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Chapter 1. Introduction 

This introductory chapter briefly reviews the major experimental motivations for quantum mechanics 
and then discusses its simplest formalism – Schrödinger’s wave mechanics. Much of this material may 
be found in undergraduate textbooks,1 so the discussion is rather brief and focused on the most 
important conceptual issues. 

 

1.1. Experimental motivations 

 By the beginning of the 1900s, physics (which by that time included what we now call non-
relativistic classical mechanics, classical thermodynamics and statistics, and classical electrodynamics 
including geometric and wave optics) looked an almost completed discipline, with most human-scale 
phenomena reasonably explained, and just a couple of mysterious “dark clouds”2 on the horizon. 
However, rapid technological progress and the resulting development of more refined scientific 
instruments have led to a fast multiplication of observed phenomena that could not be explained on a 
classical basis. Let me list the most consequential of those experimental findings. 

 (i) The blackbody radiation measurements, pioneered by G. Kirchhoff in 1859, have shown that 
in thermal equilibrium, the power of electromagnetic radiation by a fully absorbing (“black”) surface, 
per a unit frequency interval, drops exponentially at high frequencies. This is not what could be 
expected from the combination of classical electrodynamics and statistics, which predicted an infinite 
growth of the radiation density with frequency.  

 Indeed, classical electrodynamics shows3 that electromagnetic field modes evolve in time just as 
harmonic oscillators, and that the number dN of these modes in a relatively large free-space volume V 
>> 3, within a small frequency interval d <<  near some frequency , is 
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where c  3×108 m/s is the free-space speed of light, k = /c is the free-space wave number, and  = 
2/k  is the radiation wavelength. On the other hand, classical statistics4 predicts that in thermal 
equilibrium at temperature T, the average energy E of each 1D harmonic oscillator should be equal to 
kBT, where kB is the Boltzmann constant.5 Combining these two results, we readily get the so-called 
Rayleigh-Jeans formula for the average electromagnetic wave energy per unit volume: 

1 See, for example, S. Gasiorowicz, Quantum Physics, 3rd ed., Wiley, 2003; D. Griffith, Quantum Mechanics, 2nd 
ed., Cambridge U. Press, 2016. 
2 This famous expression was used in a 1900 talk by Lord Kelvin (born William Thomson), in reference to the 
results of blackbody radiation measurements and the Michelson-Morley experiments, i.e. the precursors of 
quantum mechanics and relativity theory. 
3 See, e.g., EM Sec. 7.8, in particular Eq. (7.211).  
4 See, e.g., SM Sec. 2.2.  
5 In the SI units, used throughout this series, kB  1.38×10-23 J/K – see Appendix UCA: Selected Units and 
Constants for the exact value. 
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which diverges at    (Fig. 1) – the so-called ultraviolet catastrophe. On the other hand, the 
blackbody radiation measurements, improved by O. Lummer and E. Pringsheim, and by H. Rubens and 
F. Kurlbaum to reach a 1%-scale accuracy, were compatible with the law suggested in 1900 by Max 
Planck: 
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This law may be reconciled with the fundamental Eq. (1) if the following replacement is made for the 
average energy of each field oscillator: 
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with the factor 
       sJ 10055.1 34   ,     (1.4) 

now called Planck’s constant.6 At low frequencies ( << kBT), the denominator in Eqs. (3) may be 
approximated as /kBT, so the average energy (3b) tends to its classical value kBT, and the Planck law 
(3a) reduces to the Rayleigh-Jeans formula (2). However, at higher frequencies ( >> kBT), Eq. (3) 
describes the experimentally observed rapid decrease of the radiation density – see Fig. 1.  

 

 

 

 

 

 

 

 

 

 
 

 M. Plank derived Eq. (3b) from basic statistics, by assuming (just to fit the experimental results 
for u) that the energy of a field oscillator of frequency  can only take values that differ by  

     E .      (1.5) 

6 M. Planck himself wrote  as h, where  = /2  is the “cyclic” frequency, so in early texts on quantum 
mechanics the term “Planck’s constant” referred to h  2, while  was called “the Dirac constant” for a while. I 
will use contemporary terminology and abstain from using the constant h at all, to avoid confusion. 
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Fig. 1.1. The blackbody radiation density u, in units 
of u0  (kBT)3/22c3, as a function of frequency, 
according to the Rayleigh-Jeans formula (blue line) 
and Planck’s law (red line). 
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 (ii) The photoelectric effect, discovered in 1887 by H. Hertz and studied quantitatively by A. 
Stoletov in 1888-89, shows a sharp lower boundary (“red border”) for the frequency of the incident 
light that may kick electrons out from metallic surfaces, independent of its intensity. Albert Einstein, in 
one of his three famous 1905 papers, noticed that this threshold min could be explained by assuming 
that light consisted of certain particles (later called photons) with the same energy (5).7 Indeed, with this 
assumption, at the photon absorption by an electron, its energy E =  is divided between a fixed energy 
U0 (nowadays called the workfunction) of the electron’s binding inside the metal, and the excess kinetic 
energy mev

2/2 > 0 of the freed electron – see Fig. 2. In this picture, the red border finds a natural 
explanation as min= U0/.8   

 

 

 

 

 

 

 (iii) The discrete frequency spectra of the electromagnetic radiation by excited atomic gases 
could not be explained by classical physics. (Applied to the planetary model of atoms, proposed by 
Ernst Rutherford, classical electrodynamics predicts the collapse of electrons on nuclei in ~10-10s, due to 
the electric-dipole radiation of electromagnetic waves.9) Especially challenging was the observation by 
Johann Jacob Balmer (in 1885) that the radiation frequencies of simple atoms may be well described by 
simple formulas. For example, for the lightest, hydrogen atom, all radiation frequencies may be 
numbered with just two positive integers n and n’ > n: 
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with 0  1,  2.071016 s-1. This observation, and the experimental value of 0, have found its first 
explanation in the famous 1913 theory by Niels Henrik David Bohr, which was a phenomenological 
precursor of present-day quantum mechanics. In this theory, n,n’ was interpreted as the frequency of a 
photon that obeys Eq. (5), with its energy En,n’ = n,n’ being the difference between two quantized 
(discrete) energy levels of the atom (Fig. 3): 

       0'',  nnnn EEE .     (1.7) 

 Bohr showed that Eq. (6) may be obtained from Eqs. (5) and (7), and classical mechanics, 
augmented with just one additional postulate10 equivalent to the assumption that the angular momentum 

7 As a reminder, A. Einstein received his only Nobel Prize (in 1921) for exactly this work rather than for his 
relativity theory. 
8 For most metals, U0 is between 4 and 5 electron-volts (eV), so the threshold corresponds to max = 2c/min = 
2c/(U0/)  300 nm – approximately at the border between the visible light and the ultraviolet radiation. 
9 See, e.g., EM Sec. 8.2. 
10 For more on his actual postulate, see Problem 1. 
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L = mevr of an electron moving with velocity v on a circular orbit of radius r about the hydrogen’s 
nucleus (the proton, assumed to be at rest because of its much higher mass), is quantized as 

             nL  ,      (1.8)  

where  is again the same Planck’s constant (4), and n is an integer. (In Bohr’s theory, n could not be 
equal to zero, though in genuine quantum mechanics, it can.) 

 

 

 

 

 
 Indeed, it is sufficient to solve Eq. (8), mevr = n, together with the equation  
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which expresses the 2nd Newton’s law for an electron rotating in the Coulomb field of the nucleus. (Here 
e  1.610-19C is the fundamental electric charge, and me  0.9110-30 kg is the electron’s rest mass.) 
The result for r is 
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The constant rB, called the Bohr radius, is the most important spatial scale of phenomena in atomic, 
molecular, and condensed-matter physics – and hence in all chemistry and biochemistry. 

 Now plugging these results into the non-relativistic expression for the full electron energy (with 
its rest energy taken for reference), 
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we get the following simple expression for the electron’s energy levels:  
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which, together with Eqs. (5) and (7), immediately gives Eq. (6) for the radiation frequencies. Here EH is 
called the so-called Hartree energy constant (or just the “Hartree energy”)11 
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(Please note the useful relations that follow from Eqs. (10) and (13a): 

11 Unfortunately, another name, the “Rydberg constant”, is sometimes used for either this energy unit or its half, 
EH/2  13.6 eV. To add to the confusion, the same term “Rydberg constant” is used, in some subfields of physics, 
for the reciprocal free-space wavelength (1/0 = 0/2c) corresponding to the frequency 0  EH/2.  

Fig. 1.3. The electromagnetic radiation 
of a system as a result of the transition 
between its quantized energy levels.  
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the first of them shows, in particular, that rB is the distance at which the natural scales of the electron’s 
potential and kinetic energies are equal.) 

Note also that Eq. (8), in the form pr = n, where p = mev is the electron momentum’s 
magnitude, may be rewritten as the condition that an integer number (n) of wavelengths  of certain 
(before the late 1920s, hypothetic) waves12 fits the circular orbit’s perimeter: 2r  2n/p = n. 
Dividing both parts of the last equality by n, we see that for this statement to be true, the wave number k 
 2/ of the de Broglie waves should be proportional to the electron’s momentum p = mv: 

      kp  ,      (1.14) 

again with the same Planck’s constant as in Eq. (5). 

(iv) The Compton effect13 is the reduction of frequency of X-rays at their scattering on free (or 
nearly free) electrons – see Fig. 4.  

 

 

 

 

 

The effect may be explained by assuming that the X-ray photon also has a definite momentum 
that obeys the vector-generalized version of Eq. (14):  

            nkp
c


 photon ,     (1.15) 

where k is the wavevector (whose magnitude is equal to the wave number k, and whose direction 
coincides with the unit vector n directed along the wave propagation14), and that the momenta of both 
the photon and the electron are related to their energies E by the classical relativistic formula15 

           2222 mccpE  .     (1.16)  

(For a photon, the rest energy m is zero, and this relation is reduced to Eq. (5): E = cp = ck = .) 
Indeed, a straightforward solution of the following system of three equations,  
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12 This concept was first proposed in 1924 by Louis Victor Pierre Raymond de Broglie (in his PhD thesis!), so 
instead of speaking of wavefunctions, we are still frequently speaking of the de Broglie waves, especially when 
free particles are discussed. (In some subfields of physics, the term “matter waves” is used for the same notion.) 
13 This effect was observed in 1922, and explained a year later by Arthur Holly Compton, using Eqs. (5) and (15). 
14 See, e.g., EM Sec. 7.1. 
15 See, e.g., EM Sec. 9.3, in particular Eq. (9.78). 

Fig. 1.4. The Compton effect. 
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(that express the conservation of, respectively, the full energy of the system and of the two relevant 
Cartesian components of its full momentum, at the scattering event – see Fig. 4), yields the result: 
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which is traditionally represented as the relation between the initial and final values of the photon’s 
wavelength  = 2/k = 2/(/c): 16 
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and agrees with experiment. 

(v) De Broglie wave diffraction. In 1927, Clinton Joseph Davisson and Lester Germer, and 
independently George Paget Thomson succeeded in observing the diffraction of electrons on solid 
crystals (Fig. 5). Specifically, they found that the intensity of the elastic reflection of electrons from a 
crystal increases sharply when the angle  between the incident beam of electrons and the crystal’s 
atomic planes, separated by distance d, satisfies the following relation:  

  nd sin2 ,     (1.21)  

where  = 2/k = 2/p is the de Broglie wavelength of the electrons, and n is an integer. As Fig. 5 
shows, this is just the well-known condition17 that the path difference l = 2dsin  between the de 
Broglie waves reflected from two adjacent crystal planes coincides with an integer number of , i.e. of 
the constructive interference of the waves.18 

To summarize, all the listed experimental observations could be explained starting from two very 
simple (and similarly looking) formulas: Eq. (5) (at that stage, for photons only), and Eq. (15) for both 
photons and electrons – both relations involving the same Planck’s constant. This fact might give an 
impression of experimental evidence sufficient to declare the light consisting of discrete particles 
(photons), and, on the contrary, electrons being the de Broglie waves rather than particles. However, by 

16 The constant C  2.42610–12 m that participates in this relation, is called the electron’s Compton wavelength. 
This term is somewhat misleading: as the reader can see from Eqs. (17)-(19), no wave in the Compton problem 
has such a wavelength – either before or after the scattering. 
17 See, e.g., EM Sec. 8.4, in particular Fig. 8.9 and Eq. (8.82). Frequently, Eq. (21) is called the Bragg condition, 
due to the pioneering experiments by W. Bragg on X-ray scattering from crystals, which were started in 1912. 
18 Later, spectacular experiments on diffraction and interference of heavier particles (with the correspondingly 
smaller de Broglie wavelength), e.g., neutrons, whole atoms, and even large organic molecules, have also been 
carried out – see, e.g., the review by A. Zeilinger et al., Rev. Mod. Phys. 60, 1067 (1988) and a later publication 
Y. Fein et al., Nature Physics 15, 1242 (2019) and references therein. Nowadays, such interference of heavy 
particles is used for ultrasensitive measurements of gravity, rotation, and tilt – see, e.g., the reviews by A. Cronin 
et al., Rev. Mod. Phys. 81, 1051 (2009) and M. Arndt, Phys. Today 67, 30 (May 2014).  
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that time (the mid-1920s), physics has accumulated overwhelming evidence of wave properties of light, 
such as interference and diffraction.19 In addition, there was also strong evidence for the lumped-particle 
(“corpuscular”) behavior of electrons. It is sufficient to mention the famous oil-drop experiments by 
Robert Andrew Millikan and Harvey Fletcher (1909-1913), in which only whole electrons could be 
added to an oil drop, changing its total electric charge by multiples of the electron’s charge (-e) – and 
never by its fraction. It was apparently impossible to reconcile these observations with a purely wave 
picture, in which an electron and hence its charge needed to be spread over the de Broglie wave’s 
extension, so an arbitrary part of it could be cut off using an appropriate experimental setup. 

 

 

 

 

 

 

 

 Thus the founding fathers of quantum mechanics faced the formidable task of reconciling the 
wave and corpuscular properties of electrons and photons – and other particles. The decisive 
breakthrough in that task was achieved in 1926 by Ervin Schrödinger and Max Born, who formulated 
what is now known either formally as the Schrödinger picture of non-relativistic quantum mechanics of 
the orbital motion20 in the coordinate representation (this term will be explained later in the course) or 
informally just as the wave mechanics. I will now formulate the main postulates of this theory. 

 

1.2. Wave mechanics postulates 

 Let us consider a spinless,21 non-relativistic point-like particle, whose classical dynamics may be 
described by a certain Hamiltonian function H(r, p, t),22 where r is the particle’s radius vector and p is 
its momentum. (This condition is important because it excludes from our current discussion the systems 
whose interaction with their environment results in irreversible effects, in particular the energy’s decay. 
Such “open” systems need a more general description, which will be discussed in Chapter 7.) Wave 
mechanics of such Hamiltonian particles may be based on the following set of postulates that are 
comfortingly elegant – though their final justification is given only by the agreement of all their 
corollaries with experiment.23 

19 See, e.g., EM Sec. 8.4. 
20 Orbital motion is the historic (and rather misleading) term used for any translational motion of the particle. 
21 Actually, in wave mechanics, the spin of the described particle has not to be equal to zero. Rather, it is assumed 
that the particle spin’s effects on its orbital motion are negligible. 
22 As a reminder, for many systems (including all those whose kinetic energy is a quadratic-homogeneous 
function of generalized velocities, like mv2/2), H coincides with the total energy E – see, e.g., CM Sec. 2.3. In 
what follows, I will assume that H = E until noticed otherwise. 
23 Quantum mechanics, like any theory, may be built on different sets of postulates/axioms leading to the same 
results. In this text, I will not try to beat down the number of postulates to the absolute possible minimum, not 

Fig. 1.5. The De Broglie wave interference 
at electron scattering from a crystal lattice. 
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 (i) Wavefunction and probability. Not always such variables as r or p can be measured exactly, 
even at “perfect conditions” when all external uncertainties, including measurement instrument 
imperfection, varieties of the initial state preparation, and unintended particle interactions with its 
environment, have been removed.24 Moreover, the r and p of the same particle can never be measured 
exactly simultaneously. Instead, the most detailed description of the particle’s state allowed by Nature is 
given by a certain complex function (r, t), called the wavefunction (or “wave function”), which 
generally enables only probabilistic predictions of the measured values of r, p, and other directly 
measurable variables – in quantum mechanics, usually called observables. 

 Specifically, the probability dW of finding a particle inside an elementary volume  dV  d3r  is 
proportional to this volume and hence may be characterized by a volume-independent probability 
density w  dW/d3r, which in turn is related to the wavefunction as  

               ),(),(),( *2
tttw rrr  ,    (1.22a) 

where the sign * denotes the usual complex conjugation. As a result, the total probability of finding the 
particle somewhere inside a volume V may be calculated as 

            
VV

rdrwdW 33 * .     (1.22b) 

In particular, if volume V contains the particle definitely (i.e. with the 100% probability, W = 1), Eq. 
(22b) is reduced to the so-called wavefunction normalization condition 

                  13* 
V

rd .     (1.22c) 

(ii) Observables and operators. With each observable A, quantum mechanics associates a certain 

linear operator Â , such that the average measured value of A (usually called the expectation value) is 
expressed as25 

          
V

rdAA 3ˆ* ,     (1.23) 

where … means the statistical average, i.e. the result of averaging the measurement results over a large 
ensemble (set) of macroscopically similar experiments, and  is the normalized wavefunction that 
satisfies Eq. (22c). Note immediately that for Eqs. (22) and (23) to be compatible, the identity (or “unit”) 
operator defined by the relation 

     Î ,      (1.24) 

has to be associated with a particular type of measurement, namely with the particle’s detection, i.e. the 
observation of its presence. 

only because that would require longer argumentation, but chiefly because such attempts typically result in 
making certain implicit assumptions hidden from the reader – the practice as common as regrettable. 
24 I will imply such perfect conditions in the further narrative, until the discussion of the system’s interaction with 
its environment in Chapter 7. 
25 This key measurement postulate is sometimes called the Born rule, though sometimes this term is used for the 
(less general) Eqs. (22). 
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 (iii) The Hamiltonian operator and the Schrödinger equation. Another particular operator, 

Hamiltonian Ĥ  whose observable is the particle’s energy E, also plays in wave mechanics a very special 
role, because it participates in the Schrödinger equation, 

 



H
t

i ˆ ,      (1.25) 

that determines the wavefunction’s dynamics, i.e. its time evolution.  

(iv) The radius-vector and momentum operators. In wave mechanics (i.e. in the coordinate 
representation), the vector operator of the particle’s radius vector r just multiples the wavefunction by 
this vector, while the operator of the particle’s momentum is proportional to the spatial derivative: 

              i,  prr ˆˆ ,     (1.26a) 

where  is the del (or “nabla”) vector operator.26 Thus in the Cartesian coordinates, 
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 (v) The correspondence principle. In the limit when quantum effects are insignificant, e.g., when 
the characteristic scale of action27 (i.e. the product of the relevant energy and time scales of the problem) 
is much larger than Planck’s constant , all wave mechanics results have to tend to those given by 
classical mechanics. Mathematically, this correspondence is achieved by duplicating the classical 
relations between various observables with similar relations between the corresponding operators. For 
example, the Hamiltonian of a free particle (whose full classical energy consists of its kinetic energy T = 
p2/2m alone) has the form 

                2
22

22

ˆˆˆ 
mm

p
TH


.     (1.27) 

  
 Now, even before a deeper discussion of the postulates’ physics (offered in the next section), we 
may immediately see that they indeed provide a formal way toward a resolution of the apparent 
contradiction between the wave and corpuscular properties of particles. Indeed, for a free particle, the 
Schrödinger equation (25), with the substitution of Eq. (27), takes the form 

        

 2

2

2mt
i


  ,     (1.28) 

whose particular but most important solution is a plane, single-frequency (“monochromatic”) traveling 
wave,28  

                  )(),( tiaet  rkr ,     (1.29) 

26 If you need, see, e.g., Secs. 8-10 of the Selected Mathematical Formulas appendix – below, referred to as MA. 
Note that according to those formulas, the del operator follows all the rules of the usual (geometric) vectors. This 
is, by definition, true for other quantum-mechanical vector operators to be discussed below. 
27 See, e.g., CM Sec. 10.3. 
28 See, e.g., CM Sec. 6.4 and/or EM Sec. 7.1. 
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where a, k, and  are constants. Indeed, plugging Eq. (29) into Eq. (28), we immediately see that such a 
plane wave, with an arbitrary complex amplitude a, is indeed a solution of this Schrödinger equation, 
provided a specific dispersion relation between the wave number k    k  and the frequency : 

  
m

k

2

)( 2
  .      (1.30) 

The constant a may be calculated, for example, assuming that the wave (29) is extended over a certain 
volume V, while beyond it,   = 0. Then from the normalization condition (22c) and Eq. (29), we get29  

    1
2 Va .      (1.31) 

Let us use Eqs. (23), (26), and (27) to calculate the expectation values of the particle’s 
momentum p and energy E = H in the state (29). The result is 

        
m

k
HE

2

)( 2
  k,p ;     (1.32) 

according to Eq. (30), the last equality may be rewritten as E = .  

Next, Eq. (23) enables calculation of not only the average (in math speak, the first moment) of an 
observable but also its higher moments, notably the second moment – in physics, usually called 
variance: 

             2222~
AAAAA  ,    (1.33) 

 and hence its uncertainty alternatively called the “root-mean-square (r.m.s.) fluctuation”, 

      
2/1

2~
AA  .        (1.34)  

The uncertainty is the scale of deviations AAA 
~

of measurement results from their average. In the 

particular case when the uncertainty A equals zero, every measurement of the observable A will give 
the same value A; such a state is said to have a definite value of the variable. For example, in 
application to the state with wavefunction (29), these relations yield E = 0, p = 0. This means that in 
this plane-wave, monochromatic state, the energy and momentum of the particle have definite values, so 
the statistical average signs in Eqs. (32) might be removed. Thus, these relations are reduced to the 
experimentally inferred Eqs. (5) and (15).  

Hence the wave mechanics postulates indeed may describe the observed wave properties of non-
relativistic particles. (For photons, we would need its relativistic generalization – see Chapter 9 below.) 
On the other hand, due to the linearity of the Schrödinger equation (25), any sum of its solutions is also 
a solution – the so-called linear superposition principle. For a free particle, this means that any set of 
plane waves (29) is also a solution to this equation. Such sets, with close values of k and hence p = k 
(and, according to  Eq. (30), of  as well), may be used to describe spatially localized “pulses”, called 
wave packets – see Fig.  6. In Sec. 2.1, I will prove (or rather reproduce H. Weyl’s proof :-) that the 
wave packet’s extension x in any direction (say, x) is related to the width kx of the distribution of the 

29 For infinite space (V  ), Eq. (31) yields a  0, i.e. wavefunction (29) vanishes. This formal problem may be 
readily resolved considering sufficiently long wave packets – see Sec. 2.2 below. 
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corresponding component of its wave vector as xkx  ½, and hence, according to Eq. (15), to the width 
px of the momentum component distribution as 

        
2


 xpx  .      (1.35) 

   

 

 

 

 

 

 

 

 

This is the famous Heisenberg’s uncertainty principle, which quantifies the first postulate’s 
point that the coordinate and the momentum cannot be defined exactly simultaneously. However,  since 
Planck’s constant,  ~ 10-34 Js, is extremely small on the human scale of things, it still allows for 
particle localization in a very small volume even if the momentum spread in a wave packet is also small 
on that scale. For example, according to Eq. (35), a 0.1% spread of momentum of a 1 keV electron (p ~ 
1.710-24 kgm/s) allows its wave packet to be as small as ~310-10 m. (For a heavier particle such as a 
proton, the packet would be even tighter.) As a result, wave packets may be used to describe the 
particles that are quite point-like from the macroscopic point of view.  

In a nutshell, this is the main idea of wave mechanics, and the first part of this course (Chapters 
1-3)  will be essentially a discussion of the various effects described by this approach. During this 
discussion, however, we will not only witness the wave mechanics’ many triumphs within its 
applicability domain but also gradually accumulate evidence for its handicaps, which will force an 
eventual transfer to a more general formalism – to be discussed in Chapter 4 and beyond.  

 

1.3. Postulates’ discussion 

The wave mechanics’ postulates listed in the previous section (hopefully, familiar to the reader 
from their undergraduate studies) may look very simple. However, the physics of these axioms is very 
deep, leading to some counter-intuitive conclusions, and their in-depth discussion requires solutions of 
several key problems of wave mechanics. This is why in this section I will give only an initial, 
admittedly superficial discussion of the postulates, and will be repeatedly returning to the conceptual 
foundations of quantum mechanics throughout the course, especially in the concluding Chapter 10. 

 First of all, the fundamental uncertainty of observables, which is in the core of the first postulate,  
is very foreign to the basic ideas of classical mechanics, and historically has made quantum mechanics 
so hard to swallow for many star physicists, notably including Albert Einstein – despite his 1905 work, 
which advanced the field so much. However, this fact has been confirmed by numerous experiments, 
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Fig. 1.6. (a) A snapshot of a typical wave packet 
propagating along axis x, and (b) the corresponding 
distribution of the wave numbers kx, i.e. the momenta px. 
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and (more importantly) there has not been a single confirmed experiment that would contradict this 
postulate, so quantum mechanics was long ago promoted from a theoretical hypothesis to the rank of a 
reliable scientific theory. 

 One more remark in this context is that Eq. (25) itself is deterministic, i.e. conceptually enables 
an exact calculation of the wavefunction’s distribution in space at any instant t, provided that its initial 
distribution, and the particle’s Hamiltonian, are known exactly. Note that in classical statistical 
mechanics, the probability density distribution w(r, t) may be also calculated from deterministic 
differential equations, for example, the Liouville equation.30 The quantum-mechanical description 
differs from that situation in two important aspects. First, in the perfect conditions outlined above (the 
best possible initial state preparation and measurements), the Liouville equation is reduced to the 2nd 
Newton law of classical mechanics, i.e. the statistical uncertainty of its results disappears. In quantum 
mechanics this is not true: the quantum uncertainly, such as that described by Eq. (35), persists even in 
this limit. Second, the wavefunction (r, t) gives more information than just w(r, t) because, besides the 
modulus of  involved in Eq. (22), this complex function also has the phase    arg, which may 
affect some observables, describing, in particular, interference of the de Broglie waves.  

 Next, it is very important to understand that the relation between the quantum mechanics and 
experiment, given by the second postulate, necessarily involves another key notion: that of the 
corresponding statistical ensemble, in this case, a set of many experiments carried out at apparently 
(macroscopically) similar settings including the initial conditions. Indeed, the probability of a certain 
(nth) result (outcome) of an experiment may be only defined for a certain statistical ensemble, as the 
limit  

   


 
N

n
n

n
Mn MM

M

M
W

1

with  ,lim ,    (1.36) 

where M is the total number of experiments, Mn is the number of outcomes of the nth type, and N is the 
number of different outcomes.  

 Note that a particular choice of statistical ensemble may affect probabilities Wn very 
significantly. For example, if we pull out playing cards at random from a standard pack of 52 different 
cards of 4 suits, the probability Wn of getting a certain card (e.g., the queen of spades) is 1/52. However, 
if the cards of a certain suit (say, hearts) had been taken out from the pack in advance, the probability of 
getting the queen of spades is higher, 1/39. It is important that we would also get the last number for the 
probability even if we had used the full 52-card pack, but for some reason discarded results of all 
experiments giving us any rank of hearts. Hence, the ensemble definition (or its redefinition in the 
middle of the game) may change outcome probabilities. 

In wave mechanics, with its fundamental relation (22) between w and , this means that not only 
the outcome probabilities but the wavefunction itself may also depend on the statistical ensemble we are 
using, i.e. not only on the preparation of the system and the experimental setup, but also on the subset of 
outcomes taken into account. This is why an attribution of the wavefunction to a single experiment, both 
before and after the measurement, may lead to very unphysical interpretations of the results, including 
some wavefunction’s evolution stages not described by the Schrödinger equation (the so-called wave 
packet reduction), superluminal action on distance, etc. Later in the course, we will see that minding the 
fundamentally statistical nature of quantum mechanics, and in particular the dependence of 

30 See, e.g., SM Sec. 6.1. 
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wavefunctions on the statistical ensemble’s definition (or redefinition), readily resolves most, though not 
all, paradoxes of quantum measurements.   

Note, however, again that the standard quantum mechanics, as discussed in Chapters 1-6 and 9 
of this course, is limited to statistical ensembles with the least possible uncertainty of the considered 
systems, i.e. with the best possible knowledge of their state.31 This condition requires, first, the least 
uncertain initial preparation of the system, and second, its total isolation from the rest of the world, or at 
least from its disordered part (the “environment”), in the course of its evolution. Only such ensembles 
may be described by certain wavefunctions. A detailed discussion of more general ensembles, which are 
necessary if these conditions are not satisfied, will be given in Chapters 7, 8, and 10. 

 Finally, regarding Eq. (23): a better feeling of this expression may be obtained by its comparison 
with the general definition of the expectation value (i.e. of the statistical average) in the probability 
theory. Namely, let each of N possible outcomes in a set of M experiments give a certain value An of an 
observable A; then 

     n

N

n
n

N

n
nnM WAMA

M
A 


 

11

1
lim .    (1.37) 

Taking into account Eq. (22), which relates W and , the structures of Eq. (23) and the final form of Eq. 
(37) are similar. Their exact relation will be further discussed in Sec. 4.1.  

 

1.4. Continuity equation 

 The wave mechanics postulates survive one more sanity check: they satisfy the natural 
requirement that the particle does not appear or vanish in the course of the quantum evolution.32 Indeed, 
let us use Eq. (22b) to calculate the rate of change of the probability W to find a particle within a certain 
volume V:  

                    rd
dt

d

dt

dW

V

3*  .     (1.38) 

Assuming for simplicity that the boundaries of this volume V do not move, it is sufficient to carry out 
the partial differentiation of the product * inside the integral. Using the Schrödinger equation (25), 
together with its complex conjugate, 

         *
*

)ˆ( 



 H
t

i ,     (1.39) 

we readily get 
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
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

 (1.40) 

31 The reader should not be surprised by the use of the notion of “knowledge” (or “information”) in this context. 
Indeed, due to the statistical character of experiment outcomes, quantum mechanics (or at least its relation to 
experiment) is intimately related to information theory. In contrast to much of classical physics, which may be 
discussed without any reference to information, in quantum mechanics, as in classical statistical physics, such 
abstraction is possible only in some very special (and not the most interesting) cases. 
32 Note that this requirement may be violated in the relativistic quantum theory – see Chapter 9. 

Definition 
of statistical 

average 
 



Essential Graduate Physics                QM: Quantum Mechanics 

    
Chapter 1            Page 14 of 26 

Let the particle move in a field of external forces (not necessarily constant in time), so its 
classical Hamiltonian function H is the sum of the particle’s kinetic energy T = p2/2m and its potential 
energy U(r, t).33 According to the correspondence principle and Eq. (27), the Hamiltonian operator may 
be represented as the sum34 

                  ),(
2

)(
2

ˆˆˆˆ 2
22

tU
m

,tU
m

p
UTH rr 


.   (1.41) 

 At this stage, we should notice that this operator, when acting on a real function, gives a real 
function.35 Hence, the result of its action on an arbitrary complex function  = a + ib (where a and b are 
real) is  

  bHiaHibaHH ˆˆˆˆ  ,     (1.42) 

where aĤ and bĤ are also real, while 

         *** ˆ)(ˆˆˆˆˆˆ  HibaHbHiaHbHiaHH .    (1.43) 

This means that Eq. (40) may be rewritten as 

   rd
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rdHH
idt
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V
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
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
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



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




.  (1.44) 

Now let us use the general rules of vector calculus36 to write the following identity: 

 **** ΨΨΨΨΨΨΨΨ 22 




   ,    (1.45) 

A comparison of Eqs. (44) and (45) shows that we may write 

        ,)( 3 
V

rd
dt

dW
j      (1.46) 

where the vector j is defined as 

        

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mm

i 
j ,    (1.47) 

where c.c. means the complex conjugate of the previous expression – in this case, (*)*, i.e. *. 
Now using the well-known divergence theorem,37 Eq. (46) may be rewritten as the continuity equation 

          
S

n rdjII
dt

dW 2with ,0 ,    (1.48) 

33 As a reminder, such a description is valid not only for conservative forces (in that case U has to be time-
independent) but also for any force F(r, t) that may be expressed via the gradient of U(r, t) – see, e.g., CM 
Chapters 2 and 10. (A good counter-example when such a description is impossible is given by the magnetic 
component of the Lorentz force – see, e.g., EM Sec. 9.7 and also Sec. 3.1 below.) 
34 Historically, this was the main step made (in 1926) by E. Schrödinger on the background of L. de Broglie’s 
idea. The probabilistic interpretation of the wavefunction was put forward, almost simultaneously, by M. Born. 
35 In Chapter 4, we will discuss a more general family of Hermitian operators, which have this property. 
36 See, e.g., MA Eq. (11.4a) combined with the del operator’s definition 2  . 
37 See, e.g., MA Eq. (12.2). 
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where jn is the component of the vector j along the outwardly directed normal to the closed surface S 
that limits the volume V, i.e. the scalar product jꞏn, where n is the unit vector along this normal. 

Formulas (47) and (48) show that if the wavefunction on the surface vanishes, the total 
probability W of finding the particle within the volume does not change, providing the intended sanity 
check. In the general case, Eq. (48) says that dW/dt equals the flux I of the vector j  through the surface, 
with the minus sign. It is clear that this vector may be interpreted as the probability current density – 
and I, as the total probability current through the surface S. This interpretation may be further supported 
by applying Eq. (47) to any wavefunction represented in the polar form  = aei, with real a and : 


m

a
2j .      (1.49) 

Note that for a real wavefunction, or even for a wavefunction with an arbitrary but space-constant phase 
, the probability current density vanishes. On the contrary, for the traveling wave (29), with a constant 
probability density (1.22a), w = a2, Eq. (49) yields a non-zero (and physically very transparent) result: 

       v
p

kj w
m

w
m

w 


,     (1.50) 

where v = p/m is the particle’s velocity. If multiplied by the particle’s mass m, the probability density w 
turns into the (average) mass density , and the probability current density, into the mass flux density v. 
Similarly, if multiplied by the total electric charge q of the particle, with w turning into the charge 
density , j becomes the electric current density. As the reader (hopefully :-) knows, both these currents 
satisfy classical continuity equations similar to Eq. (48).38 

 Finally, let us recast the continuity equation, rewriting Eq. (46) as 

      03 





 

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V

rd
t
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j .     (1.51) 

Now we may argue that this equality may be true for any choice of volume V only if the expression 
under the integral vanishes everywhere, i.e. if 

       .0



j
t

w
      (1.52) 

This differential form of the continuity equation may be more convenient than its integral form (48). 

 

1.5. Eigenstates and eigenvalues 

  Now let us discuss the most important corollaries of wave mechanics’ linearity. First of all, it 
uses only linear operators. This term means that the operators must obey the following two rules:39 

     ,ˆˆˆˆ
2121  AAAA      (1.53) 

38 See, e.g., respectively, CM 8.3 and EM Sec. 4.1. 
39 By the way, if any equality involving operators is valid for an arbitrary wavefunction, the latter is frequently 
dropped from the notation, resulting in operator equality. In particular, Eq. (53) may be readily used to prove that 
the linear operators are commutative: 2112

ˆˆˆˆ AAAA  , and associative:    321321
ˆˆˆˆˆˆ AAAAAA  . 
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          221122112211
ˆˆˆˆˆ  AcAccAcAccA ,   (1.54) 

where n are arbitrary wavefunctions and cn are arbitrary constants (in quantum mechanics, frequently 
called c-numbers, to distinguish them from operators and wavefunctions). The most important examples 
of linear operators are given by: 

 (i) the multiplication by a function, such as for the operator r̂  given by Eq. (26), and 
 (ii) the spatial or temporal differentiation, such as in Eqs. (25)-(27). 

Next, it is of key importance that the Schrödinger equation (25) is also linear. (This fact was 
already used in the discussion of wave packets in Sec. 2.) This means that if each of several functions 
n are particular solutions of Eq. (25) with a certain Hamiltonian, then their arbitrary linear 
combination, 

 
n

nnc ,      (1.55) 

is also a solution of the same equation.40  

Let us use the linearity to accomplish an apparently impossible feat: immediately find the 
general solution of the Schrödinger equation for the important case when the system’s Hamiltonian does 
not depend on time explicitly – for example, is given by Eq. (41) with time-independent potential energy 
U = U(r), so the corresponding Schrödinger equation has the form 




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i


 .     (1.56) 

 First of all, let us prove that the following product, 

          )()( rnnn ta  ,     (1.57) 

qualifies as a particular solution of this equation. Indeed, plugging Eq. (57) into Eq. (25) with any time-
independent Hamiltonian, using the fact that in this case 

      )(ˆ)()()(ˆ rr nnnn HtataH   ,    (1.58) 

and dividing both parts of the equation by ann, we get 
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
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.     (1.59) 

The left-hand side of this equation may depend only on time, while the right-hand side, only on 
coordinates. This may be true for all r and t only if we assume that each of these parts is equal to (the 
same) constant of the dimension of energy, which I will denote as En.41 As a result, we are getting two 
separate equations for the temporal and spatial parts of the wavefunction: 

40 At first glance, it may seem strange that the linear Schrödinger equation correctly describes quantum properties 
of systems whose classical dynamics is described by nonlinear equations of motion, e.g., an anharmonic oscillator 
– see, e.g., CM Sec. 5.2. Note, however, that statistical equations of classical dynamics (see, e.g., SM Chapters 5 
and 6) also have this property, so it is not specific to quantum mechanics. 
41 This argumentation, leading to variable separation, is very common in mathematical physics – see, e.g., its 
discussion in EM Sec. 2.5. 
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 nnn EH  ˆ ,      (1.60) 
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i   .     (1.61a) 

The latter of these equations, rewritten in the form 
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E
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a
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
 ,     (1.61b) 

is readily integrable, giving 
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n
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E
ωtiatia  with ,expconst  soconst,ln  .  (1.62) 

Now plugging Eqs. (57) and (62) into Eq. (22), we see that in the quantum state described by Eqs. (57)-
(62), the probability of finding the particle at a certain location does not depend on time: 

               rrr ww nn   * .     (1.63) 

With the same substitution, Eq. (23) shows that the expectation value of any operator that does not 
depend on time explicitly is also time-independent: 

               rdAA nn
3ˆ* rr  = const.    (1.64) 

 Due to this property, the states described by Eqs. (57)-(62) are called stationary; they are fully 
defined by the possible solutions of the stationary (or “time-independent”) Schrödinger equation (60).42 
Note that for the Hamiltonian (41), the stationary Schrödinger equation (60),  

nnnn EU
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,    (1.65) 

is a linear, homogeneous differential equation for the function n, with a priory unknown parameter En. 
Such equations fall into the mathematical category of eigenproblems,43 whose eigenfunctions n and 
eigenvalues En should be found simultaneously, i.e. self-consistently.44  

 Mathematics45 tells us that for such equations with space-confined eigenfunctions n, tending to 
zero at r  , the spectrum of eigenvalues is discrete. It also proves that the eigenfunctions 
corresponding to different eigenvalues are orthogonal, i.e. that space integrals of the products nn’* 
vanish for all pairs with n  n’. Due to the Schrödinger equation’s linearity, each of these functions may 
be multiplied by a proper constant coefficient to make their set orthonormal: 
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42 In contrast, the full Schrödinger equation (25) is frequently called time-dependent or non-stationary. 
43 From the German root eigen, meaning “particular” or “characteristic”. 
44 Eigenvalues of energy are frequently called eigenenergies, and it is often said that the eigenfunction n and the 
corresponding eigenenergy En together determine the nth stationary eigenstate of the system. 
45 See, e.g., Sec. 9.3 of the handbook by G. Korn and T. Korn, listed in MA Sec. 16(ii).   

Stationary 
state: 

time 
evolution 

Static field: 
stationary 

Schrödinger 
equation 

Stationary 
Schrödinger 

equation 



Essential Graduate Physics                QM: Quantum Mechanics 

    
Chapter 1            Page 18 of 26 

Moreover, the eigenfunctions n(r) form a full set, meaning that an arbitrary function (r), in particular 
the actual wavefunction  of the system at the initial moment of its evolution (which I will always, with 
a few clearly marked exceptions, take for t = 0), may be represented as a unique expansion over the 
eigenfunction set: 

       )()0,( rr 
n

nnc  .     (1.67) 

The expansion coefficients cn may be readily found by multiplying both sides of Eq. (67) by *n’, 
integrating the results over the space, and using Eq. (66). The result is 

       rdc nn
3)0,()(* rr .     (1.68) 

Now let us consider the following wavefunction46 
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Since each term of the sum has the form (57) and satisfies the Schrödinger equation, so does the sum as 
the whole. Moreover, if the coefficients cn are derived in accordance with Eq. (68), then the solution 
(69) satisfies the initial conditions as well. At this moment we can use one more bit of help from 
mathematicians, who tell us that the linear, partial differential equation (56), with fixed initial 
conditions, may have only one (unique) solution. This means that in our case of time-independent 
potential Hamiltonian, Eq. (69) gives the general solution of the Schrödinger equation (25).  

 So, we have succeeded in our apparently over-ambitious goal. Now let us pause this mad 
mathematical dash for a minute, and discuss this key result. 

 

          1.6. Time evolution 

 For the time-dependent factor an(t) of each component (57) of the general solution (69), our 
procedure gave a very simple and universal result (62), describing a linear change of the phase n  
arg(an) of this complex function in time, with a constant rate  

               


n
n

n E

dt

d
 


,     (1.70) 

so the real and imaginary parts of an oscillate sinusoidally with this frequency. The relation (70) 
coincides with the Planck-Einstein conjecture (5), but could these oscillations of the wavefunctions 
represent a physical reality? Indeed, for photons, described by Eq. (5), E may be (and as we will see in 
Chapter 9, is) the actual, well-defined energy of one photon, and  is the frequency of the radiation so 
quantized. However, for non-relativistic particles described by wave mechanics, the potential energy U 
and hence the full energy E are defined up to an arbitrary constant because we may measure them from 
an arbitrary reference level. How can such a change of the energy reference level (which may be made 
just in our mind) alter the frequency of oscillations of a variable?  

 According to Eqs. (22)-(23), this time evolution of a wavefunction does not affect the particle’s 
probability distribution, or even any observable (including the energy E, provided that it is always 

46 Note that according to Eq. (22b), the probability of finding the system in the kth state equals  ck 2. Because of 
that, the complex coefficients ck (or sometimes the products ckak) are called probability amplitudes. 
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referred to the same origin as U), in any stationary state. However, let us combine Eq. (5) with Bohr’s 
assumption (7): 
                nn'nn' EE  .     (1.71) 

The difference nn’ of the eigenfrequencies n and n’, participating in this formula, is evidently 
independent of the energy reference, and as will be proved later in the course, determines the 
measurable frequency of the electromagnetic radiation (or possibly of a wave of a different physical 
nature) emitted or absorbed at the quantum transition between the states.    

 As another but related example, consider two similar particles 1 and 2, each in the same (say, the 
lowest-energy) eigenstate, but with their potential energies (and hence the ground state energies E1,2) 
different by a constant U  U1 – U2. Then, according to Eq. (70), the difference    1 – 2  of their 
wavefunction phases evolves in time with the reference-independent rate  

                   


U

dt

d 



.      (1.72) 

Certain measurement instruments, weakly coupled to the particles, may allow observation of this 
evolution, while keeping the particle’s quantum dynamics virtually unperturbed, i.e. Eq. (70) intact. 
Perhaps the most spectacular measurement of this type is possible using the Josephson effect in weak 
links between two superconductors – see Fig. 7.47  

 

 

 

 

 

 

 
As a brief reminder,48 superconductivity may be explained by a specific coupling between 

conduction electrons in solids, that leads, at low temperatures, to the formation of the so-called Cooper 
pairs. Such pairs behave as Bose particles and form a coherent Bose-Einstein condensate.49 Most 
properties of such a condensate may be described by a single, common wavefunction , evolving in 
time just as that of a free particle, with the effective potential energy U = q = –2e, where  is the 
electrochemical potential,50 and q = –2e is the electric charge of a Cooper pair. As a result, for the 
system shown in Fig. 7, in which externally applied voltage V fixes the difference 1 – 2 between the 
electrochemical potentials of the superconductors, Eq. (72) takes the form  

                    V
e

dt

d



2



.      (1.73) 

47 The effect was predicted in 1962 by Brian Josephson (then a graduate student!) and observed soon after that. 
48 For a more detailed discussion, including the derivation of Eq. (75), see e.g. EM Chapter 6. 
49 A detailed discussion of the Bose-Einstein condensation may be found, e.g., in SM Sec. 3.4. 
50 For more on this notion see, e.g. SM Sec. 6.3. 
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Fig. 1.7. The Josephson effect in a weak link 
between two bulk superconductor electrodes. 
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If the link between the superconductors is weak enough, the electric current I of the Cooper pairs (called 
the supercurrent) through the link may be approximately described by the following simple relation, 

        ,sinc II        (1.74) 

where Ic is some constant, dependent on the weak link’s strength.51 Now combining Eqs. (73) and (74), 
we see that if the applied voltage V is constant in time, the current oscillates sinusoidally, with the so-
called Josephson frequency 

                     V
e



2
J  ,      (1.75) 

as high as ~484 MHz per microvolt of applied dc voltage. This effect may be readily observed 
experimentally: though its direct detection is a bit tricky, it is easy to observe the phase locking 
(synchronization)52 of the Josephson oscillations by an external microwave signal of frequency . Such 
phase locking results in the relation J = n fulfilled within certain dc current intervals, and hence in the 
formation, on the weak link’s dc I-V curve, of virtually vertical current steps at dc voltages 

   
e

nVn 2


 ,      (1.76) 

where n is an integer.53 Since frequencies may be stabilized and measured with very high precision, this 
effect is being used in highly accurate standards of dc voltage. 

 

        1.7. Spatial dependence 

 In contrast to the simple and universal time dependence (62) of the stationary states, their spatial 
wavefunctions n(r) need to be calculated from the problem-specific stationary Schrödinger equation 
(65). The solution of this equation for various particular cases will be a major focus of the next two 
chapters. Here I will consider just one simple example, which nevertheless will be the basis for our 
discussion of more complex problems. Let a particle be confined inside a rectangular hard-wall box. 
Such confinement may be described by the following potential energy profile:54  

            








                                                        . otherwise     ,

,0 and,0,0for ,0
)( zyx azayax

U r   (1.77) 

51 In some cases, the function I() may somewhat deviate from Eq. (74), but these deviations do not affect its 
fundamental 2-periodicity, and hence the fundamental relations (75)-(76). (To the best of the author’s 
knowledge, no corrections to them have been found yet.) 
52 For the discussion of this very general effect, see, e.g., CM Sec. 5.4. 
53 The size of these dc current steps (frequently called the Shapiro steps) may be readily calculated from Eqs. (73) 
and (74). Let me leave this task for the reader’s exercise. 
54 Another common name for such potential profiles, especially of lower dimensionality, is the potential well – in 
our current case (77), with a flat bottom and vertical, infinitely high walls. Note also that sometimes such 
potential profiles are called “quantum wells”. The last term is very unfortunate because it seems to imply that 
particle confinement in potential wells is an effect specific to quantum mechanics. However, as we will repeatedly 
see in this course, the opposite is true: quantum effects do as much as they only can to overcome a particle’s 
confinement in a well, sometimes letting it penetrate the “classically forbidden” regions beyond its walls. 
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 The only way to keep the product U(r)n in Eq. (65) finite outside the box, is to have  = 0 in 
these regions. Also, the function has to be continuous everywhere, to avoid the divergence of the 
kinetic-energy term (–2/2m)2n. Hence, in this case, we may solve the stationary Schrödinger equation 
(65) just inside the box, i.e. with U = 0, so it takes a simple form 

          ,
2

2
2

nnn E
m

 


     (1.78a) 

with zero boundary conditions on all the walls.55 For our particular geometry, it is natural to express the 
Laplace operator in the Cartesian coordinates {x, y, z} aligned with the box sides, with the origin at one 
of the corners of its rectangular axayaz volume, so our boundary problem becomes: 
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 (1.78b) 

 This problem may be readily solved using the same variable separation method as was used in 
Sec. 5 – now to separate the Cartesian spatial variables from each other, by looking for a  partial 
solution of Eq. (78) in the form 
          )()()()( zZyYxXr .     (1.79) 

(Let us postpone assigning the function indices for a minute.) Plugging this expression into Eq. (78b) 
and dividing all terms by the product XYZ, we get 
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Now let us repeat the standard argumentation of the variable separation method: since each term on the 
left-hand side of this equation may be only a function of the corresponding argument, the equality is 
possible only if each of them is a constant – in our case, with the dimensionality of energy. Calling these 
constants Ex etc., we get three similar 1D equations 

                   ,
1

2
,

1

2
,

1

2 2

22

2

22

2

22

zyx E
dx

Zd

Zm
E

dy

Yd

Ym
E

dx

Xd

Xm



  (1.81) 

with Eq. (80) turning into the following energy-matching condition: 

               EEEE zyx  .     (1.82) 

All three ordinary differential equations (81), and hence their solutions, are similar. For example, 
for X(x), we have the following 1D Helmholtz equation 
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55 Rewritten as 2f + k2f = 0, Eq. (78a) is just the Helmholtz equation, which describes waves of any nature (with 
the wave vector k) in a uniform, isotropic, linear medium – see, e.g., EM Secs. 7.5-7.9 and 8.5.
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with simple boundary conditions: X(0) = X(ax) = 0.56 Let me hope that the reader knows how to solve 
this well-known 1D boundary problem – describing, for example, the usual mechanical waves on a 
guitar string. The problem allows an infinite number of sinusoidal standing-wave eigenfunctions,57 

        ,...2,1with ,sin
2

  i.e.,with  ,sin
2/1









 x

x

x

xx

x
xx n

a

xn

a
X

a

n
kxkX


, (1.84) 

corresponding to the following eigenenergies:  
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 Figure 8 shows these simple results, using a somewhat odd but very graphic and popular 
representation, in that the eigenenergy values (frequently called the energy levels) are used as horizontal 
axes for plotting the eigenfunctions – despite their different dimensionality.  

 

 

 

 

 

 

 

 
Due to the similarity of all Eqs. (81), Y(y) and Z(z) are absolutely similar functions of their 

arguments, and may also be numbered by integers (say, ny and nz) independent of nx, so the spectrum of 
values of the total energy (82) is 
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Thus, in this 3D problem, the role of the index n in the general Eq. (69) is played by a set of three 
independent integers {nx, ny, nz}. In quantum mechanics, such integers play a key role and thus have a 
special name, quantum numbers. Using them, for our current simple problem that general solution, may 
be represented as the following sum:  
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56 Please notice that we would also arrive at this 1D boundary problem if we considered a 1D analog of our 3D 
problem (77), i.e. a 1D particle placed in a hard-wall, flat-bottom potential well of length ax. In quantum 
mechanics, such 1D problems play an important role, and will be the subject of extensive discussions in the next 
chapter.  
57 The front coefficient in the last expression for X enforces the (ortho)normality condition (66). 

Fig. 1.8. The lowest eigenfunctions (solid lines) and 
eigenvalues (dashed lines) of Eq. (83) for a 1D potential 
well of length ax. Solid black lines show the effective 
potential energy profile for this 1D eigenproblem. 0
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with the front coefficients that may be readily calculated from the initial wavefunction (r, 0), using 
Eq. (68) – again with the replacement n  {nx, ny, nz}.   

 This simple problem is a good illustration of typical results the wave mechanics gives for 
spatially-confined motion, including the discrete energy spectrum, and (in this case, evidently) 
orthogonal eigenfunctions. Perhaps most importantly, its solution shows that the lowest value of the 
particle’s kinetic energy (86), reached in the so-called ground state  (in our problem, the state with nx = 
ny = nz = 1) is above zero for any finite size of the confining volume. 

An example of the opposite case of a continuous spectrum for the unconfined motion of a free 
particle is given by the plane waves (29). With the account of relations E =  and p = k, such 
wavefunction may be viewed as the product of the time-dependent factor (62) by the eigenfunction,  

               rkkk  ia exp ,     (1.88) 

which is the solution of the stationary Schrödinger equation (78a) if it is valid in the whole space.58 The 
reader should not be worried too much by the fact that the fundamental solution (88) in free space is a 
traveling wave (having, in particular, a non-zero value of the probability current j), while those inside a 
quantum box are standing waves with j = 0, even though the free space may be legitimately considered 
as the ultimate limit of a quantum box with volume V = axayaz  . Indeed, due to the linearity of 
wave mechanics, two traveling-wave solutions (88) with equal and opposite values of the momentum 
(and hence with the same energy) may be readily combined to give a standing-wave solution,59 for 
example, exp{ikr} + exp{–ikr} = 2cos(kr), with the net current j = 0. Thus, depending on the 
convenience for a particular problem, we may represent its general solution as a sum of either traveling-
wave or standing-wave eigenfunctions. Since in the unlimited free space, there are no boundary 
conditions to satisfy, the Cartesian components of the wave vector k in Eq. (88) can take any real 
values. (This is why it is more convenient to label these wavefunctions, and the corresponding 
eigenenergies 
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k ,     (1.89) 

with their wave vector k rather than an integer index.)  

 However, one aspect of continuous-spectrum systems requires a bit more caution with 
mathematics: the summation (69) should be replaced by the integration over a continuous index or 
indices – in our current case, the three Cartesian components of the vector k. The main rule of such 
replacement may be readily extracted from Eq. (84): according to this relation, for standing-wave 
solutions, the eigenvalues of kx are equidistant, i.e. separated by equal intervals kx = /ax, with similar 
relations for the other two Cartesian components of k. Hence the number of different eigenvalues of the 
standing-wave vector k (with kx, ky, kz  0), within a volume d3k  >> 1/V of the k space is dN = 
d3k/(kxkxkx) = (V/3)d3k. Frequently, it is more convenient to work with traveling waves (88); in this 
case, we should take into account that, as was just discussed, there are two different traveling wave 

58 In some systems (e.g., a particle interacting with a potential well of a finite depth), a discrete energy spectrum 
within a certain energy interval may coexist with a continuous spectrum in a complementary interval. However, 
the conceptual philosophy of eigenfunctions and eigenvalues remains the same even in this case. 
59 This is, of course, the general property of waves of any physical nature, propagating in a linear medium – see, 
e.g., CM Sec. 6.5 and/or EM Sec. 7.3. 
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numbers (say, +kx and –kx) corresponding to each standing wave vector’s kx > 0. Hence the same number 
of physically different states corresponds to a 23 = 8-fold larger k-space or, equivalently, to an 8-fold 
smaller number of states per unit volume d3k: 
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For dN >> 1, this expression is independent of the boundary conditions and is frequently 
represented as the following summation rule 
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where f(k) is any function of k. Note that if the same wave vector k corresponds to several internal 
quantum states (such as spin – see Chapter 4), the right-hand side of Eq. (91) requires its multiplication 
by the corresponding degeneracy factor of orbital states.60 

Finally, note that in systems with reduced wavefunction dimensionality, Eq. (90) for the number 
of states at large k (i.e., for an essentially free particle motion) should be replaced accordingly: in a 2D 
system of area A >> 1/k2, 
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while in a 1D system of length l >> 1/k,  

             dk
l

dN
2

 ,      (1.93) 

with the corresponding changes in the summation rule (91). This change has important implications for 
the density of states on the energy scale, dN/dE: it is straightforward (and hence left for the reader :-) to 
use Eqs. (90), (99), and (100) to show that for free 3D particles, the density increases with E 
(proportionally to E1/2), for free 2D particles, it does not depend on energy at all, while for free 1D 
particles, it scales as E–1/2, i.e. decreases with energy.  

 

1.8. Exercise problems 

1.1. The actual postulate made by N. Bohr in his original 1913 paper was not directly Eq. (8), but 
rather the assumption that at quantum leaps between adjacent electron orbits with n >> 1, the hydrogen 
atom either emits or absorbs the energy E = , where  is its classical radiation frequency – 
according to classical electrodynamics, equal to the angular velocity of the electron’s rotation.61  Prove 
that this postulate, complemented with the natural requirement that L = 0 at n = 0, is equivalent to Eq. 
(8). 

 
1.2. Generalize the Bohr theory for a hydrogen-like atom/ion with a nucleus with the electric 

charge Q = Ze, to the relativistic case. 

60 The front factor 2 in Eq. (1) for the number of electromagnetic wave modes is just one embodiment of the 
degeneracy factor, in that case describing two different polarizations of the waves with the same wave vector. 
61 See, e.g., EM Sec. 8.2. 
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1.3. A hydrogen atom, initially in the lowest excited state, returns to its ground state by emitting 
a photon propagating in a certain direction. Use the same approach as in Sec. 1(iv) to calculate the 
photon’s frequency reduction due to atomic recoil. 

 
1.4. Use Eq. (53) to prove that the linear operators of quantum mechanics are commutative: 

2112
ˆˆˆˆ AAAA  , and associative:    321321

ˆˆˆˆˆˆ AAAAAA  . 

 

 1.5. Prove that for any time-independent Hamiltonian operator Ĥ and two arbitrary complex 
functions f(r) and g(r), 

        rdgfHrdgHf 33 ˆˆ rrrr   . 

 
 1.6. Prove that the Schrödinger equation (25) with the Hamiltonian operator given by Eq. (41) is 
Galilean form-invariant, provided that the wavefunction is transformed as 
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where the prime sign marks the variables observed in the reference frame 0’ that moves, without rotation 
and with a constant velocity v, relative to the “lab” frame 0. Give a physical interpretation of this 
transformation. 

1.7.* Prove the so-called Hellmann-Feynman theorem:62 

n

n HE

 




 , 

where  is some c-number parameter, on which the time-independent Hamiltonian Ĥ , and hence its 
eigenenergies En, depend. 

 
1.8.* Use Eqs. (73) and (74) to analyze the effect of phase locking of Josephson oscillations on 

the dc current flowing through a weak link between two superconductors (frequently called the 
Josephson junction), assuming that an external source applies to the junction a sinusoidal ac voltage 
with frequency  and amplitude A. 

 
1.9. Calculate x, px, x, and px for the eigenstate {nx, ny, nz} of a particle in a rectangular 

hard-wall box described by Eq. (77) and compare the product xpx with the Heisenberg’s uncertainty 
relation. 

 
 1.10. Looking at the lowest (red) line in Fig. 8, it seems plausible that the lowest-energy 
eigenfunction (84) of the 1D boundary problem (83) may be well approximated with an inverted 
quadratic parabola: X(x)  Cx(ax – x), where C is a normalization constant. Explore how good this 
approximation is. 

 

62 Despite this common name, H. Hellmann (in 1937) and R. Feynman (in 1939) were not the first ones in the 
long list of physicists who had (apparently, independently) discovered this equality. Indeed, it has been traced 
back to a 1922 paper by W. Pauli and was carefully proved by P. Güttinger in 1931. 
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1.11. A particle placed in a hard-wall rectangular box with sides {ax, ay, az} is in its ground state. 
Calculate the average force it exerts on each face of the box. Can these forces be characterized by a 
certain pressure? 

 
1.12. A 1D quantum particle was initially in the ground state of a very deep, flat-bottom 

potential well of width a: 
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At some instant, the well’s width is abruptly increased to a new value a’ > a, leaving the potential 
symmetric with respect to the point x = 0, and then is kept constant. Calculate the probability that after 
the change, the particle is still in the ground state of the system. 

1.13. At t = 0, a 1D particle of mass m is placed into a hard-wall, flat-bottom potential well 
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in a 50/50 linear superposition of the lowest-energy (ground) state and the first excited state. Calculate: 

 (i) the normalized wavefunction (x, t) for arbitrary time t  0, and 
 (ii) the time evolution of the expectation value x of the particle’s coordinate. 

 
1.14. Calculate the potential profiles U(x) for which the following wavefunctions, 

 (i)  = c exp{–ax2 – ibt}, and 
 (ii)  = c exp{–a x  – ibt} 

(with real coefficients a > 0 and b), satisfy the 1D Schrödinger equation for a particle with mass m. For 
each case, calculate x, px, x, and px, and compare the product xpx with Heisenberg’s uncertainty 
relation. 

 
1.15. The wavefunction of an excited stationary state of a 1D particle moving in a potential 

profile U(x) is related to that of its ground state as e(x)  xg(x). Calculate the function U(x). 
 

 1.16. A 1D particle of mass m, moving in a potential well U(x), has the following stationary 
eigenfunction: (x) = C/coshx, where C is the normalization constant and  is a given real constant. 
Calculate the function U(x) and the state’s eigenenergy E. 

 
1.17. Calculate the density dN/dE of traveling-wave quantum states inside large hard-wall 

rectangular boxes of various dimensions: d = 1, 2, and 3. 
  
 1.18.* A 1D particle is confined in a potential well of width a, with a flat bottom and hard, 
infinitely high walls. Use the finite-difference method with steps a/2 and a/3 to find as many 
eigenenergies as possible. Compare the results with each other, and with the exact formula. 63 

63 You may like to start by reading about the finite-difference method – see, e.g., CM Sec. 8.5 or EM Sec. 2.11. 


