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Chapter 8. Radiation, Scattering, Interference, and Diffraction 

This chapter continues the discussion of electromagnetic wave propagation, now focusing on the results 
of wave incidence on various objects of more complex shapes. Depending on the shape, the resulting 
wave pattern is called either “scattering”, or “diffraction”, or “interference”. However, as the reader 
will see, the boundaries between these effects may be blurry, and their basic mathematical description 
may be conveniently based on the same key calculation – the electric-dipole radiation of a spherical 
wave by a localized source. Naturally, I will start the chapter from this calculation, deriving it from an 
even more general result – the “retarded-potential” solution of the Maxwell equations. 

 

8.1. Retarded potentials 

 Let us start by finding the general solution of the macroscopic Maxwell equations (6.99) in a 
dispersion-free, linear, uniform, isotropic medium characterized by frequency-independent real  and .1 
The easiest way to perform this calculation is to use the scalar () and vector (A) potentials defined by 
Eqs. (6.7): 
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As was discussed in Sec. 6.8, by imposing upon the potentials the Lorenz gauge condition (6.117),  
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which does not affect the fields E and B, the Maxwell equations are reduced to a pair of very similar, 
simple equations (6.118) for the potentials: 
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 Let us find the general solution of these equations, for now thinking of the densities (r, t) and 
j(r, t) of the stand-alone charges and currents as known functions. (This will not prevent the results from 
being valid for the cases when (r, t) and j(r, t) should be calculated self-consistently.) The idea of such 
a solution may be borrowed from electro- and magnetostatics. Indeed, for the stationary case (/t = 0), 
the solutions of Eqs. (8.3) are given by a ready generalization of, respectively, Eqs. (1.38) and (5.28) to 
a uniform, linear medium: 

1 When necessary (e.g., at the discussion of the Cherenkov radiation in Sec. 10.5), it will be not too hard to 
generalize these results to a dispersive medium. 
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As we know, these expressions may be derived by, first, calculating the potential of a point source, and 
then using the linear superposition principle for a system of such sources. 

 Let us do the same for the time-dependent case, starting from the field induced by a time-
dependent point charge at the origin:2 
              )()(),( rr  tqt  ,     (8.5) 

In this case, Eq. (3a) is homogeneous everywhere but the origin: 
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Due to the spherical symmetry of the problem, it is natural to look for a spherically symmetric solution 
to this equation.3 Thus, we may simplify the Laplace operator correspondingly (as was repeatedly done 
earlier in this course), so Eq. (6) becomes 
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By introducing a new variable (r, t)  r(r, t), Eq. (7) is reduced to the 1D wave equation 
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From discussions in Chapter 7,4 we know that its general solution may be represented as 
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where in and out are (so far) arbitrary functions of one variable. The physical sense of out = out/r is a 
spherical wave propagating from our source (located at r = 0) to outer space, i.e. exactly the solution we 
are looking for. On the other hand, in = in/r describes a spherical wave that could be created by some 
distant spherically-symmetric source, that converged exactly on our charge located at the origin – 
evidently not the effect we want to consider here. Discarding this term, and returning to  = /r, we get  
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 In order to calculate the function out, let us consider the solution (10) at distances r so small (r 
<< vt) that the time-derivative term in Eq. (3a), with the right-hand side (5),  
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2 Admittedly, this expression does not satisfy the continuity equation (4.5), but this deficiency will be corrected 
imminently, at the linear superposition stage – see Eq. (17) below. 
3 Let me emphasize that this is not the general solution to Eq. (6). For example, it does not describe the possible 
waves created by other sources, that pass by the considered charge q(t). However, such fields are irrelevant to our 
current task: to calculate the field induced by the charge q(t). The solution becomes general when it is integrated 
(as it will be) over all relevant charges. 
4 See also CM Sec. 6.3.  



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 8                 Page 3 of 38 

is much smaller than the spatial derivative term (which diverges at r  0) . Then Eq. (11) is reduced to 
the Poisson equation, whose solution (4a), for the source (5), is 
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Now requiring the two solutions, Eqs. (10) and (12), to coincide at r << vt, we get out(t) = q(t)/4r, so 
Eq. (10) becomes 
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 Just as was repeatedly done in statics, this result may be readily generalized for the arbitrary 
position r’ of the point charge: 
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where R is the distance between the field observation point r and the source position point r’, i.e. the 
length of the vector, 
         , 'rr R        (8.15) 

connecting these points  – see Fig. 1.   

 

 

 

 

 

 

Obviously, now Eq. (13) becomes 
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Finally, we may use the linear superposition principle to write, for the arbitrary charge distribution, 

               





 

R

r'd

v

R
t't

3

,
4

1
),( rr 


 ,    (8.17a) 

where the integration is extended over all charges of the system under analysis. Solving Eq. (4b) 
absolutely similarly, for the vector potential we get5 
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5 As should be clear from the analogy of Eqs. (17) with their stationary forms (4), which were discussed, 
respectively, in Chapters 1 and 5, in the Gaussian units the retarded potential formulas are valid with the 
coefficient 1/4 dropped in Eq. (17a), and replaced with 1/c in Eq. (17b). 
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(Now nothing prevents the functions (r, t) and j(r, t) from satisfying the continuity equation.) 

 The solutions expressed by Eqs. (17) are traditionally called the retarded potentials, the name 
signifying the fact that the observed fields are “retarded” (in the meaning “delayed”) in time by t = R/v 
relative to the source variations – physically, because of the finite speed v of the electromagnetic wave 
propagation. Note that, very remarkably, these simple expressions are exact solutions of the 
macroscopic Maxwell equations (again, in a uniform, linear, dispersion-free medium) for an arbitrary 
distribution of stand-alone charges and currents. They also may be considered as the general solutions 
of these equations, provided that the integration has been extended over all field sources in the Universe 
– or at least over those ones that affect our observations.  

Note also that due to the mathematical similarity of the microscopic and macroscopic Maxwell 
equations, Eqs. (17) are valid, with the coefficient replacement   0 and   0, for the exact, rather 
than the macroscopic fields, provided that the functions (r, t) and j(r, t) describe not only stand-alone 
but all charges and currents in the system. (Alternatively, this statement may be formulated as the 
validity of Eqs. (17), with the same coefficient replacement, in free space.) 

 Finally, note that Eqs. (17) may be plugged into Eqs. (1), giving (after an explicit differentiation) 
the so-called Jefimenko equations6 for fields E and B – similar in structure to Eqs. (17), but more 
cumbersome. Conceptually, the existence of such equations is good news, because they are free from the 
gauge ambiguity pertinent to the potentials  and A. However, the practical value of these explicit 
expressions for the fields is not overly high: for all applications I am aware of, it is easier to use Eqs. 
(17) to calculate the particular expressions for the potentials first, and only then calculate the fields from 
Eqs. (1). Let me now present an (arguably, the most important) example of this approach. 

 

8.2. Electric dipole radiation 

 Consider again the problem that was discussed in electrostatics (Sec. 3.1), namely the field of a 
localized source with linear dimensions a << r (see Fig. 1 again), but now with time-dependent charge 
and/or current distributions. Using all the arguments of that discussion, in particular the condition 
expressed by Eq. (3.1), r’ << r, we may apply the Taylor expansion (3.3), truncated to two leading 
terms, 
      ...)()()(  rrrR f'ff  ,    (8.18) 

to the scalar function f(R)  R (for which f(r) = R = n, where n  r/r is the unit vector directed 
toward the observation point – see Fig. 1) to approximate the distance R as 

                 nr  'rR .       (8.19) 

In each of the retarded potential formulas (17), R participates in two places: in the denominator 
and in the source’s time argument. If  and j change in time on the scale ~1/,  where  is some 
characteristic frequency, then any change of the argument (t – R/v) on that time scale, for example due 
to a change of R on the spatial scale ~v/ = 1/k, may substantially change these functions. Thus, the 
expansion (19) may be applied to R in the argument  (t – R/v) only if ka << 1, i.e. if the system’s size a 

6 They were published by O. D. Jefimenko only in 1966, but the Fourier representation of the same result was 
obtained much earlier (in 1912) by G. A. Scott. 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 8                 Page 5 of 38 

is much smaller than the radiation wavelength  = 2/k. On the other hand, the function 1/R changes 
relatively slowly, and for it even the first term of the expansion (19) gives a good approximation as soon 
as a << r, R. In the latter approximation alone, Eq. (17a) yields  
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where Q(t) is the net electric charge of the localized system. Due to the charge conservation, this charge 
cannot change with time, so the approximation (20) describes just a static Coulomb field of our 
localized source, rather than a radiated wave.  

 Let us, however, apply a similar approximation to the vector potential (17b): 
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According to Eq. (5.87), the right-hand side of this expression vanishes in statics, but in dynamics, this 
is no longer true. For example, if the current is due to some non-relativistic motion7 of a system of point 
charges qk, we can write 
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where p(t) is the dipole moment of the localized system, defined by Eq. (3.6). Now, after the integration, 
we may keep only the first term of the approximation (19) in the argument (t – R/v) as well, getting 
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 Let us analyze what exactly this result describes. The second of Eqs. (1) allows us to calculate 
the magnetic field by the spatial differentiation of A. At large distances r  >>  (i.e. in the so-called far-
field zone), where Eq. (23) describes a locally-plane wave, the dominating contribution to this derivative 
is given by the dipole moment factor:  
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This expression means that the magnetic field, at the observation point, is perpendicular to the vectors n 
and (the retarded value of) p , and its magnitude is 

              





 






  sin

4

1
  i.e.,sin

4 v

r
tp

rv
H

v

r
tp

rv
B 




,   (8.25) 

where  is the angle between those two vectors – see Fig. 2.8 

7 For relativistic particles, moving with velocities of the order of speed of light, one has to be more careful. As the 
result, I will postpone the discussion of their radiation until Chapter 10, i.e. until after the detailed discussion of 
special relativity in Chapter 9.  
8 From the first of Eqs. (1) for the electric field, in the first approximation (23), we would get –A/t = –(1/4vr) 
p (t – r/v) = –(Z/4r) p (t – r/v). The transverse component of this vector (see Fig. 2) is the proper electric field E 
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 The most important feature of this result is that the time-dependent field decreases very slowly 
(only as 1/r) with the distance from the source, so the radial component of the corresponding Poynting 
vector (7.9b),9 
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drops only as 1/r2, i.e. the full instant power P of the emitted wave,  
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does not depend on the distance from the source – as it should for radiation. 10  

 This is the famous Larmor formula11 for the electric dipole radiation; it is the dominating 
component of radiation by a localized system of charges – unless p  = 0. Please notice its angular 

dependence: the radiation vanishes at the axis of the retarded vector p  (where   = 0), and reaches its 
maximum in the plane normal to that axis.  

 In order to find the average power, Eq. (27) has to be averaged over a sufficiently long time. In 
particular, if the source is monochromatic, p(t) = Re[p exp{–it}], with a time-independent vector 
amplitude p, such averaging may be carried out just over one period, giving an extra factor 2 in the 
denominator: 
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 The easiest application of this formula is to a point charge oscillating, with frequency , along a 
straight line (which we may take for the z-axis), with amplitude a. In this case, p = qz(t)nz = qa 
Re[exp{–it}]nz, and if the charge velocity amplitude, a, is much less than the electromagnetic wave’s 
speed v, we may use Eq. (28) with  p = qa, giving 

= ZHn of the radiated wave, while its longitudinal component is exactly compensated by (–) in the next term 
of the Taylor expansion of Eq. (17a) in small parameter ka ~ a/ << 1. 
9 Note the “doughnut” dependence of Sr on the direction n, frequently used to visualize the dipole radiation. 
10 In the Gaussian units, for free space (v = c), Eq. (27) reads .)3/2( 23 pc P   
11 Named after Joseph Larmor, who was the first to derive this formula (in 1897) for the particular case of a single 
point charge q moving with acceleration r , when rp  q . 
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Applied to a classical picture of an electron (with q = –e  1.610–19C), initially rotating about an 
atom’s nucleus at an atomic distance a ~ 10–10 m, Eq. (29) shows12 that the energy loss due to the dipole 
radiation is so large that it would cause the electron to collapse on the nucleus in just ~10-11 s. In the 
beginning of the 1900s, this result was one of the main arguments for the development of quantum 
mechanics, which prevents such a collapse of electrons for their lowest-energy (ground) quantum state. 

 Another useful application of Eq. (28) is the radio wave radiation by a short, straight, symmetric 
antenna which is fed, for example, by a TEM transmission line such as a coaxial cable – see Fig. 3. 

 

 

 

 

 

 

 

 The exact solution of this problem is rather complicated because the law I(z) of the current 
variation along the antenna’s length should be calculated self-consistently with the distribution of the 
electromagnetic field induced by the current in the surrounding space. (Unfortunately, this fact is not 
mentioned in some textbooks.) However, the current should be largest in the feeding point (in Fig. 3, 
taken for z = 0) and vanish at the antenna’s ends (z = l/2), and hence we may guess that at l << , the 
linear function 
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should be a good approximation of the actual distribution – as it indeed is. Now we can use the 
continuity equation Q/t = I, i.e. –iQ = I, to calculate the complex amplitude Q(z) = iI(z)sgn(z)/ 
of the electric charge Q(z, t) = Re[Qexp{–it}] of the wire’s segment [0, z], and from it, the amplitude 
of the charge’s linear density: 
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From here, the dipole moment’s amplitude is 
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so Eq. (28) yields 

12 Actually, the formula needs a numerical coefficient adjustment to account for the electron’s orbital (rather than 
linear) motion – the task left for the reader’s exercise. However, this adjustment does not affect the order-of-
magnitude estimate given above. 
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where k = /v. The analogy between this result and the dissipation power P = ReZ  I 2/2 in a lumped 
linear circuit element, enables the interpretation of the first fraction in the last form of Eq. (33) as the 
real part of the antenna’s impedance:  

24
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as felt by the transmission line.  

 According to Eq. (7.118), the wave traveling along the line toward the antenna is fully radiated, 
i.e. not reflected back, only if ZA equals to ZW of the line. As we know from Sec. 7.5 (and the solution of 
the related problems), for typical TEM lines, ZW ~ Z0, while Eq. (34), which is only valid in the limit kl 
<< 1, shows that for the radiation into free space (Z = Z0), ReZA is much less than Z0. Hence to reach the 
impedance matching condition ZW = ZA, the antenna’s length should be increased – as a more involved 
theory shows, to l  /2. However, in many cases, practical considerations make short antennas 
necessary. The example most often met nowadays is the cell phone antennas, which use frequencies 
close to 1 or 2 GHz, with free-space wavelengths  between 15 and 30 cm, i.e. much larger than the 
phone size.13 The quadratic dependence of the antenna’s efficiency on l, following from Eq. (34), 
explains why every millimeter counts in the design of such antennas, and why the designs are carefully 
optimized using software packages for the (virtually exact) numerical solution of the Maxwell equations 
for the specific shape of the antenna and other phone parts.14 

 To conclude this section, let me note that if the wave source is not monochromatic, so p(t) 
should be represented as a Fourier series, 
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the terms corresponding to the interference of spectral components with different frequencies  are 
averaged out at the time averaging of the Poynting vector, and the average radiated power is just a sum 
of contributions (28) from all substantial frequency components. 

 

8.3. Wave scattering 

 The Larmor formula may be used as the basis of the theory of scattering – the phenomenon 
illustrated by Fig. 4. Generally, scattering is a complex problem. However, in many cases it allows the 
so-called Born approximation,15 in which the scattered wave field’s effect on the scattering object is 
assumed to be much weaker than that of the incident wave, and is neglected. 

13 The situation will be partly remedied by the planned transfer of wireless mobile technology to the next 
generations, with the signal frequencies gradually moving up. 
14 A partial list of popular software packages of this kind includes both publicly available codes such as Nec2 
(whose various versions are available online, e.g., at http://www.qsl.net/4nec2/), and proprietary packages – such 
as Momentum from Agilent Technologies (now owned by Hewlett-Packard), FEKO from EM Software & 
Systems, and XFdtd from Remcom. 
15 Named after Max Born, one of the founding fathers of quantum mechanics. However, the basic idea of this 
approach was developed much earlier (in 1881) by Lord Rayleigh – born John William Strutt. 
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 As the first example of this approach, let us consider the scattering of a plane wave, propagating 
in free space (Z = Z0, v = c), by an otherwise free16 charged particle whose motion may be described by 
non-relativistic classical mechanics. (This requires, in particular, the incident wave to be not too 
powerful, so the speed of the charge’s motion induced by the wave remains much lower than c.) As was 
already discussed at the derivation of Eq. (7.32), in this case, the magnetic component of the Lorentz 
force (5.10) is negligible in comparison with the force Fe = qE exerted by the wave’s electric field. 
Thus, assuming that the incident wave is linearly polarized along some axis x, the equation of the 
particle’s motion in the Born approximation is just m x  = qE(t), so for the x-component px = qx of its 
dipole moment we can write 

              )(
2

tE
m

q
xqp   .     (8.36) 

As we already know from Sec. 2, oscillations of the dipole moment lead to radiation of a wave with a 
wide angular distribution of intensity; in our case, this is the scattered wave – see Fig. 4. Its full power 
may be found by plugging Eq. (36) into Eq. (27): 

                        )(
66

2
22

4
02

2
0 tE
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 P ,    (8.37) 

so for the average power, we get 
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4
0

12 
E

mc

qZ
P .     (8.38) 

 Since this power is proportional to the incident wave’s intensity S, it is customary to characterize 
the scattering ability of an object by the ratio, 

           
0

2
incident 2/ ZES 

 PP
 ,     (8.39) 

which has the dimensionality of area, and is called the total cross-section of scattering.17 For this 
measure, Eq. (38) yields the famous result 

16 As Eq. (7.30) shows, this calculation is also valid for an oscillator with a low own frequency, 0 << .  
17 This definition parallels those accepted in the classical and quantum theories of particle scattering – see, e.g., 
respectively, CM Sec. 3.5 and QM Sec. 3.3.  

Fig. 8.4. Wave scattering (schematically). 
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which is called the Thomson scattering formula,18 especially when applied to an electron. This relation 
is most frequently represented in the form19 
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8

mc

q
rr 


 .    (8.41) 

This constant rc is called the classical radius of the particle (or sometimes the “Thomson scattering 
length”); for the electron (q = –e, m = me) it is close to 2.8210-15 m. Its possible interpretation is 
evident from Eq. (41) for rc: at that distance between two similar particles, the potential energy q2/40r 
of their electrostatic interaction is equal to the particle’s rest-mass energy mc2.20  

 Now we have to go back and establish the conditions at which the Born approximation, when the 
field of the scattered wave is negligible, is indeed valid for a point-object scattering. Since the scattered 
wave’s intensity described by Eq. (26) diverges at r  0 as 1/r2, according to the definition (39) of the 
cross-section, it may become comparable to Sincident at r2 ~ . However, Eq. (38) itself is only valid if  r 
>> , so the Born approximation does not lead to a contradiction only if  

           2  .      (8.42) 

For the Thompson scattering by an electron, this condition means  >> rc ~ 310-15 m and is fulfilled for 
all frequencies up to very hard -rays with photon energies ~100 MeV. 

 Possibly the most notable feature of the result (40) is its independence of the wave frequency. As 
it follows from its derivation, particularly from Eq. (37), this independence is intimately related to the 
unbound character of charge motion. For bound charges, say for electrons in gas molecules, this result is 
only valid if the wave frequency  is much higher than the frequencies j of most important quantum 
transitions. In the opposite limit,  << j, the result is dramatically different. Indeed, in this limit we 
may approximate the molecule’s dipole moment by its static value (3.48): 

            Ep  .      (8.43)  

In the Born approximation, and in the absence of the molecular field effects mentioned in Sec. 3.3, E in 
this expression is just the incident wave’s field, and we can use Eq. (28) to calculate the power of the 
wave scattered by a single molecule:  

18 Named after Sir Joseph John (“JJ”) Thomson, the discoverer of the electron – and isotopes as well! He should 
not be confused with his son, G. P. Thomson, who discovered (simultaneously with C. Davisson and L. Germer)  
quantum-mechanical wave properties of the same electron. 
19 In the Gaussian units, this formula looks like rc = q2/mc2 (giving, of course, the same numerical values: for the 
electron, rc  2.8210-13 cm). This classical quantity should not be confused with the particle’s Compton 
wavelength C  2/mc (for the electron, close to 2.2410-12m), which naturally arises in quantum 
electrodynamics – see a brief discussion in the next chapter, and also QM Sec. 1.1. 
20 It is fascinating how smartly the relativistic expression mc2 sneaked into the result (40)-(41), which was 
obtained using the non-relativistic equation (36) of the particle motion. This was possible because the calculation 
engaged electromagnetic waves, which propagate with the speed of light, and whose quanta (photons), as a result, 
may be frequently treated as relativistic (moreover, ultra-relativistic) particles – see the next chapter. 
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Now, using the last form of the definition (39) of the cross-section, we get a very simple result, 
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showing that in contrast to Eq. (40), at low frequencies   changes as fast as 4. 

 Now let us explore the effect of such Rayleigh scattering on wave propagation in a gas, with a 
relatively low volumic density n. We may expect (and will prove in the next section) that due to the 
randomness of molecule positions, the waves scattered by individual molecules may be treated as 
incoherent ones, so the total scattering power may be calculated just as the sum of those scattered by 
each molecule. We can use this fact to write the balance of the incident’s wave intensity in a small 
volume dV of length (along the incident wave direction) dz, and area A across it. Since such a segment 
includes ndV = nAdz molecules, and according to Eq. (39), each of them scatters power S = P/A, the 
total scattered power is nPdz; hence the incident power’s change is 

      dznd PP  .     (8.46) 

Comparing this equation with the definition (7.213) of the wave attenuation constant, applied to the 
scattering, 21 
      dzd PP scat .     (8.47) 

we see that this effect gives the following contribution to attenuation: scat = n. From here, using Eq. 
(3.50) to write  = 0( – 1)/n, where  is the dielectric constant, and Eq. (45) for , we get 
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.   (8.48) 

 This is the famous Rayleigh scattering formula, which in particular explains the colors of blue 
sky and red sunsets. Indeed, through the visible light spectrum,  changes almost two-fold; as a result, 
the scattering of blue components of sunlight is an order of magnitude higher than that of its red 
components. For the air near the Earth’s surface,  – 1  610-4, and n ~ 2.51025 m-3 – see Sec. 3.3. 
Plugging these numbers into Eq. (48), we see that the effective length lscat  1/scat of scattering is ~30 
km for the blue light and ~200 km for the red light.22 The effective thickness h of the Earth’s 
atmosphere is ~10 km, so the Sun looks just a bit yellowish during most of the day. However, an 
elementary geometry shows that at sunset, the light has to pass the length l ~ (REh)1/2  300 km to reach 
an Earth-surface observer; as a result, the blue components of the Sun’s light spectrum are almost 
completely scattered out, and even the red components are weakened very substantially. 

  

21 I am sorry for using the same letter () for both the molecular polarizability and the wave attenuation, but both 
notations are traditional. Hopefully, the subscript “scat” marking  in the latter meaning minimizes the possibility 
of confusion. 
22 These values are approximate because both n and ( – 1) vary through the atmosphere’s thickness. 
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8.4. Interference and diffraction 

 Now let us discuss scattering by objects with a size of the order of, or even larger than . For 
such extended objects, the phase difference factors (neglected above) step in, leading in particular to the 
important effects of interference and diffraction. These effects show up not as much in the total power 
of the scattered radiation, as in its angular distribution. It is common to characterize this distribution by 
the differential cross-section defined as 

      
incident

2

Ω S

rS

d

d r


,      (8.49) 

where r is the distance from the scatterer, at which the scattered wave is observed.23 Both the definition 
and the notation may become clearer if we notice that according to Eq. (26), at large distances (r >> a), 
the numerator of the right-hand side of Eq. (49), and hence the differential cross-section as a whole, do 
not depend on r, and that its integral over the total solid angle  = 4 coincides with the total cross-
section defined by Eq. (39): 
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 For example, according to Eq. (26), the angular distribution of the radiation scattered by a single  
dipole is rather broad; in particular, in the quasistatic case (43), within the Born approximation,  
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If the wave is scattered by a small dielectric body, with a characteristic size a <<  (i.e., ka << 1), then 
all its parts re-radiate the incident wave coherently. Hence, we can calculate it similarly, just replacing 
the molecular dipole moment (43) with the total dipole moment of the object – see Eq. (3.45): 

                   VV EPp 01   ,     (8.52) 

where V ~ a3 is the body’s volume. As a result, the differential cross-section may be obtained from Eq. 
(51) with the replacement mol  ( – 1)0V:  
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i.e. follows the same sin2  law.  

 The situation for extended objects, with at least one dimension of the order of (or larger than) the 
wavelength, is different: here we have to take into account the phase shifts between the wave’s re-
radiation by various parts of the body. Let us analyze this issue first for an arbitrary collection of similar 
point scatterers located at points rj. If the wave vector of the incident plane wave is k0, the wave’s field 
has the phase factor exp{ik0r} – see Eq. (7.79). At the location rj of the jth scattering center, this factor 
equals exp{ik0rj}, defining the time dependence of the dipole vector p, and hence of the scattered wave. 

23 Just as in the case of the total cross-section, this definition is also similar to that accepted at the particle 
scattering – see, e.g., CM Sec. 3.5 and QM Sec. 3.3.  
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According to Eq. (17), the scattered wave with a wave vector k (with k = k0) acquires, on its way from 
the source point rj to the observation point r, an additional phase factor exp{ik(r – rj)}, so the scattered 
wave field is proportional to  

                   jjj ieii i rkkrrkrk rk   )(exp)(exp 00 .   (8.54) 

Since the first factor in the last expression does not depend on rj, to calculate the total scattering wave, it 
is sufficient to sum up the last phase factors, exp{–iqrj}, where the vector 

          0kkq        (8.55) 

has the physical sense of the wave vector change at scattering.24 It may look like the phase factor 
depends on our choice of the reference frame. However, according to Eq. (7.42), the average intensity of 
the scattered wave is proportional to EE

*, i.e. to the following real scalar function of the vector q: 
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where the complex function 
           }exp{)( j

j

iI rqq        (8.57) 

is called the phase sum, and may be calculated in any reference frame without affecting the final result 
given by Eq. (56).  

 So, besides the sin2 factor, the differential cross-section (49) of scattering by an extended 
object is also proportional to the scattering function (56). Its double-sum form is convenient to notice 
that for a system of many (N >> 1) similar but randomly located scatterers, only the terms with j = j’ 
accumulate at summation, so F(q), and hence d/d, scale as N, rather than N2 – thus justifying again 
our treatment of the Rayleigh scattering problem in the previous section.  

 Now let us apply Eq. (56) to a simple problem of just two similar small scatterers, separated by a 
fixed distance a: 

         
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where qa  qa/a is the component of the vector q along the vector a connecting the scatterers. The 
apparent simplicity of this result may be a bit misleading because the mutual plane of the vectors k and 
k0 (and hence of the vector q) does not necessarily coincide with the mutual plane of the vectors k0 and 
E, so the scattering angle   between k and k0 is generally different from (/2 – ) – see Fig. 5. 
Moreover, the angle between the vectors q and a (within their common plane) is one more parameter 
independent of both  and . As a result, the angular dependence of the scattered wave’s intensity (and 
hence d/d), which depends on all three angles, may be rather involved,  but some of its details are 
irrelevant for the basic physics of interference/diffraction.  

24 In quantum mechanics, q has a very clear sense of the momentum transferred from the scattering object to the 
scattered particle (for example, a photon), and this terminology is sometimes smuggled even into classical 
electrodynamics texts. 
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 This is why let me consider in detail only the simple cases when the vectors k, k0, and a all 
reside in the same plane, with k0 normal to a – see Fig. 6a. 

 

 

 

 

  

  

 

In this case, qa = ksin, and Eq. (58) is reduced to  

                  
2

sin
cos4)( 2 ka

F q .     (8.59) 

This function always has two maxima, at   = 0 and   = , and, if the product ka is large enough, other 
maxima25 at the special angles n that satisfy the simple Bragg condition 

           nanka nn  sin i.e.,2sin .     (8.60) 

As Fig. 6a shows, this condition may be readily understood as that of the in-phase addition (the 
constructive interference) of two coherent waves scattered from the two points, when the difference 
between their paths toward the observer, asin, is equal to an integer number of wavelengths. At each 
such maximum, F = 4, due to the doubling of the wave amplitude and hence quadrupling its power. 

If the distance between the point scatterers is large (ka >> 1), the first maxima (60) correspond to 
small scattering angles,   << 1. For this region, Eq. (59) is reduced to a simple periodic dependence of 
function F on the angle . Moreover, within the range of small , the wave polarization factor sin2  is 
virtually constant, so the angular dependence of the scattered wave’s intensity, and hence of the 
differential cross-section, is also very simple: 
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25 In optics especially, such intensity maxima/minima patterns are called interference fringes. 
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This simple interference pattern is well known from Young’s two-slit experiment.26 (As will be 
discussed in the next section, the theoretical description of the two-slit experiment is more complex than 
that of the Born scattering, but is preferable experimentally because, at such scattering, the wave of 
intensity (61) has to be observed on the backdrop of a much stronger incident wave that propagates in 
almost the same direction,   = 0.) 

 A very similar analysis of scattering from N > 2 similar, equidistant scatterers, located along the 
same straight line shows that the positions (60) of the constructive interference maxima do not change 
(because the derivation of this condition is still applicable to each pair of adjacent scatterers), but the 
increase of N makes these peaks sharper and sharper. Leaving the quantitative analysis of this system for 
the reader’s exercise, let me jump immediately to the limit N  0, in which we may ignore the 
scatterers’ discreteness. The resulting pattern is similar to that at scattering by a continuous thin rod (see 
Fig. 6b), so let us first spell out the Born scattering formula for an arbitrary extended, continuous, 
uniform dielectric body. Transferring Eq. (56) from the sum to an integral, for the differential cross-
section we get 
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where I(q) now becomes the phase integral,27  
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with the dimensionality of volume.  

 Now we may return to the particular case of a thin rod (with both dimensions of the cross-
section’s area A much smaller than , but an arbitrary length a), otherwise keeping the same simple 
geometry as for two point scatterers – see Fig. 6b. In this case, the phase integral is just 
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sin}2/exp{}2/exp{

)exp{
2/

2/ 


V
iq

aiqaiq
Adx'x'iqAI aa

a

a

a 



 




q   (8.64) 

where V = Aa is the volume of the rod, and   is the dimensionless argument defined as 
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 kaaqa  .     (8.65) 

The fraction participating in the last form of Eq. (64) is met in physics so frequently that it has deserved 
the special name of the sinc (not “sync”, please!)  function (see Fig. 7): 

26 This experiment was described in 1803 by Thomas Young – one more universal genius of science, who also 
introduced the Young modulus in the elasticity theory (see, e.g., CM Chapter 7), besides numerous other 
achievements – including deciphering Egyptian hieroglyphs! It is fascinating that the first clear observation of 
wave interference was made as early as 1666 by another genius, Sir Isaac Newton, in the form of so-called 
Newton’s rings. Unbelievably, Newton failed to give the most natural explanation of his observations – perhaps 
because he was vehemently opposed to the very idea of light as a wave, which was promoted in his times by 
others, notably by Christian Huygens. Due to Newton’s enormous authority, only Young’s two-slit experiments 
more than a century later have firmly established the wave picture of light – to be replaced by the dualistic 
wave/photon picture formalized by quantum electrodynamics (see, e.g., QM Ch. 9), in one more century.  
27 Since the observation point’s position r does not participate in this formula explicitly, the prime sign in r’ could 
be dropped, but I keep it as a reminder that the integral is taken over points r’ of the scattering object.  
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It vanishes at all points n = n with integer n, besides such point with n = 0: sinc0  sinc 0  = 1. 

 

 

 

 

 

 

 

 
 
 The function F(q) = V2sinc2, given by Eq. (64) and plotted with the red line in Fig. 8, is called 
the Fraunhofer diffraction pattern.28  

 

 

 

 

 

 

 

  
 
 Note that it oscillates with the same argument’s period (kasin) = 2/ka as the interference 
pattern (61) from two-point scatterers (shown with the blue line in Fig. 8). However, at the interference, 
the scattered wave intensity vanishes at angles n’ that satisfy the condition 
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i.e. when the optical path difference asin  is equal to a semi-integer number of wavelengths /2 = /k, 
and hence the two waves from the scatterers reach the observer in anti-phase – the so-called destructive 
interference. On the other hand, for the diffraction on a continuous rod the minima occur at a different 
set of scattering angles: 
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28 It is named after Joseph von Fraunhofer (1787-1826) – who invented the spectroscope, developed the 
diffraction grating  (see below), and also discovered the dark Fraunhofer lines in the Sun’s spectrum. 
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 i.e. exactly where the two-point interference pattern has its maxima – please have a look at Fig. 8 again. 
The reason for this relation is that the wave diffraction on the rod may be considered as a simultaneous 
interference of waves from all its elementary fragments, and exactly at the observation angles when the 
rod edges give waves with phases shifted by 2n, the interior points of the rod give waves with all 
phases within this difference, with their algebraic sum equal to zero. As even more visible in Fig. 8, at 
the diffraction, the intensity oscillations are limited by a rapidly decreasing envelope function 1/2 – 
while at the two-point interference, the oscillations retain the same amplitude. The reason for this fast 
decrease is that with each Fraunhofer diffraction period, a smaller and smaller fraction of the road gives 
an unbalanced contribution to the scattered wave.   

If the rod’s length is small (ka << 1, i.e. a << ), then the sinc function’s argument  is small at 
all scattering angles , so I(q)  V, and Eq. (62) is reduced to Eq. (53). In the opposite limit, a >> , the 
first zeros of the function I(q) correspond to very small angles , for which sin  1, so the differential 
cross-section is just 
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i.e. Fig. 8 shows the scattering intensity as a function of the direction toward the observation point – if 
this point is within the plane containing the rod. 

 Finally, let us discuss a problem of large importance for applications: calculate the positions of 
the maxima of the interference pattern arising at the incidence of a plane wave on a very large 3D 
periodic system of point scatterers. For that, first of all, let us quantify the notion of 3D periodicity. The 
periodicity in one dimension is simple: the system we are considering (say, the positions of point 
scatterers) should be invariant with respect to the linear translation by some period a, and hence by any 
multiple sa of this period, where s is any integer. Anticipating the 3D generalization, we may require 
any of the possible translation vectors R to that the system is invariant, to be equal sa, where the 
primitive vector a is directed along the (so far, the only) axis of the 1D system.   

 Now we are ready for the common definition of the 3D periodicity – as the invariance of the 
system with respect to the translation by any vector of the following set: 

        



3

1l
lls aR ,      (8.70) 

where sl are three independent integers, and {al} is a set of three linearly independent primitive vectors. 
The set of geometric points described by Eq. (70) is called the Bravais lattice (first analyzed in detail, 
circa 1850, by Auguste Bravais). Perhaps the most nontrivial feature of this relation is that the vectors al 
should not necessarily be orthogonal to each other. (That requirement would severely restrict the set of 
possible lattices and make it unsuitable for the description, for example, of many solid-state crystals.) 
For the scattering problem we are considering, we will assume that the position rj of each point scatterer 
coincides with one of the points R of some Bravais lattice, with a given set of primitive vectors al, so in 
the basic Eq. (57), the index j is coding the set of three integers {s1, s2, s3}.  

 Now let us consider a similarly defined Bravais lattice, but in the reciprocal (wave-number) 
space, numbered by three independent integers {t1, t2, t3}: 
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where in the last expression, the indices m, m’, and m” are all different. This is the so-called reciprocal 
lattice, which plays an important role in all physics of periodic structures, in particular in the quantum 
energy-band theory.29 To reveal its most important property, and thus justify the above introduction of 
the primitive vectors bm, let us calculate the following scalar product: 
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Applying to the numerator of the last fraction the operand rotation rule of vector algebra,30 we see that 
it is equal to zero if l  m, while for l = m the whole fraction is evidently equal to 1. Thus the double 
sum (72) is reduced to a single sum: 
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where each of the products nl  sltl  is an integer, and hence their sum,  

               ,332211
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     (8.74) 

is an integer as well, so the main property of the direct/reciprocal lattice couple is very simple: 

         1exp  hence and,2  QRQR in .   (8.75)  

 Now returning to the scattering function (56) for a Bravais lattice of point scatters, we see that if 
the vector q  k – k0 coincides with any vector Q of the reciprocal lattice, then all terms of the phase 
sum (57) take their largest possible values (equal to 1), and hence the sum as the whole is largest as 
well, giving a constructive interference maximum. This equality, q = Q, where Q is given by Eq. (71), is 
called the von Laue condition  (named after Max von Laue) of the constructive interference; it is, in 
particular, the basis of the whole field of the X-ray crystallography of solids and polymers – the main 
tool for revealing their atomic/molecular structure.31 

 In order to recast the von Laue condition in a more vivid geometric form, let us consider one of 
the vectors Q of the reciprocal lattice, corresponding to a certain integer n in Eq. (75), and notice that if 
that relation is satisfied for one point R of the direct Bravais lattice (70), i.e. for one set of the integers 
{s1, s2, s3}, it is also satisfied for a 2D system of other integer sets, which may be parameterized, for 
example, by two integers S1 and S2:     

       22113
'
3322

'
2311

'
1 ,, tStSsstSsstSss  .   (8.76) 

Indeed, each of these sets has the same value of the integer n, defined by Eq. (74), as the original one: 

        nttStSsttSsttSstststsn'  322113232213113
'
32

'
21

'
1 . (8.77) 

Since, according to Eq. (75), the vector of the distance between any pair of the corresponding points of 
the direct Bravais lattice (70), 

29 See, e.g., QM Sec. 3.4, where several particular Bravais lattices R, and their reciprocals Q, are considered. 
30 See, e.g., MA Eq. (7.6). 
31 For more reading on this important topic, I can recommend, for example, the classical monograph by B. 
Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley, 1978. (Note that its title uses the alternative 
name of the field, once again illustrating how blurry the boundary between the interference and diffraction is.) 
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      32211232131 aaaR tStStStS  ,    (8.78) 

satisfies the condition RQ = 2n = 0, this vector is normal to the (fixed) vector Q. Hence, all the 
points corresponding to the 2D set (76) with arbitrary integers S1 and S2, are located on one geometric 
plane, called the crystal (or “lattice”) plane. In a 3D system of N >> 1 scatterers (such as N ~1020 atoms 
in a ~1-mm3 solid crystal), with all linear dimensions comparable, such a plane contains ~N2/3 >> 1 
points. As a result, the constructive interference peaks are very sharp. 

 Now rewriting Eq. (75) as a relation for the vector R’s component along the vector Q, 

    Q
Q

RnR  Q
Q

Rn
Q

R QQQ   and,  where,
2

,  (8.79) 

we see that the parallel crystal planes corresponding to different numbers n (but the same Q) are located 
in space periodically, with the smallest distance   

          
Q

d
2

 ,      (8.80) 

so the von Laue condition q = Q  may be rewritten as the following rule for the possible magnitudes of 
the scattering vector q  k – k0: 
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2
 .      (8.81) 

 Figure 9a shows the diagram of the three wave vectors k, k0, and q, taking into account the 
elastic scattering condition k = k0 = k  2/.  From the diagram, we immediately get the famous 
Bragg rule32 for the (equal) angles    /2 between the crystal plane and each of the vectors k and k0: 

         nd
d

nq
k  sin2  i.e.,

2
sin .    (8.82) 

The physical sense of this relation is very simple – see Fig. 9b drawn in the “direct” space of the radius-
vectors r, rather than in the reciprocal space of the wave vectors, as Fig. 9a. It shows that if the Bragg 
condition (82) is satisfied, the total difference 2dsin  of the optical paths of two waves, partly reflected 
from the adjacent crystal planes, is equal to an integer number of wavelengths, so these waves interfere 
constructively. 

 

 

 

 

  

 

   

32 Named after Sir William Bragg and his son, Sir William Lawrence Bragg, who were the first to demonstrate (in 
1912) the X-ray diffraction by atoms in crystals. The Braggs’ experiments have made the existence of atoms 
(before that, a somewhat hypothetical notion ignored by many physicists) indisputable. 

Fig. 8.9. Deriving the Bragg rule: (a) from the von Laue condition (in the reciprocal space), and 
(b) from a direct-space diagram. Note that the scattering angle  equals 2. 
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 Finally, note that the von Laue and Bragg rules, as well as the similar condition (60) for the 1D 
system of scatterers, are valid not only in the Born approximation but also follow from any adequate 
theory of scattering, because the phase sum (57) does not depend on the magnitude of the wave 
propagating from each elementary scatterer, provided that they are all equal. 

 

8.5. The Huygens principle 

 As the reader could see, the Born approximation is very convenient for tracing the basic features 
of (and the difference between) the phenomena of interference and diffraction. Unfortunately, this 
approximation, based on the relative weakness of the scattered wave, cannot be used to describe more 
typical experimental implementations of these phenomena, for example, Young’s two-slit experiment, 
or diffraction on a single slit or orifice – see, e.g. Fig. 10. Indeed, at such experiments, the orifice size a 
is typically much larger than the light’s wavelength , and as a result, no clear decomposition of the 
fields to the “incident” and “scattered” waves is possible inside it.33 

 

   

 

 

 

 

 

 However, another approximation called the Huygens (or “Huygens-Fresnel”) principle,34 is very 
instrumental in the description of such situations. In this approach, the wave beyond the screen is 
represented as a linear superposition of spherical waves of the type (17), as if they were emitted by 
every point of the incident wave’s front that has arrived at the orifice. This approximation is valid if the 
following strong conditions are satisfied: 
       ra  ,      (8.83) 

where r is the distance of the observation point from the orifice. In addition, as we have seen in the last 
section, at small /a the diffraction phenomena are confined to angles  ~ 1/ka ~ /a << 1. For 
observation at such small angles, the mathematical expression of the Huygens principle, for the complex 
amplitude f(r) of a monochromatic wave f(r, t) = Re[fe-it], is given by the following simple formula 

     r'd
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e
'fCf

ikR
2

orifice

)()(  rr  .    (8.84) 

33 Another complaint against the Born approximation is that it does not satisfy the so-called optical (or “forward 
scattering”) theorem relating  to scattering with k = k0. This relation is especially important for the quantum-
mechanical description of particle scattering, and in this series, will be discussed in its QM part (Sec. 3.3). 
34 Named after Christian Huygens (1629-1695) who had conjectured the wave nature of light (which remained 
controversial for more than a century, until T. Young’s experiments), and Augustin-Jean Fresnel (1788-1827) 
who developed a quantitative theory of diffraction, and in particular gave a mathematical formulation of the 
Huygens principle. (Note that Eq. (91), sufficient for the purposes of this course, is not its most general form.) 
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Here f is any transverse component of any of the wave’s fields (either E or H),35 R is the distance 
between point r’ at the orifice and the observation point r (i.e. the magnitude of vector R  r – r’), and 
C is a complex constant.   

 Before describing the proof of Eq. (84), let me carry out its sanity check – which also will give 
us the constant C. Let us see what the Huygens principle gives for the case when the field under the 
integral is a plane wave with the complex amplitude f(z), propagating along axis z, with an unlimited x-
y front, (i.e. when there is no opaque screen at all), so in Eq. (84) we should take the whole [x, y] plane, 
say with z’ = 0, as the integration area– see Fig. 11. 

 

 

 

 

 

 
 Then, for the observation point with coordinates x = 0, y = 0, and z > 0, Eq. (84) yields 
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Before specifying the integration limits, let us consider the range x’, y’ << z.  In this range, the 
square root participating in Eq. (85) twice, may be approximated as 
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At z >> , the denominator of Eq. (85) is a much slower function of x’ and y’ than the exponent in the 
numerator, and in the former case, it is sufficient (as we will check a posteriori) to keep just the main, 
first term of expansion (86). With that, Eq. (85) becomes 
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where Ix and Iy are two similar integrals; for example, 
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where   (k/2z)1/2x’. These are the so-called Fresnel integrals. I will discuss them in more detail in the 
next section (see, in particular, Fig. 13), and for now, only one property36 of these integrals is important 

35 The fact that the Huygens principle is valid for any field component should not too surprising. In the limit a >> 
, the real boundary conditions at the orifice edges are not important; it is only important for the screen that limits 
the orifice, to be opaque. Because of this, the Huygens principle (84) is a part of the so-called scalar theory of 
diffraction. (I will not have time to discuss the vector theory of these effects, which is more accurate at smaller a – 
see, e.g., Chapter 11 of the monograph by M. Born and E. Wolf, cited at the end of Sec. 7.1.) 
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for us: if taken in symmetric limits [-0, +0],  both of them rapidly converge to the same value, (/2)1/2, 
as soon as 0 becomes much larger than 1. This means that even if we do not impose any exact limits on 
the integration area in Eq. (85), this integral converges to the value   
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due to contributions from the central area with a linear size corresponding to  ~ 1, i.e. to 
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so the net contribution from the front points r’ well beyond the range (90) is negligible.37 (Within our 
assumptions (83), which in particular require  to be much less than z, the diffraction angle x/z ~ y/z 
~ (/z)1/2, corresponding to the important area of the front, is small.) According to Eq. (89), to sustain 
the unperturbed plane wave propagation, f(z) = f(0)eikz, the constant C has to be taken equal to k/2i. 
Thus, the Huygens principle’s prediction (84), in its final form, reads 
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and describes, in particular, the straight propagation of the plane wave (in a uniform medium). 

 Let me pause to emphasize how nontrivial this result is. It would be a natural corollary of Eqs. 
(25) (and the linear superposition principle) if all points of the orifice were filled with point scatterers 
that re-emit all the incident waves as spherical waves. However, as it follows from the above example, 
the Huygens principle also works if there is nothing in the orifice but the free space! 

This is why let us discuss a proof of this principle,38 based on Green’s theorem (2.207).  Let us 
apply it to the function f = f where f is the complex amplitude of a scalar component of one of the 
wave’s fields, which satisfies the Helmholtz equation (7.204), 

                         0)(22  rfk ,     (8.92) 

and the function g = G is the temporal Fourier image of the corresponding Green’s function. The latter 
function may be defined, as usual, as the solution of the same equation with the added delta-functional 
right-hand side with an arbitrary coefficient, for example, 

                         )(4),(22 ''Gk rrrr   .    (8.93) 

Using Eqs. (92) and (93) to express the Laplace operators of the functions f and G, we may rewrite  
Eq. (2.207) as 

36 See, e.g., MA Eq. (6.10). 
37 This result very is natural, because the function exp{ikR} oscillates fast with the change of r’, so the 
contributions from various front points are averaged out. Indeed, the only reason why the central part of the plane 
[x’, y’] gives a non-zero contribution (89) to f(z) is that the phase exponents stop oscillating as (x’2 + y’2) is 
reduced below ~z/k – see Eq. (86).  
38 This proof was given in 1882 by the same G. Kirchhoff whose circuit rules were discussed in Sec. 4.1 and 6.6.  
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where n is the outward normal to the surface S limiting the integration volume V. Two terms on the left-
hand side of this relation cancel, so after swapping the arguments r and r’, we get 
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 This relation is only correct if the selected volume V includes the point r (otherwise we would 
not get its left-hand side from the integration of the delta function), but does not include the genuine 
source of the wave – otherwise, Eq. (92) would have a non-zero right-hand side. Now let r be the field 
observation point, V be all the source-free half-space (for example, the space right of the screen in Fig. 
10), so S is the surface of the screen, including the orifice. Then the right-hand side of Eq. (95) describes 
the field (at the observation point r) induced by the wave passing through the orifice points r’. Since no 
waves are emitted by the opaque parts of the screen, we can limit the integration by the orifice area.39 
Assuming also that the opaque parts of the screen do not re-emit the waves “radiated” by the orifice, we 
can take the solution of Eq. (93) to be the retarded potential for the free space:40  
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Plugging this expression into Eq. (82), we get 
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 This is the so-called Kirchhoff (or “Fresnel-Kirchhoff”) integral. (Again, with the integration 
extended over all boundaries of the volume V, this would be an exact mathematical result.) Now, let us 
make two additional approximations. The first of them stems from Eq. (83): at ka >> 1, the wave’s 
spatial dependence in the orifice area may be represented as  

              }exp{) offunction  slow a()( 0 'i''f rkrr  ,   (8.98) 

where “slow” means a function that changes on the scale of a rather than . If, also, kR >> 1, then the 
differentiation in Eq. (97) may be, in both instances, limited to the rapidly changing exponents, giving 
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Second, if all observation angles are small, we may take kn’  k0n’  –k. With that, Eq. (99) is reduced 
to the Huygens principle in its form (91). 

39 Actually, this is a nontrivial point of the proof. Indeed, it may be shown that the exact solution of Eq. (94) 
identically is equal to zero if f(r’) and f(r’)/n’ vanish together at any part of the boundary, of a non-zero area. A 
more careful analysis of this issue (it is the task of the formal vector theory of diffraction, which I will not have 
time to pursue) confirms the validity of the described intuition-based approach at a >> . 
40 It follows, e.g., from Eq. (16) with a monochromatic source q(t) = qexp{-it}, with the amplitude q = 4  
that fits the right-hand side of Eq. (93). 
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 It is clear that the principle immediately gives a very simple description of the interference of 
waves passing through two small holes in the screen. Indeed, if the holes’ sizes are negligible in 
comparison with the distance a between them (though still are much larger than the wavelength!), Eq. 
(91) yield 
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where R1,2 are the distances between the holes and the observation point, and A1,2 are the hole areas. For 
the wave intensity, Eq. (100) gives 
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The first two terms in the last expression clearly represent the intensities of the partial waves passed 
through each hole, while the last one is the result of their interference. The interference pattern’s 
contrast ratio 
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is the largest (infinite) when both waves have equal amplitudes. 

 The analysis of the interference pattern is simple if the line connecting the holes is perpendicular 
to wave vector k  k0 – see Fig. 6a. Selecting the coordinate axes as shown in that figure, and using for 
the distances R1,2 the same expansion as in Eq. (86), for the interference term in Eq. (101) we get 
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This means that the term does not depend on y, i.e. the interference pattern in the plane of constant z is a 
set of straight, parallel strips, perpendicular to the vector a, with the period given by Eq. (60), i.e. by the 
Bragg law.41 This result is strictly valid only at y2 << z2; it is straightforward to use the next term in the 
Taylor expansion (73) to show that farther on from the interference plane y = 0, the strips start to 
diverge. 

 

8.6. Fresnel and Fraunhofer diffraction patterns 

 Now let us use the Huygens principle to analyze a slightly more complex problem: plane wave’s 
diffraction on a long, straight slit of a constant width a (Fig. 12). According to Eq. (83), to use the 
Huygens principle for the problem’s analysis we need to have  << a << z. Moreover, the simple 
version (91) of the principle is only valid for small observation angles,  x  << z. Note, however, that the 
relation between two dimensionless parameters of the problem, z/a and a/, which are both much less 
than 1, is so far arbitrary; as we will see in a minute, this relation determines the type of the observed 
diffraction pattern. 

41 The phase shift   vanishes at the normal incidence of a plane wave on the holes. Note, however, that the 
spatial shift of the interference pattern following from Eq. (103), x = –(z/ka), is extremely convenient for the 
experimental measurement of the phase shift between two waves, especially if it is induced by some factor (such 
as insertion of a transparent object into one of the interferometer’s arms) that may be turned on/off at will. 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 8                 Page 25 of 38 

 

 

 

 

 

 

 

 
  

 Let us apply Eq. (91) to our current problem (Fig. 12), for the sake of simplicity assuming the 
normal wave incidence, and taking z’ = 0 at the screen plane: 
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where f0  f(x’, 0) = const is the incident wave’s amplitude. This is the same integral as in Eq. (85), 
except for the finite limits for the integration variable x’, and may be simplified similarly, using the 
small-angle condition (x – x’)2 +  y’2 << z2:  
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 The integral over y’ is the same as in the last section: 
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but the integral over x’ is more general, because of its finite limits: 
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It may be simplified in the following two (opposite) limits.  

 (i) Fraunhofer diffraction takes place when z/a >> a/ – the relation which may be rewritten 
either as a << (z)1/2, or as ka2  << z. In this limit, the ratio kx’2/z is negligibly small for all values of x’ 
under the integral, and we can approximate it as 
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 so Eq. (105) yields 
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and hence the relative wave intensity is 
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where S0 is the intensity of the incident wave, and    x/z << 1 is the observation angle. Comparing this 
expression with Eq. (69), we see that this diffraction pattern is exactly the same as that for a similar 
(uniform, 1D) object in the Born approximation – see the red line in Fig. 8. Note again that the angular 
width  of the Fraunhofer pattern is of the order of 1/ka, so its linear width x = z is of the order of 
z/ka ~ z/a.42 Hence the condition of the Fraunhofer approximation’s validity may be also represented as 
a << x.  

 (ii) Fresnel diffraction. In the opposite limit of a relatively wide slit, with a >> x = z ~ z/ka ~ 
z/a, i.e. ka2 >> z, the diffraction patterns at two edges of the slit are well separated. Hence, near each 
edge (for example, near x’ = –a/2) we may simplify Eq. (107) as 
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and express it via the special functions called the Fresnel integrals:43 
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whose plots are shown in Fig. 13a. As was mentioned above, at large values of their argument (), both 
functions tend to ½. 

 

 

 

 

 

 

 

 

 
  

42 Note also that since in this limit ka2 << z, Eq. (97) shows that even the maximum value S(0, z) of the diffracted 
wave’s intensity is much lower than that (S0) of the incident wave. This is natural because the incident power S0a 
per unit length of the slit is now distributed over a much larger width x >> a, so S(0, z) ~ S0 (a/x) << S0. 
43 Slightly different definitions of these functions, affecting the constant factors, may also be met in literature. 
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 Plugging this expression into Eqs. (105) and (111), for the diffracted wave intensity, in the 
Fresnel limit (i.e. at  x + a/2  << a), we get 
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A plot of this function (Fig. 14) shows that the diffraction pattern is very peculiar: while in the “dark” 
region x < –a/2 the wave intensity fades monotonically, the transition to the “bright” region within the 
gap (x > –a/2) is accompanied by intensity oscillations, just as at the Fraunhofer diffraction – cf. Fig. 8.  

 

 

 

 

 

 

 

  

 

 This behavior, which is described by the following asymptotes, 
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is essentially an artifact of “observing” just the wave intensity (i.e. its real amplitude) rather than its 
phase as well. Indeed, as may be seen even more clearly from the parametric representation of the 
Fresnel integrals, shown in Fig. 13b, these functions oscillate similarly at large positive and negative 
values of their argument. (This famous pattern is called either the Euler spiral or the Cornu spiral.)  
Physically, this means that the wave diffraction at the slit edge leads to similar oscillations of its phase 
at x < –a/2 and x > –a/2; however, in the latter region (i.e. inside the slit) the diffracted wave overlaps 
the incident wave passing through the slit directly, and their interference reveals the phase oscillations, 
making them visible in the observed intensity as well. 

  Note that according to Eq. (113), the linear scale x of the Fresnel diffraction pattern is of the 
order of (2z/k)1/2, i.e. complies with the estimate given by Eq. (90). If the slit is gradually narrowed so 
that its width a becomes comparable to x,44 the Fresnel diffraction patterns from both edges start to 
“collide” (interfere). The resulting wave, fully described by Eq. (107), is just a sum of two contributions 
of the type (111) from both edges of the slit. The resulting interference pattern is somewhat complicated, 
and only when a becomes substantially less than x, it is reduced to the simple Fraunhofer pattern (110). 

44 Note that this condition may be also rewritten as a ~ x, i.e. z/a ~ a/.   
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Of course, this crossover from the Fresnel to Fraunhofer diffraction may be also observed, at fixed 
wavelength  and slit width a, by increasing z, i.e. by measuring the diffraction pattern farther and 
farther away from the slit.  

 Note also that the Fraunhofer limit is always valid if the diffraction is measured as a function of 
the diffraction angle  alone. This may be done, for example, by collecting the diffracted wave with a 
“positive” (converging) lens and observing the diffraction pattern in its focal plane. 

 

8.7. Geometrical optics placeholder 

 I would not like the reader to miss, behind all these details, the main feature of the Fresnel 
diffraction, which has an overwhelming practical significance. Namely, besides narrow diffraction 
“cones” (actually, parabolic-shaped regions) with the lateral scale x ~ (z)1/2, the wave far behind a slit 
of width a >> , x, reproduces the field just behind the slit, i.e. reproduces the unperturbed incident 
wave inside it, and has a negligible intensity in the shade regions outside it. An evident generalization of 
this fact is that when a plane wave (in particular an electromagnetic wave) passes any opaque object of a 
large size a >> , it propagates around it, by distances z up to ~a2/, along straight lines, with virtually 
negligible diffraction effects. This fact gives the strict foundation for the notion of the wave ray (or 
beam), as the line perpendicular to the local front of a quasi-plane wave. In a uniform media such a ray 
follows a straight line,45 but it refracts in accordance with the Snell law at the interface of two media 
with different values of the wave speed v, i.e. different values of the refraction index. The concept of 
rays enables the whole vast field of geometric optics, devoted mostly to ray tracing in various 
(sometimes very sophisticated) optical systems. 

 This is why, at this point, an E&M course that followed the scientific logic more faithfully than 
this one, would give an extended discussion of the geometric and quasi-geometric optics, including (as a 
minimum46) such vital topics as 

 - the so-called lensmaker’s equation expressing the focus length f of a lens via the curvature radii 
of its spherical surfaces and the refraction index of the lens material, 
 - the thin lens formula relating the image distance from the lens via f and the source distance, 
 - the concepts of basic optical instruments such as glasses, telescopes, and microscopes, 
 - the concepts of the spherical, angular, and chromatic aberrations (optical image distortions). 

 However, since I have made a (possibly, wrong) decision to follow the common tradition in 
selecting the main topics for this course, I do not have time/space left for such discussion. Still, I am 
using this “placeholder” pseudo-section to relay my deep conviction that any educated physicist has to 
know the geometric optics basics. If the reader has not been exposed to this subject during their 
undergraduate studies, I highly recommend at least browsing one of the available textbooks.47  

45 In application to optical waves, this notion may be traced back to at least the work by Hero (a.k.a. Heron) of 
Alexandria (circa 170 AD). Curiously, he correctly described light reflection from one or several plane mirrors, 
starting from the completely wrong idea of light propagation from the eye of the observer to the observed object. 
46 Admittedly, even this list leaves aside several spectacular effects, including such a beauty as conical refraction 
in biaxial crystals – see, e.g., Chapter 15 of the textbook by M. Born and E. Wolf, cited in the end of Sec. 7.1. 
47 My top recommendation for that purpose would be Chapters 3-6 and Sec. 8.6 in Born and Wolf. A simpler 
alternative is Chapter 10 in G. Fowles, Introduction to Modern Optics, 2nd ed., Dover, 1989. Note also that the 
venerable field of optical microscopy is currently revitalized by holographic/tomographic methods, using the 
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8.8. Fraunhofer diffraction from more complex scatterers 

 So far, our quantitative analysis of diffraction has been limited to a very simple geometry – a 
single slit in an otherwise opaque screen (Fig. 12). However, in the most important Fraunhofer limit, z 
>> ka2, it is easy to get a very simple expression for the plane wave diffraction/interference by a plane 
orifice (with a linear size scale a) of arbitrary shape. Indeed, the evident 2D generalization of the 
approximation (106)-(107) is 
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so besides the inconsequential total phase factor, Eq. (105) is reduced to 
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Here the 2D vector  (not to be confused with wave vector k, which is virtually perpendicular to !) is 
defined as 
           0k-kq

ρ
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z
k ,     (8.117)  

and  = {x, y} and ’ = {x’, y’} are 2D radius vectors in the, respectively, observation and orifice planes 
– both nearly normal to the vectors k and k0.48 In the last form of Eq. (116), the function T(’) describes 
the screen’s transparency at point ’, and the integral is over the whole screen plane z’ = 0. (Though the 
two forms of Eq. (116) are strictly equivalent only if T(’ ) is equal to either 1 or 0, its last form may be 
readily obtained from Eq. (91) with f(r’) = T(’ )f0 for any transparency profile, provided that T(’ ) is 
any function that changes substantially only at distances much larger than   2/k.) 

 From the mathematical point of view, the last form of Eq. (116) is just the 2D spatial Fourier 
transform of the function T(’), with the variable  defined by the observation point’s position:   
(z/k)  (z/2). This interpretation is useful because of the experience we all have with the Fourier 
transform, if only in the context of its time/frequency applications. For example, if the orifice is a single 
small hole, T(’) may be approximated by a delta function, so Eq. (116) yields f()  const. This 
result corresponds (at least for the small diffraction angles   /z, for which the Huygens 
approximation is valid) to a spherical wave spreading from the point-like orifice. Next, for two small 
holes, Eq. (116) immediately gives the interference pattern (103). Let me now use Eq. (116) to analyze 
other simplest (and most important) 1D transparency profiles, leaving a few 2D cases for the reader’s 
exercise.  

 (i) A single slit of width a (Fig. 12) may be described by transparency 

scattered wave’s phase information.  These methods are especially productive in biology and medicine – see, e.g., 
M. Brezinski, Optical Coherence Tomography, Academic Press, 2006, and G. Popescu, Quantitative Phase 
Imaging of Cells and Tissues, McGraw-Hill (2011). 
48 Note that for a thin uniform plate of the same shape as the orifice we are discussing now, the Born phase 
integral (63) with q << k gives a result functionally similar to Eq. (116).  
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Its substitution into Eq. (116) yields  
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naturally returning us to Eqs. (64) and (110), and hence to the red lines in Fig. 8 for the wave intensity. 
(Please note again that Eq. (116) describes only the Fraunhofer, but not the Fresnel diffraction!)   

 (ii) Two infinitely narrow, similar, parallel slits with a larger distance a between them (i.e. the 
simplest model of Young’s two-slit experiment) may be described by taking 
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so Eq. (116) yields the generic 1D interference pattern, 
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whose intensity is shown with the blue line in Fig. 8.  

 (iii) In a more realistic model of Young’s experiment, each slit has a width (say, w) that is much 
larger than the light wavelength , but still much smaller than the slit spacing a. This situation may be 
described by the following transparency function 
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for which Eq. (116) yields a natural combination of the results (119) (with a replaced with w) and (121): 
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This is the usual interference pattern, but modulated with a Fraunhofer-diffraction envelope – shown in 
Fig. 15 with the dashed blue line. Since the function sinc2 decreases very fast beyond its first zeros at  
= , the practical number of observable interference fringes is close to 2a/w. 
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Fig. 8.15. Young’s double-slit interference pattern for a finite-width slit. 
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 (iv) A structure very useful for experimental and engineering practice is a set of many parallel, 
similar slits, called the diffraction grating.49 If the slit’s width is much smaller than period d of the 
grating, its transparency function may be approximated as  
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and Eq. (116) yields 
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 This sum vanishes for all values of xd that are not multiples of 2, so the result describes sharp 
intensity peaks at the following diffraction angles: 
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Taking into account that this result is only valid for small angles m  << 1, it may be interpreted 
exactly as Eq. (59) – see Fig. 6a. However, in contrast with the interference (121) from two slits, the 
destructive interference from many slits kills the net wave as soon as the angle is even slightly different 
from each value (60). This is very convenient for spectroscopic purposes because the diffraction lines 
produced by multi-frequency waves do not overlap even if the frequencies of their adjacent components 
are very close. 

 Two unavoidable features of practical diffraction gratings make their properties different from 
this simple, ideal picture. First, the finite number N of slits, which may be described by limiting the sum 
(125) to the interval n = [-N/2, +N/2], results in a non-zero spread, / ~ 1/N, of each diffraction peak, 
and hence in the reduction of the grating’s spectral resolution. (Unintentional variations of the inter-slit 
distance d have a similar effect, so before the advent of high-resolution photolithography, special high-
precision mechanical tools had been used for grating fabrication.)  

 Second, a finite slit width w leads to the diffraction peak pattern modulation by the sinc2(kw/2) 
envelope, similar to the pattern shown in Fig. 15. Actually, for spectroscopic purposes, such modulation 
is sometimes a plus, because only one diffraction peak (say, with m = 1) is practically used, and if the 
frequency spectrum of the analyzed wave is very broad (covers more than one octave), the higher peaks 
produce undesirable hindrance. Because of this reason, w is frequently selected to be equal exactly to 
d/2, thus suppressing each other diffraction maximum. Moreover, sometimes semi-transparent films are 
used to make the transparency function T(r’) continuous and close to a sinusoidal one: 
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Plugging the last expression into Eq. (116) and integrating, we see that the output wave consists of just 3 
components: the direct-passing wave (proportional to T0) and two diffracted waves (proportional to T1)  
propagating in the directions of the two lowest Bragg angles, 1 =  /d.50 

49 The rudimentary diffraction grating effect, produced by the parallel fibers of a bird’s feather, was discovered as 
early as 1673 by James Gregory (who also invented the “Gregorian” telescope – one of the basic designs for 
reflecting telescopes). 
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 The same Eq. (116) may be also used to obtain one more general (and rather curious) result, 
called the Babinet principle.51 Consider two experiments with the diffraction of similar plane waves on 
two “complementary” screens – such that together they would cover the whole plane, without a hole or 
an overlap. (Think, for example, about an opaque disk of radius R and a large opaque screen with a 
round orifice of the same radius.) Then, according to the Babinet principle, the diffracted wave patterns 
produced by these two screens in all directions with   0 are identical.  

 The proof of this principle is straightforward: since the transparency functions produced by the 
screens are complementary: 
       ,1)()()( 21  'T'T'T ρρρ      (8.128) 

and the diffracted wave is (in the Fraunhofer approximation only!) a Fourier transform of T(’), which is 
a linear operation, we get 
          ),()()( 021 ρρρ fff       (8.129) 

where f0 is the wave “scattered” by the composite screen with T0(’)  1, i.e. the unperturbed initial 
wave propagating in the initial direction (  = 0). In all other directions, f1 = –f2, i.e. the diffracted waves 
are indeed similar besides the difference in sign – which is equivalent to a phase shift by . However, it 
is important to remember that the Babinet principle notwithstanding, in real experiments, with screens at 
finite distances, the diffracted waves may interfere with the unperturbed plane wave f0(), leading to 
different diffraction patterns in cases 1 and 2 – see, e.g., Fig. 14 and its discussion. 

 

8.9. Magnetic dipole and electric quadrupole radiation 

 Throughout this chapter, we have seen how many important results may be obtained from Eq. 
(26) for the electric dipole radiation by a small-size source (Fig. 1). Only in rare cases when this 
radiation is absent, for example, if the dipole moment p of the source equals zero (or does not change in 
time – either at all or at the frequency of our interest), higher-order effects may be important. I will now 
discuss the main two of them, quadrupole electric radiation and dipole magnetic radiation.  

 In Sec. 2 above, the electric dipole radiation was calculated by plugging the expansion (19) into 
the exact formula (17b) for the retarded vector potential A(r, t). Let us make a more exact calculation, 
by keeping the second term of that expansion as well: 
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Since the expansion is only valid if the last term in the time argument of j is relatively small, in the 
Taylor expansion of j with respect to that argument we may keep just two leading terms:  
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50 Similar tricks are used in the so-called phased-array antennas, broadly used in radar systems and 
radioastronomy, in which electronically controlled mutual phase shifts of microwave signals feeding many similar 
component antennas are used to steer the direction of the resulting narrow beam. For more on this important 
technology, see, e.g. T. Milligan, Modern Antenna Design, 2nd ed., Wiley (2005). 
51 Named after Jacques Babinet (1784-1874) who made several important contributions to optics. 
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so Eq. (17b) yields A = Ad + A’, where Ad is the electric dipole contribution as given by Eq. (23), and 
A’ is the new term of the next order in the small parameter r’ << r: 
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 Just as it was done in Sec. 2, let us evaluate this term for a system of non-relativistic particles 
with electric charges qk and radius vectors rk(t): 
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Using the “bac minus cab” identity of the vector algebra again,52 the vector operand of Eq. (133) may be 
rewritten as 
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so the right-hand side of Eq. (133) may be represented as a sum of two terms, A’ = Am + Aq, where 
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 Comparing the second of Eqs. (135) with Eq. (5.91), we see that m is just the total magnetic 
moment of the source. On the other hand, the first of Eqs. (135) is absolutely similar in structure to Eq. 
(23), with p replaced with (mn)/v, so for the corresponding component of the magnetic field it gives 
(in the same approximation r >> ) a result similar to Eq. (24): 
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According to this expression, just as at the electric dipole radiation, the vector B is perpendicular to the 
vector n, and its magnitude is also proportional to sin, where  is now the angle between the direction 
toward the observation point and the second time derivative of the vector m – rather than p: 
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As a result, the intensity of this magnetic dipole radiation has a similar angular distribution: 
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52 If you still need it, see MA Eq. (7.5). 
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- cf. Eq. (26), besides the (generally) different meaning of the angle .  

 Note, however, that this radiation is usually much weaker than its electric-dipole counterpart. 
For example, for a non-relativistic particle with electric charge q, moving on a trajectory of linear size 
~a, the electric dipole moment is of the order of qa, while its magnetic moment scales as qa2, where   
is the motion frequency. As a result, the ratio of the magnetic and electric dipole radiation intensities is 
of the order of (a/v)2, i.e. the squared ratio of the particle’s speed to the speed of the emitted waves – 
that has to be much smaller than 1 for our non-relativistic calculation to be valid. 

 The angular distribution of the electric quadrupole radiation described by Eq. (136) is more 
involved. To show this, let us add to Aq a vector parallel to n (i.e. directed along the wave’s 
propagation), getting 
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since this addition does not contribute to the transverse components of the electric and magnetic fields, 
i.e. to the radiated wave. According to the above definition of the vector Q, its Cartesian components 
may be represented as 
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where Qjj’ are the elements of the electric quadrupole tensor of the system – see the last of Eqs. (3.4):53 
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Now taking the curl of the first of Eqs. (140) at r >> , we get  
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This expression is similar to Eqs. (24) and (137), but according to Eqs. (140) and (142), components of 
the vector Q do depend on the direction of the vector n, leading to a different angular dependence of Sr.  

 As the simplest example, let us consider the system of two equal point electric charges moving 
symmetrically, at equal distances d(t) <<  from a stationary center – see Fig. 16.  

  

 

 

 
 
 
 Due to the symmetry of the system, its dipole moments p and m (and hence its electric and 
magnetic dipole radiation) vanish, but the quadrupole tensor (142) still has non-zero elements. With the 
coordinate choice shown in Fig. 16, these elements are diagonal: 

53 Let me hope that the reader has already acquired some experience in the calculation of this tensor’s elements – 
e.g., for the simple systems specified in Problems 3.2-3.4. 
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           .4,2 22 qdqd zzyyxx  QQQ     (8.144) 

With the x-axis selected within the common plane of the z-axis and the direction n toward the 
observation point (Fig. 16), so nx = sin, ny = 0, and nz = cos, Eq. (141) yields 

           cos4,0,sin2 22 qdqd zyx QQQ ,   (8.145) 

and the vector product in Eq. (143) has only one non-vanishing Cartesian component: 
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As a result, the quadrupole radiation intensity, S  Bq
2, is proportional to sin2cos2, i.e. vanishes not 

only along the symmetry axis of the system (as the electric-dipole and the magnetic-dipole radiations 
would), but also in all directions perpendicular to this axis, reaching its maxima at  = /4. 

 For more complex systems, the angular distribution of the electric quadrupole radiation may be 
different, but it may be proved that its total (instant) power always obeys the following simple formula: 
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 Let me finish this section by giving, also without proof, one more fact important for some 
applications: due to their different spatial structure, the magnetic-dipole and electric-quadrupole 
radiation fields do not interfere, i.e. the total power of radiation (neglecting the electric-dipole and 
higher multipole terms) may be found as the sum of these components, calculated independently. On the 
contrary, the electric-dipole and magnetic-dipole radiations of the same system typically interfere 
coherently, so their radiation fields (rather than powers) should be summed up. 

 

8.10. Exercise problems 

 8.1. Equation (8) obviously has standing-wave solutions (r, t) = Re [Csinkr exp{–it}], turning 
the scalar potential  = /r into a finite constant at r = 0 and into zero at kr = n, with n = 0, 1, 2,… This 
fact seems to imply that a cavity of radius R, carved inside a good conductor, has resonant modes with a 
purely radial electric field E(r) = nrE(r)  and that the lowest nonvanishing of them, with k = /R, gives 
the lowest (fundamental) frequency   vk = (v/R) of the cavity. Is this conclusion correct? 
 
 8.2. Simplify the Lorentz reciprocity theorem (6.121) for space-localized field sources. Then find 
out what it says about the fields of two compact, well-separated sources of electric-dipole radiation.  
 
 8.3. In the electric-dipole approximation, calculate the angular distribution and the total power of 
electromagnetic radiation by the hydrogen atom within the following classical model: an electron 
rotates, at a constant distance R, about a much heavier proton. Use this result to calculate the law of a 
gradual reduction of R in time. Finally, evaluate the classical lifetime of the atom by borrowing the 
initial value of R from quantum mechanics: R(0) = rB  0.5310-10 m. 
 
 8.4. A non-relativistic particle of mass m, with electric charge q, is placed into a time-
independent uniform magnetic field B. Derive the law of decrease of the particle’s kinetic energy due to 

Electric 
quadrupole 

radiation: 
power 



Essential Graduate Physics                   EM: Classical Electrodynamics 

     
Chapter 8                 Page 36 of 38 

its electromagnetic radiation at the cyclotron frequency c = qB/m. Evaluate the rate of such radiation 
cooling of electrons in a magnetic field of 1 T, and estimate the energy interval in which this result is 
quantitatively correct. 

 Hint: The cyclotron motion will be discussed in detail (for arbitrary particle velocities) in Sec. 
9.6 below, but I hope that the reader already knows that in the non-relativistic case (v << c), the above 
formula for c may be readily obtained by combining the 2nd Newton law mv

2/R = qvB for the 
particle’s circular rotation under the effect of the magnetic component of the Lorentz force (5.10), and 
the geometric relation v = Rc.  (Here v is the particle’s velocity in the plane normal to the vector B.) 
 
 8.5. A particle with mass m, electric charge q, and an initial kinetic energy T << mc2 collides 
head-on with a much more massive particle of charge Zq, in free space. Calculate the total energy of 
electromagnetic radiation during this collision, assuming it to be much lower than T. 
 
 8.6. Solve the dipole antenna radiation problem discussed in Sec. 2 (see Fig. 3) for the optimal 
value l = /2 of its length, assuming that the current distribution in each of its arms is sinusoidal: I(z, t) = 
I0cos(z/l) cost. 54 
 
 8.7. A plane wave is scattered by a localized object in free space. Relate the differential cross-
section of the wave’s scattering to the average force it exerts on the object. Use this general relation to 
calculate the force exerted by a plane monochromatic wave on a free non-relativistic particle and 
compare the result with those obtained in Problems 7.4 and 7.5. 
 
 8.8. Use the Lorentz oscillator model of a bound charge, given by Eq. (7.30), to explore the 
transition between the two scattering limits discussed in Sec. 3 and, in particular, the resonant scattering 
taking place at   0. In the last context, discuss the contribution of scattering to the oscillator’s 
damping. 
 
 8.9.* A sphere of radius R, made of a material with a uniform permanent electric polarization P0 
and a constant mass density , is free to rotate about its center. Calculate its average total cross-section 
for scattering of a linearly polarized plane electromagnetic wave of frequency  << R/c, incident from 
free space, in the weak-wave limit, assuming that the initial orientation of the polarization vector P0 is 
random. 
 
 8.10. Use Eq. (56) to analyze the interference/diffraction pattern produced by a 
plane wave’s scattering on a set of N similar equidistant small objects on a straight line 
normal to the direction of the incident wave’s propagation – see the figure on the right. 
Discuss the trend(s) of the pattern in the limit N  . 
 

 8.11. Use the Born approximation to calculate the differential cross-section of a plane wave’s 
scattering by a uniform dielectric sphere of an arbitrary radius R. In the limits kR << 1 and 1 << kR 
(where k is the wave number), analyze the angular dependence of the differential cross-section and 
calculate the total cross-section of scattering. 

54 As was emphasized in Sec. 2, this is a reasonable guess rather than a controllable approximation. The exact 
(rather involved!) theory shows that this assumption gives errors ~5%, depending on the wire’s diameter. 
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 8.12. A sphere of radius R is made of a uniform dielectric material, with an arbitrary dielectric 
constant. Calculate its total cross-section of scattering a linearly-polarized low-frequency (k << 1/R) 
wave and compare the result with the solution of the previous problem.  
 
 8.13. Use the Born approximation to calculate the differential cross-section of a plane wave’s 
scattering on a right circular cylinder of length l and radius R, for an arbitrary angle of incidence. 
 
 8.14. Formulate the quantitative condition of the Born approximation’s validity for a uniform 
dielectric scatterer, with all linear dimensions of the order of the same scale a. 
 
 8.15. If a scatterer absorbs some part of the incident wave’s power, it may be characterized by an 
absorption cross-section a defined similarly to Eq. (39) for the scattering cross-section: 

0

2
a

a
2/ ZE


P

 , 

where the numerator is the time-averaged absorbed power. Use two different approaches to calculate a 
of a very small sphere of radius R << k–1,s, made of a nonmagnetic material with an Ohmic 
conductivity  and the high-frequency permittivity opt = 0. Can a of such a sphere be larger than its 
geometric cross-section R2? 
 
 8.16. Use the Huygens principle to calculate the wave’s intensity on the symmetry plane of the 
slit diffraction experiment (i.e. at x = 0 in Fig. 12), for arbitrary ratio z/ka2. 
  
 8.17. A plane wave with wavelength  is normally 
incident on an opaque planar screen with a round orifice of 
radius R >> . Use the Huygens principle to calculate the 
passing wave’s intensity on the system’s symmetry axis, at 
distances z >> R from the screen (see the figure on the 
right), and analyze the result.  
 

 8.18. A plane monochromatic wave is now 
normally incident on an opaque circular disk of radius R 
>> . Use the Huygens principle to calculate the wave’s 
intensity at a distance z >> R behind the disk’s center – 
see the figure on the right. Discuss the result. 

 

8.19. Use the Huygens principle to analyze the Fraunhofer diffraction of a plane wave normally 
incident on a square-shaped hole, of size aa, in an opaque screen. Sketch the diffraction pattern you 
would observe at a sufficiently large distance, and quantify the expression “sufficiently large” for this 
case. 
 
 8.20. Use the Huygens principle to analyze the propagation of a monochromatic Gaussian beam 
described by Eq. (7.181), with the initial characteristic width a0 >> , in a uniform isotropic medium. 
Use the result for a semi-quantitative derivation of the so-called Abbe limit for the spatial resolution of 
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an optical system: wmin = /2sin, where   is the half-angle of the wave cone propagating from the 
object and captured by the system. 
 

 8.21. Within the Fraunhofer approximation, 
analyze the pattern produced by a diffraction grating 
with the 1D-periodic transparency profile shown in 
the figure on the right, for the normal incidence of a 
monochromatic plane wave. 
  

 8.22. N equal point charges are attached, at equal intervals, to a circle 
rotating with a constant angular velocity about its center – see the figure on the 
right. For what values of N does the system emit: 

 (i) the electric dipole radiation? 
 (ii) the magnetic dipole radiation? 
 (iii) the electric quadrupole radiation? 
 

 8.23. What general statements can you make about: 

 (i) the electric dipole radiation, and 
 (ii) the magnetic dipole radiation, 

due to a collision of an arbitrary number of similar non-relativistic classical particles? 
 
 8.24. Calculate the angular distribution and the total power radiated by a small planar loop 
antenna of radius R, fed with ac current with frequency  and amplitude I0, into free space. 
 
 8.25. The orientation of a magnetic dipole, with a constant magnitude m of its moment, is 
rotating about a certain axis with an angular velocity , with the angle  between them staying constant. 
Calculate the angular distribution and the average power of its radiation into the free space. 
 
 8.26. Solve Problem 12 (also in the low-frequency limit kR << 1), for the case when the sphere’s 
material has a frequency-independent Ohmic conductivity , and opt = 0, in two limits: 

 (i) of a very large skin depth (s >> R), and 
 (ii) of a very small skin depth (s << R). 
  
 8.27. Complete the solution of the problem started in Sec. 9, by calculating the full power of 
radiation of the system of two charges oscillating in antiphase along the same straight line – see Fig. 16. 
Also, calculate the average radiation power for the case of harmonic oscillations, d(t) = acost, 
compare it with the case of a single charge performing similar oscillations, and interpret the difference. 
 
 8.28. The system of four alternating charges located at the angles of a square, considered in 
Problem 3.3(i), is now being rotated around the axis normal to their plane and passing through the 
square’s center, with a constant angular frequency  << v/a. Calculate the time-averaged angular 
distribution and the total power of the resulting radiation.  
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