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Chapter 4. Bra-ket Formalism 

The objective of this chapter is to describe Dirac’s “bra-ket” formalism of quantum mechanics, which 
not only overcomes some inconveniences of wave mechanics but also enables a natural description of 
such intrinsic properties of particles as their spin. In the course of the formalism’s discussion, I will give 
only a few simple examples of its application, leaving more involved cases for the following chapters. 

 

4.1. Motivation 

As the reader could see from the previous chapters of these notes, wave mechanics gives many 
results of primary importance. Moreover, it is mostly sufficient for many applications, for example, 
solid-state electronics and device physics.  However, in the course of our survey, we have filed several 
grievances about this approach. Let me briefly summarize these complaints: 

 (i) Attempts to analyze the temporal evolution of quantum systems, beyond the trivial time 
behavior of the stationary states, described by Eq. (1.62), run into technical difficulties. For example, we 
could derive Eq. (2.151) describing the metastable state’s decay and Eq. (2.181) describing the quantum 
oscillations in coupled wells, only for the simplest potential profiles, though it is intuitively clear that 
these simple results should be common for all problems of this kind. Solving such problems for more 
complex potential profiles would entangle the time evolution analysis with the calculation of the spatial 
distribution of the evolving wavefunctions – which (as we could see in Secs. 2.9 and 3.6) may be rather 
complex even for time-independent potentials. Some separation of the spatial and temporal 
dependencies is possible using perturbation approaches (to be discussed in Chapter 6) but even those 
would lead, in the wavefunction language, to very cumbersome formulas. 

(ii) The last statement can also be made concerning other issues that are conceptually 
addressable within the wave mechanics, e.g., the Feynman path integral approach, coupling to the 
environment, etc. Pursuing them in the wave mechanics language would lead to formulas so bulky that I 
had postponed their discussion until we would have a more compact formalism on hand. 

 (iii) In the discussion of several key problems (for example the harmonic oscillator and 
spherically-symmetric potentials), we have run into rather complicated eigenfunctions coexisting with 
very simple energy spectra – that infer some simple background physics. It is very important to get this 
physics revealed. 

 (iv) In the wave-mechanics postulates formulated in Sec. 1.2, the quantum mechanical operators 
of the coordinate and momentum are treated rather unequally – see Eqs. (1.26b). However, some key 
expressions, e.g., for the fundamental eigenfunction of a free particle, 
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just beg for a similar treatment of coordinates and momenta.  
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 However, the strongest motivation for a more general formalism comes from wave mechanics’ 
conceptual inability to describe elementary particles’ spins1 and other internal quantum degrees of 
freedom, such as quarks’ flavors. In this context, let us review the basic facts on spin (which is very 
representative and experimentally the most accessible of all internal quantum numbers), to understand 
what a more general formalism has to explain – as a minimum.  

Figure 1 shows the conceptual scheme of the simplest spin-revealing experiment, first conceived 
by Otto Stern in 1921 and implemented by Walther Gerlach in 1922. A collimated beam of particles2 
from a natural source, such as a heated cathode, is passed through a gap between the poles of a strong 
magnet, whose magnetic field B, (in Fig. 1, directed along the z-axis)  is nonuniform, so both Bz and 
dBz/dz are not equal to zero. The experiment shows that even if all particles are in the ground orbital 
state, the beam splits into two beams of equal intensity. 

  

 

 

 

 
  
 This result may be semi-quantitatively explained on classical (if somewhat phenomenological) 
grounds by assuming that each particle has an intrinsic, permanent magnetic dipole moment m. Indeed, 
classical electrodynamics tells us3 that the potential energy U of a magnetic dipole in an external 
magnetic field B  is equal to (–m ꞏ B), so the force acting on the particle, 

          B mF U ,     (4.3) 
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Hence if we further assume that the particle’s magnetic moment may take only two equally probable 
discrete values of mz =  (though such discreteness does not follow from any classical model of the 
particle), this may explain the basic Stern-Gerlach effect qualitatively.  The quantitative explanation of 
the beam splitting angle requires the magnitude of   to be equal (or very close) to the so-called Bohr 
magneton4 
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1 Reportedly, the concept of spin as a measure of the internal rotation of a particle was first suggested (though 
later rejected) by Ralph Kronig, then a 20-year-old student, in January 1925, a few months before two other 
students, George Uhlenbeck and Samuel Goudsmit, came to this idea independently. The concept was then 
accepted (first, rather reluctantly) and developed quantitatively by Wolfgang Pauli. 
2 The initial Stern-Gerlach experiments used silver atoms because their larger mass helps to decrease the spit 
beam widths. However, the discussion below is valid for any spin-½ particles including electrons. 
3 See, e.g., EM Sec. 5.4, in particular Eq. (5.100). 
4 A good mnemonic rule is that it is close to 1 K/T. In the Gaussian units, B  e/2mec  0.927410-20 erg/G. 
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 However, as we will see below, this value cannot be explained by any internal motion of the 
particle, say its rotation about the z-axis. More importantly, this semi-classical phenomenology cannot 
explain, even qualitatively, other experimental results, for example those of the set of multistage Stern-
Gerlach experiments shown in Fig. 2. In the first of the experiments, the particle beam is first passed 
through a magnetic field (and its gradient) oriented along the z-axis, just as in Fig. 1. Then one of the 
two resulting beams is absorbed (or removed from the setup in some other way), while the other one is 
passed through a similar but x-oriented field. The experiment shows that this beam is split again into two 
components of equal intensity. A classical explanation of this experiment would require an even more 
unnatural additional assumption that the initial particles had random but discrete components of the 
magnetic moment simultaneously in two directions, z and x. 

  

  

 

 

 

 

 

 

 

 

 

 

 However, even this assumption cannot explain the results of the three-stage Stern-Gerlach 
experiment shown on the middle panel of Fig. 2. Here, the previous two-state setup is complemented 
with one more absorber and one more magnet, now with the z-orientation again. Completely counter-
intuitively, it again gives two beams of equal intensity, as if we have not yet filtered out the particles 
with mz corresponding to the lower beam, at the first z-stage. The only way to save the classical 
explanation here is to say that maybe, particles somehow interact with the magnetic field, so the x-
polarized beam becomes spontaneously depolarized again somewhere between the two last stages. But 
any hope for such an explanation is ruined by the control experiment shown on the bottom panel of Fig. 
2, whose results indicate that no such depolarization happens. 

 We will see below that all these (and many more) results find a natural explanation in the so-
called matrix mechanics pioneered by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. 
However, the matrix formalism is rather inconvenient for the solution of most problems discussed in 
Chapters 1-3, and for a short time, it was eclipsed by E. Schrödinger’s wave mechanics, which had been 
put forward just a few months later. However, very soon Paul Adrien Maurice Dirac introduced a more 
general bra-ket formalism of quantum mechanics, which provides a generalization of both approaches 
and proves their equivalence. Let me describe it, begging for the reader’s patience because (in contrast 
with my usual style), I will not be able to give particular examples of its application for a while – until 
all the basic notions of the formalism have been introduced. 
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4.2. States, state vectors, and linear operators 

 The basic notion of the general formulation of quantum mechanics is the quantum state of a 
system.5 To get some gut feeling of this notion, if a quantum state  of a particle may be adequately 
described by wave mechanics, this description is given by the corresponding wavefunction (r, t). 
Note, however, that a quantum state as such is not a mathematical object,6 and can participate in 
mathematical formulas only as a “label” – e.g., the index of the wavefunction . On the other hand, 
such a wavefunction is not a state, but a mathematical object (a complex function of space and time) 
giving a quantitative description of the state – just as the classical radius vector r and velocity v as 
real functions of time are mathematical objects describing the motion of the particle in its classical 
description – see Fig. 3. Similarly, in the Dirac formalism, a certain quantum state   is described by 
either of two mathematical objects, called the state vectors: the ket-vector   and the bra-vector  ,7 
whose relationship is close to that between the wavefunction  and its complex conjugate  

*. 

 

 

 

 

 

One should be cautious with the term “vector” here. The usual geometric vectors, such as r and 
v, are defined in the usual geometric (say, Euclidean) space. In contrast, the bra- and ket-vectors are 
defined in a more abstract Hilbert space – the full set of all possible state vectors of a given system.8 So, 
despite certain similarities with the geometric vectors, the bra- and ket-vectors are different 
mathematical objects, and we need to define the rules of their handling. The primary rules are essentially 
postulates and are justified only by the correct description of all experimental observations of the rules’ 
corollaries. While there is a general consensus among physicists about what the corollaries are, there are 
many possible ways to carve from them the different sets of basic postulates. Just as in Sec. 1.2, I will 
not try too hard to beat the number of the postulates down to the minimum, trying instead to keep their 
physical meaning transparent. 

(i) Ket-vectors. Let us start with ket-vectors – sometimes called just kets for short. Their most 
important property is the linear superposition. Namely, if several ket-vectors j describe possible 
states of a quantum system, numbered by the index j, then any linear combination (superposition) 

                
j
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5 An attentive reader could notice my smuggling the term “system” instead of “particle”, which was used in the 
previous chapters. Indeed, the bra-ket formalism allows the description of quantum systems much more complex 
than a single spinless particle that is a typical (though not the only possible) subject of wave mechanics. 
6 As was expressed nicely by Asher Peres, one of the pioneers of the quantum information theory, “quantum 
phenomena do not occur in the Hilbert space, they occur in a laboratory”. 
7 The terms bra and ket were suggested to reflect the fact that the pair   and  may be considered as the parts 
of the combinations like     (see below), which remind expressions in the usual angle brackets. 
8 I have to confess that this is a bit loose definition; it will be refined soon. 
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where cj are any (possibly complex) c-numbers, also describes a possible state of the same system.9 
Actually, since ket-vectors are new mathematical objects, the exact meaning of the right-hand side of 
Eq. (6) becomes clear only after we have postulated the following rules of summation of these vectors, 

       ,jj'j'j        (4.7) 

and their multiplication by an arbitrary c-number: 

                cc jj   .     (4.8) 

Note that in the set of wave-mechanics postulates, the statements parallel to Eqs. (7) and (8) were 
unnecessary because the wavefunctions are the usual (albeit complex) functions of space and time, and 
we know from the usual algebra that such relations are indeed valid. 

 As Eq. (6) shows, the coefficient cj may be interpreted as the “weight” of the state j in the linear 
superposition . One important particular case is cj = 0, showing that the state j does not participate in 
the superposition . The corresponding term of the sum (6), i.e. the product 

             j0 ,       (4.9) 

has a special name: the null-state vector. (It is important to avoid confusion between the null state 
corresponding to vector (9), and the ground state of the system, which is frequently denoted by the ket-
vector 0. In some sense, the null state does not exist at all, while the ground state not only does exist 
but frequently is the most important quantum state of the system.) 

 (ii) Bra-vectors and inner products. Bra-vectors , which obey the rules similar to Eqs. (7) and 
(8), are not new, independent objects: a ket-vector    and the corresponding bra-vector  describe 
the same state. In other words, there is a unique dual correspondence between   and ,10 very 
similar (though not identical) to that between a wavefunction  and its complex conjugate *.11 The 
correspondence between these vectors is described by the following rule: if a ket-vector of a linear 
superposition is described by Eq. (6), then the corresponding bra-vector is 

       
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jj cc **  .     (4.10) 

 The mathematical convenience of using two types of vectors rather than just one becomes clear 
from the notion of their inner product (due to its second, shorthand form, also called the short bracket): 

                   ,     (4.11) 

which is a scalar c-number, in a certain but limited analogy with the scalar product of the usual 
geometric vectors. (For one difference, the product (11) may be a complex number.) The main property 

9 One may express the same statement by saying that the vector  belongs to the same Hilbert space as all j. 
10 Mathematicians like to say that the ket- and bra-vectors of the same quantum system are defined in two 
isomorphic Hilbert spaces. 
11 This analogy is not occasional: we will see very soon that the wavefunction of a quantum state is just a special 
(“coordinate”) representation of its state vector. 
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of the inner product is its linearity with respect to any of its component vectors. For example, if a linear 
superposition  is described by the ket-vector (6),  then 

            j
j

jc   ,     (4.12) 

while if Eq. (10) is true, then 
            j

j
jc * .     (4.13) 

In plain English, c-number factors may be moved either into or out of the inner products.  

 The second key property of the inner product is 

                *  .     (4.14) 

It is compatible with Eq. (10); indeed, the complex conjugation of both parts of Eq. (12) gives: 

              
j

jj
j

jj cc **** .   (4.15) 

Finally, one more rule: the inner product of the bra- and ket-vectors describing the same state 
(called the norm squared) is real and non-negative, 

               .0
2        (4.16) 

In order to give the reader some feeling about the meaning of this rule: we will see below that if some 
state  may be described by the corresponding wavefunction (r, t), then 

         0* 3   rd .     (4.17) 

Hence the role of the bra- and ket-vectors of the same state is very similar to that of complex-conjugate 
pairs of its wavefunctions. 

 (iii) Operators. One more key notion of the Dirac formalism is quantum-mechanical linear 
operators. Just as for the operators discussed in wave mechanics, the function of an operator is to 

“generate” one state from another: if  is a possible ket of the system, and Â  is a legitimate12 operator, 

then the following combination, 

              Â ,      (4.18) 

is also a ket-vector describing a possible state of the system, i.e. a ket-vector in the same Hilbert space 
as the initial vector . An alternative formulation of the same rule is the following refinement of the 
notion of the Hilbert space: for a given set of linear operators of a system, its Hilbert space includes all 
vectors that may be obtained from each other using the operations of the type (18). In this context, let 
me note that the operator set, and hence the Hilbert space of a system, usually (if not always) implies its 

12 Here the term “legitimate” means “having a clear sense in the bra-ket formalism”. Some examples of 

“illegitimate” expressions are:  Â , Â , , and . Note, however, that the last two expressions may be 
legitimate if  and   are states of different systems, i.e. if their state vectors belong to different Hilbert spaces. 
We will run into such direct products of the bra- and ket-vectors (sometimes denoted, respectively, as  and 
) in Chapters 6-10.  
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certain approximate model. For example, if the coupling of orbital degrees of freedom of a particle to its 
spin may be ignored (as it may be for a non-relativistic particle in the absence of an external magnetic 
field), we may describe the dynamics of the particle using spin operators only. In this case, the set of all 
possible spin vectors of the particle forms a Hilbert space separate from that of the orbital-state vectors 
of the same particle. 

 As the adjective “linear” in the operator definition implies, the main rule governing the operators 
is their linearity with respect to both any superposition of vectors: 
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and any superposition of operators: 
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These rules are evidently similar to Eqs. (1.53)-(1.54) of wave mechanics.  

 The above rules imply that an operator “acts” on the ket-vector on its right; however, a 

combination of the type Â  is also legitimate and represents a new bra-vector. It is important that, 

generally, this vector does not represent the same state as the ket-vector (18); instead, the bra-vector 
isomorphic to the ket-vector (18) is 

            †Â .      (4.21) 

This statement serves as the definition of the Hermitian conjugate (also called “Hermitian 

adjoint”) †Â of the initial operator Â . For an important class of operators, called the Hermitian 
operators, the conjugation is inconsequential, i.e. for them 

           AA ˆˆ †  .      (4.22) 

(This equality, as well as any other operator equation below, means that these operators act similarly on 
any bra- or ket-vector of the given Hilbert space.) 13 

 To proceed further, we need one more additional postulate, sometimes called the associative 
axiom of multiplication: just as an ordinary product of scalars, any legitimate bra-ket expression that 
does not include explicit summations, does not change from an insertion or removal of a pair of 
parentheses –  meaning as usual that the operation inside them has to be performed first. The first two 
examples of this postulate are given by Eqs. (19) and (20), but the associative axiom is more general and 
means, for example, that 

                  AAA ˆˆˆ  ,    (4.23) 

13 If we consider c-numbers as a particular type of operators (which is legitimate for any Hilbert space), then 
according to Eqs. (11) and (21), for them the Hermitian conjugation is equivalent to the simple complex 
conjugation, so only real c-numbers may be considered as a particular type of Hermitian operators (22). 
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This equality serves as the definition of the last form, called the long bracket (evidently, also a scalar), 
with an operator sandwiched between a bra-vector and a ket-vector. This definition, when combined 
with the definition of the Hermitian conjugate and Eq. (14), yields an important corollary: 

                       *†*† ˆˆˆˆ  AAAA 





 





 ,   (4.24) 

which is most frequently rewritten as 

            †* ˆˆ AA  .     (4.25) 

 The associative axiom also enables us to comprehend the following definition of one more, outer 
product of bra- and ket-vectors: 
             .      (4.26) 

In contrast to the inner product (11), which is a scalar, this mathematical construct is an operator. 
Indeed, the associative axiom allows us to remove parentheses in the following expression: 

              .     (4.27) 

But the last short bracket is just a scalar; hence the mathematical object (26) acting on a ket-vector (in 
this case, ) gives a new ket-vector, which is the essence of the operator’s action. Very similarly, 

                   (4.28) 

– again a typical operator’s action on a bra-vector. So, Eq. (26) defines an operator.  

 Now let us perform the following calculation. We may use the parentheses’ insertion into the 
bra-ket equality following from Eq. (14), 

      *  ,     (4.29) 

to transform it into the following form: 

                  *  .    (4.30) 

Since this equality should be valid for any state vectors    and  , its comparison with Eq. (25) gives 
the following operator equality 
                 † .     (4.31) 

This is the conjugate rule for outer products; it reminds Eq. (14) for inner products but involves the 
Hermitian (rather than the usual complex) conjugation.  

 The associative axiom is also valid for the operator multiplication: 

                     BABABABA ˆˆˆˆ,ˆˆˆˆ   ,   (4.32) 

showing that the action of an operator product on a state vector is nothing more than the sequential 
action of its operands. However, we have to be careful with the operator products; generally, they do not 

commute: ABBA ˆˆˆˆ  . This is why the commutator – the operator defined as 
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                 ABBABA ˆˆˆˆˆ,ˆ  ,     (4.33) 

is a non-trivial and very useful notion. Another similar notion is the anticommutator:14 

                ABBABA ˆˆˆˆˆ,ˆ  .     (4.34) 

 Finally, the bra-ket formalism broadly uses two special operators. The null operator 0̂  is defined 
by the following relations: 

     00̂,00̂   ,    (4.35) 

where   is an arbitrary state; we may say that the null operator “kills” any state by turning it into the 
null state. Another useful notion is the identity operator, which is defined by the following action (or 
rather “inaction” :-) on an arbitrary state vector: 

          II ˆ,ˆ .     (4.36) 

These definitions show that the null operator and the identity operator are Hermitian.  

  

4.3. State basis and matrix representation 

 While some operations in quantum mechanics may be carried out in the general bra-ket 
formalism outlined above, many calculations are performed for quantum systems that feature a full and 
orthonormal set {u}  {u1, u2, …, uj, …} of its states uj, frequently called a basis. The former of these 
terms means that any possible state vector of the system (i.e. any vector of its Hilbert space) may be 
represented as a unique sum of the type (6) or (10) over its basis vectors: 

           
j

jj
j

jj uu *,  ,    (4.37) 

so, in particular, if  is one of the basis states, say uj’, then j = jj’. The latter term means that  

        jj'j'j uu  .     (4.38) 

For the systems that may be described by wave mechanics, examples of the full orthonormal bases are 
represented by any full and orthonormal set of stationary functions calculated in the previous three 
chapters of this course – for the simplest example, see Eq. (1.87). 

 Due to the uniqueness of the expansion (37), the full set of the coefficients j involved in the 
expansion of a state   in certain basis {u} gives its complete description –  just as the Cartesian 
components Ax, Ay, and Az of a usual geometric 3D vector A in certain reference frame give its complete 
description. Still, let me emphasize some differences between such representations of the quantum-
mechanical state vectors and 3D geometric vectors:  

  (i) a quantum state basis may have a large or even infinite number of states uj, and  
  (ii) the expansion coefficients j may be complex. 

14 Another popular notation for the anticommutator (34) is  BA ˆ,ˆ ; it will not be used in these notes. 
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 With these reservations in mind, the analogy with geometric vectors may be pushed further on. 
Let us inner-multiply both parts of the first of Eqs. (37) by a bra-vector uj’ and then transform the 
resulting relation using the linearity rules discussed in the previous section, and Eq. (38): 

    . 
j

j'jj'j
j

jjj'j' uuuuu     (4.39) 

Together with Eq. (14), this means that any of the expansion coefficients in Eq. (37) may be represented 
as an inner product: 

              jjjj uu   *, ;    (4.40) 

these important equalities relations are analogs of equalities Aj = njA of the usual vector algebra and 
will be repeatedly used in this course. With them, the expansions (37) may be rewritten as 

       
j

jj
j

j
j

jj
j

j uuuu ,ˆ,ˆ    (4.41) 

where  

      jjj uu̂  .     (4.42) 

Eqs. (41) show that j̂  so defined is a legitimate linear operator. This operator, acting on any state 

vector of the type (37), singles out just one of its components, for example, 

     jjjjj uuu  ̂ ,    (4.43) 

i.e. “kills” all components of the linear superposition but one. In the geometric analogy, such an operator 
“projects” the state vector on the jth “direction”, hence its name – the projection operator. Probably, the 
most important property of the projection operators, called the closure (or “completeness”) relation, 
immediately follows from Eq. (41): their sum over the full basis is equivalent to the identity operator 

      Iuu j
j

j
ˆ .     (4.44) 

This means in particular that we may insert the left-hand side of Eq. (44), for any basis, into any bra-ket 
relation, at any place – the trick that we will use over and over again. 

 Now let us see how the expansions (37) transform the key notions introduced in the last section, 
starting with the short bracket (11), i.e. the inner product of two state vectors: 

                   .***

,
'

,
j

j
jjj'j'

j'j
jjj'

j'j
jj uu       (4.45) 

Besides the complex conjugation, this expression is similar to the scalar product of the usual, geometric 
vectors. Now, let us explore the long bracket (23): 

               j'
jj

jj'jj'j'j
jj

j AuAuA   
',',

** ˆˆ .   (4.46) 

Here, the last form uses the very important notion of the operator’s matrix elements defined as 
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              j'jjj' uAuA ˆ .     (4.47) 

As Eq. (46) shows, the full set of the matrix elements completely characterizes the operator, just as the 
full set of the expansion coefficients (40) fully characterizes a quantum state. The term “matrix” means, 
first of all, that it is convenient to represent the full set of Ajj’  as a square table (matrix), with the linear 
dimension equal to the number of basis states uj of the system under the consideration. By the way, this 
number (which may be infinite) is called the dimensionality of its Hilbert space. 

 As two simplest examples, all matrix elements of the null operator, defined by Eqs. (35), are 
evidently equal to zero (in any basis), and hence it may be represented as a matrix of zeros (called the 
null matrix): 

      ,00

00

0

























     (4.48) 

while for the identity operator Î  defined by Eqs. (36), we readily get 

              ''''
ˆ

jjjjjjjj uuuIuI  ,    (4.49) 

i.e. its matrix (naturally called the identity matrix) is diagonal – also in any basis: 

                .

.........

...10

...01

I















      (4.50) 

 The convenience of the matrix language extends well beyond the representation of particular 
operators. For example, let us use the definition (47) to calculate the matrix elements of a product of two 
operators: 

            ""
ˆˆ)( jjjj uBAuAB  .     (4.51) 

Here we may use Eq. (44) for the first (but not the last!) time, inserting the identity operator between the 
two operators, and then expressing it via the sum of projection operators: 

            
'

"
ˆˆˆˆˆˆˆ)(

j
j'j"jj'

j'
j"j'j'jj"jj"jjj BAuBuuAuuBIAuuBAuAB . (4.52) 

This result corresponds to the standard “row by column” rule of calculation of an arbitrary element of 
the matrix product  

         

































.........

...

...

.........

...

...

AB 2221

1211

2221

1211

BB

BB

AA

AA

.    (4.53) 

Hence a product of operators may be represented (in a fixed basis!) by that of their matrices (in the same 
basis).  

 This is so convenient that the same language is often used to represent not only long brackets, 
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




































 

............

...

...

,...,ˆ
2

1

2221

1211

21'
'

'
*** 


 AA

AA

AA j
j

jjj ,   (4.54) 

but even short brackets: 

          






















...

,..., 2

1

21
*** 


 j

j
j ,    (4.55) 

although these equalities require the use of non-square matrices: rows of (complex-conjugate!) 
expansion coefficients for the representation of bra-vectors, and columns of these coefficients for the 
representation of ket-vectors. With that, the mapping of quantum states and operators onto matrices 
becomes completely general. 

    Now let us have a look at the outer product operator (26). Its matrix elements are just 

             *
'jjj'jjj'

uu   .    (4.56) 

These are the elements of a very special square matrix, whose filling requires the knowledge of just 2N 
scalars (where N is the basis size) rather than N2 scalars as for an arbitrary operator. However, a simple 
generalization of such an outer product may represent an arbitrary operator. Indeed, let us insert two 
identity operators (44), with different summation indices, on both sides of an arbitrary operator: 

    















 

'

ˆˆˆˆˆ
j

j'j'
j

jj uuAuuIAIA ,    (4.57) 

and then use the associative axiom to rewrite this expression as 

                
j'j

j'jjj uuAuuA
,

'
ˆˆ .    (4.58) 

But the expression in the middle long bracket is just the matrix element (47), so we may write 

             
',

''
ˆ

jj
jjjj uAuA .     (4.59) 

The reader should agree that this formula, which is a natural generalization of Eq. (44), is extremely 
elegant.   

 The matrix representation is so convenient that it makes sense to extend it to one level lower – 
from the state vector products to the “bare” state vectors resulting from the operator’s action upon a 
given state. For example, let us use Eq. (59) to represent the ket-vector (18) as 

                  









',
''

',
''

ˆ
jj

jjjj
jj

jjjj uAuuAuA'  .   (4.60) 

According to Eq. (40), the last short bracket is just j’, so  

j
j j

jjj
jj

jjjj uAAu'   









'
''

',
''      (4.61) 
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But the expression in the parentheses is just the coefficient ’j of the expansion (37) of the resulting ket-
vector (60) in the same basis, so 

      
'

''
j

jjjj A'  .     (4.62) 

This result corresponds to the usual rule of multiplication of a matrix by a column, so we may represent 
any ket-vector by its column matrix, with the operator’s action looking like 

                 

















































............

...

...

...
2

1

2221

1211

2

1







AA

AA

'

'

.    (4.63) 

Absolutely similarly, the operator action on the bra-vector (21), represented by its row matrix, is 

              


















































.........

...

...

,...,...,
2221

1211

2121
††

††

**,** AA

AA

''  .   (4.64) 

 By the way, Eq. (64) naturally raises the following question: what are the elements of the matrix 
on its right-hand side, or more exactly, what is the relation between the matrix elements of an operator 
and its Hermitian conjugate? The simplest way to answer it is to use Eq. (25) with two arbitrary states 
(say, uj and uj’) of the same basis in the role of  and . Together with the orthonormality relation (38), 
this immediately gives15  

               *†
'

ˆ 













jjjj' AA .     (4.65)  

Thus, the matrix of the Hermitian-conjugate operator is the complex conjugated and transposed matrix 
of the initial operator. This result exposes very clearly the difference between Hermitian and complex 
conjugation. It also shows that for the Hermitian operators defined by Eq. (22),  

         *
'' jjjj AA  ,      (4.66) 

i.e. any pair of their matrix elements, symmetric with respect to the main diagonal, should be the 
complex conjugate of each other. As a corollary, their main-diagonal elements have to be real:  

       .0Im  i.e.,*  jjjjjj AAA      (4.67) 

15 For the sake of formula compactness, below I will use the shorthand notation in that the operands of this 
equality are just A†

jj’  and A*j’j. I believe that it leaves little chance for confusion, because the Hermitian 
conjugation sign †  may pertain only to an operator (or its matrix), while the complex conjugation sign *, to a 
scalar – say a matrix element.  
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 In order to fully appreciate the special role played by Hermitian operators in quantum theory, let 
us introduce the key notions of eigenstates aj (described by their eigenvectors aj and aj) and 

eigenvalues (c-numbers) Aj of an operator Â , both defined by the equation they have to satisfy:16 

               jjj aAaA ˆ .     (4.68) 

Let us prove that the eigenvalues of any Hermitian operator are real,17   

      ,,...,2,1for,* NjAA jj       (4.69) 

while the eigenstates corresponding to different eigenvalues are orthogonal: 

       .  if,0 'jjj'j AAaa       (4.70) 

 The proof of both statements is surprisingly simple. Let us inner-multiply both sides of Eq. (68) 
by the bra-vector aj’. On the right-hand side of the result, the eigenvalue Aj, as a c-number, may be 
taken out of the bracket, giving 

         jjjjj aaAaAa ''
ˆ  .     (4.71) 

This equality has to hold for any pair of eigenstates, so we may swap the indices j and j’ in Eq. (71), and 
write the complex-conjugate of the result: 

        
***

'''
ˆ

jjjjj aaAaAa  .    (4.72) 

Now using Eqs. (14) and (25), together with the Hermitian operator’s definition (22), we may transform 
Eq. (72) into the following form: 

          jj'jjj aaAaAa *
''

ˆ  .     (4.73) 

Subtracting this equation from Eq. (71), we get 

         .0 ''
*

jjjj aaAA 




       (4.74) 

 There are two possibilities to satisfy this relation. If the indices j and j’ are equal (denote the 
same eigenstate), then the bracket is the state’s norm squared, and cannot be equal to zero. In this case, 
the left parentheses (with j = j’) have to be zero, proving Eq. (69). On the other hand, if j and j’ 
correspond to different eigenvalues of A, the parentheses cannot equal zero (we have just proved that all 
Aj are real!), and hence the state vectors indexed by j and j’ should be orthogonal, e.g., Eq. (70) is valid.  

 As will be discussed below, these properties make Hermitian operators suitable, in particular, for 
the description of physical observables. 

 

16 This equation should look familiar to the reader – see the stationary Schrödinger equation (1.60), which was the 
focus of our studies in the first three chapters. We will see soon that that equation is just a particular (coordinate) 
representation of Eq. (68) for the Hamiltonian as the operator of energy. 
17 The reciprocal statement is also true: if all eigenvalues of an operator are real, it is Hermitian (in any basis). 
This statement may be readily proved by applying Eq. (93) below to the case when Akk’ = Akkk’, with Ak* = Ak. 
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4.4. Change of basis, and matrix diagonalization 

 From the discussion of the last section, it may look like the matrix language is fully similar to, 
and in many instances more convenient than the general bra-ket formalism. In particular, Eqs. (54)-(55) 
and (63)-(64) show that any part of any bra-ket expression may be directly mapped onto the similar 
matrix expression, with the only slight inconvenience of using not only columns but also rows (with 
their elements complex-conjugated), for state vector representation. This invites the question: why do 
we need the bra-ket language at all? The answer is that the matrix elements depend on the particular 
choice of the basis set, very much like the Cartesian components of a usual geometric vector depend on 
the particular choice of reference frame orientation (Fig. 4), and very frequently, at problem solution, it 
is convenient to use two or more different basis sets for the same system. (Just a bit more patience – 
numerous examples will follow soon.) 

 

 

 

 

 

 

 

With this motivation, let us explore what happens at the transform from one basis, {u}, to 
another one, {v} – both full and orthonormal. First of all, let us prove that for each such pair of bases, 

and an arbitrary numbering of the states of each base, there exists such an operator Û  that, first, 

       jj uUv ˆ ,      (4.75) 

and, second,  

               IUUUU ˆˆˆˆˆ ††  .     (4.76) 

(Due to the last property,18 Û  is called a unitary operator, and Eq. (75), a unitary transformation.)   

 A very simple proof of both statements may be achieved by construction. Indeed, let us take 

                j'
j'

j' uvU ˆ ,     (4.77) 

- an evident generalization of Eq. (44). Then, using Eq. (38), we obtain 

    jj'j
j'

j'jj'
j'

j'j vvuuvuU   ˆ ,   (4.78) 

so Eq. (75) has been proved. Now, applying Eq. (31) to each term of the sum (77), we get 

              j'
j'

j' vuU †ˆ ,     (4.79) 

18 An alternative way to express Eq. (76) is to write 1ˆˆ † UU , but I will avoid using this language. 
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so 
     j

j
jj

j'j
jj'jj

jj
j'jj vvvvvuuvUU   '

,
'

',

†ˆˆ  .   (4.80) 

But according to the closure relation (44), the last expression is just the identity operator, so one of Eqs. 
(76) has been proved. (The proof of the second equality is absolutely similar.) As a by-product of our 
proof, we have also got another important expression – Eq. (79). It implies, in particular, that while, 

according to Eq. (75), the operator Û  performs the transform from the “old” basis {u} to the “new” 

basis {v}, its Hermitian adjoint †Û  performs the reciprocal transform: 

      .ˆ †
jj'j

j'
j'j uuvU         (4.81) 

 Now let us see what the matrix elements of the unitary transform operators look like. Generally, 
as was discussed above, the operator’s elements may depend on the basis we calculate them in, so let us 
be specific – at least initially. For example, let us calculate the desired matrix elements Ujj’ in the “old” 
basis {u}, by using Eq. (77): 

    .ˆ
'in ' j'jj"j'

j"
j"jj'

j"
j"j"jjjujj vuvuuuvuuUuU 







    (4.82) 

Now performing a similar calculation in the “new” basis {v}, we get 

       .ˆ
in j'j

j"
j'j"jj"j'

j"
j"j"jj'jvjj' vuvuvuvvvUvU 







    (4.83) 

Surprisingly, the result is the same! This is of course true for the Hermitian conjugate (79) as well: 

       .in 'in '
††

j'jvjjujj uvUU       (4.84) 

 These expressions may be used, first of all, to rewrite Eq. (75) in a purely matrix form. Applying 
the first of Eqs. (41) to any state vj’ of the “new” basis, and then Eq. (82), we get 

            
j

jjj
j

jjjj uUvuuv ''' .    (4.85) 

Similarly, the reciprocal transform is 

            
j

jjj
j

jjjj vUuvvu †
''' .    (4.86) 

These formulas are very convenient for applications; we will use them already in this section. 

 Next, we may use Eqs. (83)-(84) to express the effect of the unitary transform on the expansion 
coefficients j of the vectors of an arbitrary state , defined by Eq. (37). As a reminder, in the “old” 
basis {u} they are given by Eqs. (40). Similarly, in the “new” basis {v},  

               .in  jvj v      (4.87) 

Again inserting the identity operator in its closure form (44) with the internal index j’, and then using 
Eqs. (84) and (40), we get 
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       uj'
j

jj'j'
j

jj'j'
j'

j'j
j'

j'j'jvj UuUuuvuuv in 
''

in 
††   








 . (4.88) 

The reciprocal transform is performed by matrix elements of the operator Û : 

           vj'
j'

jj'uj U in in   .     (4.89) 

Per Eqs. (82)-(84), the matrix elements 'jjU  and †
jj'U are the same in the bases {u} and {v}, so Eqs. 

(88)-(89) may be rewritten in the following compact matrix form: 

      ,U,U
in in in in 

†
vuuv

      (4.90) 

even though the reader should remember that these relations are different from the usual matrix 
formulas, which use the same basis for all its components. 

 So, if the transform (75) from the “old” basis {u} to the “new” basis {v} is performed by a 
unitary operator, the change (88) of state vector components at this transformation requires its Hermitian 
conjugate. This fact is similar to the transformation of components of a usual vector at coordinate frame 
rotation. For example, for a 2D vector whose actual position in space is fixed (Fig. 4): 

                ,
cossin

sincos





























y

x

y

x

'

'










    (4.91) 

but the reciprocal transform is performed by a different matrix, which may be obtained from that 
participating in Eq. (91) by the replacement   –. This replacement has a clear geometric sense: if 
the “new” reference frame {x’, y’} is obtained from the “old” frame {x, y} by a counterclockwise 
rotation by angle , the reciprocal transformation requires such rotation with angle –. (In this analogy, 
the unitary property (76) of the unitary transform operators corresponds to the equality of the 
determinants of both rotation matrices to 1.)  

  Now let us use the same trick of identity operator insertion, repeated twice, to find the 
transformation rule for matrix elements of an arbitrary operator: 

           

















k'k
k'j'ukk'jkj'k'

k'
k'k

k
kjj'jvjj' UAUvuuAuuvvAvA

,
inin

†ˆˆ ; (4.92) 

absolutely similarly, we may also get 

       
k'k

k'j'vkk'jkujj' UAUA
,

inin
† .     (4.93) 

In the spirit of Eq. (90), we may represent these results in the similar matrix form: 

          ,
†† UAUA,UAUA inininin vuuv      (4.94) 

where, again, the matrix elements of † Uand U may be calculated in any of the bases {u} and {v} – but 

not in an arbitrary basis! 

 As a sanity check, let us apply Eq. (93) to the identity operator: 

Matrix 
elements’ 

transforms 



Essential Graduate Physics                QM: Quantum Mechanics 

    
Chapter 4             Page 18 of 52 

         u
uu

v IUUUIUI in
inin 

in 
ˆˆˆˆˆˆˆ †† 











          (4.95) 

– just as it should be. One more invariant of the basis change is the trace of any operator, defined as the 
sum of the diagonal terms of its matrix: 

           
j

jjAA ATr ˆTr .     (4.96) 

The (easy) proof of this fact, using previous relations, is left for the reader’s exercise. 

 So far, I have implied that both state bases {u} and {v} are known, and the natural question is 
where this information comes from in the quantum mechanics of actual physical systems. To get a 
partial answer to this question, let us return to Eq. (68), which defines the eigenstates and the 

eigenvalues of an operator. Let us assume that the eigenstates aj of a certain operator Â  form a full and 
orthonormal set, and calculate the matrix elements of the operator in the basis {a} of these states, at 
their arbitrary numbering. For that, it is sufficient to inner-multiply both sides of Eq. (68), written for 
some eigenstate aj’,  by the bra-vector of an arbitrary state aj of the same set: 

           j'j'jj'j aAaaAa ˆ .     (4.97) 

The left-hand side of this equality is the matrix element Ajj’ we are looking for, while its right-hand side 
is just Aj’jj’. As a result, we see that the matrix is diagonal, with the diagonal consisting of the 
operator’s eigenvalues: 
                   jj'jjj' AA  .      (4.98) 

In particular, in the eigenstate basis (but not necessarily in an arbitrary basis!), Ajj means the same as Aj. 
Thus the important problem of finding the eigenvalues and eigenstates of an operator is equivalent to the 
diagonalization of its matrix,19 i.e. finding the basis in which the operator’s matrix acquires the diagonal 
form (98); then the diagonal elements are the eigenvalues, and the basis itself is the desirable set of 
eigenstates. 

 To see how this is done in practice, let us inner-multiply Eq. (68) by a bra-vector of the basis 
(say, {u}) in that we have happened to know the matrix elements Ajj’: 

           jjkjk aAuaAu ˆ .     (4.99) 

On the left-hand side, we can (as usual :-) insert the identity operator between the operator Â  and the 
ket-vector, and then use the closure relation (44) in the same basis {u}, while on the right-hand side, we 
can move the eigenvalue Aj (a c-number) out of the bracket, and then insert a summation over the same 
index as in the closure, compensating it with the proper Kronecker delta symbol: 

       kk'
k

jkjjk'
k'

k'k auAauuAu  
'

'
ˆ .    (4.100) 

Moving out the signs of summation over k’, and using the definition (47) of the matrix elements, we get 

19 Note that the expression “matrix diagonalization” is a very common but dangerous jargon. Formally, a matrix is 
just a table, an ordered set of c-numbers, and cannot be “diagonalized”. It is OK to use this jargon (I will do this) 
if you remember clearly what it actually means – see the definition above.  
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        0
'

''' 
k

jkkkjkk auAA  .    (4.101) 

But the set of such equalities, for all N possible values of the index k, is just a system of homogeneous 
linear equations for unknown c-numbers uk’aj. According to Eqs. (82)-(84), these numbers are nothing 
else than the matrix elements Uk’j of a unitary matrix providing the required transformation from the 
initial basis {u} to the basis {a} that diagonalizes the matrix A. This system may be represented in the 
matrix form: 
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,    (4.102) 

and the condition of its consistency, 

       ,0

.........

...

...

2221

1211




j

j

AAA

AAA

    (4.103) 

plays the role of the characteristic equation of the system. This equation has N roots Aj – the eigenvalues 

of the operator Â ; after they have been calculated, plugging any of them back into the system (102), we 
can use it to find N matrix elements Ukj (k = 1, 2, …N) corresponding to this particular eigenvalue. 
However, since the equations (102) are homogeneous, they allow finding Ukj only to a constant 
multiplier. To ensure their normalization, i.e. enforce the unitary character of the matrix U, we may use 
the requirement for all eigenvectors to be normalized (just as the basis vectors are): 

    ,1
2
 

k
kjjk

k
kjjj Uauuaaa     (4.104) 

for each j. This normalization completes the diagonalization.20 

 Now (at last!) I can give the reader some examples. As a simple but very important case, let us 
diagonalize each of the operators described (in a certain two-function basis {u}, i.e. in two-dimensional 
Hilbert space) by the so-called Pauli matrices  

.
10

01
σ,

0

0
σ,

01

10
σ 

















 









 zyx i

i
(4.105) 

Though introduced by a physicist, with a specific purpose to describe the electron’s spin, these matrices 
have a general mathematical significance, because together with the 22 identity matrix, they provide a 
full, linearly-independent system – meaning that an arbitrary 22 matrix may be represented as 

      ,σσσI
2221

1211
zzyyxx cccb

AA

AA









    (4.106) 

20 A possible slight complication here is that the characteristic equation may give equal eigenvalues for certain 
groups of different eigenvectors. In such cases, the requirement of the mutual orthogonality of these degenerate 
states should be additionally enforced.  
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with a unique set of four c-number coefficients b, cx, cy, and cz. 

Since the matrix z is already diagonal, with the evident eigenvalues 1, let us start with 
diagonalizing the matrix x. For it, the characteristic equation (103) is evidently 

           ,01  i.e.,0
1

1
2 




j
j

j
A

A

A
    (4.107) 

and has two roots, A1,2 = ±1. (Again, the state numbering is arbitrary!) So the eigenvalues of the matrix 
x are the same as those of the matrix z. (The reader may readily check that the eigenvalues of the 
matrix y are also the same.) However, the eigenvectors of the operators corresponding to these three 
matrices are different. To find them for x, let us plug its first eigenvalue, A1 = +1, back into equations 
(101) spelled out for this particular case (j = 1; k, k’ = 1,2): 

           
.0

,0

1211

1211





auau

auau
     (4.108) 

These two equations are compatible (of course, because the used eigenvalue A1 = +1 satisfies the 
characteristic equation), and any of them gives  

           .e. i., 21111211 UUauau      (4.109) 

With that, the normalization condition (104) yields 

              
2

12

21

2

11  UU .     (4.110) 

Although the normalization is insensitive to the simultaneous multiplication of U11 and U21 by the same 
phase factor exp{i} with any real , it is convenient to keep the coefficients real, for example taking  
= 0, to get 

                
2

1
2111 UU .     (4.111) 

 Performing an absolutely similar calculation for the second characteristic value, A2 = –1, we get 
U12 = –U22, and we may choose the common phase to have 

               
2

1
2212  UU ,     (4.112) 

so the whole unitary matrix for diagonalization of the operator corresponding to x is21 

         ,
11

11

2

1
UU †





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




 xx      (4.113) 

For what follows, it will be convenient to have this result expressed in the ket-relation form – see Eqs. 
(85)-(86): 

         ,
2

1
,

2

1
212221122212211111 uuuUuUauuuUuUa       (4.114a) 

21 Though this particular unitary matrix Ux is Hermitian, this is not true for an arbitrary choice of the phases . 
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         .
2

1
,

2

1
212

†
221

†
122212

†
211

†
111 aaaUaUuaaaUaUu      (4.114b) 

 Now let me show that these results are already sufficient to understand the Stern-Gerlach 
experiments described in Sec. 1 – but with two additional postulates. The first of them is that the 
interaction of a particle with the external magnetic field, besides that due to its orbital motion, may be 
described by the following operator vector of its spin dipole magnetic moment:22 

                          Sm ˆˆ  ,               (4.115a) 

where the constant coefficient , specific for every particle type, is called the gyromagnetic ratio,23 and 

Ŝ  is the operator vector24 of spin, with three Cartesian components:  

         zzyyxx SSS ˆˆˆˆ nnnS  .                                    (4.115b) 

Here nx,y,z are the usual Cartesian unit vectors in the 3D geometric space (in the quantum-mechanics 

sense, they are just c-numbers, or rather “c-vectors”), while zyxS ,,
ˆ are the “usual” (scalar) operators. For 

the so-called spin-½ particles (including the electron),25 these components may be simply, as  

      zyxzyx σS ,,,, ˆ
2

ˆ 
 ,              (4.116a)            

expressed via those of the Pauli vector zzyyxx  ˆˆˆˆ nnnσ  , so we may also write  

           σS ˆ
2

ˆ 
 .              (4.116b) 

In turn, in the so-called z-basis, each Cartesian component of the latter operator is just the corresponding  
Pauli matrix (105), so it may be also convenient to use the following 3D vector of these matrices:26 

           











zyx

yxz
zzyyxx i

i

nnn

nnn
nnnσ σσσ .   (4.117) 

 The z-basis, in which such matrix representation of  σ̂ is valid, is defined as an orthonormal basis 
of certain two states, commonly denoted  (“spin up”) an  (“spin down”). In this basis, the matrix of 
the operator zσ̂  is diagonal, with eigenvalues, respectively, + 1 and –1, and hence the matrix Sz  

(/2)z of zŜ  is also diagonal with the eigenvalues +/2 and –/2 – see the last of Eqs. (105). Note that 

22 This was the key point in the electron spin’s description, developed by W. Pauli in 1925-1927. 
23 For the electron, with its negative charge q = –e, the gyromagnetic ratio is negative:  e = –ge e/2me, where ge  
2 is the electron’s dimensionless g-factor. Due to quantum-electrodynamic (relativistic) effects, this g-factor is 
slightly higher than 2: ge = 2(1 + /2 + …)  2.002319304…, where   e2/40c  (EH/mec

2)1/2  1/137 is the 
so-called fine structure constant. (The origin of its name will be clear from the discussion in Sec. 6.3.) 
24 The basic rule of dealing with operator vectors is to perform all vector operations just as with the usual 
geometric vectors. (The vector  is a good example – see the formulas for in MA Secs. 8-12.) 
25 At this point, the adjective “spin-½ ” should be understood as just a name. The physical sense of this term and 
the generalization of the theory to other values of spin will be discussed in Sec. 5.7. 
26 Note that is some texts, the term “Pauli vector” is used for this matrix  rather than for the operator σ̂ . 
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we do not “understand” what exactly the states  and  are,27 but loosely associate them with some 
internal rotation of a spin-½ particle about the z-axis, with either positive or negative angular 
momentum component Sz. However, attempts to use such classical interpretation for quantitative 
predictions run into fundamental difficulties – see Sec. 6 below. 

 The second necessary postulate describes the general relation between the bra-ket formalism and 
experiment. Namely, in quantum mechanics, each real observable A is represented by a Hermitian 

operator ,ˆˆ †AA   and the result of its measurement,28 in a quantum state  described by a linear 
superposition of the eigenstates aj of the operator,  

              
j

jj a ,     with  jj a ,    (4.118) 

may be only one of the corresponding eigenvalues Aj.29 Specifically, if the ket (118) and all eigenkets 
aj are normalized to 1,  
                  1,1  jj aa ,     (4.119) 

then the probability of a certain measurement outcome Aj is30 

        jjjjjj aaW  *2
,        (4.120) 

This relation is evidently a generalization of Eq. (1.22) in wave mechanics. As a sanity check, let us 
assume that the set of the eigenstates aj is full, and calculate the sum of the probabilities to find the 
system in each of these states: 

        1ˆ    IaaW
j j

jjj .    (4.121) 

 Now returning to the Stern-Gerlach experiment, conceptually the description of the first (z-
oriented) experiment shown in Fig. 1 is formally the hardest for us, because the statistical ensemble 
describing the unpolarized particle beam at its input is mixed (“incoherent”), and cannot be described by 
a pure (“coherent”) superposition of the type (6) that have been the subject of our studies so far. (We 
will discuss mixed ensembles in Chapter 7.) However, it is intuitively clear that its results are 
compatible with the description of the two output beams as sets of particles in the pure states  and , 
respectively. The absorber following that first stage (Fig. 2) just takes all spin-down particles out of the 
picture, producing an output beam of polarized particles in the definite  state. For such a beam, the 

27 If you think about it, the word “understand” typically means that we can express a new notion in terms of those 
discussed earlier and thus considered “known”. (For example, in our current case, we cannot describe the spin 
states by any wavefunction (r), or any other mathematical notion discussed in the previous three chapters and 
hence considered “known”.) The bra-ket formalism was invented exactly to enable mathematical analyses of such 
“new” quantum states we do not initially “understand”. Gradually, as we learn more and more about their 
properties and get accustomed to these notions, we start treating them as “known” ones. 
28 Here again, just like in Sec. 1.2, the statement implies the abstract notion of “ideal experiments”, deferring the 
discussion of real (physical) measurements until Chapter 10. 
29 As a reminder, at the end of Sec. 3 we have already proved that such eigenstates corresponding to different 
values Aj are orthogonal. If any of these values is degenerate, i.e. corresponds to several different eigenstates, they 
should be also selected orthogonal, in order for Eq. (118) to be valid. 
30 This relation, in particular, explains the most common term for the (generally, complex) coefficients j, which 
was already mentioned several times earlier: the probability amplitudes. 
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probabilities (120) are W = 1 and W = 0.  This is certainly compatible with the result of the “control” 
experiment shown on the bottom panel of Fig. 2: the repeated SG (z) stage does not split such a beam, 
keeping the probabilities the same.  

 Now let us discuss the double Stern-Gerlach experiment shown on the top panel of Fig. 2. For 
that, let us represent the z-polarized beam in another basis – of the two states (I will denote them as  
and ) in that, by definition, the matrix Sx is diagonal. But this is exactly the set we called a1,2 in the x 
matrix diagonalization problem solved above. On the other hand, the states  and  are exactly what we 
called u1,2 in that problem because in this basis, we know the matrix  explicitly – see Eq. (117). Hence, 
in the application to the particle spin problem, we may rewrite Eqs. (114) as  

               ,
2

1
,

2

1
    (4.122) 

                       ,
2

1
,

2

1
    (4.123) 

Currently for us the first of Eqs. (123) is most important, because it shows that the quantum state 
of particles entering the SG (x) stage may be represented as a coherent superposition of particles with Sx 
= +/2 and Sx = –/2. Notice that the beams have equal probability amplitude moduli, so according to 
Eq. (120), the split beams  and  have equal intensities, in accordance with experimental results.  

 Now, let us discuss the most mysterious (from the classical point of view) multistage SG 
experiment shown on the middle panel of Fig. 2. After the second absorber has taken out all particles in, 
say, the  state, the remaining particles, all in the state , are passed to the final, SG (z), stage. But 
according to the first of Eqs. (122), this state may be represented as a (coherent) linear superposition of 
the  and  states, with equal probability amplitudes. The final stage separates particles in these two 
states into separate beams, with equal probabilities W = W = ½ to find an particle in each of them, thus 
explaining the experimental results. 

 To conclude our discussion of the multistage Stern-Gerlach experiment, let me note that though 
it cannot be explained in terms of wave mechanics (which operates with scalar de Broglie waves), it has 
an analogy in classical theories of vector fields, such as the classical electrodynamics. Indeed, let a plane 
electromagnetic wave propagate normally to the plane of the drawing in Fig. 5, and pass through the 
linear polarizer 1.  

 

 

 

 

 

 

 Similarly to the output of the initial SG (z) stages (including the absorbers) shown in Fig. 2, the 
output wave is linearly polarized in one direction – the vertical direction in Fig. 5. Now its electric field 
vector has no horizontal component – as may be revealed by the wave’s full absorption in a 
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Fig. 4.5. A light polarization sequence similar to the three-stage 
Stern-Gerlach experiment shown on the middle panel of  Fig. 2.
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perpendicular polarizer 3. However, let us pass the wave through polarizer 2 first. In this case, the 
output wave does acquire a horizontal component, as can be, again, revealed by passing it through 
polarizer 3. If the angles between the polarization directions 1 and 2, and between 2 and 3, are both 
equal to /4, each polarizer reduces the wave amplitude by a factor of 2, and hence the intensity by a 
factor of 2, exactly like in the multistage SG experiment, with the polarizer 2 playing the role of the SG 
(x) stage. The “only” difference is that the necessary angle between the polarizer orientations is /4, 
rather than /2 for the Stern-Gerlach experiment. In quantum electrodynamics (see Chapter 9 below), 
which confirms classical predictions for this experiment, this difference may be explained by that 
between the integer spin of electromagnetic field quanta (photons) and the half-integer spin of electrons. 

 

4.5. Observables: Expectation values and uncertainties 

 After this particular (and hopefully inspiring) example, let us discuss the general relation 
between the Dirac formalism and experiment in more detail. The expectation value of an observable 
over any statistical ensemble (not necessarily a coherent one) may be always calculated using the 
general statistical rule (1.37). For the particular case of a coherent superposition (118), we can combine 
that rule with Eq. (120) and the second of Eqs. (118): 

               
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jjj

j
jjj

j
jjj

j
jj aAaaAaAWAA * .  (4.124) 

Now using Eq. (59) for the particular case of the eigenstate basis {a}, for which Eq. (98) is valid, we 
arrive at a very simple and important formula31 




AA ˆ .     (4.125) 

This is a clear analog of the wave-mechanics formula (1.23) – and as we will see soon, may be used to 
derive it.32 A great convenience of Eq. (125) is that it does not explicitly involve the eigenvector set of 
the corresponding operator, and allows the calculation to be performed in any convenient basis. 

For example, let us consider an arbitrary coherent state  of spin-½,33 and calculate the 
expectation values of its components. The calculations are easier in the z-basis because we know the 
matrix elements of the spin operator components in that basis. Representing the ket- and bra-vectors of 
the given state as linear superpositions of the corresponding vectors of the basis states  and , 

            **,    .   (4.126)  

and plugging these expressions into Eq. (125) written for the observable Sz, we get 

31 This equality reveals the full beauty of Dirac’s notation. Indeed, initially in this chapter, the quantum-
mechanical brackets just reminded the angular brackets used for statistical averaging. Now we see that in this 
particular (but most important) case, the angular brackets of these two types may be indeed equal to each other!  
32 Note also that Eq. (120) may be rewritten in a form similar to Eq. (125):  jjW  ˆ , where j̂  is the 

operator (42) of the state’s projection upon the jth eigenstate aj. 
33 For clarity, the noun “spin-½” is used, here and below, to denote the spin degree of freedom of a spin-½ 
particle, independent of its orbital motion. 
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 (4.127) 

Now there are two equivalent ways (both very simple) to calculate the long brackets in this 
expression. The first one is to represent each of them in the matrix form in the z-basis, in which the bra- 
and ket-vectors of states  and  are the matrix rows (1, 0) and (0, 1), or similar matrix columns – the 
exercise highly recommended to the reader. Another (perhaps more elegant) way is to use the general 
Eq. (59), in the z-basis, together with the spin-½-specific Eqs. (116a) and (105) to write 

          
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ˆ,
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ˆ,
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ˆ 
zyx SiSS . (4.128) 

For our particular calculation, we may plug the last of these expressions into Eq. (127), and use the 
orthonormality conditions (38): 

     0,1  .    (4.129) 

Both approaches give (of course) the same result: 
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 This particular result might be also obtained using Eq. (120) for the probabilities W = * 
and W = *, namely: 
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The formal way (127), based on the general Eq. (125), has, however, the advantage of being applicable 
to finding the observables whose operators are not diagonal in the z-basis, as well. In particular, 
absolutely similar calculations give 
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Let us have a good look at a particular spin state, for example the spin-up state . According to 
Eq. (126), in this state  = 1 and  = 0, so Eqs. (130)-(133) yield: 

                   0,
2

 yxz SSS


.    (4.134) 

Now let us use the same Eq. (125) to calculate the spin component uncertainties. According to Eqs. 

(105) and (116)-(117), the operator of each spin component squared is equal to (/2)2 Î , so the general 
Eq. (1.33) yields 

Spin-½  
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While Eqs. (134) and (135a) are compatible with the classical notion of the angular momentum 
of magnitude /2 being directed exactly along the z-axis, this correspondence should not be 
overstretched, because such a classical picture cannot explain Eqs. (135b) and (135c). The best (but still 
imprecise!) classical image I can offer is the spin vector S oriented, on average, in the z-direction, but 
still having its x- and y-components strongly “wobbling” (fluctuating) about their zero average values.  

  It is straightforward to verify that in the x-polarized and y-polarized states, the situation is 
similar, with the corresponding change of axis indices. Thus, in neither of these states, all three spin 
components have definite values. Let me show that this is not just an occasional fact, but reflects one of 
the most profound properties of quantum mechanics, the uncertainty relations. For that, let us consider 
two measurable observables, A and B, of the same quantum system. There are two possibilities here. If 
the operators corresponding to these observables commute, 

          0ˆ,ˆ BA ,      (4.136) 

then all matrix elements of the commutator in any orthogonal basis (in particular, in the basis of 

eigenstates aj of the operator Â ) have to equal zero: 

      0ˆˆˆˆˆ,ˆ
'''  jjjjjj aABaaBAaaBAa .   (4.137) 

In the first bracket of the middle expression, let us act by the (Hermitian!) operator Â  on the bra-vector, 
while in the second one, on the ket-vector. According to Eq. (68), such action turns the operators into 
the corresponding eigenvalues, which may be taken out of the long brackets, so we get 

     .0ˆˆˆ 





  j'jj'jj'jj'j'jj aBaAAaBaAaBaA    (4.138) 

 This means that if all eigenstates of the operator Â  are non-degenerate (i.e. Aj  Aj’ if j  j’), the 

matrix of the operator B̂  has to be diagonal in the basis {a}, i.e., the operators Â  and B̂  have common 
eigenstates. Such pairs of observables (and their operators) that can share their eigenstates are called 
compatible. For example, in the wave mechanics of a particle, its momentum (1.26) and kinetic energy 
(1.27) are compatible, sharing their eigenfunctions (1.29). Now we see that this is not occasional, 
because each Cartesian component of the kinetic energy is proportional to the square of the 
corresponding component of the momentum, and any operator commutes with an arbitrary integer 
power of itself: 

      0ˆˆ...ˆˆˆ...ˆˆˆˆ...ˆˆ,ˆˆ,ˆ 







 AAAAAAAAAAAAAA

nnn

n
 .   (4.139) 
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 Now, what if the operators Â  and B̂  do not commute? Then the following general uncertainty 
relation is valid:  

             BABA ˆ,ˆ
2

1
 ,     (4.140) 

where all expectation values are for the same but arbitrary state of the system. The proof of Eq. (140) 
may be divided into two steps, the first one proving the so-called Schwartz inequality for any two 
possible states, say  and :34 

          
2

  .     (4.141) 

Its proof may be readily achieved by applying the postulate (16) – that the norm of any legitimate state 
of the system cannot be negative – to the state with the following ket-vector: 

            ,



       (4.142) 

where  and  are possible, non-null states of the system, so the denominator in Eq. (142) is not equal to 
zero. For this case, Eq. (16) gives 
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Opening the parentheses, we get 

            0
2

 






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



 .  (4.144) 

After the cancellation of one inner product   in the numerator and the denominator of the last term, 
it cancels with the 2nd (or the 3rd) term. What remains is the Schwartz inequality (141).  

 Now let us apply this inequality to states 

            Â
~

   and   B̂
~ ,     (4.145)  

where, in both relations,  is the same possible state of the system, and the deviation operators are 
defined similarly to the deviations of the observables (see Sec. 1.2): 

               BBBAAA  ˆ
~
ˆ,ˆ~̂

.     (4.146) 

With this substitution, and taking into account again that the observable operators Â  and B̂  are 
Hermitian, Eq. (141) yields 

             
2

22 ~̂~̂~̂~̂  BABA  .    (4.147) 

Since the state  is arbitrary, we may use Eq. (125) to rewrite this relation as an operator inequality: 

34 This inequality is the quantum-mechanical analog of the usual vector algebra’s result 22  2. 
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      BABA
~̂~̂

 .     (4.148) 

 Actually, this is already an uncertainty relation, even “better” (stronger) than its standard form  
(140); moreover, it is more convenient in some cases. To prove Eq. (140), we need a couple of more 
steps. First, let us notice that the operator product participating in Eq. (148) may be recast as  

    









 BAiCC

i
BABA

~̂
,

~̂ˆ  where,ˆ
2

~̂
,

~̂

2

1~̂~̂
.    (4.149) 

Any anticommutator of Hermitian operators, including that in Eq. (149), is a Hermitian operator, and its 
eigenvalues are purely real, so its expectation value (in any state) is also purely real. On the other hand, 
the commutator part of Eq. (149) is just 

                    BAiABBAiAABBiBBAAiBAiC ˆ,ˆˆˆˆˆˆˆˆˆ~̂
,

~̂ˆ 



 . (4.150) 

Second, according to Eqs. (52) and (65), the Hermitian conjugate of any product of the Hermitian 

operators Â  and B̂  is just the product of these operators swapped. Using this fact, we may write 

                CBAiBAiABiABiBAiBAiC ˆˆ,ˆˆˆˆˆ)ˆˆ()ˆˆ(ˆ,ˆˆ ††††  ,  (4.151) 

so the operator Ĉ  is also Hermitian, i.e. its eigenvalues are also real, and thus its expectation value is 
purely real as well. As a result, the square of the expectation value of the operator product (149) may be 
represented as 

222

ˆ
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1~̂
,

~̂

2

1~̂~̂
CBABA 





 .    (4.152) 

Since the first term on the right-hand side of this equality cannot be negative, we may write 

      
222

ˆ,ˆ
2

ˆ
2

1~̂~̂
BA

i
CBA  ,    (4.153) 

and hence continue Eq. (148) as 

        BABABA ˆ,ˆ
2

1~̂~̂
 ,    (4.154) 

thus proving Eq. (140).  

 For the particular case of operators x̂  and xp̂ (or a similar pair of operators for another Cartesian 

coordinate), we may readily combine Eq. (140) with Eq. (2.14b) to prove the original Heisenberg’s 
uncertainty relation (2.13). For the spin-½  operators defined by Eq. (116)-(117), it is very simple (and 
highly recommended to the reader) to show that 

         ,ˆˆ,ˆ  i.e.,ˆ2ˆ,ˆ
3

1"
'

3

1
j"

j
j"jjj'j

j"
j"jj'j"j'j SiSSi 



             (4.155) 

where jj’j” is the Levi-Civita permutation symbol.35 As a result, the uncertainty relations (140) for all 
Cartesian components of spin-½ systems are similar, for example 

35 See, e.g., MA Eq. (13.2). 
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           etc  ,
2 zyx SSS


 .     (4.156) 

In particular, as we already know, in the  state the right-hand side of this relation equals (/2)2 
> 0, so neither of the uncertainties Sx, Sy can equal zero. As a reminder, our direct calculation earlier 
in this section has shown that each of these uncertainties is equal to /2, i.e. their product is equal to the 
lowest value allowed by the uncertainty relation (156) – just as the Gaussian wave packets (2.16) 
provide the lowest possible value of the product xpx, allowed by the Heisenberg relation (2.13). 

  

4.6. Quantum dynamics: Three pictures 

 So far in this chapter, I shied away from the discussion of the system’s dynamics, implying that 
the bra- and ket-vectors were just their “snapshots” at a certain instant t. Now we are sufficiently 
prepared to examine their evolution in time. One of the most beautiful features of quantum mechanics is 
that this evolution may be described using either of three alternatives (called pictures), giving exactly 
the same final results for the expectation values of all observables. 

 From the standpoint of our wave-mechanics experience, the Schrödinger picture is the most 
natural one. In this picture, the operators corresponding to time-independent observables (e.g., to the 
Hamiltonian function H of an isolated system) are also constant in time, while the bra- and ket-vectors 
evolve in time as 
        )(),(ˆ)(),,(ˆ)()( 0000

† tttutttutt   .            (4.157a) 

Here ),(ˆ 0ttu  is the time-evolution operator, which obeys the following differential equation: 

       ,ˆˆˆ uHu
t

i 



                (4.157b) 

where Ĥ  is the Hamiltonian operator of the system – which is always Hermitian: HH ˆ†ˆ  , and t0 is the 
initial moment of time. (Note that Eqs. (157) remain valid even if the Hamiltonian depends on time 
explicitly.) Differentiating the second of Eqs. (157a) over time t, and then using Eq. (157b) twice, we 
can merge these two relations into a single equation, without explicit use of the time-evolution operator: 

              tHt
t

i  ˆ



 ,     (4.158) 

which is frequently more convenient. (However, for some purposes the notion of the time-evolution 
operator, together with Eq. (157b), are useful – as we will see in a minute.) While Eq. (158) is a very 
natural generalization of the wave-mechanical equation (1.25), and is also frequently called the 
Schrödinger equation,36 it still should be considered as a new, more general postulate, which finds its 
final justification (as it is usual in physics) in the agreement of its corollaries with experiment – more 
exactly, in the absence of a single credible contradiction to an experiment.  

 Starting the discussion of Eq. (158), let us first consider the case of a time-independent 
Hamiltonian, whose eigenstates an and eigenvalues En obey Eq. (68) for this operator:37 

36 Moreover, we will be able to derive Eq. (1.25) from Eq. (158) – see below. 
37 I have switched the state index notation from j to n, which was used for numbering stationary states in Chapter 
1, to emphasize the special role played by the stationary states an in quantum dynamics. 
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      nnn aEaH ˆ ,     (4.159) 

and hence are also time-independent. (Similarly to the wavefunctions n defined by Eq. (1.60), an are 
called the stationary states of the system.) Let us use Eqs. (158)-(159) to calculate the law of time 
evolution of the expansion coefficients n (i.e. the probability amplitudes) defined by Eq. (118), in a 
stationary state basis, using Eq. (158): 
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   (4.160) 

This is the same simple equation as Eq. (1.61), and its integration, with the initial moment t0 taken for 0, 
yields a similar result – cf. Eq. (1.62): 
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exp)0()(  .     (4.161) 

In order to illustrate how this result works, let us consider the dynamics of a spin-½ in a time-
independent, uniform external magnetic field B. To construct the system’s Hamiltonian, we may apply 
the correspondence principle to the classical expression for the energy of a magnetic moment m in the 
external magnetic field B, 38 
        B mU .      (4.162) 

In quantum mechanics, the operator corresponding to the moment m is given by Eq. (115) (suggested by 
W. Pauli), so the spin-field interaction is described by the so-called Pauli Hamiltonian, which may be, 
due to  Eqs. (116)-(117), represented in several equivalent forms:  

                      BBB  σSm ˆ
2

ˆˆˆ 
γH  .             (4.163a) 

If the z-axis is aligned with the field’s direction, this expression is reduced to  

       zzSH  ˆ
2

ˆˆ 
BB  .                         (4.163b) 

According to Eq. (117), in the z-basis of the spin states  and , the matrix of the operator (163b) is 

     .Ω  where,σ
2

Ω
σ

2
H B

B 
 zz


    (4.164) 

The constant  so defined coincides with the classical frequency of the precession, about the z-axis,  of 
an axially-symmetric rigid body (the so-called symmetric top), with an angular momentum S and the 
magnetic moment m = S, induced by the external torque  = mB.39 (For an electron, with its negative 
gyromagnetic ratio e = –gee/2me, neglecting the tiny difference of the ge-factor from 2, we get 

                    B
em

e
 ,                (4.165) 

so according to Eq. (3.48), the frequency  coincides with the electron’s cyclotron frequency c.) 

38 See, e.g., EM Eq. (5.100). As a reminder, we have already used this expression for the derivation of Eq. (3). 
39 See, e.g., CM Sec. 4.5, in particular Eq. (4.72), and EM Sec. 5.5, in particular Eq. (5.114) and its discussion. 
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 In order to apply the general Eq. (161) to this case, we need to find the eigenstates an and 
eigenenergies En of our Hamiltonian. However, with our (smart :-) choice of the z-axis, the Hamiltonian 
matrix is already diagonal: 

     ,
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


z      (4.166) 

meaning that the states  and  are the eigenstates of this system, with the eigenenergies, respectively, 40  

               
2

    and
2





 


EE .    (4.167) 

Note that their difference, 
       B   ΩΔ EEE ,    (4.168) 

corresponds to the classical energy 2 mB  of flipping a magnetic dipole with the moment’s magnitude 

m = /2, oriented along the direction of the field B. Note also that if the product B   is positive, then  
is negative, so E is negative, while E is positive. This is in agreement with the classical picture of a 
magnetic dipole m having negative potential energy when it is aligned with the external magnetic field 
B – see Eq. (162) again. 

  So, for the time evolution of the probability amplitudes of these states, Eq. (161) immediately 
yields the following expressions: 
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allowing a ready calculation of the time evolution of the expectation values of any observable. In 
particular, we can calculate the expectation value of Sz as a function of time by applying Eq. (130) to the 
(arbitrary) time moment t: 
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.  (4.170) 

Thus the expectation value of the spin component parallel to the applied magnetic field remains constant 
in time, regardless of the initial state of the system. However, this is not true for the components 
perpendicular to the field. For example, Eq. (132), applied to the moment t, gives 
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. (4.171) 

Clearly, this expression describes sinusoidal oscillations with frequency (164). The amplitude 
and the phase of these oscillations depend on initial conditions. Indeed, solving Eqs. (132)-(133) for the 
probability amplitude products, we get the following relations:  

                      tSitStttSitStt yxyx  
** ,   ,  (4.172) 

valid for any time t. Plugging their values for t = 0 into Eq. (171), we get 

40 So, spin-½ gives one more example of two-level systems whose discussion was started in Sec. 2.6. The fact 
that all quantum two-level systems are isomorphic (see Sec. 5.1) adds importance to our current discussion. 
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An absolutely similar calculation using Eq. (133) gives 

            .sin0cos0)( tStStS xyy      (4.174) 

 These formulas show, for example, that if at moment t = 0 the spin’s state was , i.e. Sx(0) = 
Sy(0) = 0, then the oscillation amplitudes of both “lateral” components of the spin vanish. On the other 
hand, if the spin was initially in the state →, i.e. had the definite, largest possible value of Sx equal to /2 
(in classics, we would say “the spin-½ was oriented in the x-direction”), then both expectation values 
Sx and Sy oscillate in time41 with this amplitude, and with the phase shift /2 between them.  

 So, the quantum-mechanical results for the expectation values of the Cartesian components of 
spin-½ are indistinguishable from the classical results for the precession, with the frequency  = –B, 42 

of a symmetric top with the angular momentum L of magnitude /2, about the field’s direction (our axis 
z), under the effect of an external torque  = mB exerted by the field B on the magnetic moment m = 
L. Note, however, that the classical language does not describe the large quantum-mechanical 
uncertainties of the components, obeying Eqs. (156), which are absent in the classical picture – at least 
when the precession starts from a definite orientation of the angular momentum vector.43   

 Recall also that at the stationary orbital motion of a particle, the component Lz of its angular 
momentum is always a multiple of  – see, e.g., Eq. (3.139). As a result, the angular momentum of a 
spin-½ particle, with its stationary values Sz = /2, cannot be explained by the summation of orbital 
moments of its hypothetical components, i.e. by any internal rotation of the particle about its axis. 

After this illustration, let us return to the discussion of the general Schrödinger equation (157b) 
and prove the following fascinating fact: it is possible to write the general solution of this operator 
equation. In the easiest case when the Hamiltonian is time-independent, this solution turns out to be an 
exact analog of Eq. (161),  
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   (4.175) 

To start its proof we should, first of all, understand what a function (in this particular case, the exponent) 
of an operator means. In the operator (and matrix) algebra, such nonlinear functions are defined by their 
Taylor expansions; in particular, Eq. (175) means that 

41 This is one more (hopefully, redundant :-) illustration of the difference between the averaging over the 
statistical ensemble and that over time: in Eqs. (170), (173)-(174), and also in quite a few relations below, only 
the former averaging has been performed, so the results are still functions of time.  
42 Note that according to this relation, the gyromagnetic ratio   may be interpreted as the angular frequency of the 
spin precession in a unit magnetic field – hence the name. In particular, for electrons, e   1.7611011 s-1T-1; for 
protons, the ratio is much smaller, p  gpe/2mp  2.675108 s-1T-1 – mostly because of their larger mass mp, at a g-
factor of the same order as for the electron: gp  5.586. For heavier spin-½ particles, e.g., atomic nuclei with such 
spin, the values of   are correspondingly smaller – e.g.,    8.681106 s-1T-1 for the 57Fe nucleus. 
43 If the initial conditions are random, the classical motion is stochastic even if its laws are deterministic. 
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where ,ˆˆˆˆ,ˆˆˆ 32 HHHHHHH   etc. Working with such a series of operator products is not as hard as one 
could imagine, due to their regular structure. For example, let us differentiate both sides of Eq. (176) 
over t, at constant t0, at the last step using this equality again – that time, backward: 
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 (4.177) 

so the differential equation (158) is indeed satisfied. On the other hand, Eq. (175) also satisfies the 
initial condition 

        Ittuttu ˆ),(ˆ),(ˆ 0000
†       (4.178) 

that immediately follows from the definition (157a) of the evolution operator. Thus, Eq. (175) indeed 
gives the (unique) solution for the time evolution operator – in the Schrödinger picture. 

 Now let us allow the operator Ĥ  to be a function of time, but with the condition that its “values” 
(in fact, operators) at different instants commute with each other: 

                t"t't"Ht'H ,any for ,0)(ˆ),(ˆ  .    (4.179) 

(A good example is the Pauli Hamiltonian (4.163) for a spin in a classical magnetic field B even if it 

depends on time. Indeed, the spin operator Ŝ  does not depend explicitly on time and hence commutes 
with itself as well as with the c-numbers B(t’) and B(t”). Note, however, that a similar operator 
describing the effect of a classical position-independent force F(t) on the orbital motion of a particle, 

                 rF ˆ)(ˆ  tH F ,     (4.180) 

may be deceiving: though it satisfies Eq. (179), this relation is invalid for the particle’s full Hamiltonian 
including its kinetic energy.) In this case, it is sufficient to replace, in all the above formulas, the 

product )(ˆ
0ttH   with the corresponding integral over time; in particular, Eq. (175) is generalized as 
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This replacement means that the first form of Eq. (176) should be replaced with   
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 (4.182)  

The proof that Eq. (182) satisfies Eq. (158) is absolutely similar to the one carried out above.  

Evolution 
operator: 

explicit 
expression 
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 We may now use Eq. (181) to show that the time-evolution operator remains unitary at any 
moment, even for a time-dependent Hamiltonian, if it satisfies Eq. (179). Indeed, Eq. (181) yields 
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Since each of these exponents may be represented with the Taylor series (182), and, thanks to Eq. (179), 
different components of these sums may be swapped at will, the expression (183) may be manipulated 
exactly as the product of c-number exponents, for example rewritten as 
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This property ensures, in particular, that the system state’s normalization does not depend on time:  

             )()()()(ˆ)(ˆ)()()( 000000
† tttt,tut,tuttt   .  (4.185) 

 The most difficult cases for the explicit solution of Eq. (158) are those where Eq. (179) is 
violated.44 It may be proved that in these cases, Eqs. (181)-(182) should be replaced with the following 

Dyson series using the so-called time-ordering operator T̂ : 
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 (4.186) 

 Since we would not have time/space to use this relation in this course, I will skip its proof.45  

  Let me now return to the general discussion of quantum dynamics to outline its alternative, the 
Heisenberg picture. For its introduction, let us recall that according to Eq. (125), in quantum mechanics 
the expectation value of any observable A is a long bracket. Let us explore the even more general form 
of such a bracket:  

            Â ,      (4.187) 

because in some applications, the states  and  may be different. As was discussed above, in the 
Schrödinger picture the bra- and ket-vectors of the states evolve in time,  while the operators of 
observables remain time-independent (if they do not explicitly depend on time). As a result, Eq. (187) 
applied to the moment t, may be represented as 

      )(ˆ)( S tAt  ,     (4.188) 

where the index “S” is added to emphasize the Schrödinger picture. Let us apply the evolution law 
(157a) to the bra- and ket-vectors in this expression:  

                   .)(),(ˆˆ),(ˆ)(ˆ
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† tttuAttuttAt      (4.189) 

44 We will run into such situations in Chapter 7, but will not need to apply Eq. (186) there. 
45 It may be found, for example, in Chapter 5 of J. Sakurai’s textbook – see References. 
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This equality means that if we form a long bracket with bra- and ket-vectors of the initial-time states, 
together with the following time-dependent Heisenberg operator46 

          ),(ˆ)(ˆ),(ˆ),(ˆˆ),(ˆ)(ˆ
00H00S0H

†† ttutAttuttuAttutA  ,   (4.190) 

all experimentally measurable results will remain the same as in the Schrödinger picture: 
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For full clarity, let us see how the Heisenberg picture works for the same simple (but very 
important!) problem of the spin-½ precession in a z-oriented magnetic field, described (in the z-basis) by 
the Hamiltonian matrix (164). In that basis, Eq. (157b) for the time-evolution operator becomes 
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We see that in this simple case, the differential equations for different matrix elements of the evolution 
operator matrix are decoupled, and readily solvable by using the universal initial conditions (178):47 
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 Now let us use them in Eq. (190) to calculate the Heisenberg-picture operators of spin 
components – still in the z-basis. Dropping the index “H” for the notation brevity (the Heisenberg-
picture operators are clearly marked by their dependence on time anyway), we get 
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Absolutely similar calculations of the other spin components yield 
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46 Note that this relation is similar in structure to the first of Eqs. (94), with the state bases {v} and {u} loosely 
associated with the time moments, respectively, t and t0.  
47 We could of course use this solution, together with Eq. (157), to obtain all the above results for this system 
within the Schrödinger picture. In our simple case, the use of Eqs. (161) for this purpose was more 
straightforward, but in some cases, e.g., for some time-dependent Hamiltonians, an explicit calculation of the 
time-evolution matrix may be the best (or even the only practicable) way to proceed. 

Heisenberg 
operator 
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 One practical advantage of these formulas is that they describe the system’s evolution for 
arbitrary initial conditions, thus making the analysis of initial state effects very simple. Indeed, since in 
the Heisenberg picture, the expectation values of observables are calculated using Eq. (191) (with  = 
), with time-independent bra- and ket-vectors, such averaging of Eqs. (194)-(196) immediately returns 
us to Eqs. (170), (173), and (174), which were obtained above in the Schrödinger picture. Moreover, 
these equations for the Heisenberg operators formally coincide with the classical equations of the 
torque-induced precession for c-number variables. (Below we will see that the same exact 
correspondence is valid for the Heisenberg picture of the orbital motion.)  

 In order to see that the last fact is by no means a coincidence, let us combine Eqs. (157b) and 
(190) to form an explicit differential equation of the Heisenberg operator’s evolution. For that, let us 
differentiate Eq. (190) over time: 
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Plugging in the derivatives of the time evolution operator from Eq. (157b) and its Hermitian conjugate, 
and multiplying both sides of the equation by i, we get 
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If for the Schrödinger-picture’s Hamiltonian, the condition (179) is satisfied, then, according to Eqs. 
(177) or (182), the Hamiltonian commutes with the time evolution operator and its Hermitian conjugate, 
and may be swapped with any of them.48 Hence, we may rewrite Eq. (198a) as 
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Now using the definition (190) again, for both terms on the right-hand side, we may write 
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This is the so-called Heisenberg equation of motion. 

 Let us see how this equation looks for the same problem of the spin-½ precession in a z-oriented, 
time-independent magnetic field described in the z-basis by the Hamiltonian matrix (164), which does 
not depend on time. In this basis, Eq. (199) for the operator vector of spin reads49 

48 Due to the same reason, SSSH
ˆˆˆ†ˆˆˆ†ˆˆ HHuuuHuH   ; this is why the Hamiltonian operator’s index may be 

dropped in Eqs. (198)-(199).  
49 Using the commutation relations (155), this equation may be readily generalized to the case of an arbitrary 
magnetic field B(t) and an arbitrary state basis – the exercise highly recommended to the reader. 

Heisenberg 
equation 
of motion 



Essential Graduate Physics                QM: Quantum Mechanics 

    
Chapter 4             Page 37 of 52 

            










































0

0
Ω

10

01
,

2

Ω

21

12

2221

1211

2221

1211

S

S-

SS

SS

SS

SS






i .  (4.200) 

Once again, the equations for different matrix elements are decoupled, and their solution is elementary: 
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According to Eq. (190), the initial values of the Heisenberg-picture matrix elements are just the 
Schrödinger-picture ones, so using Eq. (117) we may rewrite this solution in either of two forms: 
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 The simplicity of the last expression is spectacular. (Remember, it covers any initial conditions 
and all three spatial components of spin!) On the other hand, for some purposes the previous form may 
be more convenient; in particular, its Cartesian components give our earlier results (194)-(196).50 

 One of the advantages of the Heisenberg picture is that it provides a more clear link between 
classical and quantum mechanics, found by P. Dirac. Indeed, analytical classical mechanics may be used 
to derive the following equation of time evolution of an arbitrary function A(qj, pj, t) of the generalized 
coordinates qj and momenta pj of the system, and time t: 51 
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where H is the classical Hamiltonian function of the system, and {..,..}P is the so-called Poisson bracket 
defined, for two arbitrary functions A(qj, pj, t) and B(qj, pj, t), as 
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Comparing Eq. (203) with Eq. (199), we see that the correspondence between the classical and quantum 
mechanics (in the Heisenberg picture) is provided by the following symbolic relation 

50 Note that the “values” of the same Heisenberg operator at different moments of time may or may not commute. 

For example, consider a free 1D particle, with the time-independent Hamiltonian mpH 2/ˆˆ 2 . In this case, Eq. 

(199) yields the following equations: mpiHxxi /ˆ]ˆ,ˆ[ˆ    and 0]ˆ,ˆ[ˆ  Hppi  , with simple solutions 

(similar to those for the classical motion): )0(ˆconst)(ˆ ptp   and mtpxtx /)0(ˆ)0(ˆ)(ˆ  , so 

mtimtpxmtpxtxx //]ˆ,ˆ[/)]0(ˆ),0(ˆ[)](ˆ),0(ˆ[ SS   0, for t  0. 
51 See, e.g., CM Eq. (10.17). The notation there does not use the subscript “P” that is employed in Eqs. (203)-
(205) to distinguish the classical Poisson bracket (204) from the quantum anticommutator (34). 
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This relation may be used, in particular, for finding appropriate operators for some observables, if their 
form is not immediately evident from the correspondence principle. 

 Finally, let us discuss one more alternative picture of quantum dynamics. It is attributed to P. A. 
M. Dirac, and is called either the “Dirac picture”, or (more frequently) the interaction picture. The last 
name stems from the fact that this picture is very useful for perturbative (approximate) approaches to 
systems whose  Hamiltonians may be partitioned into two parts, 

int0
ˆˆˆ HHH  ,     (4.206) 

where 0Ĥ  is the sum of relatively simple Hamiltonians of the component subsystems, while the second 

term in Eq. (206) represents their weak interaction.52 (Note, however, that all relations in the balance of 
this section are exact and not directly based on the interaction weakness.) In this case, it is natural to 
consider, together with the full operator  0,ˆ ttu  of the system’s evolution, which obeys Eq. (157b), a 

similarly defined unitary operator  00 ,ˆ ttu  of the “unperturbed” evolution described by 0Ĥ  alone: 

                      ,ˆˆˆ 000 uHu
t

i 



      (4.207) 

and also the following interaction evolution operator,  

    uuu ˆˆˆ †
0I  .      (4.208) 

 The motivation for these definitions becomes more clear if we insert the reciprocal relation, 

             I000 ˆˆˆˆˆˆ † uuuuuu  ,     (4.209) 

 and its Hermitian conjugate, 

                     ††††
0II0 ˆˆˆˆˆ uuuuu  ,     (4.210) 

into the basic Eq. (189): 

      
        .)(,ˆ,ˆˆ,ˆ,ˆ)(

)(),(ˆˆ),(ˆ)(ˆ

00I00S000I0

00S00

††

†

tttuttuAttuttut

tttuAttutA








  (4.211) 

This relation shows that any long bracket (187), i.e. any experimentally verifiable result of 
quantum mechanics, may be expressed as  

)()(ˆ)(ˆ
III ttAtA   ,    (4.212) 

if we assume that both the state vectors and the operators depend on time, with the vectors evolving only 
due to the interaction operator Iû , 

   ,)(),(ˆ)(),,(ˆ)()( 00II0I0I
† tttutttutt      (4.213) 

52 This picture may also useful in more standard problems of the perturbation theory (see Ch. 6 below) where 

intĤ  describes a weak perturbation of a single system described by a relatively simple Hamiltonian 0Ĥ . 
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while the operators’ evolution being governed by the unperturbed operator 0û : 

      00S00I ,ˆˆ,ˆ)(ˆ † ttuAttutA  .     (4.214) 

 These relations describe the interaction picture of quantum dynamics. Let me defer an example 
of its use until the perturbative analysis of open quantum systems in Sec. 7.6, and end this section with 
proof that the interaction evolution operator (208) satisfies the following natural equation, 

,ˆˆˆ III uHu
t

i 



      (4.215) 

where IĤ  is the interaction Hamiltonian formed from intĤ  in accordance with the same rule (214): 

      00int00I ,ˆˆ,ˆˆ † ttuHttutH  .     (4.216) 

The proof is very straightforward: first using the definition (208), and then Eqs. (157b) and the 
Hermitian conjugate of Eq. (207), we may write 

     
   

  .ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
ˆˆ

ˆ
ˆˆˆ

int00000int00000

int00000000
0

0I

††††††

†††††
†

†

uHuuHuuHuHuuHuuuH

uHHuuuHuHuuuH
t

u
iuu

t

u
iuu

t
iu

t
i




















 (4.217) 

Since †
0û may be represented as an integral of an exponent of 0Ĥ  over time (similar to Eq. (181) relating 

û  and Ĥ ), these operators commute, so the parentheses in the last form of Eq. (217) vanish. Now 
plugging û  from the last form of Eq. (209), we get the equation, 

      I0int0I0int0I ˆˆˆˆˆˆˆˆ †† uuHuuuHuu
t

i 



 ,    (4.218) 

which is clearly equivalent to the combination of Eqs. (215) and (216). 

 As Eq. (215) shows, if the energy scale of the interaction Hint is much smaller than that of the 

background Hamiltonian H0, the interaction evolution operators Iû and †
Iû , and hence the state vectors 

(213) evolve relatively slowly, without fast background oscillations.  This is very convenient for the 
perturbative approaches to complex interacting systems, in particular to the “open” quantum systems 
that weakly interact with their environment – see Sec. 7.6.  

 

4.7. Coordinate and momentum representations 

 Now let me show that in application to the orbital motion of a particle, the bra-ket formalism 
naturally reduces to the notions and postulates of wave mechanics, which were discussed in Chapter 1. 
For that, we first have to modify some of the above formulas for the case of a basis with a continuous 
spectrum of eigenvalues. In that case, it is more appropriate to replace discrete indices, such as j, j’, etc. 
broadly used above, with the corresponding eigenvalue – just as it was done earlier for functions of the 
wave vector – see, e.g., Eqs. (1.88), (2.20), etc. For example, the key Eq. (68), defining the eigenkets 
and eigenvalues of an operator, may be conveniently rewritten in the form 

Interaction 
picture: 

operators 
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                 AA aAaA ˆ .      (4.219) 

 More substantially, all sums over such continuous eigenstate sets should be replaced with 
integrals. For example, for a full and orthonormal set of the continuous eigenstates  aA, the closure 
relation (44) should be replaced with 

              IaadA AA
ˆ ,     (4.220) 

where the integral is over the whole interval of possible eigenvalues of the observable A.53 Applying this 
relation to the ket-vector of an arbitrary state , we get the following replacement of Eq. (37): 

              AAAA aadAaadAI  ˆ .    (4.221) 

For the particular case when  =  aA’, this relation requires that 

           );(' A'Aaa AA        (4.222) 

this formula replaces the orthonormality condition (38). 

 According to Eq. (221), in the continuous case the bracket aA  still plays the role of 
probability amplitude, i.e. a complex c-number whose modulus squared determines the state aA’s 
probability – see the last form of Eq. (120). However, for a continuous observable, the probability of 
finding the system exactly in a particular state is infinitesimal; instead (as was already discussed in Sec. 
1.2), we should speak about the probability dW = w(A)dA of finding the observable within a small 
interval dA << A near the value A, with probability density w(A)  aA  2. The coefficient of 
proportionality in this relation may be found by making a similar change from the summation to 
integration in the normalization condition (121): 

                      .1  AA aadA      (4.223) 

Since the total probability of the system being in some state should be equal to w(A)dA, this means that 

                        
2

)( AAA aaaAw   .    (4.224) 

 Now let us see how we can calculate the expectation values of continuous observables, i.e. their 
ensemble averages. If we speak about the same observable A whose eigenstates are used as the 
continuous basis (or any compatible observable), everything is simple. Indeed, inserting Eq. (224) into 
the general statistical relation 

                    AdAAwA )(      (4.225) 

that is the obvious continuous version of Eq. (1.37), we get  

       . dAaAaA AA       (4.226) 

Inserting a delta function to represent this expression formally as a double integral,  

      ,)(    A'A aA'AAadA'dAA     (4.227) 

53 The generalization to cases when the eigenvalue spectrum consists of both a continuous interval plus some set 
of discrete values, is straightforward, though leads to somewhat bulky formulas. 
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and using the continuous-spectrum version of Eq. (98),  

       )(ˆ A'AAaAa A'A   ,     (4.228) 

we may write 

         ,ˆˆ
''  AaaAaadA'dAA AAAA       (4.229) 

so Eq. (4.125) remains valid in the continuous-spectrum case without any changes. This formula is very 
convenient for applications because it does not require the calculation of the eigenstates aA, and its 
matrix form is valid in any basis.  

Now we are ready for a discussion of the relationship between the bra-ket formalism and wave 
mechanics. (For the notation simplicity I will discuss its 1D version; its generalization to 2D and 3D 
cases is straightforward.) Let us start with postulating the (intuitively, almost evident) existence of a 
quantum state basis, whose ket-vectors will be called  x, corresponding to a certain definite value x of 
the particle’s coordinate. Writing the trivial identity x x = x x and comparing it with Eq. (219), we see 
that they do not contradict each other if we assume that x on the left-hand side of this relation is the 
Hermitian operator x̂  of the particle’s coordinate, in a specific representation when its action on a ket- 
(or bra-) vector is just the multiplication by the c-number x: 

       .ˆ xxxx                  (4.230) 

In this way, we consider vectors x to be the eigenstates of the operator x̂ . (This looks like a proof, but 
is actually a separate, independent postulate, no matter how plausible.)  

 Let me hope that the reader will excuse me if I do not pursue here strict proof that the set of all x-
states is full and orthogonal,54 so we may apply Eq. (222) to it: 

               x'xx'x   .     (4.231) 

Using this basis is called the coordinate representation – the term which was already mentioned several 
times in this course, but without explanation. In the basis of the x-states, the inner product aA(t) 
becomes x(t), and Eq. (223) takes the following form: 

          )()()()(),(
*

txtxtxxttxw   .   (4.232) 

Comparing this formula with the basic postulate (1.22) of wave mechanics, we see that they coincide if 
the wavefunction of a time-dependent state  is identified with that short bracket:55 

             )(),( txtx   .     (4.233) 

This key formula provides the desired connection between the bra-ket formalism and the wave 
mechanics, and should not be too surprising for the (thoughtful :-) reader. Indeed, Eq. (45) shows that 
any inner product of two state vectors describing two states is a measure of their similarity – just as the 
scalar product of two geometric vectors is; the orthonormality condition (38) is a particular 

54Such proof is rather involved mathematically, but physically this fact should be evident. 
55 I do not quite like expressions like x used in some papers and even textbooks. Of course, one is free to 
replace  with any other letter ( including) to denote a quantum state, but then it is better not to use the same 
letter to denote the wavefunction, i.e. an inner product of two state vectors, to avoid confusion. 

Wave- 
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manifestation of this fact. In this language, the particular value (233) of a wavefunction  at some 
point x and moment t characterizes “how much of a particular coordinate x” the state  contains at time 
t.  (Of course, this informal language is too crude to reflect the fact that (x, t) is a complex function, 
which has not only a modulus but also an argument – the quantum-mechanical phase.) 

 Now let us rewrite the most important formulas of the bra-ket formalism in the wave mechanics 
notation. Inner-multiplying both parts of Eq. (219), written for an arbitrary operator, by the ket-vector 
x, and then inserting into the left-hand side of that relation the identity operator in the form (220) for 
coordinate x’, we get 

              AA axAax'x'Axdx'  ˆ ,              (4.234) 

i.e., using the wavefunction’s definition (233),  

                )()(ˆ xAx'x'Ax'dx AA  ,              (4.235) 

where, for the notation brevity, the time dependence of the wavefunction is just implied (with the capital 
 serving as a reminder of this fact), and will be restored when needed. For a general operator, we 
would have to stop here, because if it does not commute with the coordinate operator, its matrix in the x-
basis is not diagonal, and the integral on the left-hand side of Eq. (235) cannot be worked out explicitly. 
However, virtually all quantum-mechanical operators discussed in this course56 are (space-) local: they 
depend on only one spatial coordinate, say x. For such an operator, we may define its coordinate 
representation by the following equality (valid for an arbitrary wavefunction, not only A): 

                dx'x'x'AxxA x )(ˆ)( ˆ
in .    (4.236) 

 The explicit form of the coordinate representation still needs to be determined for each operator 
type. Let us consider, for example, the 1D version of the Hamiltonian (1.41), 

           )ˆ(
2

ˆˆ
2

xU
m

p
H x  ,     (4.237) 

which was the basis of all our discussions in Chapter 2. Its potential-energy part U (even if it is time-
dependent as well) commutes with the operator x̂ , i.e. its matrix in the x-basis is diagonal. For such an 
operator, the long bracket in Eq. (236) may be transformed using Eq. (231):    x'xxUx'Ux   , 

so the right-hand part of this equality becomes just U(x)(x). Comparing it with the left-hand part, we 
see that the coordinate representation of such an operator is given merely by the c-number function 
U(x). (Eq. (230) may be viewed as just a particular manifestation of this rule.) 

 The situation with the momentum operator xp̂  (and hence the kinetic energy mpx 2/ˆ 2 ), which do 

not commute with x̂ , is less evident. Let me show that its coordinate representation is given by the 1D 
version of Eq. (1.26), if we postulate that the commutation relation (2.14), 

              IixppxIipx xx
ˆˆˆˆˆ  i.e.,ˆˆ,ˆ   ,    (4.238) 

56 The only substantial exception is the statistical operator ŵ (x, x’), to be discussed separately in Chapter 7.  
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is valid in any representation.57 For that, let us consider the following matrix element: x'xppxx xx ˆˆˆˆ  . 

On one hand, we may use Eq. (238), and then Eq. (231), to write 

     )(ˆˆˆˆˆ x'xix'xix'Iixx'xppxx xx   .   (4.239) 

On the other hand, since x'x'x'x ˆ  and xxxx ˆ , we may represent the same matrix element as 

      x'pxxxx'x'ppxxx'xppxx xxxxx ˆ'ˆˆˆˆˆˆ  .   (4.240) 

Comparing Eqs. (239) and (240), we get 

x'x

x'x
ix'px x 




)(
ˆ


 .     (4.241) 

As it follows from the definition of the delta function,58 all expressions involving it acquire final sense 
only at their integration, in our current case, as described by Eq. (236). Plugging Eq. (241) into the right-
hand side of that relation, we get 

               
 

 



 dx'x'
xx

x'x
idx'x'x'px x )(

'
)(ˆ


 .   (4.242) 

Since the right-hand-part integral is contributed only by an infinitesimal vicinity of the point x’ = x, we 
may calculate it by expanding the continuous wavefunction (x’) into the Taylor series in small (x’ – x), 
and keeping only two leading terms of the series, so Eq. (242) is reduced to 

             
     














    dx'
x'

x'
x'xdx'

x'x

x'x
xidx'x'x'px xx'x 
)()(ˆ  .  (4.243) 

Since the delta function may be always understood as an even function of its argument, in our case of (x 
– x’), the first term on the right-hand side is proportional to an integral of an odd function in symmetric 
limits and is equal to zero, and we get59  

 
x

idx'x'x'px x 


 )(ˆ .    (4.244) 

 Comparing this expression with the left-hand side of Eq. (236) with xpA ˆˆ  , we see that in the 

coordinate representation, we indeed get the 1D version of Eq. (1.26), which was used so much in 
Chapter 2,60 

x
ip xx 


 in ˆ .     (4.245) 

57 Another possible approach to the axiomatics  of wave mechanics is to derive Eg. (238) by postulating the form,  

}/ˆexp{ˆ Xpi xX T , of the operator that shifts any wavefunction by distance X along the x-axis. In my 

approach, this expression will be derived when we need it (in Sec. 5.5), while Eq. (238) is postulated. 
58 If necessary, please revisit MA Sec. 14. 
59 One more useful expression of this type, which may be proved similarly, is (/x)(x – x’) = (x – x’)/x’.  
60 This means, in particular, that in the sense of Eq. (236), the operator of differentiation is local, despite the fact 
that its action on a function f may be interpreted as the limit of the fraction f/x, involving two points. (In some 
axiomatic systems, local operators are defined as arbitrary polynomials of functions and their derivatives.) 
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It is virtually evident (and straightforward to prove by using the Taylor expansion just as in Sec. 
6) that the coordinate representation of any operator function )ˆ( xpf  is  

  











x

if  .      (4.246) 

In particular, this pertains to the kinetic energy operator in Eq. (237), so the coordinate representation of 
this Hamiltonian also takes the very familiar form: 

                ),(
2

),(
2

1ˆ
2

222

in txU
xm

txU
x

i
m

H x 

















 .   (4.247) 

 Now returning to the discussion of the general Eq. (235), and comparing its last form with that of 
Eq. (236), we see that for a local operator in the coordinate representation, the eigenproblem (219) takes 
the form 

          ),()(ˆ
in xAxA AAx       (4.248) 

even if the operator Â  does not commute with the operator x̂ . The most important case of this 
coordinate-representation form of the eigenproblem (68) is the familiar Eq. (1.60) for the eigenvalues En 
of the energy of a system with a time-independent Hamiltonian. 

 The operator locality also simplifies the expression for its expectation value. Indeed, plugging 
the closure relation in the form (231) into the general Eq. (125) twice (written in the first case for x and 
in the second case for x’), we get 

            ),(ˆ),()(ˆ)( * tx'x'Axtxdx'dxtx'x'Axxtdx'dxA      . (4.249) 

Now, Eq. (236) reduces this result to just 

          dxtxAtxx'xtxAtxdx'dxA xx ),(ˆ),(),(ˆ),( in in 
**

  . (4.250) 

i.e. to Eq. (1.23), which had to be postulated in Chapter 1 where the x-representation of the operators 
was just implied. 

 Finally, let us discuss the time evolution of the wavefunction, in the Schrödinger picture. For 
that, we may use Eq. (233) to calculate the (partial) time derivative of the wavefunction of some state : 

         .)(tx
t

i
t

i 








      (4.251) 

Since the coordinate operator x̂  does not depend on time explicitly, its eigenstates x are stationary, and 
we can swap the time derivative and the time-independent bra-vector x. Now using the Schrödinger-
picture equation (158), and then inserting the identity operator in the continuous form (220) of the 
closure relation, written for the coordinate eigenstates, 

                 Ix'x'dx' ˆ ,     (4.252) 

we may continue to develop the right-hand side of Eq. (251) as 

Eigenproblem 
in x- 
representation 
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              



)(Ψˆ)(ˆ)(ˆ)( x'x'Hxdx'tx'x'Hxdx'tHxt
t

ix  , (4.253) 

If the Hamiltonian operator is local, we may apply Eq. (236) to the last expression, to get the familiar 
form (1.28) of the Schrödinger equation:  

             
 




xH
t

i in 
ˆ .     (4.254) 

 So, for the local operators that obey Eq. (236), we have been able to derive all the basic notions 
and postulates of the wave mechanics from the bra-ket formalism. Moreover, the formalism has allowed 
us to get a very useful equation (248) for an arbitrary local operator, which will be repeatedly used 
below. (In the first three chapters of this course, we have only used its particular case (1.60) for the 
Hamiltonian operator.) 

 Now let me deliver on my promise to develop a more balanced view of the de Broglie wave 
(4.1), which would be more respectful to the evident r  p symmetry of the coordinate and momentum. 
Let us discuss the 1D case when the wave may be represented as 

             






 x

px
iax pp  allfor ,exp)(


 .   (4.255) 

(For the sake of brevity, from this point to the end of the section, I am dropping the index x in the 
notation of the momentum – just as it was done in Chapter 2.) Let us have a good look at this function. 
Since it satisfies Eq. (248) for the 1D momentum operator (245), 

                ,ˆ in ppx pp        (4.256) 

p is an eigenfunction of that operator. But this means that we can also write Eq. (219) for the 
corresponding ket-vector: 

pppp ˆ ,      (4.257) 

and according to Eq. (233), the wavefunction (255) may be represented as 

         xpxpxx pp  )(  so,)( * .    (4.258) 

 These expressions are quite remarkable in their x  p symmetry – which may be pursued further 
on. Before doing that, however, we have to discuss the normalization of such wavefunctions. Indeed, in 
this case, the probability density w(x) of the wave (255) is constant, so its integral  

      dxxxdxxw pp )()()( *








      (4.259) 

diverges if ap  0. Earlier in the course, we discussed two ways to avoid this divergence. One is to use a 
very large but finite integration volume – see Eq. (1.31). Another way is to work with wave packets of 
the type (2.20), possibly of a very large length and hence a very narrow spread of the momentum values. 
Then the integral (259) may be required to equal 1 without any conceptual problem.  

However, both these methods, while being convenient for the solution of many particular 
problems, violate the x  p symmetry and hence are unfit for our current conceptual discussion. 
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Instead, let us continue to identify the eigenvectors p and p of the momentum with the bra- and ket-
vectors aA and aA of the general theory described at the beginning of this section. Then the 
normalization condition (222) becomes 
              ).( p'pp'p        (4.260) 

Inserting the identity operator in the form (252), with the integration variable x’ replaced by x, into the 
left-hand side of this equation, and using Eq. (258), we can translate this normalization rule to the 
wavefunction language: 

            ).()()(* p'pxxdxp'xxpdx p'p       (4.261) 

For the particular wavefunction (255), this requirement turns into the following condition: 
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  (4.262) 

so, finally, ap = ei/(2)1/2, where   is an arbitrary (real) phase, and Eq. (255) becomes61  
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 Now let us represent an arbitrary wavefunction (x) as a wave packet of the type (2.20), based 
on the wavefunctions (263), taking  = 0 for the notation brevity, because the phase may be incorporated 
into the (generally, complex) envelope function (p): 
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From the mathematical point of view, this is just a 1D Fourier spatial transform, and its reciprocal is 
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These expressions are completely symmetric, and represent the same wave packet; this is why the 
functions (x) and (p) are frequently called the reciprocal representations of a quantum state of the 
particle: respectively, its coordinate (x-) and momentum (p-) representations. Using Eq. (258), and Eq. 
(263) with   = 0, they may be recast into simpler forms, 

dxxpxpdppxpx   )()(,)()(  ,   (4.266) 

in which the inner products satisfy the basic postulate (14) of the bra-ket formalism: 
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61 Repeating such calculation for each Cartesian component of a plane monochromatic wave of arbitrary 
dimensionality d, we get p = (2)–d/2exp{i(pr/ + )}. 

x- 
representation:  
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p- 
representation:  
wavefunctions 
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 Next, we already know that in the x-representation, i.e. in the usual wave mechanics, the 
coordinate operator x̂  is reduced to the multiplication by x, and the momentum operator is proportional 
to the partial derivative over the coordinate: 

      .ˆ,ˆ inin x
ipxx xx 


      (4.268) 

It is natural to guess that in the p-representation, the expressions for operators would be reciprocal:  

     ,ˆ,ˆ inin pp
p

ix pp 



      (4.269) 

with the only difference of one sign, which is due to the opposite signs of the Fourier exponents in Eqs. 
(264) and (265). The proofs of Eqs. (269) are straightforward; for example, acting by the momentum 
operator on the arbitrary wavefunction (264), we get 
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and similarly for the operator x̂  acting on the function (p). Comparing the final form of Eq. (270) with 
the initial Eq. (264), we see that the action of the operators (268) on the wavefunction   (i.e. the state’s 
x-representation) gives the same results as the action of the operators (269) on the function  (i.e. its p-
representation). 

 It is also illuminating to have a different look at this coordinate-momentum duality. For that, 
notice that according to Eqs. (82)-(84), we may consider the bracket xp as an element of the (infinite-
size) matrix Uxp of the unitary transform from the x-basis to the p-basis. Let us use this fact to derive the 
general operator transform rule that would be a continuous version of Eq. (92). Say, we want to 
calculate the general matrix element of some operator known in the x-representation, in the p-
representation: 

           p'Ap ˆ .      (4.271) 

Inserting two identity operators (252) written for x and x’ into this bracket, and then using Eq. (258) and 
its complex conjugate, and also Eq. (236) (again, valid only for space-local operators!), we get 
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As a sanity check, for the momentum operator itself, this relation yields: 
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 (4.273) 

Due to Eq. (257), this result is equivalent to the second of Eqs. (269). 

 From a thoughtful reader, I anticipate the following natural question: why is the momentum 
representation used much less often than the coordinate representation – i.e. wave mechanics? The 
answer is purely practical: with an important exception of the 1D harmonic oscillator (to be revisited in 

x-  
representation: 

operators 
 

p-  
representation: 

operators
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Sec. 5.4), in most systems, the orbital-motion Hamiltonian (237) is not x  p symmetric, with the 
potential energy U(r) typically being a more complex function than the kinetic energy p2/2m. Because of 
that, it is easier to analyze such systems treating the potential energy operator just as a c-number 
multiplier, as it is in the coordinate representation – and as this was done in Chapters 1-3. 

The most significant exception from this practice is the motion in a periodic potential in the 
presence of a coordinate-independent external force F(t). As was discussed in Secs. 2.7 and 3.4, in such 
periodic systems the eigenenergies En(q), playing the role of the effective kinetic energy of the particle, 
may be rather involved functions of its quasimomentum q, while its effective potential energy Uef = –
F(t)r due to the additional force F(t) is a very simple function of coordinates. This is why detailed 
analyses of the quantum effects that were briefly discussed in Sec. 2.8 (the Bloch oscillations, etc.) and 
also such statistical phenomena as drift, diffusion, etc.62 in solid-state theory are typically based on the 
momentum (or rather quasimomentum) representation.  

 

4.8. Exercise problems 

4.1. Prove that if Â  and B̂  are linear operators, and C is a c-number, then:  

 (i)   AA ˆˆ ††  ;   (ii)   †*† ˆˆ ACAC  ;  (iii)   ††† ˆˆˆˆ ABBA  ; 

 (iv) the operators †ˆˆAA and AA ˆˆ †  are Hermitian. 
 

 4.2. Prove that for any linear operators ,ˆ and ,ˆ,ˆ,ˆ DCBA  

         BDACBDCADBCADCBADCBA ˆˆ,ˆˆˆˆˆ,ˆˆ,ˆˆˆˆˆ,ˆˆˆˆ,ˆˆ  . 
 

 4.3. Calculate all possible binary products jj’ (for j, j’ = x, y, z) of the Pauli matrices defined by 
Eqs. (105), and their commutators and anticommutators (defined similarly to those of the corresponding 
operators). Summarize the results by using the Kronecker delta and Levi-Civita permutation symbols.63 

 
4.4. Calculate the following expressions, 

(i) (c) n, and then 
(ii) (bI + c) n, 

for the scalar product c of the Pauli vector’s matrix   nxx + nyy + nzz by an arbitrary c-number 
geometric vector c, where n is a non-negative integer c-number and b is an arbitrary scalar c-number. 

Hint: For Task (ii), you may like to use the binomial theorem64 and then transform the result to a 
form enabling you to use the same theorem backward. 

 
4.5. Use the solution of the previous problem to derive Eqs. (2.191) for the transparency T of the 

Dirac comb – a system of N similar, equidistant, delta-functional potential barriers. 

62 In this series, a brief discussion of these effects may be found in SM Chapter 6. 
63 See, e.g., MA Eqs. (13.1) and (13.2). 
64 See, e.g. MA Eq. (2.9). 
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 4.6. Use the solution of Problem 4(i) to spell out the following matrix: exp{i n}, where  is 
the 3D vector (117) of the Pauli matrices, n is a c-number geometric vector of unit length, and  is a c-
number scalar. 
 
 4.7. Use the solution of Problem 4(ii)  to calculate exp{A}, where A is an arbitrary 22 matrix.  

4.8. Express all elements of the matrix B  exp{A} explicitly via those of the 22 matrix A. 
Spell out your result for the following matrices: 

,A,A 





















ii

ii
'

aa

aa
 

with real a and . 
 
4.9. Prove that for arbitrary square matrices A and B,  

)BA(Tr)AB(Tr  . 

Is each diagonal element (AB)jj necessarily equal to (BA)jj? 
 
 4.10. Calculate the trace of the following 22 matrix: 

   σcσbσa A , 

where  is the Pauli vector’s matrix, while a, b, and c are arbitrary c-number vectors. 
 

 4.11. Prove that the matrix trace of an arbitrary operator does not change at its unitary 
transformation. 

4.12. Prove that for any two full and orthonormal bases {u} and {v} of the same Hilbert space, 

            .Tr jj'j'j uvvu   

 
4.13. Is the 1D scattering matrix S, defined by Eq. (2.124), unitary? What about the 1D transfer 

matrix T defined by Eq. (2.125)? 

4.14. Calculate the trace of the following matrix: 

   σbσa  ii expexp , 

where  is the Pauli vector’s matrix, while a and b are c-number geometric vectors. 
 
 4.15. Prove the following operator-vector identity: 

    ,ˆˆˆˆIˆˆ prσprpσrσ  i  

where  is the Pauli vector’s matrix, and I is the 22 identity matrix. 

 Hint: Take into account that the operator vectors r̂  and p̂  are defined in the orbital-motion 

Hilbert space, different from that of the Pauli vector σ̂ , and hence commute with it – even though they 
do not commute with each other. 
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 4.16. Let Aj be the eigenvalues of some operator Â . Express the following two sums, 

 
j

j
j

j AA 2
21 and , 

via the matrix elements Ajj’ of this operator in an arbitrary basis. 
 
4.17. Calculate z  of a spin–½ in the quantum state with the following ket-vector: 

  const , 

where  (,  )  and (, ) are the eigenstates of the Pauli matrices z and x, respectively.  

Hint: Double-check whether your solution is general. 

4.18. A spin-½ is fully polarized in the positive z-direction. Calculate the probabilities of the 
alternative outcomes of a perfect Stern-Gerlach experiment with the magnetic field oriented in an 
arbitrarily different direction. 

4.19. In a certain basis, the Hamiltonian of a two-level system is described by the matrix 

21
2

1 with  ,
0

0
H EE

E

E









 , 

while the operator of some observable A of this system, by the matrix 











11

11
A . 

For the system’s state with the energy definitely equal to E1, find the possible results of measurements 
of the observable A and the probabilities of the corresponding measurement outcomes. 

4.20. Three states u1,2,3 form a full and orthonormal basis of a system with the following 
Hamiltonian 

  ,h.c.ˆ
133221  uuuuuuH   

where  is a real constant, while h.c. means the Hermitian conjugate of the previous expression. 
Calculate its stationary states and energy levels. Can you relate this system to any other(s) discussed 
earlier in the course? 
 
 4.21. Guided by Eq. (2.203), and by the solutions of the previous problem and also of Problem 
3.15, suggest a Hamiltonian describing particle’s dynamics in an infinite 1D chain of similar potential 
wells within the tight-binding approximation, in the bra-ket formalism. Verify that its eigenstates and 
eigenvalues correspond to those discussed in Sec. 2.7. 

4.22. In a certain full and orthonormal basis of three states u1,2,3, operators Â  and B̂  are defined 
by the following equalities: 

33211132231
ˆ,0ˆ,ˆ;ˆ,ˆ,ˆ uuBuBuuBuuAuuAuuA  . 
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 (i) Prove that the operators 2Â  and B̂ commute and form an orthonormal basis of their common 
eigenstates. 
 (ii) Give the most general expression for the matrix (in the u-basis) of an operator that would 

commute with B̂ . 
 
 4.23. Calculate the eigenvectors and eigenvalues of the following matrices: 





































0001

0010

0100

1000

B,

010

101

010

A  

 4.24. A certain state  is an eigenstate of each of two operators, Â  and B̂ . What can be said 
about the corresponding eigenvalues a and b, if the operators anticommute? 
 

4.25. An operator Â  commutes with each of two other operators B̂ and ,Ĉ  but these two operators 

do not commute:  CB ˆ,ˆ   0. Prove that the full set of eigenvalues of the operator Â  includes some 
degenerate ones. 

 4.26. Derive the differential equation for the time evolution of the expectation value of an 
observable, by using (i) the Schrödinger picture and (ii) the Heisenberg picture of quantum dynamics. 
 

4.27. At t = 0, a spin-½ whose interaction with an external field is described by the Hamiltonian  

zzyyxx σcσcσcH ˆˆˆˆˆ  σc  

(where cx,y,z are real c-number constants, and zyx ,,̂ are the Pauli operators) was in the state , one of the 

two eigenstates of z̂ . In the Schrödinger picture, calculate the time evolution of: 

 (i) the ket-vector  of the spin (in any time-independent basis you like), 
 (ii) the probabilities to find the spin in the states  and  , and 
 (iii) the expectation values of all three Cartesian components of the spin vector. 

Analyze and interpret the results for the particular case cy = cz = 0. 

 Hint: Think about the best basis to use for the solution. 
 
 4.28. For the same system as in the previous problem, use the Heisenberg picture to calculate the 
time evolution of: 

 (i) all three Cartesian components of the spin operator HŜ (t), and 
 (ii) the expectation values of the spin components. 

Compare the latter results with those of the previous problem. 
 
4.29. For the same system as in the two previous problems, calculate the matrix elements of the 

operator z̂  in the basis of the stationary states of the system. 
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4.30. In the Schrödinger picture of quantum dynamics, certain three operators satisfy the 
following commutation relation: 

  CBA ˆˆ,ˆ  . 

What is their relation in the Heisenberg picture, at a certain time instant t? 
 
 4.31. Prove the Bloch theorem given by either Eq. (3.107) or Eq. (3.108), where R is an arbitrary 
vector of the Bravais lattice (3.106). 

Hint: Analyze the commutation properties of the so-called translation operator RT̂ , defined by 
the following result of its action on an arbitrary function f(r): 

)()(ˆ RrrR  ffT , 

and apply them to an eigenfunction (r) of the stationary Schrödinger equation for a particle moving in 
the periodic potential described by Eq. (3.105). 
 
 4.32. A constant force F is applied to an (otherwise free) 1D particle of mass m. Calculate the 
stationary wavefunctions of the particle in: 

 (i) the coordinate representation, and 
 (ii) the momentum representation. 

Discuss the relation between the results. 
  
 4.33. Use the momentum representation to re-solve the problem discussed at the beginning of 
Sec. 2.6, i.e. calculate the eigenenergy of a 1D particle of mass m, localized in a very short potential 
well of “weight” W. 
 
 4.34. The momentum representation of a certain operator of orbital 1D motion is p-1. Use two 
different approaches to find its coordinate representation. 
 
 4.35.* For a particle moving in a 3D periodic potential, develop the bra-ket formalism for the q-
representation, in which a complex amplitude similar to aq in Eq. (2.234) (but generalized to 3D and all 
energy bands) plays the role of the wavefunction. In particular, calculate the operators r and v in this 
representation, and use the result to prove Eq. (2.237) for the 1D case in the low-field limit. 
  
 4.36. A uniform, time-independent magnetic field B = nzB is induced in 
one semi-space, while the other semi-space is field-free, with a sharp plane 
boundary x = 0 between these two regions  – see figure on the right. A 
monochromatic beam of non-relativistic, electrically-neutral spin-½ particles 
with a gyromagnetic ratio   0,65 in a certain spin state and with a kinetic 
energy E, propagating within the [x, z] plane, is incident on this boundary from 
the field-free side under angle  . Calculate the coefficient of particle reflection 
from the boundary. 

65 The fact that  may be different from zero even for electrically-neutral particles such as neutrons, is explained 
by the Standard Model of the elementary particles, in which a neutron “consists” (in a broad sense of this word) of 
three electrically-charged quarks with zero net charge. 
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