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Chapter 6. Electromagnetism 

This chapter discusses two major effects that arise when electric and magnetic fields change over time: 
the “electromagnetic induction” of an additional electric field by changing the magnetic field, and the 
reciprocal effect of the “displacement currents”– actually, the induction of an additional magnetic field 
by changing electric field. These two phenomena, which make time-dependent electric and magnetic 
fields inseparable (hence the term “electromagnetism”1), are reflected in the full system of Maxwell 
equations, valid for an arbitrary electromagnetic process. On the way toward this system, I will make a 
brief detour to review the electrodynamics of superconductivity, which (besides its own significance), 
provides a perfect platform for discussion of the important general issue of gauge invariance. 

 

6.1. Electromagnetic induction 

 As Eqs. (5.36) show, in static situations (/t = 0) the Maxwell equations describing the electric 
and magnetic fields are independent – more exactly, coupled only implicitly, via the continuity equation 
(4.5) relating their right-hand sides  and j. In dynamics, when the fields change in time, the situation is 
different.  

Historically, the first discovered explicit coupling between the electric and magnetic fields was 
the effect of electromagnetic induction. Although this effect was discovered independently by Joseph 
Henry, it was a brilliant series of experiments by Michael Faraday, carried out mostly in 1831, that 
resulted in the first general formulation of the induction law. The summary of Faraday’s numerous 
experiments has turned out to be very simple: if the magnetic flux defined by Eq. (5.65), 

        
S

n rdB 2Φ ,     (6.1) 

1 It was coined by H. Ørsted in 1820 in the context of his experiments – see the previous chapter. 

through a surface S limited by a closed contour C, changes in time by whatever reason (e.g., either due 
to a change of the magnetic field B (as in Fig.1), or the contour’s motion, or its deformation, or any 
combination of the above), it induces an additional, vortex-like electric field Eind directed along the 
contour – see Fig. 1.  

 

 

 

 

 

 
  
 The exact distribution of Eind in space depends on the system’s details, but its integral along the 
contour C, called the inductive electromotive force (e.m.f.), obeys a very simple Faraday induction law:  

Fig. 6.1. Two simplest ways to observe the Faraday electromagnetic induction. 
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dt

d
d

C

Φ
ind   rEindV .     (6.2) 

(In the Gaussian units, the right-hand side of this formula has an additional coefficient of 1/c.) 

 It is straightforward (and hence left for the reader’s exercise) to show that this e.m.f. may be 
measured, for example, either by inserting a voltmeter into a conducting loop following the contour C or 
by measuring the small current I = Vind/R it induces in a thin wire with a sufficiently large Ohmic 
resistance R,2 whose shape follows that contour – see Fig. 1. (Actually, these methods are not entirely 
different, because a typical voltmeter measures voltage by the small Ohmic current it drives through the 
pre-calibrated high internal resistance of the device.) In the context of the latter approach, the minus 
sign in Eq. (2) may be described by the following Lenz rule: the magnetic field of the induced current I 
provides a partial compensation of the change of the original flux (t) with time.3 

 In order to recast Eq. (2) in a differential form, more convenient in many cases, let us apply to 
the contour integral in it the Stokes theorem, which was repeatedly used in Chapter 5. The result is 

           
S

n rd 2
ind indEV .     (6.3) 

Now combining Eqs. (1)-(3), for a contour C whose shape does not change in time (so that the 
integration along it is interchangeable with the time derivative), we get 

        02 











S n

rd
t

B
Eind .    (6.4) 

 Since the induced electric field is an addition to the gradient field (1.33) created by electric 
charges, for the net field we may write E = Eind – . However, since the curl of any gradient field is 
zero,4 () = 0, Eq. (4) remains valid even for the net field E. Since this equation should be correct 
for any closed area S, we may conclude that 

                 0




t

B
E      (6.5) 

at any point. This is the final (time-dependent) form of this Maxwell equation. Superficially, it may look 
that Eq. (5) is less general than Eq. (2); for example, it does not describe any electric field, and hence 
any e.m.f. in a moving loop, if the field B is constant in time, even if the magnetic flux (1) through the 
loop does change in time. However, this is not true; in Chapter 9 we will see that in the reference frame 
moving with the loop, the e.m.f. does appear.5 

2 Such induced current is sometimes called the eddy current, though most often this term is reserved for the 
distributed currents induced by changing magnetic fields in bulk conductors – see Sec. 3 below. 
3 Let me also hope that the reader is familiar with the paradox arising at attempts to measure Vind with a voltmeter 
without its insertion into the wire loop; if not, I would highly recommend them to solve the offered Problem 2. 
4 See, e.g., MA Eq. (11.1). 
5 I have to admit that from the beginning of the course, I was carefully sweeping under the rug a very important 
question: in what exactly reference frame(s) all the equations of electrodynamics are valid? I promise to discuss 
this issue in detail later in the course (in Chapter 9), and for now would like to get away with a very short answer: 
all the formulas discussed so far are valid in any inertial reference frame, as defined in classical mechanics – see, 
e.g., CM Sec. 1.3; however, the fields E and B have to be measured in the same frame. 
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 Now let us reformulate Eq. (5) in terms of the vector potential A. Since the induction effect does 
not alter the fundamental relation   B = 0, we still may represent the magnetic field as prescribed by 
Eq. (5.27), i.e. as B =  × A. Plugging this expression into Eq. (5), and changing the order of the 
temporal and spatial differentiation, we get 

               0











t

A
E .     (6.6) 

Hence we can use the same argumentation as in Sec. 1.3 (there applied to the vector E alone) to 
represent the expression in the parentheses as –, so we get 

               AB
A

E 



  ,
t

.    (6.7) 

 It is very tempting to interpret the first term of the right-hand side of the expression for E as the 
one describing the electromagnetic induction alone, and the second term as representing a purely 
electrostatic field induced by electric charges. However, the separation of these two terms is, to a certain 
extent, conditional. Indeed, let us consider the gauge transformation already mentioned in Sec. 5.2, 

        AA ,     (6.8) 

that, as we already know, does not change the magnetic field. According to Eq. (7), to keep the full 
electric field intact (gauge-invariant) as well, the scalar electric potential has to be transformed 
simultaneously, as 

        
t




 ,      (6.9) 

leaving the choice of an addition to  restricted only by the Laplace equation – since the full  should 
satisfy the Poisson equation (1.41) with a gauge-invariant right-hand side. We will return to the 
discussion of the gauge invariance in Sec. 4. 

 

6.2. Magnetic energy revisited 

 Now we are sufficiently equipped to revisit the issue of magnetic energy, in particular, to finally 
prove Eqs. (5.57) and (5.140), and discuss the dichotomy of the signs in Eqs. (5.53) and (5.54). For that, 
let us consider a sufficiently slow and small magnetic field variation B. If we want to neglect the 
kinetic energy of the system of electric currents under consideration, as well as the wave radiation 
effects, we need to prevent its significant acceleration by the arising induction field Eind.  Let us suppose 
that we do this by virtual balancing of this field by an external electric field Eext  = –Eind. According to 
Eq. (4.38), the work of that field6 on the stand-alone currents of the system during a small time interval 
t, and hence the change of the potential energy of the system, is 

        
VV

rdδtrdδt UU 3
ind

3
ext  that  so, EjEj  ,   (6.10) 

6 As a reminder, the magnetic component of the Lorentz force (5.10), vB, is always perpendicular to the particle 
velocity v, so the magnetic field B itself cannot perform any work on moving charges, i.e. on currents. 
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where the integral is over the volume of the system. Now expressing the current density j from the 
macroscopic Maxwell equation (5.107), j =   H, and then applying the vector algebra identity7  

         HEEHEH  indindind  ,   (6.11) 

we get 
        

VV

rdδtrdδtU 33 HEEH  .   (6.12) 

 According to the divergence theorem, the second integral in the right-hand of this equality is 
equal to the flux of the so-called Poynting vector S  E  H through the surface limiting the considered 
volume V. Later in the course we will see that this flux represents, in particular, the power of 
electromagnetic radiation through the surface. If such radiation is negligible (as it always is if the field 
variation is sufficiently slow), the surface may be selected sufficiently far, so that the flux of S vanishes. 
In this case, we may express   E from the Faraday induction law (5) to get 

           











VV

rdrd
t

B
δtU 33 BHH  .    (6.13) 

Just as in the electrostatics (see Eqs. (1.65) and (3.73), and their discussion), this relation may be 
interpreted as the variation of the magnetic field energy U of  the system, and represented in the form 

          BHr δurduU
V

   with  ,3 .    (6.14) 

This is a keystone result; let us discuss it in some detail.  

 First of all, for a system filled with a linear and isotropic magnetic material, we may use Eq. (14) 
together with Eq. (5.110): B = H. Integrating the result over the variation of the field from 0 to a 
certain final value B, we get Eq. (5.140) – so important that it deserves rewriting again:  

      
2

with  ,
2

3 B
urduU

V

  r .    (6.15) 

In the simplest case of free space (no magnetics at all, so j above is the complete current density), we 
may take  = 0, and reduce Eq. (15) to Eq. (5.57). Now performing backward the transformations that 
took us, in Sec. 5.3, to derive that relation from Eq. (5.54), we finally have the latter formula proved – as 
was promised in the last chapter. 

 It is very important, however, to understand the limitations of Eq. (15). For example, let us try to 
apply it to a very simple problem, which was already analyzed in Sec. 5.6 (see Fig. 5.15): a very long 
cylindrical sample of a linear magnetic material placed into a fixed external field Hext parallel to the 
sample’s length. It is evident that in this simple geometry, the field H and hence the field B = H have 
to be uniform inside the sample, besides negligible regions near its ends, so Eq. (15) is reduced to 

        V
B

U
2

2

 ,      (6.16) 

7 See, e.g., MA Eq. (11.7) with f = Eind and g = H. 
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where V = Al is the cylinder’s volume. Now if we try to calculate the static (equilibrium) value of the 
field from the minimum of this potential energy, we get evident nonsense: B = 0 (WRONG!).8 

 The situation may be readily rectified by using the notion of the Gibbs potential energy, just as it 
was done for the electric field in Sec. 3.5 (and implicitly in the end of Sec. 1.3). According to Eq. (14), 
in magnetostatics, the Cartesian components of the field H(r) play the role of the generalized forces, 
while those of the field B(r), of the generalized coordinates (per unit volume).9 As the result, the Gibbs 
potential energy, whose minimum corresponds to the stable equilibrium of the system under the effect of 
a fixed generalized force (in our current case, of the fixed external field Hext), is 
    

               rBrHrrr   extG
3

GG with  , uurduU
V

,   (6.17) 

– the expression parallel to Eq. (3.78). For a system with linear magnetics, we may use, for the energy 
density u(r), our result (15), getting the following Gibbs energy’s density: 

        const
2

1

2

1
)( 2

extextG  HBBHBBr 


u ,   (6.18) 

where “const” means a term independent of the field B inside the sample. For our simple cylindrical 
system, with its uniform fields, Eqs. (17)-(18) gives the following full Gibbs energy of the sample: 

               
 

const
2

2
extint

G 


 VU

HB

,    (6.19) 

whose minimum immediately gives the correct stationary value Bint = Hext, i.e. Hint  Bint/ = Hext, 
which was already obtained in Sec. 5.6 in a different way, from the boundary condition (5.117). 

 Now notice that with this result on hand, Eq. (18) may be rewritten in a different form: 

              
 22

1
)(

2

G

B
u  B

B
BBr ,    (6.20) 

similar to Eq. (15) for u(r), but with an opposite sign. This sign dichotomy explains that of Eqs. (5.53) 
and Eq. (5.54); indeed, as was already noted in Sec. 5.3, the former of these expressions gives the 
potential energy whose minimum corresponds to the equilibrium of a system with fixed currents. (In our 
current example, these are the external stand-alone currents inducing the field Hext.) So, the energy Uj 
given by Eq. (5.53) is essentially the Gibbs energy UG defined by Eqs. (17) and (for the equilibrium 
state of linear magnetic media) by Eq. (20), while Eq. (5.54) is just another form of Eq. (15) – as was 
explicitly shown in Sec. 5.3.10 

8 This erroneous result cannot be corrected by just adding the energy of the field outside the cylinder because in 
the limit A  0, this field is not affected by the internal field B.   
9 Note an aspect in that the analogy with electrostatics is not quite complete. Indeed, according to Eq. (3.76), in 
electrostatics, the role of a generalized coordinate is played by the “would-be” field D, and that of the generalized 
force, by the actual (if macroscopic) electric field E. This difference may be traced back to the fact that the 
electric field E may perform work on a moving charged particle, while the magnetic field cannot. However, this 
difference does not affect the full analogy of the expressions (3.73) and (15) for the field energy density in linear 
media. 
10 As was already noted in Sec. 5.4, one more example of the energy Uj (i.e. UG) is given by Eq. (5.100). 
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  Let me complete this section by stating that the difference between the energies U and UG is not 
properly emphasized (or even left obscure) in some textbooks, so the reader is advised to get additional 
clarity by solving a few additional simple problems – for example, by spelling out these energies for a 
long straight solenoid (Fig. 5.6a), and then using the results to calculate the pressure exerted by the 
magnetic field on the solenoid’s walls (windings) and the longitudinal forces exerted on its ends. 

 

6.3. Quasistatic approximation and skin effect 

 Perhaps the most surprising experimental fact concerning the time-dependent electromagnetic 
phenomena is that unless they are so fast that one more new effect of the displacement currents (to be 
discussed in Sec. 7 below) becomes noticeable, all formulas of electrostatics and magnetostatics remain 
valid, with the only exception: the generalization of Eq. (3.36) to Eq. (5), describing the Faraday 
induction. As a result, the system of macroscopic Maxwell equations (5.109) is generalized to 

              
.0 ,

,,0









BD

jH
B

E






t     (6.21) 

(As it follows from the discussions in chapters 3 and 5, the corresponding system of microscopic 
Maxwell equations for the genuine, “microscopic” fields E and B may be obtained from Eq. (21) by the 
formal substitutions D = 0E and H = B/0, and the replacement of the stand-alone charge and current 
densities  and j with their full densities.11) These equations, whose range of validity will be quantified 
in Sec. 7, define the so-called quasistatic approximation of electromagnetism and are sufficient for an 
adequate description of a broad range of physical effects. 

In order to form a complete system of equations, Eqs. (21) should be augmented by constituent 
equations describing the medium under consideration. For a linear isotropic material, they may be taken 
in the simplest (and simultaneously, most common) linear and isotropic forms already discussed in 
Chapters 4 and 5: 
            HBEj   , .     (6.22) 

If the conductor is uniform, i.e. the coefficients   and  are constant inside it, the whole system of Eqs. 
(21)-(22) may be reduced to just one simple equation. Indeed, a sequential substitution of these 
equations into each other, using a well-known vector-algebra identity12 in the middle, yields: 

 

 

.
1

)(
1

)(
1

)(
11

2

2

B

BBBHjE
B












t
 (6.23) 

 Thus we have arrived, without any further assumptions, at a rather simple partial differential 
equation. Let us use it for an analysis of the so-called skin effect, the phenomenon of an Ohmic 
conductor’s self-shielding from the alternating (ac) magnetic field. In its simplest geometry (Fig. 2a), an 

11 Obviously, in free space, the last replacement is unnecessary, because all charges and currents may be treated as 
“stand-alone” ones. 
12 See, e.g., MA Eq. (11.3). 

Quasistatic 
approximation 
 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 6                 Page 7 of 38 

external source (which, at this point, does not need to be specified) produces, near a plane surface of a 
bulk conductor, a spatially-uniform ac magnetic field H(0)(t) parallel to the surface.13  

 

 

 

 

 

 

  

  
  

Selecting the coordinate system as shown in Fig. 2a, we may express this condition as 

                
yx tH nH )(0

0 .     (6.24) 

The translational symmetry of our simple problem within the surface plane [y, z] implies that inside the 
conductor, /y = /z = 0 as well, and H = H(x, t)ny even at x  0, so Eq. (23) for the conductor’s 
interior is reduced to a differential equation for just one scalar function H(x, t) = B(x, t)/: 

               0for  ,
1

2

2









x
x

H

t

H


.    (6.25) 

This equation may be further simplified by noticing that due to its linearity, we may use the linear 
superposition principle for the time dependence of the field,14 via expanding it, as well as the external 
field (24), into the Fourier series: 

                
    ,0for    ,)(

,0.for ,)(),(

00 










xeHtH

xexHtxH

ti

ti











    (6.26) 

and arguing that if we know the solution for each frequency component of the series, the whole field 
may be found through the straightforward summation (26) of these solutions.  

 For each single-frequency component, Eq. (25) is immediately reduced to an ordinary 
differential equation for the complex amplitude H(x):15 

13 Due to the simple linear relation B = H between the fields B and H, it does not matter too much which of 
them is used for the solution of this problem, with a slight preference for H, due to the simplicity of Eq. (5.117) – 
the only boundary condition relevant for this simple geometry. 
14 Another way to exploit the linearity of Eq. (6.25) is to use the spatial-temporal Green’s function approach to 
explore the dependence of its solutions on various initial conditions. Unfortunately, because of a lack of time, I 
have to leave an analysis of this opportunity for the reader’s exercise. 
15 Let me hope that the reader is not intimidated by the (very convenient) use of such complex variables for 
describing real fields; their imaginary parts always disappear at the final summation (26). For example, if the 

Fig. 6.2. (a) The skin effect in 
the simplest, planar geometry, 
and (b) two Ampère contours, 
C1 and C2, for deriving the 
“macroscopic” (C1) and the 
“coarse-grain” (C2) boundary 
conditions for H. 
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            
 H

dx

d
Hi

2

21
 .     (6.27) 

From the theory of linear ordinary differential equations, we know that Eq. (27) has the following 
general solution: 

        
xx

eHeHxH 



  

 )( ,    (6.28) 

where the constants  are the roots of the characteristic equation that may be obtained by the 
substitution of any of these two exponents into the initial differential equation. For our particular case, 
the characteristic equation following from Eq. (27) is simply 

         



2

 i       (6.29) 

and its roots are, obviously, 

               2/12/1

2

1  i
i


 .    (6.30) 

 For our problem, the field cannot grow exponentially at x  +, so only one of the coefficients, 
namely the H– corresponding to the decaying exponent, with Re – < 0, may be different from zero, i.e. 
H(x) = H(0)exp{–x}. To find the constant factor H(0), we can integrate the macroscopic Maxwell 
equation   H = j along a pre-surface contour – say, the contour C1 shown in Fig. 2b. The right-hand 
side’s integral is negligible because the stand-alone current density j does not include the “genuinely-
surface” currents responsible for the magnetic permeability  – see Fig. 5.12. As a result, we get  the 
boundary condition similar to Eq. (5.117) for the stationary magnetic field: H  = const at x = 0, giving 
us 

             00 0  i.e.,,0  HHtHtH  ,    (6.31) 

so the final solution of our boundary problem may be represented as 
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
  expexpexp)( 00 ,  (6.32) 

where the constant s, with the dimension of length, is called the skin depth: 

                   
2/1

s

2

Re

1









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 .     (6.33) 

 This solution describes the skin effect: the penetration of the ac magnetic field, and the eddy 
currents j, into a conductor only to a finite depth of the order of s. Let me give a few numerical 
examples of this depth: for copper at room temperature, s   1 cm at the usual ac power distribution 
frequency of 60 Hz, and is of the order of just 1 m at a few GHz, i.e. at typical frequencies of cell 
phone signals and kitchen microwave magnetrons. On the other hand, for lightly salted water, s is close 
to 250 m at just 1 Hz (with significant implications for radio communications with submarines), and of 

external field is purely sinusoidal, with the actual (positive) frequency , each sum in Eq. (26) has just two terms, 
with complex amplitudes H and H-  = H*, so their sum is always real. (For a more detailed discussion of this 
issue, see, e.g., CM Sec. 5.1.) 
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the order of 1 cm at a few GHz  (explaining, in particular, the nonuniform heating of a soup bowl in a 
microwave oven).16  

 Let me hope that the equality chain (23) makes the physics of this effect very clear: the external 
electric field E, which is Faraday-induced by an external ac magnetic field, drives the eddy currents j, 
which in turn induce their own magnetic field that eventually (at x ~ s) compensates the external one. 
Let us quantify these E and j. Since we have used, in particular, relations j =   H =  × B/, and E = 
j/, and spatial differentiation of an exponent yields a similar exponent, the electric field and current 
density have the same spatial dependence as the magnetic field, i.e. penetrate the conductor only by 
distances of the order of s(). Their vectors are directed normally to B, while still being parallel to the 
conductor’s surface:17 

                zz xHxxHx nEnj )(,)(  


 
  .   (6.34) 

 We may use these expressions, in particular,  to calculate the time-averaged power density (4.39) 
of the energy dissipation, for the important case of a sinusoidal (“monochromatic”) field H(x, t) = H(x) 
cos(t + ), and hence sinusoidal eddy currents: j(x, t) = j(x) cos(t + ’): 

                         
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






2
s

2222222
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cos, xHxHxj'txjtxj
x 


 p . (6.35) 

Now the (elementary) integration of this expression along the x-axis (through all the skin depth), using 
the exponential law (6.32), gives us the following average power of the energy loss per unit area: 

                            20s20

s0 42

1





HHdxx
dA

d
 



p
P

.   (6.36) 

We will extensively use this expression in the next chapter to calculate the energy losses in microwave 
waveguides and resonators with conducting (practically, metallic) walls, and for now let me note only 
that according to Eqs. (33) and (36), for a fixed magnetic field amplitude, the losses grow with 
frequency as 1/2. 

One more important remark concerning Eqs. (34): integrating the first of them over x, with the 
help of Eq. (32), we may see that the linear density J of the surface currents (measured in A/m), is 
simply and fundamentally related to the applied magnetic field: 

      
zHdxx njJ 0

0

  


.     (6.37) 

Since this relation does not have any frequency-dependent factors, we may sum it up for all frequency 
components, and get a universal relation  

                           nHnHnnnJ  tttHtHt xxyz
0000 ,  (6.38a) 

16 Let me hope that the reader’s physical intuition makes it evident that the skin effect remains conceptually the 
same for samples of any shape, besides possibly some quantitative details of the field distribution. 
17 The loop (vortex) character of the induced current lines, responsible for the term “eddy”, is not very apparent in 
the 1D geometry explored above, with the near-surface currents (Fig. 2b) looping only implicitly, at z  .  
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(where n = –nx is the outer normal to the surface – see Fig. 2b) or, in a different form, 

                  ),(tt JnH       (6.38b) 

where H is the full change of the field through the skin layer. This simple coarse-grain relation 
(independent of the choice of coordinate axes), is also independent of the used constituent relations (22), 
and is by no means occasional. Indeed, it may be readily obtained from the macroscopic Ampère law 
(5.116), by applying it to a contour drawn around a fragment of the surface, extending under it 
substantially deeper than the skin depth – see the contour C2 in Fig. 2b. Hence, Eq. (38) is valid 
regardless of the exact law of the field penetration.  

For the skin effect, this fundamental relationship between the linear current density and the 
external magnetic field implies that the skin effect’s implementation does not necessarily require a 
dedicated ac magnetic field source. For example, the effect takes place in any wire that carries an ac 
current, leading to a current’s concentration in a surface sheet of thickness ~s. (Of course, the 
quantitative analysis of this problem in a wire with an arbitrary cross-section may be technically 
complicated, because it requires solving Eq. (23) for the corresponding 2D geometry; even for the round 
cross-section, the solution involves the Bessel functions.) In this case, the ac magnetic field outside the 
conductor, which still obeys Eq. (38), may be better interpreted as the effect, rather than the cause, of 
the ac current flow. 

 Finally, please mind the limited validity of all the above results. First, for the quasistatic 
approximation to be valid, the field frequency  should not be too high, so the displacement current 
effects are negligible. (Again, this condition will be quantified in  Sec. 7 below; it will show that for 
metals, the condition is violated only at extremely high frequencies above ~1018 s-1.) A more practical 
upper limit on  is that the skin depth s should stay much larger than the mean free path l of charge 
carriers,18 because beyond this point, the constituent relation between the vectors j(r) and E(r) becomes 
essentially non-local. Both theory and experiment show that at s below l, the skin effect persists, but 
acquires a frequency dependence slightly different from Eq. (33): s  –1/3 rather than –1/2. 
Historically, this anomalous skin effect has been very useful for the measurements of the Fermi surfaces 
of metals.19 

  

6.4. Electrodynamics of superconductivity, and the gauge invariance 

 The effect of superconductivity20 takes place (in certain materials only, mostly metals) when 
temperature T is reduced below a certain critical temperature Tc specific for each material. For most 
metallic superconductors, Tc is of the order of typically a few kelvins, though several compounds (the 
so-called high-temperature superconductors) with Tc above 100 K have been found since 1987. The 
most notable property of superconductors is the absence, at T < Tc, of measurable resistance to (not very 
high) dc currents. However, the electromagnetic properties of superconductors cannot be described by 
just taking   =  in our previous results. Indeed, for this case, Eq. (33) would give s = 0, i.e., no ac 

18 A discussion of the mean free path may be found, for example, in SM Chapter 6. In very clean metals at very 
low temperatures, s may approach l at frequencies as low as  ~1 GHz, but at room temperature, the crossover 
between the normal to the anomalous skin effect takes place only at ~ 100 GHz. 
19 See, e.g., A. Abrikosov, Introduction to the Theory of Normal Metals, Academic Press, 1972. 
20 Discovered experimentally in 1911 by Heike Kamerlingh Onnes. 
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magnetic field penetration at all. Experiment shows something substantially different: weak magnetic 
fields do penetrate into superconductors by a material-specific distance L ~ 10-7-10-6 m, the so-called 
London’s penetration depth,21  which is virtually frequency-independent until the skin depth s, of the 
same material in its “normal” state, i.e. the absence of superconductivity, becomes less than L. (This 
crossover happens typically at frequencies  ~ 1013-1014 s-1.) The smallness of L on the human scale 
means that the magnetic field is pushed out from macroscopic samples at their transition into the 
superconducting state. 

 This Meissner-Ochsenfeld effect, discovered experimentally in 1933,22 may be partly understood 
using the following classical reasoning. Our discussion of the Ohm law in Sec. 4.2 implied that the 
current’s (and hence the electric field’s) frequency   is either zero or sufficiently low. In the classical 
Drude reasoning, this is acceptable while  << 1, where  is the effective carrier scattering time 
participating in Eqs. (4.12)-(4.13). If this condition is not satisfied, we should take into account the 
charge carrier inertia; moreover, in the opposite limit  >> 1, we may neglect the scattering at all. 
Classically, we can describe the charge carriers in such a “perfect conductor” as particles with a non-
zero mass m, which are accelerated by the electric field following the 2nd Newton law (4.11), 

       EFv qm  ,     (6.39) 

so the current density j = qnv that they create, changes in time as 

                Evj
m

nq
qn

2

  .     (6.40) 

In terms of the Fourier amplitudes of the functions j(t) and E(t), this means 

                Ej
m

nq
i

2

 .     (6.41) 

Comparing this formula with the relation j = E implied in the last section, we see that we can use all 
its results with the following replacement: 

         



m

nq
i

2

 .      (6.42)  

This change replaces the characteristic equation (29) with  
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nq

niq
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i

2
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2

2

  i.e.,



  ,    (6.43) 

i.e. replaces the skin effect with the field penetration by the following frequency-independent depth: 

              
2/1
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1


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





nq

m


 .     (6.44) 

Superficially, this means that the field decay into the superconductor does not depend on frequency: 

21 Named so to acknowledge the pioneering theoretical work of brothers Fritz and Heinz London – see below. 
22 It is hardly fair to shorten this name to just the “Meissner effect” as it is frequently done, because of the 
reportedly crucial contribution by Robert Ochsenfeld, then a Walther Meissner’s student, to the discovery. 
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          /),0(),( xetHtxH  ,     (6.45) 

thus explaining the Meissner-Ochsenfeld effect.  

 However, there are two problems with this result. First, for the parameters typical for good 
metals (q = –e, n ~ 1029 m-3, m ~ me,   0), Eq. (44) gives   ~ 10-8 m, one or two orders of magnitude 
lower than the experimental values of L. Experiment also shows that the penetration depth diverges at T 
 Tc, which is not predicted by Eq. (44).  

 The second,  much more fundamental problem with Eq. (44) is that it has been derived for   
>> 1. Even if we assume that somehow there is no scattering at all, i.e.   = , at   0 both parts of the 
characteristic equation (43) vanish, and we cannot make any conclusion about . This is not just a 
mathematical artifact we could ignore. For example, let us place a non-magnetic metal into a static 
external magnetic field at T > Tc. The field would completely penetrate the sample. Now let us cool it. 
As soon as the temperature is decreased below Tc, the above calculations would become valid, 
forbidding the penetration into the superconductor of any change of the field, so the initial field would 
be “frozen” inside the sample. The Meissner-Ochsenfeld experiments have shown something completely 
different: as T is lowered below Tc, the initial field is being expelled out of the sample.  

 The resolution of these contradictions is provided by quantum mechanics. As was explained in 
1957 in a seminal work by J. Bardeen, L. Cooper, and J. Schrieffer (commonly referred to as the BCS 
theory), superconductivity is due to the correlated motion of electron pairs, with opposite spins and 
nearly opposite momenta. Such Cooper pairs, each with the electric charge q = –2e and zero spin, may 
form only in a narrow energy layer near the Fermi surface, of a certain thickness (T).  This parameter 
(T), which may be also interpreted as the binding energy of the pair, tends to zero at T  Tc, while at T 
<< Tc it has a virtually constant value (0)  3.5 kBTc, of the order of a few meV for most 
superconductors. This fact readily explains the relatively low spatial density of the Cooper pairs: np ~ 
n(T)/F ~ 1026 m-3. With the correction n  np, Eq. (44) for the penetration depth becomes 

           .
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nq

m


      (6.46) 

This result diverges at T  Tc, and generally fits the experimental data reasonably well, at least for the 
so-called “clean” superconductors with the mean free path l = vF (where vF ~ (2mF)1/2 is the r.m.s. 
velocity of electrons on the Fermi surface) much longer than the Cooper pair size  – see below. 

 The smallness of the coupling energy (T) is also a key factor in the explanation of the 
Meissner-Ochsenfeld effect. Because of Heisenberg’s quantum uncertainty relation rp ~ , the spatial 
extension of the Cooper-pair’s wavefunction (the so-called coherence length of the superconductor) is 
relatively large:   ~ r ~ /p ~ vF/(T) ~ 10-6 m. As a result, np3 >> 1, meaning that the 
wavefunctions of the pairs are strongly overlapped in space. Due to their integer spin, Cooper pairs 
behave like bosons, which means in particular that at low temperatures they exhibit the so-called Bose-
Einstein condensation onto the same ground energy level g.23 This means that the quantum frequency  

23 A quantitative discussion of the Bose-Einstein condensation of bosons may be found in SM Sec. 3.4, though 
the full theory of superconductivity is more complicated because it has to describe the condensation taking place 
simultaneously with the formation of effective bosons (Cooper pairs) from fermions (single electrons). For a 
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= g/ of the time evolution of each pair’s wavefunction  = exp{–it} is exactly the same and that 
the phases  of the wavefunctions, defined by the relation 

           ie ,      (6.47) 

coincide, so the electric current is carried not by individual Cooper pairs but rather by their Bose-
Einstein condensate described by a single wavefunction (47). Due to this coherence, the quantum effects 
(which are, in the usual Fermi-gases of single electrons, masked by the statistical spread of their 
energies, and hence of their phases), become very explicit – “macroscopic”. 

 To illustrate this, let us write the well-known quantum-mechanical formula for the probability 
current density of a free, non-relativistic particle,24 

              c.c.
2

1
c.c.

2
    


i

mm

i
wj ,   (6.48) 

where c.c. means the complex conjugate of the previous expression. Now let me borrow one result that 
will be proved later in this course (in Sec. 9.7) when we discuss the analytical mechanics of a charged 
particle moving in an electromagnetic field. Namely, to account for the magnetic field effects, the 
particle’s kinetic momentum p  mv (where v   dr/dt is the particle’s velocity) has to be distinguished 
from its canonical momentum,25 
        ApP q .      (6.49) 

where A is the field’s vector potential defined by Eq. (5.27). In contrast with the Cartesian components 
pj = mvj of the kinetic momentum p, the canonical momentum’s components are the generalized 
momenta corresponding to the Cartesian components rj of the radius-vector r, considered as generalized 
coordinates of the particle: Pj = L /vj, where L  is the particle’s Lagrangian function. According to the 
general rules of transfer from classical to quantum mechanics,26 it is the vector P whose operator (in the 
coordinate representation) equals –i, so the operator of the kinetic momentum p = P – qA is –i + 
qA. Hence, to account for the magnetic field27 effects, we should make the following replacement, 

            Aqii    ,     (6.50) 

in all quantum-mechanical relations. In particular, Eq. (48) has to be generalized as 

             c.c.
2

1
   Aj qi

mw  .    (6.51) 

This expression becomes more transparent if we take the wavefunction in form (47); then 

detailed, but still very readable coverage of the physics of superconductors, I can recommend the reader the 
monograph by M. Tinkham, Introduction to Superconductivity, 2nd ed., McGraw-Hill, 1996. 
24 See, e.g., QM Sec. 1.4, in particular Eq. (1.47). 
25 I am sorry to use traditional notations p and P for the momenta – the same symbols which were used for the 
electric dipole moment and polarization in Chapter 3. I hope there will be no confusion because the latter notions 
are not used in this section. 
26 See, e.g., CM Sec. 10.1, in particular Eq. (10.26). 
27 The account of the electric field is easier, because the related energy q of the particle may be directly included 
in the potential energy operator. 
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.     (6.52) 

This relation means, in particular, that in order to keep jw gauge-invariant, the transformation (8)-(9) has 
to be accompanied by a simultaneous transformation of the wavefunction’s phase: 

      


q
 .      (6.53) 

It is fascinating that the quantum-mechanical wavefunction (or more exactly, its phase) is not gauge-
invariant, meaning that you may change it in your mind – at your free will! Again, this does not change 
any observable (such as jw or the probability density *), i.e. any experimental results. 

 Now for the electric current density of the whole superconducting condensate, Eq. (52) yields 
the following constitutive relation: 
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The formula shows that this supercurrent may be induced by the dc magnetic field alone and does not 
require any electric field. Indeed, for the simple 1D geometry shown in Fig. 2a, j(r) = j(x)nz, A(r) = A(x) 
nz, and /z = 0, so the Coulomb gauge condition (5.48) is satisfied for any choice of the gauge function 
(x). For the sake of simplicity we can choose this function to provide (r)  const,28 so 
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where L is given by Eq. (46), and the field is assumed to be small and hence not affecting the 
probability 2 (here normalized to 1 in the absence of the field). This is the so-called London equation, 
proposed (in a different form) by F. and H. London in 1935 for the Meissner-Ochsenfeld effect’s 
explanation. Combining it with Eq. (5.44), generalized for a linear magnetic medium by the replacement 
0  , we get 

         AA
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2 1
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 ,      (6.56) 

For our 1D geometry, this simple differential equation, similar to Eq. (23), has an exponential solution 
similar to Eq. (32): 
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which shows that the magnetic field and the supercurrent penetrate into a superconductor only by 
London’s penetration depth L, regardless of frequency.29 By the way, integrating the last result through 
the penetration layer, and using the vector potential’s definition, B =   A (for our geometry, giving 

28 This is the so-called London gauge; for our simple geometry, it is also the Coulomb gauge (5.48). 
29 Since at T > 0, not all electrons in a superconductor form Cooper pairs, at any frequency   0 the unpaired 
electrons provide energy-dissipating Ohmic currents, which are not described by Eq. (54). These losses become 
very substantial when the frequency  becomes so high that the skin-effect length s of the material becomes less 
than L. For typical metallic superconductors, this crossover takes place at frequencies of a few hundred GHz, so 
even for microwaves, Eq. (57) still gives a fairly accurate description of the field penetration. 
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B(x) = dA(x)/dx = –LA(x)) we may readily verify that the linear density J of the surface supercurrent 
still satisfies the universal coarse-grain relation (38).  

 This universality should bring to our attention the following common feature of the skin effect 
(in “normal” conductors) and the Meissner-Ochsenfeld effect (in superconductors): if the linear size of a 
bulk sample is much larger than, respectively, s or L, than B = 0 in the dominating part of its interior. 
According to Eq. (5.110), a formal description of such conductors (valid only on a coarse-grain scale 
much larger than either s or L), may be achieved by formally treating the sample as an ideal 
diamagnet, with  = 0. In particular, we can use this description and Eq. (5.124) to immediately obtain 
the magnetic field’s distribution outside of a bulk sphere: 

             Rr
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0m00  HB .  (6.58) 

 Figure 3 shows the corresponding surfaces of equal potential m. It is evident that the magnetic 
field lines (which are normal to the equipotential surfaces) bend to become parallel to the surface near it.  

   

 

 

 

 

 

 

 

 

 This pattern also helps to answer the question that might arise at making the assumption (24): 
what happens to bulk conductors placed into a normal ac magnetic field – and to superconductors in a 
normal dc magnetic field as well? The answer is: the field is deformed outside of the conductor to 
sustain the following coarse-grain boundary condition:30 

        0surfacenB ,      (6.59) 

which follows from Eq. (5.118) and the coarse-grain requirement Binside = 0.  

 This answer should be taken with reservations. For normal conductors, it is only valid at 
sufficiently high frequencies where the skin depth (33) is relatively small: s << a, where a is the scale 
of the conductor’s linear size – for a sphere, a ~ R. In superconductors, this simple picture requires not 
only that s << a, but also that magnetic field is relatively low because strong fields do penetrate 

30 Sometimes this boundary condition, as well as the (compatible) Eq. (38), are called “macroscopic”. However, 
this term may lead to confusion with the genuine macroscopic boundary conditions (5.117)-(5.118), which also 
ignore the atomic-scale microstructure of the “effective currents” jef = M, but (as was shown earlier in this 
section) still allow explicit, detailed accounts of the skin-current (34) and supercurrent (55) distributions. 

Fig. 6.3. Equipotential surfaces 
m  = const around a conducting 
sphere of radius R >> s (or L), 
placed into a uniform magnetic 
field, calculated within the 
coarse-grain (ideal-diamagnet) 
approximation  = 0.  
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superconductors, destroying superconductivity (either completely or partly), and as a result violating the 
Meissner-Ochsenfeld effect – see the next section. 

 

6.5. Electrodynamics of macroscopic quantum phenomena31 

 Despite the superficial similarity of the skin effect and the Meissner-Ochsenfeld effect, the 
electrodynamics of superconductors is much richer. For example, let us use Eq. (54) to describe the 
fascinating effect of magnetic flux quantization. Consider a closed ring/loop (not necessarily a round 
one) made of a superconducting “wire” with a cross-section much larger than L

2 (Fig. 4a). 

 

 

 

 

 

  

  

 

 
 

From the last section’s discussion, we know that deep inside the wire the supercurrent is 
exponentially small. Integrating Eq. (54) along any closed contour C that does not approach the surface 
closer than a few L at any point (see the dashed line in Fig. 4), so with j = 0 at all its points, we get 

        0 
C C

d
q

d rAr


 .     (6.60) 

The first integral, i.e. the difference of  in the initial and final points, has to be equal to either zero or 
an integer number of 2 because the change    + 2n does not change the Cooper pair’s 
condensate’s wavefunction: 

                    ini ee' 2 .    (6.61) 

On the other hand, according to Eq. (5.65), the second integral in Eq. (60) is just the magnetic flux  
through the contour.32 As a result, we get a wonderful result: 

31 The material of this section is not covered in most E&M textbooks, and will not be used in later sections of this 
course. Thus the “only” loss due to the reader’s skipping this section would be the lack of familiarity with one of 
the most fascinating fields of physics. Note also that we already have virtually all formal tools necessary for its 
discussion, so reading this section should not require much effort.  
32 Due to the Meissner-Ochsenfeld effect, the exact path of the contour is not important, and we may discuss  
just as the magnetic flux through the ring. 

Fig. 6.4. (a) A closed, flux-quantizing superconducting ring, (b) a ring with a narrow slit, 
and (c) a Superconducting QUantum Interference Device (SQUID). 
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saying that the magnetic flux inside any superconducting loop can only take values multiple of the flux 
quantum 0. This effect, predicted in 1950 by the same Fritz London (who expected q to be equal to the 
electron charge –e), was observed experimentally in 1961,33 but with q = 2e – so 0  2.0710-15 Wb. 
Historically, this observation gave decisive support to the BCS theory of superconductivity (implying 
Cooper pairs with charge q = –2e) that had been put forward just four years earlier.  

 Note the truly macroscopic character of this quantum effect: it has been repeatedly observed in 
human-scale superconducting loops, and from what is known about superconductors, there is no doubt 
that if we had made a giant superconducting wire loop extending, say, over the Earth’s equator, the 
magnetic flux through it would still be quantized – though with a very large flux quanta number n. This 
means that the quantum coherence of Bose-Einstein condensates may extend over, using H. Casimir’s 
famous expression, “miles of dirty lead wire”. (Lead is a typical superconductor, with Tc  7.2 K, and 
indeed retains its superconductivity even being highly contaminated by impurities.) 

 Moreover, hollow rings are not entirely necessary for flux quantization. In 1957, A. Abrikosov 
explained the counter-intuitive high-field behavior of superconductors with L > 2, known 
experimentally as their mixed (or “Shubnikov”) phase since the 1930s. He showed that a sufficiently 
high magnetic field may penetrate such superconductors in the form of self-formed magnetic field 
“threads” (or “tubes”) surrounded by vortex-shaped supercurrents – the so-called Abrikosov vortices. In 
the simplest case, the core of such a vortex is a straight line, on which the superconductivity is 
completely suppressed ( = 0), surrounded by circular, axially-symmetric, persistent supercurrents 
j(), where  is the distance from the vortex axis – see Fig. 5a. At the axis, the current vanishes, and 
with the growth of , it first rises and then falls (with j() = 0), reaching its maximum at  ~ , while 
the magnetic field B(), directed along the vortex axis, is largest at  = 0, and drops monotonically at 
distances of the order of L (Fig. 5b).  

 

 

 

 

 

 

 The total flux of the field equals exactly one flux quantum 0, given by Eq. (62). 
Correspondingly, the wavefunction’s phase   performs just one 2 revolution along any contour 
drawn around the vortex’s axis, so  = n/, where n is the azimuthal unit vector.34 This topological 
feature of the wavefunction’s phase is sometimes called fluxoid quantization – to distinguish it from 

33 Independently and virtually simultaneously by two groups: B. Deaver and W. Fairbank, and R. Doll and M. 
Näbauer; their reports were published back-to-back in the same issue of the Physical Review Letters. 
34 The last (perhaps, evident) expression for  follows from MA Eq. (10.2) with f =  + const. 
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Fig. 6.5. The Abrikosov vortex: 
(a) a 3D structure’s sketch, and 
(b) the main variables as 
functions of the distance  
from the axis (schematically). 
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magnetic flux quantization, which is valid only for relatively large contours, not approaching the axis by 
distances ~L.   

 A quantitative analysis of Abrikosov vortices requires, besides the equations we have discussed, 
one more constituent relation that would describe the suppression of the number of Cooper pairs 
(quantified by 2) by the magnetic field – or rather by the field-induced supercurrent. In his original 
work, Abrikosov used for this purpose the famous Ginzburg-Landau equation,35 which is quantitatively 
valid only at T  Tc. The equation may be conveniently represented in either of the following two forms: 

        22
2

222 1*, 
2

1  





  AA




q
ibaqi

m
 ,      (6.63) 

where a and b are certain temperature-dependent coefficients, with a  0 at T  Tc. The first of these 
forms clearly shows that the Ginzburg-Landau equation (as well as the similar Gross-Pitaevskii equation 
describing electrically-neutral Bose-Einstein condensates) belongs to a broader class of nonlinear 
Schrödinger equations, differing from the usual Schrödinger equation, which is linear in , only by the 
additional nonlinear terms. The equivalent, second form of Eq. (63) is more convenient for applications 
and shows more clearly that if the superconductor’s condensate density, proportional to 2, is 
suppressed only locally, it self-restores to its unperturbed value (with 2 = 1) at the distances of the 
order of the coherence length   /(2ma)1/2. 

 This fact enables a simple quantitative analysis of the Abrikosov vortex in the most important 
limit  << L. Indeed, as Fig. 5 shows, in this case.  2 = 1 at most distances ( ~ L) where the field 
and current are distributed, so these distributions may be readily calculated without any further 
involvement of Eq. (63), just from Eq. (54) with  = n/, and the Maxwell equations (21) for the 
magnetic field, giving   B =  j, and   B = 0. Indeed, combining these equations just as this was 
done at the derivation of Eq. (23), for the only Cartesian component of the vector B(r) = B()nz (where 
the z-axis is directed along the vortex’ symmetry axis), we get a simple equation 

           at  ,20
22

L ρ



q

BB ,   (6.64) 

which coincides with Eq. (56) at all regular points   0. Spelling out the Laplace operator for our 
current case of axial symmetry,36 we get an ordinary differential equation, 

        0for  ,0
12

L 
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 



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 B
d

dB

d

d
.    (6.65) 

Comparing this equation with Eq. (2.155) with  = 0, and taking into account that we need the solution 
decreasing at   , making any contribution proportional to the function I0 unacceptable, we get 

35 This equation was derived by Vitaly Lazarevich Ginzburg and Lev Davidovich Landau from phenomenological 
arguments in 1950, i.e. before the advent of the “microscopic” BSC theory, and may be used for simple analyses 
of a broad range of nonlinear effects in superconductors. The Ginzburg-Landau and Gross-Pitaevskii equations 
will be further discussed in SM Sec. 4.3.  
36 See, e.g., MA Eq. (10.3) with / = /z = 0. 
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– see the plot of this Bessel function on the right panel of Fig. 2.22  (black line). The constant C should 
be calculated by fitting the 2D delta function on the right-hand side of Eq. (64), i.e. by requiring 

          0

0

0
2
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0vortex

2 22  
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 dKCdBdB .   (6.67) 

The last, dimensionless integral equals 1,37 so finally 
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 So the magnetic field of the vortex drops exponentially at distances  much larger than L, and 
diverges at    0 – see, e.g., the second of Eqs. (2.157). However, this divergence is very slow 
(logarithmic), and, as was repeatedly discussed in this series, is avoided by the account of virtually any 
other factor. In our current case, this factor is the decrease of   2 to zero at  ~  (see Fig. 5), not taken 
into account in Eq. (68). As a result, we may estimate the field on the axis of the vortex as 

              
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

B ;     (6.69) 

the exact (and much more involved) solution of the problem confirms this estimate with a minor 
correction: ln(L/)  ln(L/) – 0.28, i.e.   1.3. 

 The current density distribution may be now calculated from the Maxwell equation   B = j, 
giving j = j()n, with38  
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where the same identity (2.158), with Jn  Kn and n = 1, was used. Now looking at Eqs. (2.157) and 
(2.158), with n = 1, we see that the supercurrent’s density is exponentially low at  >> L (thus outlining 
the vortex’ periphery), and is proportional to 1/ within the broad range  <<  << L. This rise of the 
current at   0 (which could be readily predicted directly from Eq. (54) with  = n/, and the A-
term negligible at  << L) is quenched at  ~  by a rapid drop of the factor 2 in the same Eq. (54), 
i.e. by the suppression of the superconductivity near the axis (by the same supercurrent!) – see Fig. 5 
again. 

 This structure of the Abrikosov vortex may be used to calculate, in a straightforward way, its 
energy per unit length (i.e. its linear tension) 

37 This fact follows, for example, from the integration of both sides of Eq. (2.143) (which is valid for any Bessel 
functions, including Kn) with n = 1, from 0 to , and then using the asymptotic values given by Eqs. (2.157)-
(2.158): K1() = 0, and K1()  1/ at   0. 
38 See, e.g., MA Eq. (10.5), with f = f = 0, and fz = B(). 
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and hence the so-called “first critical” value Hc1 of the external magnetic field,39 at which the vortex 
formation becomes possible (in a long cylindrical sample parallel to the field): 
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Let me leave the proof of these two formulas for the reader’s exercise. 

 The flux quantization and the Abrikosov vortices discussed above are just two of several 
macroscopic quantum effects in superconductivity. Let me discuss just one more, but perhaps the most 
interesting of such effects. Let us consider a superconducting ring/loop interrupted with a very narrow 
slit (Fig. 4b). Integrating Eq. (54) along any current-free path from point 1 to point 2 (see, e.g., dashed 
line in Fig. 4b), we get 

        .Φ0 12
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Using the flux quantum definition (62), this result may be rewritten as 
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where   is called the Josephson phase difference. Note that in contrast to each of the phases 1,2, their 
difference   is gauge-invariant: Eq. (74) directly relates it to the gauge-invariant magnetic flux .  

Can this  be measured? Yes, for example, using the Josephson effect.40 Let us consider two (for 
the argument simplicity, similar) superconductors, connected with some sort of weak link, for example, 
a small tunnel junction, or a point contact, or a narrow thin-film bridge, through which a weak Cooper-
pair supercurrent can flow. (Such a system of two weakly coupled superconductors is called a Josephson 
junction.) Let us think about what this supercurrent I may be a function of. For that, reverse thinking is 
helpful: let us imagine that we change the current; what parameter of the superconducting condensate 
can it affect? If the current is very weak, it cannot perturb the superconducting condensate’s density, 
proportional to 2; hence it may only change the Cooper condensate phases 1,2. However, according 
to Eq. (53), the phases are not gauge-invariant, while the current should be. Hence the current may 
affect (or, if you like, may be affected by) only the phase difference   defined by Eq. (74). Moreover, 
just has already been argued during the flux quantization discussion, a change of any of 1,2 (and hence 
of ) by 2 or any of its multiples should not change the current. Also, if the wavefunction is the same 
in both superconductors ( = 0), the supercurrent should vanish due to the system’s symmetry. Hence 
the function I() should satisfy the following conditions: 

39 This term is used to distinguish Hc1 from the higher “second critical field” Hc2, at which the Abrikosov vortices 
are pressed to each other so tightly (to distances d ~ ) that they merge, and the remains of superconductivity 
vanish:   0. Unfortunately, I do not have time/space to discuss these effects; the interested reader may be 
referred, for example, to Chapter 5 of M. Tinkham’s monograph cited above. 
40 It was predicted in 1961 by Brian David Josephson (then a PhD student!) and observed experimentally by 
several groups soon after that. 
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      I(0) =0,  I( + 2) = I().    (6.75) 

With these conditions on hand, we should not be terribly surprised by the following Josephson’s result 
that for the weak link provided by tunneling,41 

                  sin)( cII  ,     (6.76) 

where constant Ic, which depends on the weak link’s strength and temperature, is called the critical 
current. Actually, Eqs. (54) and (63) enable not only a straightforward calculation of this relation but 
even obtaining a simple expression of the critical current Ic via the link’s normal-sate resistance – the 
task left for the (creative :-) reader’s exercise. 

 Now let us see what happens if a Josephson junction is placed into the gap in a superconductor 
loop – see Fig. 4c. In this case, we may combine Eqs. (74) and (76), getting 
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This effect of a periodic dependence of the current on the magnetic flux is called macroscopic quantum 
interference,42 while the system shown in Fig. 4c, the superconducting quantum interference device – 
SQUID (with all letters capitalized, please :-). The low value of the magnetic flux quantum 0, and 
hence the high sensitivity of   to external magnetic fields, allows using such SQUIDs as ultrasensitive 
magnetometers. Indeed, for a superconducting ring of area ~1 cm2, one period of the change of the 
supercurrent (77) is produced by a magnetic field change of the order of 10-11 T (10-7 Gs), while 
sensitive electronics allows measuring a tiny fraction of this period – limited by thermal noise at a level 
of the order of a few fT. Such sensitivity allows measurements, for example, of the miniscule magnetic 
fields induced outside of the body by the beating human heart, and even by brain activity.43    

 An important aspect of quantum interference is the so-called Aharonov-Bohm (AB) effect –
which actually takes place for single quantum particles as well.44 Let the magnetic field lines be limited 
to the central, hollow part of the SQUID loop so that no appreciable magnetic field ever touches the ring 
itself. (This may be done experimentally with very good accuracy, for example using high- magnetic 
cores – see their discussion in Sec. 5.6.) As predicted by Eq. (77), and confirmed by several careful 
experiments carried out in the mid-1960s,45 this restriction does not matter – the interference is observed 

41 For some other types of weak links, the function I() may deviate from the sinusoidal form Eq. (76) rather 
considerably, while still satisfying the general conditions (75). 
42 The name is due to a deep analogy between this phenomenon and the interference between two coherent waves, 
to be discussed in detail in Sec. 8.4. 
43 Other practical uses of SQUIDs include MRI signal detectors, high-sensitive measurements of magnetic 
properties of materials, and weak field detection in a broad variety of physical experiments – see, e.g., J. Clarke 
and A. Braginski (eds.), The SQUID Handbook, vol. II, Wiley, 2006. For a comparison of these devices with 
other sensitive magnetometers see, e.g., the review collection by A. Grosz et al. (eds.), High Sensitivity 
Magnetometers, Springer, 2017. 
44 For a more detailed discussion of the AB effect see, e.g., QM Sec. 3.2. 
45 Similar experiments have been carried out with single (unpaired) electrons – moving either ballistically, in 
vacuum, or in “normal” (non-superconducting) conducting rings. In the last case, the effect is much harder to 
observe than in SQUIDs: the ring size has to be very small, and temperature very low, to avoid the so-called 
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anyway. This means that not only the magnetic field B but also the vector potential A represents 
physical reality, albeit in a quite peculiar way – remember the gauge transformation (5.46), which you 
may carry out in your head, without changing any physical reality? (Fortunately, this transformation 
does not change the contour integral participating in Eq. (5.65), and hence the magnetic flux , and 
hence the interference pattern.) 

 Actually, the magnetic flux quantization (62) and the macroscopic quantum interference (77) are 
not completely different effects, but just two manifestations of the interrelated macroscopic quantum 
phenomena. To show that, one should note that if the critical current Ic (or rather its product by the 
loop’s self-inductance L) is high enough, the flux  in the SQUID loop is due not only to the external 
magnetic field flux ext but also has a self-field component – cf. Eq. (5.68):46 

               
S

n rdBLI 2
extextext )(Φ  where,ΦΦ .   (6.78) 

Now the relation between  and ext may be readily found by solving this equation together with Eq. 
(77). Figure 6 shows this relation for several values of the dimensionless parameter   2LIc/0.  

  

 

 

 

 

 

 

 

 

 

 
 
These plots show that if the critical current (and/or the inductance) is low,   << 1, the self-field 

effects are negligible, and the total flux follows the external field (i.e., ext) faithfully. However, at  > 
1, the function (ext) becomes hysteretic, and at  >> 1, its stable (positive-slope) branches are nearly 
flat, with the total flux values corresponding to Eq. (62). Thus, a superconducting ring closed with a 
high-Ic Josephson junction exhibits a nearly-perfect flux quantization.  

The self-field effects described by Eq. (78) create certain technical problems for SQUID 
magnetometry, but they are the basis for one more useful application of these devices: ultrafast 

dephasing effects due to unavoidable interactions of the electrons with their environment – see, e.g., QM Chapter 
7.
46 The sign before LI would be positive, as in Eq. (5.70), if I was the current flowing into the inductance. 
However, in order to keep the sign in Eq. (76) intact, I should mean the current flowing into the Josephson 
junction, i.e. from the inductance, thus changing the sign of the LI term in Eq. (78). 
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computing. Indeed, Fig. 6 shows that at the values of  modestly above 1 (e.g.,    3), and within a 
certain range of applied field, the SQUID has two stable flux states, which differ by   0 and may 
be used for coding binary 0 and 1. For practical superconductors (like Nb), the time of switching 
between these states (see dashed arrows in Fig. 4) is of the order of a picosecond, while the energy 
dissipated at such event may be as low as ~10-19 J. (This bound is determined not by device’s physics, 
by the fundamental requirement for the energy barrier between the two states to be much higher than the 
thermal fluctuation energy scale kBT, ensuring a sufficiently long information retention time.) While the 
picosecond switching speed may be also achieved with some semiconductor devices, the power 
consumption of the SQUID-based digital devices may be 5 to 6  orders of magnitude lower, enabling 
large-scale digital integrated circuits with 100-GHz-scale clock frequencies. Unfortunately, the range of 
practical applications of these Rapid Single-Flux-Quantum (RSFQ) digital circuits is still very narrow, 
due to the inconvenience of their deep refrigeration to temperatures below Tc.47 

Since we have already got the basic relations (74) and (76) describing the macroscopic quantum 
phenomena in superconductivity, let me mention in brief two other prominent members of this group, 
called the dc and ac Josephson effects. Differentiating Eq. (74) over time, and using the Faraday 
induction law (2), we get48 

        V
e

dt

d
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2



.      (6.79) 

This famous Josephson phase-to-voltage relation should be valid regardless of the way how the voltage 
V has been created,49 so let us apply Eqs. (76) and (79) to the simplest circuit with a non-
superconducting source of dc voltage – see Fig. 7.  

  

 

 

 

 

 

If the current’s magnitude is below the critical value, Eq. (76) allows phase  to have the time-
independent value 

            cc
c

1  if,sin II -I
I

I
  ,    (6.80) 

and hence, according to Eq. (79), a vanishing voltage drop across the junction: V = 0. This dc Josephson 
effect is not quite surprising – indeed, we have postulated from the very beginning that the Josephson 
junction may pass a certain supercurrent. Much more fascinating is the so-called ac Josephson effect that 
occurs if the voltage across the junction has a non-zero average (dc) component V0. For simplicity, let us 

47 For more on that technology, see, e.g., the review paper by P. Bunyk et al., Int. J. High Speed Electron. Syst. 
11, 257 (2001), and references therein. 
48 Since the induced e.m.f. Vind cannot drop on the superconducting path between the Josephson junction 
electrodes 1 and 2 (see Fig. 4c), it should be equal to (-V), where V is the voltage across the junction. 
49 Indeed, it may be also obtained from simple Schrödinger-equation-based arguments – see, e.g., QM Sec. 1.6. 
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assume that this is the only voltage component: V(t) = V0 = const;50 then Eq. (79) may be easily 
integrated to give  = Jt + 0, where  

            0J

2
V

e


 .      (6.81) 

This result, plugged into Eq. (76), shows that the supercurrent oscillates, 

               0Jc sin   tII ,     (6.82) 

with the so-called Josephson frequency J (81) proportional to the applied dc voltage. For practicable 
voltages (above the typical noise level), the frequency fJ = J/2  corresponds to the GHz or even THz 
ranges, because the proportionality coefficient in Eq. (81) is very high: fJ/V0 = e/  483 MHz/V.51 

 An important experimental fact is the universality of this coefficient. For example, in the mid-
1980s, a Stony Brook group led by J. Lukens proved that this factor is material-independent with a 
relative accuracy of at least 10-15. Very few experiments, especially in solid-state physics, have ever 
reached such precision.  This fundamental nature of the Josephson voltage-to-frequency relation (81) 
allows an important application of the ac Josephson effect in metrology. Namely, phase-locking52 the 
Josephson oscillations with an external microwave signal from an atomic frequency standard, one can 
get a more precise dc voltage than from any other source. In NIST and other metrological institutions 
around the globe, this effect is used for the calibration of simpler “secondary” voltage standards that can 
operate at room temperature. 

 

6.6. Inductors, transformers, and ac Kirchhoff laws 

 Let a wire coil (meaning either a single loop illustrated in Fig. 5.4b or a series of such loops, 
such as one of the solenoids shown in Fig. 5.6) have a self-inductance L much larger than that of the 
wires connecting it to other components of our system: ac voltage sources, voltmeters, etc. (Since, 
according to Eq. (5.75), L scales as the square of the number N of wire turns, this condition is easier to 
satisfy at N >> 1.) Then in a quasistatic system consisting of such lumped induction coils, external 
wires, and other lumped circuit elements such as resistors, capacitances, etc., we may neglect the 
electromagnetic induction effects everywhere outside the coil, so the electric field in those external 
regions is potential. Then the voltage V between the coil’s terminals may be defined, just as in 
electrostatics, as the difference of values of   between the terminals, i.e. as the integral 

     rE dV       (6.83) 

between the coil terminals along any path outside the coil. This voltage has to be balanced by the 
induction e.m.f. (2) in the coil, so if the Ohmic resistance of the coil is negligible, we may write 

50 In experiment, this condition is hard to implement, due to the relatively high inductances of the current leads 
providing the dc voltage supply. However, this technical complication does not affect the main conclusion of the 
simple analysis described here. 
51 This 1962 prediction (by the same B. Josephson) was confirmed experimentally – in 1963 indirectly, by phase-
locking of the oscillations (82) with an external microwave signal, and in 1967  explicitly, by the direct detection 
of the emitted microwave radiation. 
52 For a discussion of this very important (and general) effect, see, e.g., CM Sec. 5.4. 
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dt
d

V


 ,      (6.84) 

where  is the magnetic flux in the coil.53  If the flux is due to the current I in the same coil only (i.e. if 
it is magnetically uncoupled from other coils), we may use Eq. (5.70) to get the well-known relation 

          
dt

dI
LV  ,      (6.85) 

where compliance with the Lenz sign rule is achieved by selecting the relations between the assumed 
voltage polarity and the current direction as shown in Fig. 8a. 

 

 

 

 

 
  
 If similar conditions are satisfied for two magnetically coupled coils (Fig. 8b), then, in Eq. (84),  
we need to use Eqs. (5.69) instead, getting  

             
dt

dI
M

dt

dI
LV

dt

dI
M

dt

dI
LV 12

22
21

11 ,  .   (6.86) 

Such systems of inductively coupled coils have numerous applications in electrical engineering and 
physical experiment. Perhaps the most important of them is the ac transformer, in which the coils share 
a common soft-ferromagnetic core of the toroidal (“doughnut”) topology – see Fig. 8c.54 As we already 
know from the discussion in Sec. 5.6, such cores, with  >> 0, “try” to absorb all magnetic field lines, 
so the magnetic flux (t) in the core is nearly the same in each of its cross-sections. With this, Eq. (84) 
yields 

     ,, 2211 dt

d
NV

dt

d
NV





     (6.87) 

so the voltage ratio is completely determined by the ratio N1/N2 of the number of wire turns.  

 Now we may generalize, to the ac current case, the Kirchhoff laws already discussed in Sec. 4.1 
– see Fig. 4.3 reproduced in Fig. 9a below. Let not only inductances but also capacitances and 
resistances of the wires be negligible in comparison with those of the lumped (compact) circuit 
elements, whose list now would include not only resistors and current sources (as in the dc case), but 
also the induction coils (including magnetically coupled ones) and capacitors – see Fig. 9b.  In the 
quasistatic approximation, the current flowing in each wire is conserved, so the “node rule”, i.e. the 1st 
Kirchhoff law (4.7a),  

53 If the resistance is substantial, it may be represented by a separate lumped circuit element (resistor) connected 
in series with the coil. 
54 The first practically acceptable form of this device, called the Stanley transformer, was invented in 1886. In it, 
multi-turn windings could be easily mounted onto a toroidal ferromagnetic (at that time, silicon-steel-plate) core.  

Fig. 6.8. Some lumped ac circuit 
elements: (a) an induction coil, 
(b) two inductively coupled 
coils, and (c) an ac transformer. 
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           0
j

jI .      (6.88a) 

remains valid. Also, if the electromagnetic induction effect is restricted to the interior of lumped 
induction coils as discussed above, the voltage drops Vk across each circuit element may be still 
represented, just as in dc circuits, with differences between the adjacent node potentials. As a result,  the 
“loop rule”, i.e. 2nd Kirchhoff law (4.7b), 
          0

k
kV ,      (6.88b) 

is also valid. Now, in contrast to the dc case, Eqs. (88) may be the (ordinary) differential equations. 
However, if all circuit elements are linear (as in the examples presented in Fig. 9b), these equations may 
be readily reduced to linear algebraic equations, using the Fourier expansion. (In the common case of 
sinusoidal ac sources, the final stage of the Fourier series summation is unnecessary.) 

 

 

 

 

 

 

 

 
  My teaching experience shows that the potential readers of these notes are well familiar with the 
application of Eqs. (88) to such problems from their undergraduate studies, so I will save time/space by 
skipping discussions of even the simplest examples of such circuits, such as LC, LR, RC, and LRC  loops 
and periodic structures.55 However, since such problems are very important for practice, my sincere 
advice to the reader is to carry out a self-test by solving a few problems of this type, provided in Sec. 9 
below, and if they cause any difficulty, pursue some remedial reading. 

 

6.7. Displacement currents 

 Electromagnetic induction is not the only new effect arising in non-stationary electrodynamics. 
Indeed, though Eqs. (21) are adequate for the description of quasistatic phenomena, a deeper analysis 
shows that one of these equations, namely   H = j, cannot be exact. To see that, let us take the 
divergence of both sides: 
                 jH   .     (6.89) 

But, as the divergence of any curl,56 the left-hand side should equal zero. Hence we get 

55 Curiously enough, these effects include wave propagation in periodic LC circuits, even within the quasistatic 
approximation! However, the speed 1/(LC)1/2 of these waves in lumped circuits is much lower than the speed 
1/()1/2 of electromagnetic waves in the surrounding medium – see Sec. 8 below. 
56 Again, see MA Eq. (11.2) – if you need it. 

Fig. 6.9. (a) A typical quasistatic ac circuit obeying the 
Kirchhoff laws, and (b) the simplest lumped circuit 
elements. 
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           0 j .      (6.90) 

This is fine in statics, but in dynamics, this equation forbids any charge accumulation, because 
according to the continuity relation (4.5),  

        
t





j .      (6.91) 

 This discrepancy had been recognized by James Clerk Maxwell who suggested, in the 1860s, a 
way out of this contradiction. If we generalize the equation for   H by adding to the term j (that 
describes the density of real electric currents) the so-called displacement current density term,  

          
t




D
jd ,      (6.92) 

(which of course vanishes in statics), then the equation takes the form 

         
t




D
jjjH d .     (6.93) 

In this case, due to the equation (3.22),   D = ,  the divergence of the right-hand side equals zero due 
to the continuity equation (92), and the discrepancy is removed. This incredible theoretical feat,57 
confirmed by the 1886 experiments carried out by Heinrich Hertz (see below) was perhaps the main 
triumph of theoretical physics of the 19th century. 

 Maxwell’s displacement current concept, expressed by Eq. (93), is so important that it is 
worthwhile to have one more look at its derivation using a particular model shown in Fig. 10.58  

 

 

 

 

 

 

 

 Neglecting the fringe field effects, we may use Eq. (4.1) to describe the relationship between the 
current I flowing through the wires and the electric charge Q of the capacitor:59  

           I
dt

dQ
 .      (6.94) 

57 It looks deceivingly simple now – after the fact, and with the current mathematical tools (especially the del 
operator), which are much superior to those that were available to J. Maxwell. 
58 No physicist should be ashamed of doing this. For example, J. Maxwell’s main book, A Treatise of Electricity 
and Magnetism, is full of drawings of plane capacitors, inductance coils, and voltmeters. More generally, the 
whole history of science teaches us that snobbery regarding particular examples and practical systems is a 
virtually certain path toward producing nothing of either practical value or fundamental importance. 
59 This is of course just the integral form of the continuity equation (91). 
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Fig. 6.10. The Ampère law applied 
to capacitor recharging. 
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Now let us consider a closed contour C drawn around the wire. (Solid points in Fig. 10 show the places 
where the contour intercepts the plane of the drawing.) This contour may be seen as the line limiting 
either surface S1 (crossed by the wire) or surface S2 (avoiding such crossing by passing through the 
capacitor’s gap). Applying the macroscopic Ampère law (5.116) to the former surface, we get 

            
C S

Irdjd n

1

2rH ,     (6.95) 

while for the latter surface the same law gives a different result, 

            
C S

rdjd n 0

2

2rH ,  [WRONG!]  (6.96) 

for the same integral. This is just an integral-form manifestation of the discrepancy outlined above, but it 
shows clearly how serious the problem is (or rather it was – before Maxwell). 

  Now let us see how the introduction of the displacement currents saves the day, considering for 
the sake of simplicity a plane capacitor of area A, with a small and constant electrode spacing. In this 
case, as we already know, the field inside it is uniform, with D = , so the total capacitor’s charge Q = 
A = AD, and the current (94) may be represented as 

              
dt

dD
A

dt

dQ
I  .     (6.97) 

So, instead of the wrong Eq. (96), the Ampère law modified following Eq. (93), gives 

    ,)(
22

22
d IA

dt

dD
rd

t

D
rdjd

SSC

n
n 




  rH    (6.98) 

i.e. the Ampère integral becomes independent of the choice of the surface limited by the contour C – as 
it has to be. 

 

6.8. Finally, the full Maxwell equation system 

. This is a very special moment in this course: with the displacement currents in, i.e. with the 
replacement of Eq. (5.107) with Eq. (93), we have finally arrived at the full set of macroscopic Maxwell 
equations for time-dependent fields,60 

          ,,0 j
D

H
B

E 








tt

     (6.99a) 

      ,0 ,  BD        (6.99b) 

whose validity has been confirmed by an enormous body of experimental data. Indeed, despite 
numerous efforts, no other corrections (e.g., additional terms) to the Maxwell equations have been ever 
found, and these equations are still considered exact within the range of their validity, i.e. while the 
electric and magnetic fields may be considered classically. Moreover, even in quantum theory, these 

60 This vector form of the Maxwell equations, magnificent in its symmetry and simplicity, was developed in 
1884-85 by Oliver  Heaviside, with substantial contributions by H. Lorentz. (The original Maxwell’s result circa 
1864 looked like a system of 20 equations for Cartesian components of the vector and scalar potentials.)  

Macroscopic 
Maxwell 
equations 
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equations are believed to be strictly valid as relations between the Heisenberg operators of the electric 
and magnetic fields.61 (Note that the microscopic Maxwell equations for the genuine fields E and B may 
be formally obtained from Eqs. (99) by the substitutions D = 0E and H = B/0, and the simultaneous 
replacement of the stand-alone charge and current densities on their right-hand sides with the full ones.) 

 Perhaps the most striking feature of these equations is that, even in the absence of stand-alone 
charges and currents inside the region of our interest, when the equations become fully homogeneous,  

              ,,
tt 








D

H
B

E               (6.100a) 

              ,0,0  BD                (6.100b) 

they still describe something very non-trivial: electromagnetic waves, including light. The physics of the 
waves may be clearly seen from Eqs. (100a): according to the first of them, the change of the magnetic 
field in time creates a vortex-like (divergence-free) electric field. On the other hand, the second of Eqs. 
(100a) describes how the changing electric field, in turn, creates a vortex-like magnetic field. So-
coupled electric and magnetic fields may propagate as waves – even very far from their sources. 

 We will carry out a detailed quantitative analysis of the waves in the next chapter, and here I will 
only use this notion to make good on the promise given in Sec. 3, namely to establish the condition of 
validity of the quasistatic approximation (21). For simplicity, let us consider an electromagnetic wave 
with a time period T, velocity v, and hence the wavelength62  = vT  in a linear medium with D = E, B = 

H. Then the magnitude of the left-hand side of the first of Eqs. (100a) is of the order of E/ = E/vT, 

while that of its right-hand side may be estimated as B/T  ~ H/T. Using similar estimates for the second 
of Eqs. (100a), we arrive at the following two requirements:63 

                  .
1

~~
v

v
H

E


      (6.101) 

To ensure the compatibility of these two relations, the wave’s speed should satisfy the estimate 

          
  2/1

1
~


v ,      (6.102) 

reduced to v ~ 1/(00)
1/2  c in free space, while the ratio of the electric and magnetic field amplitudes 

should be of the following order: 

     
 

2/1

2/1

1
~~ 











v

H

E
.    (6.103) 

(In the next chapter we will see that for plane electromagnetic waves, these results are exact.) 

 Now, let a system of a linear size ~a carry currents producing a certain magnetic field H. Then, 
according to Eqs. (100a), their magnetic field Faraday-induces the electric field of magnitude E ~ 
Ha/T,  whose displacement currents, in turn, produce an additional magnetic field with magnitude 

61 See, e.g., QM Chapter 9. 
62 Let me hope the reader knows that the relation  = vT  is universal and valid for waves of any nature – see, e.g., 
CM Chapter 6. (In the case of substantial dispersion, v means the phase velocity.) 
63 The fact that T  has canceled, shows that these estimates are valid for waves of any frequency.   
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.   (6.104) 

Hence, the displacement current effects are negligible for a system of size a << .64  

 In particular, the quasistatic picture of the skin effect, discussed in Sec. 3, is valid while the skin  
depth (33) remains much smaller than the corresponding wavelength, 
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


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
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 v

vT .    (6.105) 

The wavelength decreases with the frequency as 1/, i.e. faster than s  1/1/2, so they become 
comparable at the crossover frequency 

                
0

r 



  ,      (6.106) 

which is nothing else than the reciprocal charge relaxation time (4.10). As was discussed in Sec. 4.2, for 
good metals this frequency is extremely high (about 1018 s-1), so the validity of Eq. (33) is typically 
limited by the anomalous skin effect (which was briefly discussed in Sec. 3), rather than the wave 
effects. 

 Before going after the analysis of the full Maxwell equations for particular situations (that will 
be the main goal of the next chapters of this course), let us have a look at the energy balance they yield 
for a certain volume V, which may include both some charged particles and the electromagnetic field. 
Since, according to Eq. (5.10), the magnetic field performs no work on charged particles even if they 
move, the total power P  being transferred from the field to the particles inside the volume is due to the 
electric field alone – see Eq. (4.38): 

            Ej   ppP with  ,3

V

rd ,    (6.107) 

Expressing j from the corresponding Maxwell equation of the system (99), we get 

              .)( 3 
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t

D
EHE P     (6.108) 

Let us pause here for a second, and transform the divergence of EH, using the well-known vector 
algebra identity:65 
               HEEHHE   .    (6.109) 

The last term on the right-hand side of this equality is exactly the first term in the square brackets of Eq. 
(108), so we may rewrite that formula as 

                 .3 









V

rd
t

D
EEHHE P    (6.110) 

64 Let me emphasize that if this condition is not fulfilled, the lumped-circuit representation of the system (see Fig. 
9 and its discussion) is typically inadequate – besides some special cases, to be discussed in the next chapter. 
65 See, e.g., MA Eq. (11.7) with f = E and g = H. 
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However, according to the Maxwell equation for   E, this curl is equal to –B/t, so the second term 
in the square brackets of Eq. (110) equals –HB/t and, according to Eq. (14), is just the (minus) time 
derivative of the magnetic energy per unit volume. Similarly, according to Eq. (3.76), the third term 
under the integral is the (minus) time derivative of the electric energy per unit volume. Finally, we can 
use the divergence theorem to transform the integral of the first term in the square brackets to a 2D 
integral over the surface S limiting the volume V. As a result, we get the so-called Poynting theorem66 
for the power balance in the system: 

     023 








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 
S

n

V

rdSrd
t

u
p .    (6.111) 

Here u is the density of the total (electric plus magnetic) energy of the electromagnetic field, with 

             BHDE  u                (6.112) 

– just the sum of the expressions given by Eqs. (3.76) and (14). For the particular case of an isotropic, 
linear, and dispersion-free medium, with D(t) = E(t), B(t) = H(t), Eq. (112) yields 

               



2222

22 BE
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





BHDE
.              (6.113) 

 Another key notion participating in Eq. (111) is the Poynting vector, defined as67 

         HES  .      (6.114) 

The first integral in Eq. (111) is evidently the net change of the energy of the system (particles + field) 
per unit time, so the second (surface) integral has to be the power flowing out from the system through 
the surface. As a result, it is tempting to interpret the Poynting vector S locally, as the power flow 
density at the given point. In many cases, such a local interpretation of vector S is legitimate; however, 
in other cases, it may lead to wrong conclusions. Indeed, let us consider the simple system shown in Fig. 
11: a charged plane capacitor placed into a static and uniform external magnetic field, so that the electric 
and magnetic fields are mutually perpendicular.  

  

 

 

 

 In this static situation, with no charges moving, both p and /t are equal to zero, and there 
should be no power flow in the system. However, Eq. (114) shows that the Poynting vector is not equal 

66 It is named after John Henry Poynting for his work published in 1884, though this fact was independently 
discovered by O. Heaviside in 1885 in a simpler form, while a similar result for the intensity of mechanical elastic 
waves had been obtained earlier (in 1874) by Nikolay Alekseevich Umov – see, e.g., CM Sec. 7.7. 
67 Actually, an addition to S of the curl of an arbitrary vector function f(r, t) does not change Eq. (111).  Indeed, 
we may use the divergence theorem to transform the corresponding change of the surface integral in Eq. (111) to a 
volume integral of scalar function (f) that equals zero at any point – see, e.g., MA Eq. (11.2). 
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Fig. 6.11. The Poynting vector paradox. 
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to zero inside the capacitor, being directed as the red arrows in Fig. 11 show. From the point of view of 
the only unambiguous corollary of the Maxwell equations, Eq. (111), there is no contradiction here, 
because the fluxes of the vector S through the side boundaries of the volume shaded in Fig. 11 are equal 
and opposite (and they are zero for other faces of this rectilinear volume), so the total flux of the 
Poynting vector through the volume boundary equals zero, as it should. It is, however, useful to recall 
this example each time before giving a local interpretation of the vector S. 

 The paradox illustrated in Fig. 11 is closely related to the radiation recoil effects, due to the 
electromagnetic field’s momentum – more exactly, it linear momentum. Indeed, acting as at the 
Poynting theorem derivation, it is straightforward to use the microscopic Maxwell equations68 to prove 
that, neglecting the boundary effects, the vector sum of the mechanical linear momentum of the particles 
in an arbitrary volume, and the integral of the following vector, 

             
2c

S
g  ,      (6.115) 

over the same volume, is conserved, enabling an interpretation of g as the density of the linear 
momentum of the electromagnetic field. (It will be more convenient for me to prove this relation, and 
discuss the related issues, in Sec. 9.8, using the 4-vector formalism of special relativity.) Due to this 
conservation, if some static fields coupled to mechanical bodies are suddenly decoupled from them and 
are allowed to propagate in space, i.e. to change their local integral of g, they give the bodies an equal 
and opposite impulse of force. 

 Finally, to complete our initial discussion of the Maxwell equations,69 let us rewrite them in terms of 
potentials A and , because this is more convenient for the solution of some (though not all!) problems. 
Even when dealing with the system (99) of the more general Maxwell equations than discussed before, 
Eqs. (7) are still used for the definition of the potentials. It is straightforward to verify that with these 
definitions, the two homogeneous Maxwell equations (99b) are satisfied automatically. Plugging Eqs. 
(7) into the inhomogeneous equations (99a), and considering, for simplicity, a linear, uniform medium 
with frequency-independent  and , we get 
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 This is a more complex result than what we would like to get. However, let us select a special 
gauge, which is frequently called (especially for the free space case, when v = c) the Lorenz gauge 
condition70 

              ,0




t

A      (6.117) 

68 The situation with the macroscopic Maxwell equations is more complex, and is still a subject of some lingering 
discussions (usually called the Abraham-Minkowski controversy, despite contributions by many other scientists 
including A. Einstein), because of the ambiguity of the momentum’s division between its field and particle 
components – see, e.g., the review paper by R. Pfeiffer et al., Rev. Mod. Phys. 79, 1197 (2007). 
69 We will return to their general discussion (in particular, to the analytical mechanics of the electromagnetic 
field, and its stress tensor) in Sec. 9.8, after we get equipped with the special relativity theory. 
70 This condition, named after Ludwig Lorenz, should not be confused with the so-called Lorentz invariance 
condition of relativity, due to Hendrik Lorentz, to be discussed in Sec. 9.4. (Note the last names’ spelling.) 
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which is a natural generalization of the Coulomb gauge (5.48) to time-dependent phenomena. With this 
condition, Eqs. (107) are reduced to a simpler, beautifully symmetric form: 
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   (6.118) 

where v2  1/. Note that these equations are essentially a set of 4 similar equations for 4 scalar 
functions (namely,  and three Cartesian components of A) and thus clearly invite the 4-component 
vector formalism of the relativity theory; it will be discussed in Chapter 9.71 

 If  and A depend on just one spatial coordinate, say z, then in a region without field sources:  
= 0, j = 0,  Eqs. (118) are reduced to the following 1D wave equations 
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It is well known72 that these equations describe waves, with arbitrary waveforms (including sinusoidal 
waves of any frequency), propagating with the same speed v in either of the z-axis directions.  
According to the definitions of the constants 0 and 0, in free space, v is just the speed of light: 

               
 

cv 
2/1

00

1


.     (6.120) 

Historically, the experimental observation of relatively low-frequency (GHz-scale) electromagnetic 
waves, with their speed equal to that of light, was the decisive proof (actually, a real triumph!) of the 
Maxwell theory and his prediction of such waves.73 This was first accomplished in 1886 by Heinrich 
Rudolf Hertz, using the electronic circuits and antennas he had invented for this purpose.  

 Before proceeding to the detailed analysis of these waves in the following chapters, let me 
mention that the invariance of Eqs. (119) with respect to the wave propagation direction is not 
occasional; it is just a manifestation of one more general property of the Maxwell equations (99), called 
the Lorentz reciprocity. We have already met its simplest example, for time-independent electrostatic 
fields, in one of the problems of Chapter 1. In a much more general case when two monochromatic 
electromagnetic fields of the same frequency, with complex amplitudes, say, {E1(r), H1(r)} and {E2(r), 

71 Here I have to mention in passing the so-called Hertz vector potentials e and m (whose introduction may be 
traced back at least to the 1904 work by E. Whittaker). They may be defined by the following relations:  

em
e 1

, ΠΠ
Π

A 



 



t

, 

which make the Lorentz gauge condition (117) automatically satisfied. These potentials are especially convenient 
for the solution of problems in which the electromagnetic field is induced by sources characterized by field-
independent electric and magnetic polarizations P and M – rather than by field-independent charge and current 
densities  and j. Indeed, it is straightforward to check that both e and m satisfy the equations similar to Eqs. 
(118), but with their right-hand sides equal to, respectively, –P and –M. Unfortunately, I would not have 
time/space to discuss such problems and have to refer interested readers elsewhere – for example, to a classical 
text by J. Stratton, Electromagnetic Theory, Adams Press, 2008. 
72 See, e.g., CM Secs. 6.3-6.4 and 7.7-7.8. 
73 By that time, the speed of light (estimated very reasonably by Ole Rømer as early as 1676) has been 
experimentally measured, by Hippolyte Fizeau and then Léon Foucault, with an accuracy better than 1%. 
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H2(r)} are induced, separately, by stand-alone currents with complex amplitudes j1(r) and j2(r) of their 
densities. Then it may be proved74 that if the medium is linear and either isotropic or even anisotropic 
but with symmetric tensors jj’ and jj’, then for any volume V limited by a closed surface S, 

                      rdrd
S

n
V

2
1221

3
1221   HEHEEjEj .   (6.121) 

 This property implies, in particular, that the waves propagate similarly in two reciprocal 
directions even in situations much more general than the 1D case described by Eqs. (119). For some 
important practical applications (e.g., for low-noise amplifiers and detectors) such reciprocity is rather 
inconvenient. Fortunately, Eq. (121) may be violated in anisotropic media with asymmetric tensors jj’ 

and/or jj’. The simplest case of such an anisotropy, the Faraday rotation of the wave polarization in 
plasma, will be discussed in the next chapter. 

 

6.9. Exercise problems 

6.1. Prove that the electromagnetic induction e.m.f. Vind in a conducting loop may be measured 
as shown on two panels of Fig. 1: 

 (i) by measuring the current I = Vind/R induced in the loop closed with an Ohmic resistor R, or 
 (ii) using a voltmeter inserted into the loop. 
 
 6.2. The flux  of the magnetic field that pierces a resistive ring 
is being changed in time, while the field outside of the ring is negligibly 
low. A voltmeter is connected to a part of the ring, as shown in the 
figure on the right. What would the voltmeter show? 
  

 6.3. A weak constant magnetic field B is applied to an axially-symmetric permanent magnet with 
the dipole magnetic moment m directed along its axis, rapidly rotating about the same axis, with an 
angular momentum L. Calculate the electric field resulting from the magnetic field’s application, and 
formulate the conditions of your result’s validity. 
 
 6.4. The similarity of Eq. (5.53) obtained in Sec. 5.3 without any use of the Faraday induction 
law, and Eq. (5.54) proved in Sec. 2 of this chapter using it, implies that the law may be derived from 
magnetostatics. Prove that this is indeed true for a particular case of a current loop being slowly 
deformed in a fixed magnetic field B(r). 
 
 6.5. Could Problem 5.2 (i.e. the semi-quantitative analysis of the 
mechanical stability of the system shown in the figure on the right) be solved 
using potential energy arguments? 
  

74 It will be more convenient for me to give this proof (or rather offer it for the reader’s exercise :-) in the next 
chapter, after we have discussed the Fourier expansion of the fields in linear media. 

)(Φ t

?V

1I

2I



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 6                 Page 35 of 38 

 6.6. Use energy arguments to calculate the pressure exerted by the magnetic field B inside a long 
uniform solenoid of length l, and a cross-section of area A << l2, with N >> l/A1/2 >> 1 turns, on its 
“walls” (windings), and the forces exerted by the field on the solenoid’s ends, for two cases: 

 (i) the current  through the solenoid is fixed by an external source, and 
 (ii) after the initial current setting, the ends of the solenoid’s wire, with negligible resistance, are 
connected, so that it continues to carry a non-zero current.  

 Compare the results, and give a physical interpretation of the direction of these forces. 
 
 6.7. The electromagnetic railgun is a 
projectile launch system consisting of two 
long parallel conducting rails and a sliding 
conducting projectile shorting the current I 
fed into the system by a powerful source – 
see panel (a) in the figure on the right. 
Calculate the force exerted on the projectile, 
using two approaches: 

 (i) by a direct calculation, assuming that the cross-section of the system has the simple shape 
shown on panel (b) of the figure above, with t << w, l, and 
 (ii) by using the energy balance (for simplicity, neglecting the Ohmic resistances in the system), 

and compare the results. 
 
6.8. A uniform, static magnetic field B is applied along the axis of a 

long thin pipe of a radius R and wall thickness  << R, made of a material 
with Ohmic conductivity . A sphere of mass M and radius R’ << R, made 
of a linear magnetic material with permeability  >> 0, is launched, with 
an initial velocity v0, to fly ballistically along the pipe’s axis – see the 
figure on the right. Use the quasistatic approximation to calculate the 
distance the sphere would pass before it stops. Formulate the conditions of validity of your result.  
 
 6.9.  A planar thin-wire loop with inductance L, resistance R, and area A is launched to fly 
ballistically from field-free space into a region where the magnetic field B is constant. Calculate the 
final change of the kinetic energy of the loop, assuming that the time of its entry into the field region is 
much shorter than the relaxation time constant L/R and that the loop cannot rotate.  
 
 6.10. AC current of frequency  is being passed through a long uniform wire with a round cross-
section of a radius R comparable with the skin depth s. In the quasistatic approximation, find the 
current’s distribution across the cross-section, and analyze it in the limits R << s and  s << R. Calculate 
the effective ac resistance of the wire (per unit length) in these two limits. 
 
 6.11. A long round cylinder of radius R, made of a uniform conductor with an Ohmic 
conductivity  and magnetic permeability , is placed into a uniform ac magnetic field Hext(t) = 
H0cost directed along its symmetry axis. Calculate the spatial distribution of the magnetic field’s 
amplitude and, in particular, its value on the cylinder’s axis. Spell out the last result in the limits of 
relatively small and large R. 
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 6.12.* Define and calculate an appropriate spatial-temporal Green’s function for Eq. (25), and 
then use this function to analyze the dynamics of propagation of the external magnetic field that is 
suddenly turned on at t = 0 and then kept constant: 

 








,0at  ,

,0at    ,0
,0

0 tH

t
txH  

into an Ohmic conductor occupying the semi-space x > 0 – see Fig. 2. 

 Hint: Try to use a function proportional to exp{–(x–x’)2/2(x)2}, with a suitable time 
dependence of the parameter x and a properly selected pre-exponential factor. 
 
 6.13. Solve the previous problem using the variable separation method, and compare the results. 
 

 6.14.  Calculate the average force exerted by ac current I(t) of 
amplitude I0, flowing in a planar round coil of radius R, on a conducting 
sphere with a much smaller radius R’ (which is still much larger than the 
skin depth s at the ac current’s frequency), located on the loop’s axis, at 
distance z from its center – see the figure on the right. 
 

 6.15. A small planar wire loop carrying current I is located relatively 
far from a planar surface of a superconductor. Within the coarse-grain (ideal-diamagnetic) description of 
the Meissner-Ochsenfeld effect, calculate: 

 (i) the energy of the loop-superconductor interaction, 
 (ii) the force and torque acting on the loop, and 
   (iii) the distribution of supercurrents on the superconductor surface. 
 
 6.16.  A straight uniform magnet of length 2l, cross-section area A 
<< l2, and mass m, with a permanent longitudinal magnetization M0, is 
placed over a horizontal surface of a superconductor – see the figure on the 
right. Within the ideal-diamagnet description of superconductivity, find the 
stable equilibrium position of the magnet. 
 
 6.17. A plane superconducting wire loop of area A and 
inductance L may turn, without static friction, about a horizontal axis 0 
(in the figure on the right, normal to the plane of the drawing) passing 
through its center of mass. Initially, the loop had been horizontal (with 
 = 0) and carried supercurrent I0 in such a direction that its magnetic 
dipole vector had been directed down. Then a uniform magnetic field B, 
directed vertically up, was applied. Using the ideal-diamagnet description of the Meissner-Ochsenfeld 
effect, find all possible equilibrium positions of the loop, analyze their stability, and give a physical 
interpretation of the results. 
 
 6.18. Use the London equation to analyze the penetration of a uniform external magnetic field 
into a thin (t ~ L) planar superconducting film whose plane is parallel to the field.  
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 6.19. Use the London equation to calculate the distribution of supercurrent density j inside a long 
straight superconducting wire with a circular cross-section of radius R ~ L, carrying current I.  
  
 6.20. Use the London equation to calculate the 
inductance (per unit length) of a long uniform superconducting 
strip placed close to the surface of a similar superconductor – 
see the figure on the right, which shows the structure’s cross-
section. 
 
 6.21. Calculate the inductance (per unit length) of a superconducting 
cable with the round cross-section shown in the figure on the right, in the 
following limits: 

  (i) L << a, b, c – b, and 
 (ii) a << L << b, c – b. 
 
 6.22. Use the London equation to analyze the magnetic field shielding by a superconducting thin 
film of thickness t << L, by calculating the penetration of the field induced by current I in a thin wire 
that runs parallel to a wide planar thin film, at a distance d >> t from it, into the space behind the film. 
 
 6.23. Assuming that the magnetic monopole does exist and has a magnetic charge qm, calculate 
the change I of current in a superconducting loop due to a passage of a single monopole through its 
area. Evaluate I for a monopole with the charge conjectured by P. Dirac, qm = nq0  n(2/e) with an 
integer n, and compare the result with the magnetic flux quantum 0 (62). Review your result for a 
similar passage of a single quasi-monopole magnetic charge formed at one of the ends of a permanent-
magnet needle – see, e.g., Fig. 19 and the accompanying discussion.  

 Hint: To simplify calculations, you may consider the monopole’s passage along the symmetry 
axis of a round ring of radius R, made of a superconducting wire with a cross-section’s area A satisfying 
the conditions  L

2 << A << R2. 
 
 6.24. Use the Ginzburg-Landau equations (54) and (63) to calculate the largest (“critical”) value 
of supercurrent in a uniform superconducting wire with a cross-section area much smaller than L

2. 
 
 6.25. Use the discussion of a long straight Abrikosov vortex, in the limit  << L, in Sec. 5 to 
prove Eqs. (71)-(72) for its energy per unit length and the first critical field. 
 
 6.26.* Use the Ginzburg-Landau equations (54) and (63) to prove the Josephson relation (76) for 
a small superconducting weak link, and express its critical current Ic via the Ohmic resistance Rn of the 
same weak link in its normal state. 
 
 6.27. Use Eqs. (76) and (79) to calculate the coupling energy of a Josephson junction and the full 
potential energy of the SQUID shown in Fig. 4c. 
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 6.28. Analyze the possibility of wave propagation in a long 
uniform chain of lumped inductances and capacitances – see the figure 
on the right. 

 Hint: Readers without prior experience in electromagnetic 
wave analysis may like to use a substantial analogy between this effect and mechanical waves in a 1D 
chain of elastically coupled particles.75 
 
 6.29. A sinusoidal e.m.f. of amplitude V0 and frequency  
is applied to an end of a long chain of similar lumped resistors 
and capacitors, shown in the figure on the right. Calculate the 
law of decay of the ac voltage amplitude along the chain. 

 
6.30. As was discussed in Sec. 7, the displacement current concept allows one to extend the 

Ampère law to time-dependent processes as  
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We also have seen that this generalization makes the integral H  dr over an external contour, such as 
the one shown in Fig. 10, independent of the choice of the surface S limited by the 
contour. However, it may look like the situation is different for a contour drawn 
inside a capacitor – see the figure on the right. Indeed, if the contour’s size is 
much larger than the capacitor’s thickness, the magnetic field H created by the 
linear current I on the contour’s line is virtually the same as that of a continuous 
wire, and hence the integral H  dr along the contour apparently does not depend 
on its area, while the magnetic flux Dnd

2r does, so the equation displayed above 
seems invalid. (The current IS piercing this contour evidently equals zero.) Resolve this paradox, for 
simplicity considering an axially-symmetric system. 
 
 6.31. A straight, uniform, long wire with a circular cross-section of radius R, made of an Ohmic 
conductor with conductivity , carries dc current I. Calculate the flux of the Poynting vector through its 
surface, and compare it with the Joule rate of energy dissipation. 
 

75 See, e.g., CM Sec. 6.3. 
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