s cross-section – for example R2 for a round solenoid, though Eq. 
(40), and hence Eq. (73) are valid for cross-sections of any shape. Comparing Eqs. (73) with Eq. (70), 
one might wrongly conclude that L = 1/I = 0nA (WRONG!), i.e. that the solenoid’s inductance is 
independent of its length. Actually, the magnetic flux 1 pierces each wire turn, so the total flux through 
the whole current loop, consisting of N turns, is  

             lAInN 2
01  ,     (5.74) 

and the correct expression for the long solenoid’s self-inductance is  
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 ,     (5.75) 

i.e. at fixed A and l, the inductance scales as N2, not as N. Since this reasoning may seem not quite 
evident, it is prudent to verify this result by using Eq. (72), with the full magnetic energy inside the 
solenoid (neglecting minor fringe field contributions), given by Eq. (57) with B = const within the 
internal volume V = lA, and zero outside of it: 
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Plugging this relation into Eq. (72) immediately confirms the result (75).  

35 Numerous applications of that Neumann formula (derived in 1845 by F. Neumann) to electrical engineering 
problems may be found, for example, in the classical text by F. Grover, Inductance Calculations, Dover, 1946. 
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This energy-based approach becomes virtually inevitable for continuously distributed currents. 
As an example, let us calculate the self-inductance L of a long coaxial cable with the cross-section 
shown in Fig. 8, 36 and the full current in the outer conductor equal and opposite to that (I) in the inner 
conductor. 

 

 

 

 

 
 

Let us assume that the current is uniformly distributed over the cross-sections of both 
conductors. (As we know from the previous chapter, this is indeed the case if both the internal and 
external conductors are made of a uniform resistive material.) First, we should calculate the radial 
distribution of the magnetic field – which has only one, azimuthal component because of the axial 
symmetry of the problem. This distribution may be immediately found by applying the Ampère law (37) 
to circular contours of radii  within four different ranges: 
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 Now, an easy integration yields the magnetic energy per unit length of the cable: 
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From here, and Eq. (72), we get the final answer: 
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Note that for the particular case of a thin outer conductor, c – b << b, this expression reduces to 
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where the first term in the parentheses is due to the contribution of the magnetic field energy in the free 
space between the conductors. This distinction is important for some applications because in 

36 As a reminder, the mutual capacitance C between the conductors of such a system was calculated in Sec. 2.3. 

a
b

c0

I

I
Fig. 5.8. The cross-section of a coaxial cable. 
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superconductor cables, as well as the normal-metal cables at high frequencies (to be discussed in the 
next chapter), the field does not penetrate the conductor’s bulk, so Eq. (80) is valid without the last term 
¼ in the parentheses – for any b < c. 

As the last example, let us calculate the mutual inductance between a long straight wire and a 
round wire loop adjacent to it (Fig. 9), neglecting the thickness of both wires.  

 

 

 

 

 

 
 

 Here there is no problem with using the last approach discussed above, based on the direct 
calculation of the magnetic flux. Indeed, as was discussed in Sec. 1, the field B1 induced by the current 
I1 at any point of the round loop is normal to its plane – e.g., to the plane of the drawing of Fig. 9. In the 
Cartesian coordinates shown in that figure, Eq. (20) reads B1 = 0I1/2y, giving the following magnetic 
flux through the loop: 
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This is a table integral equal to ,37 so 21 = 0I1R, and the final answer for the mutual inductance M  
L12 = L21 = 21/I1 is finite (and very simple): 

    RM 0 ,      (5.82) 

despite the magnetic field's divergence at the lowest point of the loop (y = 0).  

 Note that in contrast with the finite mutual inductance of this system, the self-inductances of both 
its wires are formally infinite in the thin-wire limit – see, e.g., Eq. (80), which, in the limit b/a >> 1, 
describes a thin straight wire. However, since this divergence is very weak (logarithmic), it is quenched 
by any deviation from this perfectly axial geometry. For example, a fair estimate of the inductance of a 
wire of a large but finite length l >> a may be obtained from Eq. (80) by the replacement of b with l: 
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 .      (5.83) 

(Note, however, that the exact result depends on where from/to the current flows beyond that segment.) 
It turns out that a similar approximate result, with l replaced with 2R in the front factor, and with R 
under the logarithm, is valid for the self-inductance of a round loop with a << R. (A proof of this fact is 
a very useful exercise, highly recommended to the reader.) 

37 See, e.g., MA Eq. (6.13), with a = 1. 
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Fig. 5.9. An example of the 
mutual inductance calculation. 
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5.4. Magnetic dipole moment, and magnetic dipole media 

 The most natural way of the magnetic media description parallels that for dielectrics in Chapter 
3, and is based on the properties of magnetic dipoles – the notion close (but not identical!) to that of the 
electric dipoles discussed in Sec. 3.1. To introduce this notion quantitatively, let us consider, just as in 
Sec. 3.1, a spatially-localized system with a current distribution j(r’), whose magnetic field is measured 
at relatively large distances r >> r’ (Fig. 10). 

 

 

 

 

 

 

Applying the truncated Taylor expansion (3.5) of the fraction 1/r – r’ to the vector potential 
given by Eq. (28), we get 
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Now, due to the vector character of this potential, we have to depart somewhat from the approach of 
Sec. 3.1 and use the following vector algebra identity:38  

       0)()( 3  rdfggf
V

 jj ,    (5.85) 

that is valid for any pair of smooth (differentiable) scalar functions f(r) and g(r), and any vector function 
j(r) that, as the dc current density, satisfies the continuity condition j = 0 and whose normal 
component vanishes on the surface of the volume V. First, let us use Eq. (85) with f equal to 1, and g 
equal to any Cartesian component of the radius-vector r: g = rl (l = 1, 2, 3). Then it yields 
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so for the vector as the whole 

          03 
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rdrj ,      (5.87) 

showing that the first term on the right-hand side of Eq. (84) equals zero. Next, let us use Eq. (85) again, 
but now with f = rl, g = rl’ (where l, l’ = 1, 2, 3); then it yields 
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''  rdjrjr
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llll ,     (5.88) 

so the lth Cartesian component of the second integral in Eq. (84) may be transformed as 

38 See, e.g., MA Eq. (12.3) with the additional condition  jnS = 0, pertinent to space-restricted currents. 
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Fig. 5.10. Calculating the magnetic field of localized 
currents at a distant point (r >> a). 
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As a result, Eq. (84) may be rewritten as   
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where the vector m, defined as39 
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is called the magnetic dipole moment of a field source – which itself, within the long-range 
approximation (90), is called the magnetic dipole.  

 Note a close analogy between the m defined by Eq. (91), and the orbital40 angular momentum of 
a non-relativistic particle with mass mk: 

          kkkkkk m vrprL  ,     (5.92) 

where pk = mkvk is its linear momentum. Indeed, for a continuum of such particles with equal electric 
charges q, distributed with spatial density n, we have j = qnv, and Eq. (91) yields 
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while the total angular momentum of such a system of particles of equal masses m0, is 
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so we get a very straightforward relation 

                Lm
02m

q
 .      (5.95) 

 For the orbital motion, this classical relation survives in quantum mechanics for linear operators, 
and hence for eigenvalues of the observables. Since the orbital angular momentum is quantized in the 
units of the Planck constant , the orbital magnetic moment of an electron is always a multiple of the so-
called Bohr magneton  

         
e

B 2m

e
 ,      (5.96) 

where me is the free electron mass.41 However, for particles with spin, such a universal relation between 
the vectors m and L is no longer valid. For example, the electron’s spin s = ½ gives a contribution of /2 
to its mechanical angular momentum, but a contribution very close to B to its magnetic moment. 

39 In the Gaussian units, the definition (91) is kept valid “as is”, so Eq. (90) is stripped of the factor 0/4. 
40 This adjective is used, especially in quantum mechanics, to distinguish the motion of a particle as a whole (not 
necessarily along a closed orbit!) from its intrinsic angular momentum, the spin – see, e.g., QM Chapters 3-6. 
41 In the SI units, me  0.9110-30 kg, so B  0.9310-23 J/T. 
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 The next important example of a magnetic dipole is a planar thin-wire loop, limiting area A (of 
arbitrary shape), and carrying current I, for which m has a surprisingly simple form,  

            Am I ,      (5.97) 

where the modulus of the vector A equals the loop’s area A, and its direction is normal to the loop’s 
plane. This formula may be readily proved by noticing that if we select the coordinate frame origin on 
the plane of the loop (Fig. 11), then the elementary component of the magnitude of the integral (91), 
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is just the elementary area dA = (1/2)rd(r)  = r2d/2 – the equality already used in CM Eq. (3.40). 

 

 

 

 

  

  

 
The comparison of Eqs. (96) and (97) allows a useful estimate of atomic currents, by finding 

what current I should flow in a circular loop of the atomic size scale (the Bohr radius) rB ~ 0.510-10 m, 
i.e. of area A ~ 10-20 m2, to produce a magnetic moment of the order of B.42 The result is surprisingly 
macroscopic: I ~ 1 mA – quite comparable to the current driving the sound in your phone’s earbuds. 

Though due to the quantum-mechanical spread of electron wavefunctions, this estimate should not be 
taken too literally, it is very useful for getting a gut feeling of how significant the atomic magnetism is, 
and hence why ferromagnets may provide such strong magnetic fields. 

 After these illustrations, let us return to the discussion of the general Eq. (90). Plugging it into 
(also general) Eq.  (27), we may calculate the magnetic field of a magnetic dipole: 43 

42 Another way to arrive at the same estimate is to take I ~ ef = e/2  with  ~ 1016 s-1 being the typical 
frequency of radiation due to atomic interlevel quantum transitions.  
43 Similarly to the situation with the electric dipoles (see Eq. (3.24) and its discussion), it may be shown that the 
magnetic field of any closed current loop (or any system of such loops) satisfies the following equality: 
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where the integral is over any sphere confining all the currents. On the other hand, as we know from Sec. 3.1, for 
a field with the structure (99), derived from the long-range approximation (90), such an integral vanishes. As a 
result, to get a coarse-grain description of the magnetic field of a small system located at r = 0, that would give the 
correct average value of the magnetic field, Eq. (99) should be modified as follows: 
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in a conceptual (though not quantitative) similarity to Eq. (3.25). 
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The structure of this formula exactly replicates that of Eq. (3.13) for the electric dipole field – including 
the sign). Because of this similarity, the energy of a dipole of a fixed magnitude m in an external field, 
and hence the torque and the force exerted on it by a fixed external field, are given by expressions fully 
similar to those for an electric dipole – see Eqs. (3.15)-(3.19):44 

       extBm U ,     (5.100) 

and as a result, 
                extBmτ  ,      (5.101) 

                 )( extBmF   .     (5.102) 

 Now let us consider a system of many magnetic dipoles (e.g., atoms or molecules), distributed in 
space with an atomic-scale-averaged density n. Then we can use Eq. (90) generalized in an evident way 
for an arbitrary position r’ of the dipole, and the linear superposition principle, to calculate the 
macroscopic vector potential A:  
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where M  nm is the magnetization: the average magnetic moment per unit volume. Transforming this 
integral absolutely similarly to how Eq. (3.27) had been transformed into Eq. (3.29), we get: 
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 Comparing this result with Eq. (28), we see that M is equivalent, in its magnetic effect, to the 
density jef of a certain effective “magnetization current”. Just as the electric-polarization charge ef 
discussed in Sec. 3.2 (see Fig. 3.4), the vector jef = M may be interpreted as the uncompensated part 
of the loop currents representing single magnetic dipoles m – see Fig. 12. Note, however, that since the 
atomic magnetic dipoles may be due to particles’ spins, rather than the actual electric currents due to the 
orbital motion, the magnetization current’s nature is not as direct as that of the polarization charge. 

  

 

 

 

 

 

 

44 Note that the fixation of m and Bext effectively means that the currents producing them are fixed – please have 
one more look at Eqs. (35) and (97). As a result, Eq. (100) is a particular case of Eq. (53) rather than (54) – hence 
the minus sign.  

Fig. 5.12. A cartoon illustrating the physical nature of 
the effective magnetization current jef = M. 

efj

Magnetic  
dipole’s  
field 

Magnetic  
dipole 
in external 
field 
 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 5                 Page 25 of 42 

 Now, using Eq. (28) to add the possible contribution from the stand-alone currents j not 
included in the currents of microscopic magnetic dipoles, we get the general expression for the vector 
potential of the macroscopic field: 
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Repeating the calculations that have led us from Eq. (28) to the Maxwell equation (35), with the account 
of the magnetization current term, for the macroscopic magnetic field B we get  

            MjB   0 .     (5.106) 

 Following the same reasoning as in Sec. 3.2, we may recast this equation as 

          jH  ,      (5.107) 
where the field defined as 
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for historic reasons (and very unfortunately) is also called the magnetic field.45 This is why it is crucial 
to remember that the physical sense of field H is very much different from field B. To understand this 
difference better, let us use Eq. (107) to bring Eqs. (3.32), (3.36), (29), and (107) together, writing them 
as the following system of macroscopic Maxwell equations (again, so far for the stationary case /t = 
0):46 
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These equations clearly show that the roles of the vector fields D and H are very similar: they both may 
be called “would-be fields” – meaning the fields that would be induced by the stand-alone charges  and 
currents j, if the medium had not modified them by its dielectric and magnetic polarization.  

 Despite this similarity, let me note an important difference of signs in the relation (3.33) between  
E, D, and P, on one hand, and the relation (108) between B, H, and M, on the other hand. This is not 
just a matter of definition. Indeed, due to the similarity of Eqs. (3.15) and (100), including similar signs, 
the electric and magnetic fields both try to orient the corresponding dipole moments along the field. 
Hence, in the media that allow such an orientation (and as we will see momentarily, for magnetic media 
it is not always the case), the induced polarizations P and M are directed along, respectively, the vectors 
E and B of the genuine (though macroscopic, i.e. atomic-scale-averaged) fields. According to Eq. (3.33), 
if the would-be field D is fixed – say, by a fixed stand-alone charge distribution (r) – such a 
polarization reduces the electric field E = (D – P)/0. On the other hand, Eq. (108) shows that in a 
magnetic media with a fixed would-be field H, the magnetic polarization making M parallel to B, 

45 This confusion is exacerbated by the fact that in Gaussian units, Eq. (108) has the form H = B – 4M, and 
hence the fields B and H have the same dimensionality (and are formally equal in free space!) – though the unit of 
H has a different name (oersted, abbreviated as Oe). Mercifully, in the SI units, the dimensionality of B and H is 
different, with the unit of H called the ampere per meter. 
46 Let me remind the reader once again that in contrast with the system (36) of the Maxwell equations for the 
genuine (microscopic) fields, the right-hand sides of Eqs. (109) represent only the stand-alone charges and 
currents, not included in the microscopic electric and magnetic dipoles. 
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enhances the magnetic field B = 0(H + M). This difference may be traced back to the sign difference in 
the basic relations (1) and (2), i.e. to the fundamental fact that the electric charges of the same sign 
repulse, while the currents of the same direction attract each other. 

 

5.5. Magnetic materials 

 In order to form a complete system, sufficient for the calculation of all fields from given (r) and 
j(r), the macroscopic Maxwell equations (109) have to be complemented with the constitutive relations 
describing the medium: D  E, j  E, and B  H. The first two of them were discussed, in brief, in 
the last two chapters; let us proceed to the last one. 

 A major difference between the dielectric and magnetic constitutive relations D(E) and B(H) is 
that while a dielectric medium always reduces the external field, magnetic media may either reduce or 
enhance it. To quantify this fact, let us consider the most common case – linear magnetic materials in 
that M (and hence H) is proportional to B. For isotropic materials, this proportionality is characterized 
by a scalar – either the magnetic permeability  defined by the following relation: 

     HB  ,      (5.110) 
or the magnetic susceptibility47 defined as 

         HM m .      (5.111) 

Plugging these relations into Eq. (108), we see that these two parameters are not independent, but are 
related as 
                 0m )1(   .     (5.112) 

 Note that despite the superficial similarity between Eqs. (110)-(112) and the corresponding 
relations (3.43)-(3.47) for linear dielectrics: 

       0e0e 1,,   EPED ,   (5.113) 

there is an important conceptual difference between them. Namely, while the vector E on the right-hand 
sides of Eqs. (113) is the actual (though macroscopic) electric field, the vector H on the right-hand side 
of Eqs. (110)-(111) represents a “would-be” magnetic field, in most aspects similar to D rather than E – 
see, for example, Eqs. (109).  This historic difference in the traditional form of the constitutive relations 
for the electric and magnetic fields is not without its physical reasons. Most experiments with electric 
and magnetic materials are performed by placing their samples into nearly uniform electric and 
magnetic fields, and the simplest systems for their implementation are, respectively, plane capacitors 
(Fig. 2.3) and long solenoids (Fig. 6). The field in the former system may be most conveniently 

47 According to Eqs. (110) and (112), i.e. in the SI units, m is dimensionless, while  has the same dimensionality 
as 0. In the Gaussian units,  is dimensionless: ()Gaussian = ()SI/0, and m is also introduced differently, as  = 1 
+ 4m, Hence, just as for the electric susceptibilities, these dimensionless coefficients are different in the two 
systems: (m )SI = 4(m)Gaussian. Note also that m is formally called the volumic magnetic susceptibility, to 
distinguish it from the atomic (or “molecular”) susceptibility  defined by a similar relation, m  H, where m 
is the induced magnetic moment of a single dipole – e.g., an atom. ( is an analog of the electric atomic 
polarizability  – see Eq. (3.48) and its discussion.) In a dilute medium, i.e. in the absence of substantial dipole-
dipole interactions, m = n, where n is the dipole density. 
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controlled by fixing the voltage V between its plates, which is proportional to the electric field E. On the 
other hand, the field provided by the solenoid may be fixed by the current I in it, and according to Eq. 
(107), the field proportional to this stand-alone current is H, rather than B.48 

 Table 1 lists the approximate magnetic susceptibility values for several materials. It shows that 
in contrast to linear dielectrics whose susceptibility e is always positive, i.e. the dielectric constant  = 
e + 1 is always larger than 1 (see Table 3.1), linear magnetic materials may be either paramagnets 
(with m > 0, i. e.  > 0) or diamagnets (with m < 0,  i.e.  < 0).  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The reason for this difference is that in dielectrics, two different polarization mechanisms 
(schematically illustrated by Fig. 3.7) lead to the same sign of the average polarization – see the 
discussion in Sec. 3.3. One of these mechanisms, illustrated by Fig. 3.7b, i.e. the ordering of 
spontaneous dipoles by the applied field, is also possible for magnetization – for the atoms and 
molecules with spontaneous internal magnetic dipoles of magnitude m0 ~ B, due to their net spins. 
Again, in the absence of an external magnetic field the spins, and hence the dipole moments m0 may be 
disordered, but according to Eq. (100), the external magnetic field tends to align the dipoles along its 
direction. As a result, the average direction of the spontaneous elementary moments m0, and hence the 
direction of the arising magnetization M, is the same as that of the microscopic field B at the points of 
the dipole location (i.e., for a diluted media, of H  B/0), resulting in a positive susceptibility m, i.e. in 
the paramagnetism, such as that of oxygen and aluminum – see Table 1.  

48 This fact also explains the misleading term “magnetic field” for H. 

Table 5.1. Susceptibility (m)SI of a few representative and/or important magnetic materials(a) 
 

“Mu-metal” (75% Ni + 15% Fe + a few %% of Cu and Mo)  ~20,000(b) 

Permalloy (80% Ni + 20% Fe) ~8,000(b) 

“Electrical” (or “transformer”) steel (Fe + a few %% of Si) ~4,000(b) 

Nickel ~100 

Aluminum +210-5 

Oxygen (at ambient conditions) +0.210-5 

Water –0.910-5 

Diamond –210-5 

Copper –710-5 

Bismuth (the strongest non-superconducting diamagnet) –1710-5 
(a)The table does not include bulk superconductors, which may be described, in a so-called 

coarse-scale approximation, as perfect diamagnets (with B  = 0, i.e. formally with m = –1 and  = 0), 
though the actual physics of this phenomenon is different – see Sec. 6.3 below. 
 (b) The exact values of m  >> 1 for soft ferromagnetic materials (see, e.g., the upper three rows 
of the table) depend not only on their composition but also on their thermal processing (“annealing”). 
Moreover, due to unintentional vibrations, the extremely high values of m of such materials may 
decay with time, though they may be restored to the original values by new annealing. The reason for 
such behavior is discussed in the text below. 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 5                 Page 28 of 42 

However, in contrast to the electric polarization of atoms/molecules with no spontaneous electric 
dipoles, which gives the same sign of e   – 1 (see Fig. 3.7a and its discussion), the magnetic materials 
with no spontaneous atomic magnetic dipole moments have m < 0 – the effect called the orbital (or 
“Larmor”49) diamagnetism. As the simplest model of this effect,  let us consider the orbital motion of an 
atomic electron about an atomic nucleus as that of a classical particle of mass m0, with an electric charge 
q, about an immobile attracting center. As classical mechanics tells us, the central attractive force does 
not change the particle’s angular momentum L  m0rv, but the applied magnetic field B (that may be 
taken uniform on the atomic scale) does, due to the torque (101) it exerts on the magnetic moment (95): 

             BLBmτ
L


02m

q

dt

d
.     (5.114)

 The diagram in Fig. 13 shows that in the limit of a relatively weak field, when the magnitude of 
the angular momentum L may be considered constant, this equation describes the rotation (called the 
torque-induced precession50) of the vector L about the direction of the vector B, with the angular 
frequency  = –qB/2m0, independent of the angle . According to Eqs. (91) and (114), the resulting 
additional (field-induced) magnetic moment m  q  –q2B/m0 has, irrespectively of the sign of q, a 
direction opposite to the field. Hence, according to Eq. (111) with H  B/0, the susceptibility m    
m/H is indeed negative. (Let me leave its quantitative estimate within this classical model for the 
reader’s exercise.) The quantum-mechanical treatment confirms this qualitative picture of the Larmor 
diamagnetism, giving only quantitative corrections to the classical result for m.51 

 

 

 

 

 

 

  
 

 A simple estimate (also left for the reader’s exercise) shows that in atoms with spontaneous non-
zero net spins, the magnetic dipole orientation mechanism prevails over the orbital diamagnetism, so the 
materials incorporating such atoms usually exhibit net paramagnetism – see Table 1. Due to possible 
strong quantum interaction between the spin dipole moments, the magnetism of such materials is rather 
complex, with numerous interesting phenomena and elaborate theories. Unfortunately, all this physics is 
well outside the framework of this course, and I have to refer the interested reader to special literature,52 
but still will mention some key facts. 

49 Named after Sir Joseph Larmor who was the first (in 1897) to describe this effect mathematically. 
50 For a detailed discussion of this effect see, e.g., CM Sec. 4.5. 
51 See, e.g., QM Sec. 6.4. Quantum mechanics also explains why in most common (s-) ground states, the average 
contribution (95) of the orbital angular momentum L to the net vector m vanishes. 
52 See, e.g., D. J. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd ed., CRC Press, 1998, or R. C. 
O’Handley, Modern Magnetic Materials, Wiley, 1999. 

Fig. 5.13. The torque-induced precession of a 
classical charged particle in a magnetic field. 
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 Most importantly, a sufficiently strong magnetic dipole-dipole interaction may lead to their 
spontaneous ordering, even in the absence of the applied field. This ordering may correspond to either 
parallel alignment of the dipoles (ferromagnetism) or anti-parallel alignment of the adjacent dipoles 
(antiferromagnetism). Evidently, the external effects of ferromagnetism are stronger, because this phase 
corresponds to a substantial spontaneous magnetization M even in the absence of an external magnetic 
field. (The corresponding magnitude of B = 0M is called the remanence field, BR.) The direction of the 
vector BR may be switched by the application of an external magnetic field, with a magnitude above a 
certain value HC called coercivity, leading to the well-known hysteretic loops on the [H, B] plane (see 
Fig. 14 for a typical example) – similar to those in ferroelectrics, already discussed in Sec. 3.3. 

  

 

 

 

 

 

 

 

 

 

 Just as the ferroelectrics, the ferromagnets may also be hard or soft – in the magnetic rather than 
mechanical sense. In hard ferromagnets (also called permanent magnets), the dipole interaction is so 
strong that B stays close to BR in all applied fields below HC, so the hysteretic loops are virtually 
rectangular. Hence, in lower fields, the magnetization M of a permanent magnet may be considered 
constant, with the magnitude BR/0. Such hard ferromagnetic materials (notably, rare-earth compounds 
such as SmCo5, Sm2Co17, and especially Nd2Fe14B), with high remanence fields (~1 T) and high 
coercivity (~106 A/m), have numerous practical applications.53 Let me give just two, most important 
examples.  

 First, permanent magnets are the core components of most electric motors.  By the way, this 
venerable (~150-years-old) technology is currently experiencing a quiet revolution, driven mostly by the 
electric car development. In the most advanced type of motors, called permanent-magnet synchronous 
machines (PMSM), the remanence magnetic field BR of a permanent-magnet rotating part of the 
machine (called the rotor) interacts with the magnetic field of ac currents passed through wire windings 
in the external, static part of the motor (called the stator). The resulting torque may drive the rotor to 
extremely high speeds, exceeding 10,000 rotations per minute, enabling the motor to deliver several 
kilowatts of mechanical power from each kilogram of its mass. 

 As the second important example, despite the decades of the exponential (Moore’s-law) progress 
of semiconductor electronics, most computer data storage systems (e.g., in data centers) are still based 

53 Currently, the neodymium-iron-boron compound holds nearly 95% percent of the world permanent-magnet 
application market, due to its combination of high BR and HC  with lower fabrication costs. 

Fig. 5.14. Experimental magnetization 
curves of specially processed (cold-rolled) 
electrical steel – a solid solution of ~10% 
C and ~6% Si in Fe. (Reproduced from 
www.thefullwiki.org/Hysteresis under the 
Creative Commons BY-SA 3.0 license.) 
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on hard disk drives whose active media are submicron-thin layers of hard ferromagnets, with the data 
bits stored in the form of the direction of the remanent magnetization of small film spots. This 
technology has reached fantastic sophistication, with the recorded data density of the order of 1012 bits 
per square inch.54 (Only recently it started to be seriously challenged by solid-state drives based on the 
floating-gate semiconductor memories already mentioned in Chapter 3.) 55 

 In contrast, in soft ferromagnets, with their lower magnetic dipole interactions, the magnetization 
is constant only inside each of the spontaneously formed magnetic domains, while the volume and shape 
of the domains are affected by the applied magnetic field. As a result, the hysteresis loop’s shape of soft 
ferromagnets is dependent on the cycled field’s amplitude and cycling history – see Fig. 14. At high 
fields, their B (and hence M) is driven into saturation, with B   BR, but at low fields, they behave 
essentially as linear magnetics with very high values of m and hence  – see the top rows of Table 1. 
(The magnetic domain interaction, and hence the low-field susceptibility of such soft ferromagnets are 
highly dependent on the material’s fabrication technology and its post-fabrication thermal and 
mechanical treatments.) Due to these high values of , soft ferromagnets, especially iron and its alloys 
(e.g., various special steels), are extensively used in electrical engineering – for example in the cores of 
transformers – see the next section. 

 Due to the relative weakness of the magnetic dipole interaction in some materials, their 
ferromagnetic ordering may be destroyed by thermal fluctuations, if the temperature is increased above 
some value called the Curie temperature TC, specific for each material. The transition between the 
ferromagnetic and paramagnetic phases at T = TC is a classical example of a continuous phase 
transition, with the average polarization M playing the role of the so-called order parameter that (in the 
absence of external fields) becomes different from zero only at T < TC, increasing gradually at the 
further temperature reduction.56 

 

5.6. Systems with magnetic materials 

 Just as the electrostatics of linear dielectrics, the magnetostatics is very simple in the particular 
case when all essential stand-alone currents are embedded into a linear magnetic medium with a 
constant permeability . Indeed, let us assume that we know the solution B0(r) of the magnetic pair of 

54 “A magnetic head slider [the read/write head – KKL] flying over a disk surface with a flying height of 25 nm 
with a relative speed of 20 meters/second [all realistic parameters – KKL] is equivalent to an aircraft flying at a 
physical spacing of 0.2 µm at 900 kilometers/hour.” B. Bhushan, as quoted in the (generally good) book by G. 
Hadjipanayis, Magnetic Storage Systems Beyond 2000, Springer, 2001. 
55 The high-frequency properties of hard ferromagnets are also very non-trivial. For example, according to Eq. 
(101), an external magnetic field Bext exerts torque  = MBext on the spontaneous magnetic moment M of a unit 
volume of a ferromagnet. In some nearly-isotropic, mechanically fixed ferromagnetic samples, this torque causes 
the precession, around the direction of Bext (very similar to that illustrated in Fig. 13), of not the sample as such, 
but of the magnetization M inside it, with a certain frequency r. If the frequency  of an additional ac field 
becomes very close to r, its absorption sharply increases – the so-called ferromagnetic resonance. Moreover, if  
is somewhat higher than r, the effective magnetic permeability () of the material for the ac field may become 
negative, enabling a series of interesting effects and practical applications. Very unfortunately, I could not find 
time for their discussion in this series and have to refer the interested reader to literature, for example the 
monograph by A. Gurevich and G. Melkov, Magnetization Oscillations and Waves, CRC Press, 1996. 
56 In this series, a quantitative discussion of such transitions is given in SM Chapter 4. 
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the genuine (“microscopic”) Maxwell equations (36) in free space, i.e. when the genuine current density 
j coincides with that of stand-alone currents. Then the macroscopic Maxwell equations (109) and the 
linear constitutive equation (110) are satisfied with the pair of functions 

         rBrHrB
rB

rH 0
00

0 ,




 .    (5.115) 

Hence the only effect of the complete filling of a fixed-current system with a uniform, linear 
magnetic medium is the change of the magnetic field B at all points by the same constant factor /0  1 
+ m, which may be either larger or smaller than 1. (As a reminder, a similar filling of a system of fixed 
stand-alone charges with a uniform, linear dielectric always leads to a reduction of the electric field E by 
a factor of /0  1 + e – the difference whose physics was already discussed at the end of Sec. 4.) 

 However, this simple result is generally invalid in the case of nonuniform (or piecewise-uniform) 
magnetic samples. To analyze this case, let us first integrate the macroscopic Maxwell equation (107) 
along a closed contour C limiting a smooth surface S. Now using the Stokes theorem just as at the 
derivation of Eq. (37), we get the macroscopic version of the Ampère law (37): 

        Id
C

 rH .      (5.116)   

 Let us apply this relation to a sharp boundary between two regions with different magnetic 
materials, with no stand-alone currents on the interface, similarly to how this was done for the field E in 
Sec. 3.4 – see Fig. 3.5. The result is similar as well: 

    constH .     (5.117) 

On the other hand, the integration of the Maxwell equation (29) over a Gaussian pillbox enclosing a 
border fragment (again just as shown in Fig. 3.5 for the field D) yields a result similar to Eq. (3.35):  

                constnB .      (5.118) 

For linear magnetic media, with B = H, the latter boundary condition is reduced to 

      const nH .     (5.119) 

Let us use these boundary conditions, first of all, to see what happens with a long cylindrical 
sample of a uniform magnetic material, placed parallel to a uniform external magnetic field B0 – see Fig. 
15. Such a sample cannot noticeably disturb the field in the free space outside it, at most of its length: 
Bext = B0, Hext = 0Bext= 0B0. Now applying Eq. (117) to the dominating surfaces of the sample, we get 
Hint = H0.57  For a linear magnetic material, these relations yield Bint = Hint = (/0) B0.58 For the high-
 media, this means that Bint >> B0. This effect may be vividly represented as the concentration of the 
magnetic field lines in high- samples – see Fig. 15 again. (The concentration affects the external field 

57 The independence of H on magnetic properties of the sample in this geometry explains why this field’s 
magnitude is commonly used as the argument in the plots like Fig. 14: such measurements are typically carried 
out by placing an elongated sample of the material under study into a long solenoid with a controllable current I, 
so according to Eq. (116), H0 = nI, regardless of the sample. 
58 The reader is highly encouraged to carry out a similar analysis of the fields inside narrow gaps cut in a linear 
magnetic material, similar to that carried in Sec. 3.3 out for linear dielectrics – see Fig. 3.6 and its discussion. 

Macroscopic 
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distribution only at distances of the order of (/0)t << l near the sample’s ends.) Such concentration is 
widely used in such practically important devices as transformers, in which two multi-turn coils are 
wound on a ring-shaped (e.g., toroidal, see Fig. 6b) core made of a soft ferromagnetic material (such as 
the transformer steel, see Table 1) with  >> 0. This minimizes the number of “stray” field lines, and 
makes the magnetic flux  piercing each wire turn of either coil virtually the same – the equality 
important for the secondary voltage induction – see the next chapter. 

 

 

 

 

 

 

 Samples of other geometries may create strong perturbations of the external field, extended to 
distances of the order of the sample’s dimensions. To analyze such problems, we may benefit from a 
simple, partial differential equation for a scalar function, e.g., the Laplace equation, because in Chapter 
2 we have learned how to solve it for many simple geometries. In magnetostatics, the introduction of a 
scalar potential is generally impossible due to the vortex-like magnetic field lines. However, if there are 
no stand-alone currents within the region we are interested in, then the macroscopic Maxwell equation 
(107) for the field H is reduced to   H = 0, similar to Eq. (1.28) for the electric field, showing that we 
may introduce the scalar potential of the magnetic field, m, using a relation similar to Eq. (1.33): 

         m– H .      (5.120) 

Combining it with the homogenous Maxwell equation (29) for the magnetic field, B = 0, and Eq. 
(110) for a linear magnetic material, we arrive at a single differential equation, (m) =0. For a 
uniform medium ((r) = const), it is reduced to our beloved Laplace equation:  

                     0m
2   .      (5.121) 

Moreover, Eqs. (117) and (119) give us very familiar boundary conditions: the first of them 

       constm 





,               (5.122a) 

being equivalent to  
         constm  ,               (5.122b) 

while the second one giving 

                 constm 



n


 .     (5.123) 

Indeed, these boundary conditions are absolutely similar for (3.37) and (3.56) of electrostatics, with the 
replacement   .59  

59 This similarity may seem strange because earlier we have seen that the parameter  is physically more similar 
to 1/. The reason for this paradox is that in magnetostatics, the magnetic potential m is traditionally used to 
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Fig. 5. 15. Magnetic field concentration in long, high- magnetic samples (schematically). 
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 Let us analyze the geometric effects on magnetization, first using the (too?) familiar structure: a 
sphere, made of a linear magnetic material, placed into a uniform external field H0  B0/0. Since the 
differential equation and the boundary conditions are similar to those of the corresponding electrostatics 
problem (see Fig. 3.11 and its discussion), we can use the above analogy to reuse the solution we 
already have – see Eqs. (3.63). Just as in the  electric case, the field outside the sphere, with  

           ,cos
2 2

3

0

0
0m 




 



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
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


 r

R
rHRr                      (5.124) 

is a sum of the uniform external field H0, with the potential –H0rcos  –H0z, and the dipole field (99) 
with the following induced magnetic dipole moment of the sphere:60 

           0
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 .               (5.125) 

On the contrary, the internal field is perfectly uniform, and directed along the external one: 

 
000

int

0

int

0

0

0

int

0

0
0m 2

3
,

2

3
 that   so,cos

2

3























 H

H

B

B

H

H
rHRr . (5.126) 

Note that the field Hint inside the sphere is not equal to the applied external field H0. This 
example shows that the interpretation of H as the “would-be” magnetic field generated by external 
stand-alone currents j should not be exaggerated by saying that its distribution is independent of the 
magnetic bodies in the system. In the limit  >> 0, Eqs. (126) yield Hint/H0 << 1, Bint/H0 = 30, the 
factor 3 being specific for the particular geometry of the sphere. If a sample is strongly stretched along 
the applied field, with its length l much larger than the scale t of its cross-section, this geometric effect is 
gradually decreased, and Bint tends to its value H0 >> B0, as was discussed above – see Fig. 15. 

Now let us calculate the field distribution in a similar, but slightly more complex (and practically 
important) system: a round cylindrical shell, made of a linear magnetic material, placed into a uniform 
external field H0 normal to its axis – see Fig. 16.  

 

 

 

 

 

 

describe the “would-be field” H, while in electrostatics, the potential  describes the actual electric field E. (This 
tradition persists from the days when H was perceived as a genuine magnetic field.) 
60 To derive Eq. (125), we may either calculate the gradient of the m given by Eq. (124), or use the similarity of 
Eqs. (3.13) and (99), to derive from Eq. (3.17) a similar expression for the magnetic dipole’s potential: 
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Now comparing this formula with the second term of Eq. (124), we immediately get Eq. (125). 
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Fig. 5.16. Cylindrical magnetic shield. 
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 Since there are no stand-alone currents in the region of our interest, we can again represent the 
field H(r) by the gradient of the magnetic potential m – see Eq. (120). Inside each of three constant- 
regions, i.e. at  < b, a <  < b, and b <  (where  is the 2D distance from the cylinder's axis), the 
potential obeys the Laplace equation (121). In the convenient, polar coordinates (see Fig. 16), we may, 
guided by the general solution (2.112) of the Laplace equation and our experience in its application to 
axially-symmetric geometries, look for m in the following form: 
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 Plugging this solution into the boundary conditions (122)-(123) at both interfaces (  = b and   
= a), we get the following system of four equations: 
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  (5.128)  

for four unknown coefficients a1, b1, b1’, and Hint. Solving the system, we get, in particular: 
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 According to these formulas, at   > 0, the field in the free space inside the cylinder is lower 
than the external field. This fact allows using such structures, made of high- materials such as 
permalloy (see Table 1), for passive shielding61 from unintentional magnetic fields (e.g., the Earth's 
field) – the task very important for the design of many physical experiments. As Eq. (129) shows, the 
larger is , the closer is c to 1, and the smaller is the ratio Hint/H0, i.e. the better is the shielding, for the 
same a/b ratio. On the other hand, for a given magnetic material, i.e. for a fixed parameter c, the 
shielding is improved by making the ratio a/b < 1 smaller, i.e. the shield thicker. On the other hand, as 
Fig. 16 shows, smaller a leaves less space for the shielded samples, calling for a compromise. 

Note that in the limit /0  , both Eq. (126) and Eq. (129), describing different geometries, 
yield Hint/H0  0. Indeed, as it follows from Eq. (119), in this limit, the field H tends to zero inside 
magnetic samples of virtually any geometry. (The formal exception is the longitudinal cylindrical 
geometry shown in Fig. 15, with t/l  0, where Hint = H0 for any finite , but even in it, the last equality 
holds only if t/l << 0/.) 

Now let us discuss a curious (and practically important) approach to systems with relatively thin, 
closed magnetic cores made of several sections of high- magnetic materials, with the cross-section 
areas Ak much smaller than the squared lengths lk of the sections – see Fig. 17. If all k >> 0, virtually 
all field lines are confined to the interior of the core. Then, applying the macroscopic Ampère law (116) 
to a contour C that follows a magnetic field line inside the core (see, for example, the dashed line in Fig. 
17), we get the following approximate expression (exactly valid only in the limit k/0, lk

2/Ak  ): 

61 Another approach to the undesirable magnetic fields' reduction is the "active shielding" – the external field’s 
compensation with the counter-field induced by controlled currents in specially designed wire coils. 
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However, since the magnetic field lines stay in the core, the magnetic flux k  BkAk should be the same 
( ) for each section, so Bk = /Ak. Plugging this condition into Eq. (130), we get 
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 Note a close analogy of the first of these equations with the usual Ohm law for several resistors 
connected in series, with the magnetic flux playing the role of electric current, while the product NI, the 
role of the voltage applied to the chain of resistors. This analogy is fortified by the fact that the second 
of Eqs. (131) is similar to the expression for the resistance R = l/A of a long, uniform conductor, with 
the magnetic permeability  playing the role of the electric conductivity . (To sound similar, but still 
different from the resistance R, the parameter R  is called reluctance.) This is why Eq. (131) is called 
the magnetic Ohm law; it is very useful for approximate analyses of systems like ac transformers, 
magnetic energy storage systems, etc.  

 Now let me proceed to a brief discussion of systems with permanent magnets. First of all, using 
the definition (108) of the field H, we may rewrite the Maxwell equation (29) for the field B as 

          MHMHB     as  i.e.,00 ,   (5.132) 

While this relation is general, it is especially convenient in permanent magnets, where the magnetization 
vector M may be approximately considered field-independent.62 In this case, Eq. (132) for H is an exact 
analog of Eq. (1.27) for E, with the fixed term –M playing the role of the fixed charge density (more 
exactly, of /0).  For the scalar potential m, defined by Eq. (120), this gives the Poisson equation 

      M m
2 ,     (5.133) 

similar to those solved, for quite a few geometries, in the previous chapters.  

 In the case when M is not only field-independent but also uniform inside a permanent magnet’s 
volume, then the right-hand sides of Eqs. (132) and (133) vanish both inside the volume and in the 

62 Note that in this approximation, there is no difference between the remanence magnetization MR  BR/0, of the 
magnet and its saturation magnetization MS  limH[B(H)/0 - H]. 

Fig. 5.17. Deriving the “magnetic Ohm law” (131). 
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surrounding free space, and give a non-zero effective charge only on the magnet’s surface. Integrating 
Eq. (132) along a short path normal to the surface and crossing it, we get the following boundary 
conditions: 
            ,cosmagnetin spacefreein MMHHH nnnn     (5.134) 

where  is the angle between the magnetization vector and the outer normal to the magnet’s surface. 
This relation is an exact analog of Eq. (1.24) for the normal component of the field E, with the effective 
surface charge density (or rather /0) equal to Mcos.  

 This analogy between the magnetic field induced by a fixed, constant magnetization and the 
electric field induced by surface electric charges enables one to reuse the solutions of quite a few 
problems considered in Chapters 1-3. Leaving a few such problems for the reader's exercise (see Sec. 7), 
let me demonstrate the power of this analogy on just two examples specific to magnetic systems. First, 
let us calculate the force necessary to detach the flat ends of two long, uniform rod magnets, of length l 
and cross-section area A << l2, with the saturated remanent magnetization M0 directed along their 
length – see Fig. 18.  

 

 

 

 

 Let us assume we have succeeded in separating the magnets by an infinitesimal distance  << 
A1/2, l. Then, according to Eqs. (133)-(134), the distribution of the magnetic field near this small gap 
should be similar to that of the electric field in a system of two equal by opposite surface charges with 
the surface density   proportional to M0. From Chapters 1-3, we know the properties of such a system 
very well: within the gap, the field is virtually constant, uniform, proportional to , and independent of 
. For its magnitude in the magnetic case, Eq. (134) gives simply H = M0, and hence B = μ0M0. (Just 
outside of the gap, the field is very low, because due to the condition A << l2, the effect of the similar 
effective charges at the "outer" ends of the rods on the field near the gap t is negligible.)  

 From here, we can readily calculate Fmin as the force exerted by this field on the effective surface 
"charges". However, it is even easier to find it from the following energy argument. Since the magnetic 
field energy localized inside the magnets and near their outer ends cannot depend on , this small 
detachment may only alter the energy inside the gap. For this part of the energy, Eq. (57) yields: 
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The gradient of this potential energy is equal to the attraction force F = –(U), trying to reduce ΔU by 
decreasing the gap, with the following magnitude: 
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The magnet detachment requires an equal and opposite external force. For a typical permanent magnet, 
with 0M0  BR ~ 1T, the force corresponds to a ratio F/A close to 4105 Pa, a few times the normal 
atmospheric pressure. 

A 0M
?min F0M

Fig. 5.18. Detaching two magnets. 
ll 
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 Now let us consider the situation when similar long permanent magnets (such as the magnetic 
needles used in magnetic compasses) are separated, in otherwise free space, by a larger distance d >> 
A1/2 – see Fig. 19. For each needle (Fig. 19a), of a length l >> A1/2, the right-hand side of Eq. (133) is 
substantially different from zero only in two relatively small areas at the needle’s ends. Integrating the 
equation over each area, we see that at distances r >> A1/2 from each end, we may reduce Eq. (132) to 

     )()(  i.e.,)()( m
0

m
  rrrrBrrrrH 


q

q
 , (5.137) 

where r are the ends’ positions, and qm  0M0A, with A being the needle’s cross-section area.63 This 
expression for B is completely similar to Eq. (3.32) for the electric displacement D, for the particular 
case of two equal and opposite point charges, i.e. with  = q[(r – r+) – (r – r+)], with the only 
replacement q  qm. Since we know the resulting electric field all too well (see, e.g., Eq. (1.7) for E  
D/0), we may immediately write a similar expression for the field H: 
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 The resulting magnetic field H(r) exerts on another “magnetic charge” q’m, located at some point 
r’, the force F = q’mH(r’).64 Hence if two ends of different needles are separated by an intermediate 
distance R  (A1/2 << R << l, see Fig. 19b), we may neglect one term in Eq. (138), and get the following 
“magnetic Coulomb law” for the interaction of the nearest ends: 

             .
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      (5.139) 

The “only” (but conceptually, crucial!) difference between this interaction and that of the electric point 
charges is that the two “magnetic charges” (quasi-monopoles) of a magnetic needle cannot be fully 
separated. For example, if we break a needle in the middle in an attempt to bring its two ends further 
apart, two new “point charges” appear – see Fig. 19b. 

63 Note that the constant coefficient in the definition of qm, and hence in Eqs. (138)-(139), is the matter of 
convention. The above choice makes the free-space Maxwell equations D =  and B = m (where  and m  
are the volumic densities of the electric and magnetic charges) pleasantly symmetric. 
64 This expression is the magnetic analog of the basic equation F = q’eE(r’) for the electric charges. 

Fig. 5.19. (a) “Magnetic charges” at the ends of a thin permanent-magnet needle and (b) the result of its 
breaking into two parts (schematically). 
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 There are several solid-state systems where more flexible structures, similar in their 
magnetostatics to the needles, may be implemented. First of all, certain (“type-II”) superconductors may 
carry so-called Abrikosov vortices – flexible tubes with field-suppressed superconductivity inside, each 
carrying one quantum 0 = /e  210-15 Wb of the magnetic flux. Ending on superconductor’s 
surfaces, these tubes let their magnetic field lines spread into the surrounding free space, essentially 
forming magnetic monopole analogs – of course, with equal and opposite “magnetic charges” qm on 
each end of the tube – just as Fig. 19a shows. Such flux tubes are not only flexible but also stretchable, 
resulting in several peculiar effects – see Sec. 6.4 for more detail. Another recently found example of 
such paired quasi-monopoles is spin chains in the so-called spin ices – crystals with paramagnetic ions 
arranged into a specific (pyrochlore) lattice – such as dysprosium titanate Dy2Ti2O7.65 Let me emphasize 
again that any reference to magnetic monopoles in such systems should not be taken literally.  

 In order to complete this section (and this chapter), let me briefly discuss the magnetic field 
energy U, for the simplest case of systems with linear magnetic materials. In this case, we still may use 
Eq. (55), but if we want to operate only with macroscopic fields, and hence only stand-alone currents, 
we should repeat the manipulations that have led us to Eq. (57), using j not from Eq. (35), but from Eq. 
(107). As a result, instead of Eq. (57) we get 

               
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This result is evidently similar to Eq. (3.73) of electrostatics.  

As a simple but important example of its application, let us again consider a long solenoid (Fig. 
6a), but now filled with a linear magnetic material with permeability . Using the macroscopic Ampère 
law (116), just as we used Eq. (37) for the derivation of Eq. (40), we get  

                InH  ,     and hence InB  ,    (5.141) 

where n  N/l, just as in Eq. (40), is the winding density, i.e. the number of wire turns per unit length. 
(At  = 0, we immediately return to that old result.) Now we may plug Eq. (141) into Eq. (140) to 
calculate the magnetic energy stored in the solenoid: 
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and then use Eq. (72) to calculate its self-inductance:66 
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      (5.143) 

 We see that L  V, so filling a solenoid with a high- material may allow making it more 
compact while preserving the same value of inductance. In addition, as the discussion of Fig. 15 has 
shown, such filling reduces the fringe fields near the solenoid's ends, which may be detrimental for some 
applications, especially in physical experiments striving for high measurement precision. 

65 See, e.g., L. Jaubert and P. Holdworth, J. Phys. – Cond. Matt. 23, 164222 (2011), and references therein. 
66 Admittedly, we could get the same result simpler, just by arguing that since the magnetic material fills the 
whole volume of a substantial magnetic field in this system, the filling simply increases the vector B at all points, 
and hence its flux , and hence L  /I by the factor /0 in comparison with the free-space value (75). 
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 However, we still need to explore the issue of magnetic energy beyond Eq. (140), not only to get 
a general expression for it in materials with an arbitrary dependence B(H), but also to finally prove Eq. 
(54) and explore its relation with Eq. (53). I will do this at the beginning of the next chapter.  

 

5.7. Exercise problems 
 
 5.1. DC current I flows around a thin wire loop bent into the form of a plane equilateral triangle 
with side a. Calculate the magnetic field in the center of the loop. 
 
 5.2. A circular wire loop, carrying a fixed dc current, is placed inside a 
similar but larger loop, carrying a fixed current in the same direction – see the 
figure on the right. Use semi-quantitative arguments to analyze the 
mechanical stability of the coaxial and coplanar position of the inner loop 
with respect to its possible angular, axial, and lateral displacements relative to 
the outer loop. 
 
 5.3. Two planar, parallel, long, thin conducting strips of width w, 
separated by distance d, carry equal but oppositely directed currents I – see the 
figure on the right. Calculate the magnetic field in the plane located in the 
middle between the strips, assuming that the flowing currents are uniformly 
distributed across the strip widths. 
 

5.4. For the system studied in the previous problem, but now only in the limit  d << w, calculate: 

 (i) the distribution of the magnetic field in space, 
 (ii) the vector potential of the field, 
 (iii) the magnetic force (per unit length) exerted on each strip, and 
 (iv) the magnetic energy and self-inductance of the loop formed by the strips (per unit length). 
 
 

 5.5. Calculate the magnetic field distribution near the center of the system of 
two similar, plane, round, coaxial wire coils, carrying equal but oppositely directed 
currents – see the figure on the right. 
 
 

 5.6. The two-coil-system considered in the previous problem now carries 
equal and similarly directed currents – see the figure on the right.67 Calculate what 
should be the ratio d/R for the second derivative 2Bz/z2 to equal zero at z = 0. 

67 This Helmholtz coils system, producing a highly uniform field near its center, is broadly used in physical 
experiment. 
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 5.7. DC current of a constant density j flows along a round cylindrical wire of 
radius R, with a round cylindrical cavity of radius r cut in it. The cavity’s axis is 
parallel to that of the wire but offset from it by a distance d < R – r (see the figure on 
the right). Calculate the magnetic field inside the cavity. 

 
 
 5.8. Calculate the magnetic field’s distribution along the axis of a straight 
solenoid (see Fig. 6a, partly reproduced on the right) of a finite length l, and a 
round cross-section of radius R. Assume that the solenoid has many (N >> 1, l/R) 
wire turns, uniformly distributed along its length. 
 
 5.9. A thin round disk of radius R, carrying an electric charge of a constant areal density , 
rotates about its axis with a constant angular velocity . Calculate: 

 (i) the magnetic field on the disk’s axis, 
 (ii) the magnetic moment of the disk,  

and relate these results. 
 
 5.10. A thin spherical shell of radius R, with charge Q uniformly distributed over its surface, 
rotates about its diameter with a constant angular velocity . Calculate the distribution of the magnetic 
field everywhere in space. 
 
 5.11. A sphere of radius R, made of an insulating material with a uniform electric charge density 
, rotates about its diameter with a constant angular velocity . Calculate the magnetic field distribution 
inside the sphere and outside it. 
 
 5.12. A conducting sphere with no total electric charge is rotated about its diameter with a 
constant angular velocity , in a uniform constant external magnetic field B directed along the rotation 
axis. Assuming that the sphere’s contribution to the magnetic field is negligibly small, calculate the 
stationary distribution of the electric charge density inside the sphere and on its surface, and the 
electrostatic potential both inside and outside the sphere. Quantify the above assumption. 
 
 5.13.* The simplest version of the famous homopolar (or “unipolar”) 
motor is a thin round conducting disk, placed into a uniform magnetic field 
normal to its plane, with dc current passed between the disk’s center and a 
sliding electrode (“brush”) on its rim – see the figure on the right. 

 (i) Express the torque rotating the disk via its radius R, the magnetic 
field B, and the current I. 
 (ii) If the disk is allowed to rotate about its axis, and the motor is 
driven by a battery with e.m.f. V, calculate its stationary angular velocity , neglecting friction and the 
electric circuit’s resistance. 
 (iii) Now assuming that the current’s path (battery + wires + contacts + disk itself) has a non-
zero resistance R, derive and solve the equation for the time evolution of , and analyze the solution. 
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 5.14. The reader is hopefully familiar with the classical Hall effect in the usual rectangular Hall 
bar geometry – see the left panel of the figure below. However, the effect takes a different form in the 
so-called Corbino disk – see the right panel of the figure below. (Dark shading shows electrodes, with 
no appreciable resistance.) Analyze the effect in both geometries, assuming that in both cases, the 
conductors are thin and planar, have a constant Ohmic conductivity  and charge carrier density n, and 
that the applied magnetic field B is uniform and normal to conductors’ planes. 
 
 
 
 
 
 
 
  
 5.15. A wire with a round cross-section of radius a has been bent into a round loop of radius R 
>> a. Prove the formula for its self-inductance, which was mentioned at the end of Sec. 5.3 of the 
lecture notes: L = 0R ln(cR/a), with c ~ 1. 

 
 5.16. Prove that: 

 (i) the self-inductance L of a current loop cannot be negative, and 
 (ii)any inductance coefficient Lkk’, defined by Eq. (60), cannot be larger than (LkkLk’k’)

1/2. 
 
 5.17. Calculate the mutual inductance of two similar thin-wire 
square-shaped loops offset by distance h in the direction normal to their 
planes – see the figure on the right. 
 
 5.18.* Estimate the values of magnetic susceptibility due to  

 (i) orbital diamagnetism, and 
 (ii) spin paramagnetism, 

for a medium with negligible interactions between the induced molecular dipoles. Compare the results.   

 Hints: For Task (i), you may use the classical model described by Eq. (114) – see Fig. 13. For 
Task (ii), assume the ordering of spontaneous magnetic dipoles m0, with a fixed magnitude m0 of the 
order of the Bohr magneton B, similar to the one sketched for electric dipoles in Fig. 3.7a. 
 
 5.19.* Use the classical picture of the orbital (“Larmor”) diamagnetism, discussed in Sec. 5, to 
calculate its (small) contribution B(0) to the magnetic field B felt by an atomic nucleus, treating the 
electrons of the atom as a spherically symmetric cloud with an electric charge density (r). Express the 
result via the value (0) of the electrostatic potential of the electron cloud, and use this expression for a 
crude numerical estimate of the ratio B(0)/B for the hydrogen atom. 
 
 5.20. Calculate the self-inductance of a toroidal solenoid 
with a round cross-section of radius r ~ R, with N >> 1, R/r wire 
turns uniformly distributed along the perimeter, and filled with a 
linear magnetic material of permeability .  R0

r
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 5.21. A long, straight, thin wire carrying current I runs parallel to 
the plane boundary between two uniform, linear magnetic media – see 
the figure on the right. Calculate the magnetic field everywhere in the 
system, and the force (per unit length) exerted on the wire.  

 
  5.22. Solve the magnetic shielding problem similar to that discussed in Sec. 5.6 of the lecture 
notes, but for a spherical rather than cylindrical shell, with the same central cross-section as shown in 
Fig. 16. Compare the efficiency of those two shields, for the same shell’s permeability , and the same 
b/a ratio. 
  
 5.23. Calculate the magnetic field’s distribution around a spherical permanent magnet with 
uniform magnetization M0 = const.  
 
 5.24. A limited volume V is filled with a magnetic material with field-independent magnetization 
M(r). Write explicit expressions for the magnetic field induced by the magnetization and its potential, 
and recast these expressions into the forms that are more convenient when M(r) = M0 = const 
throughout the volume. 
 
 5.25. Use the results of the previous problem to calculate the 
distribution of the magnetic field H along the axis of a straight 
permanent magnet of length 2l and a round cross-section of radius 
R, with a uniform magnetization M0 parallel to the axis – see the 
figure on the right. 
 
 5.26. A flat end of a long straight permanent magnet, similar to that considered in the previous 
problem but with an arbitrary cross-section of area A, is stuck to a flat surface of a large sample of a 
linear magnetic material with a very high permeability  >> 0. Calculate the normally directed force 
needed to detach them. 
 
 5.27. A permanent magnet with a uniform magnetization M0 has the form of a spherical shell 
with an internal radius R1 and an external radius R2 > R1. Calculate the magnetic field inside the shell. 
 
 5.28. A very broad film of thickness 2t is permanently magnetized normally to its plane, with a 
periodic checkerboard pattern, with the square of area aa: 
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Calculate the magnetic field’s distribution in space. 
 
 5.29.* Based on the discussion of the quadrupole electrostatic lens in Sec. 2.4, suggest the 
permanent-magnet systems that may similarly focus particles moving close to the system’s axis, for the 
cases when each particle carries: 

 (i) an electric charge, 
 (ii) no net electric charge, but a spontaneous magnetic dipole moment m of a certain orientation. 
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