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Chapter 6. Perturbative Approaches 

This chapter discusses several perturbative approaches to problems of quantum mechanics, and their 
simplest but important applications starting with the fine structure of atomic energy levels, and the 
effects of external dc and ac electric and magnetic fields on these levels. It continues with a discussion 
of quantum transitions to continuous spectrum and the Golden Rule of quantum mechanics, which 
naturally brings us to the issue of open quantum systems – to be discussed in the next chapter. 

 

6.1. Time-independent perturbations 

 Unfortunately, only a few problems of quantum mechanics may be solved exactly in an 
analytical form. Actually, in the previous chapters we have solved a substantial part of such problems 
for a single particle, while for multiparticle systems, the exactly solvable cases are even more rare. 
However, most practical problems of physics feature a certain small parameter, and this smallness may 
be exploited by various approximate analytical methods giving asymptotically correct results – i.e. the 
results whose error tends to zero at the reduction of the small parameter(s). Earlier in the course, we 
explored one of them, the WKB approximation, which is adequate for a particle moving through a soft 
potential profile. In this chapter, we will discuss other techniques that are more suitable for other cases. 
The historical name for these techniques is the perturbation theory, but it is fairer to speak about 
perturbative approaches because they are substantially different for different situations. 

 The simplest version of the perturbation theory addresses the problem of stationary states and 
energy levels of systems described by time-independent Hamiltonians of the type 

              ,ˆˆˆ )1()0( HHH       (6.1) 

where the operator )1(Ĥ , describing the system’s “perturbation”, is relatively small – in the sense that its 

addition to the unperturbed operator )0(Ĥ  results in a relatively small change of the eigenenergies En 
and the corresponding eigenstates of the system. A typical problem of this type is the 1D weakly 
anharmonic oscillator (Fig. 1), described by the Hamiltonian (1) with 
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with sufficiently small coefficients , , ….   

  

 

 

 

 

 

 

Fig. 6.1. The simplest application of 
the perturbation theory: a weakly 
anharmonic 1D oscillator. (Dashed 
lines characterize the unperturbed 
harmonic oscillator.) 
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I will use this system as our first example, but let me start by describing the perturbative 
approach to the general time-independent Hamiltonian (1). In the bra-ket formalism, the eigenproblem 
(4.68) for the perturbed Hamiltonian, i.e. the stationary Schrödinger equation of the system, is 

           nEnHH n )1()0( ˆˆ .     (6.3) 

Let the eigenstates and eigenvalues of the unperturbed Hamiltonian, which satisfy the equation  

           )0()0()0()0(ˆ nEnH n ,     (6.4) 

be considered as known. In this case, the solution of problem (3) means finding, first, its perturbed 
eigenvalues En and, second, the coefficients n’ (0)n of the expansion of the perturbed state’s vectors n 
in the following series over the unperturbed ones, n’ (0):  

            .
'

)0()0(
n

nn'n'n      (6.5) 

 Let us plug Eq. (5), with the summation index n’ replaced with n” (just to have a more compact 
notation in our forthcoming result), into both sides of Eq. (3): 

   
n"

n
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and then inner-multiply all terms by an arbitrary unperturbed bra-vector n’ (0) of the system. Assuming 
that the unperturbed eigenstates are orthonormal, n’ (0)n” (0) = n’n”, and using Eq. (4) in the first term 
on the left-hand side, we get the following system of linear equations 

         )0()0()1()0(
n'n

n"
n'n" EEnn'Hnn"  ,    (6.7) 

where the matrix elements of the perturbation are calculated, by definition, in the unperturbed brackets: 

         )0()1()0()1( ˆ n"Hn'H n'n"  .     (6.8) 

The linear equation system (7) is still exact,1 and is frequently used for numerical calculations. 
(Since the matrix coefficients (8) typically decrease when n’ and/or n” become sufficiently large, the 
sum on the left-hand side of  Eq. (7) may usually be truncated, still giving an acceptable accuracy of the 
solution.) To get analytical results, we need to make approximations. In the simple perturbation theory 
we are discussing now, this is achieved by the expansion of both the eigenenergies and the expansion 
coefficients into the Taylor series in a certain small parameter  of the problem: 

              ...,)2()1()0(
nnnn EEEE       (6.9) 

      ...,
)2()0()1()0()0()0()0( nn"nn'nn'nn'     (6.10) 

where  

        .
)()0()( kkk

n nn'E       (6.11) 

1 Please note the similarity of Eq. (7) to Eq. (2.215) of the 1D band theory. Indeed, the latter equation is just a 
particular form of Eq. (7) for the 1D wave mechanics, with a specific (periodic) potential U(x) considered as the 
perturbation Hamiltonian. Moreover, the whole approximate treatment of the weak-potential limit in Sec. 2.7 was 
essentially a particular case of the perturbation theory we are discussing now (in its 1st order). 

Perturbation’s 
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In order to explore the 1st-order approximation, which ignores all terms O(2) and higher, let us 
plug only the two first terms of the expansions (9) and (10) into the basic equation (7): 
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Now let us open the parentheses, and disregard all the remaining terms O(2). The result is  

        ),( )0()0()1()0()1()1(
n'nnn'nn'n EEnn'EH       (6.13) 

 This relation is valid for any choice of the indices n and n’; let us start from the case n = n’,  
immediately getting a very simple (and practically, the most important!) result: 

     )0()1()0()1()1( ˆ nHnHE nnn  .    (6.14) 

For example, let us see what this result gives for two first perturbation terms in the weakly anharmonic 
oscillator (2): 

        )0(4)0()0(3)0()1( ˆˆ nxnnxnEn   .    (6.15) 

As the reader knows (or should know :-) from the solution of Problem 5.12, the first bracket equals zero, 
while the second one yields 
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Naturally, there should be some non-vanishing contribution to the energies from the (typically, larger) 
perturbation proportional to , so for its calculation, we need to explore the 2nd order of the theory. 
However, before doing that, let us complete our discussion of its 1st order.  

 For n’  n, Eq. (13) may be used to calculate the eigenstates rather than the eigenvalues: 
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This means that the eigenket’s expansion  (5), in the 1st order, may be represented as  
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The coefficient C  n(0)n(1) cannot be found from Eq. (17); however, requiring the final state n to be 
normalized, we see that other terms may provide only corrections O(2), so in the 1st order we should 
take C = 1. The most important feature of Eq. (18) is its denominators: the closer the unperturbed 
eigenenergies of two states, the larger their mutual “interaction” due to the perturbation. 

This feature also affects the 1st-order approximation’s validity condition, which may be 
quantified using Eq. (17): the magnitudes of the brackets it describes have to be much less than the 
unperturbed bracket nn(0) = 1, so all elements of the perturbation matrix have to be much less than the 
difference between the corresponding unperturbed energies. For the anharmonic oscillator’s energy 
corrections (16), this requirement is reduced to En

(1) << 0. 
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  Now we are ready to go after the 2nd-order approximation to Eq. (7). Let us focus on the case n’ 
= n, because as we already know, only this term will give us a correction to the eigenenergies. 
Moreover, since the left-hand side of Eq. (7) already has a small factor H(1)

n’n”  , the bracket 
coefficients in that part may be taken from the 1st-order result (17). As a result, we get 
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Since )1(Ĥ  has to be Hermitian, we may rewrite this expression as 
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 This is the much-celebrated 2nd-order perturbation result, which frequently (in sufficiently 
symmetric problems) is the first non-vanishing correction to the state energy – for example, from the 
cubic term (proportional to ) in our weakly anharmonic oscillator problem (2). To calculate the 
corresponding correction, we may use another result of the solution of Problem 5.12: 
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So, according to Eq. (20),  we need to calculate 
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The summation is not as cumbersome as may look because, at the curly bracket’s squaring, all mixed 
products are proportional to the products of different Kronecker deltas and hence vanish, so we need to 
sum up only the squares of each term, finally getting 
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This formula shows that all 2nd-order energy level corrections are negative, regardless of the sign of .2 
On the contrary, the 1st-order correction En

(1) given by Eq. (16), does depend on the sign of , so the net 
correction, En

(1) + En
(2), may be of any sign.  

 The results (18) and (20) are clearly inapplicable to the degenerate case where, in the absence of 
perturbation, several states correspond to the same energy level, because of the divergence of their 
denominators.3 This divergence hints that in this case, the largest effect of the perturbation is the 

2 Note that this is correct for the ground-state energy correction Eg
(2) of any system, because for this state, the 

denominators of all terms of the sum (20) are negative, while their numerators are always non-negative. 
3 This is exactly the reason why this simple perturbation approach runs into serious problems for systems with a 
continuous spectrum, and other techniques (such as the WKB approximation) are often necessary. 

Energy: 
2nd-order 
correction 
 



Essential Graduate Physics                           QM: Quantum Mechanics 

    
Chapter 6             Page 5 of 36 

degeneracy lifting, e.g., some splitting of the initially degenerate energy level E(0) (Fig. 2), and that for 
the analysis of this case, we can, in the first approximation, ignore the effect of all other energy levels. 
(A more detailed analysis shows that this is indeed the case until the level splitting becomes comparable 
with the distance to other energy levels.)  

 

 

 

 

  
 

 Limiting the summation in Eq. (7) to a group of N degenerate states with equal En’
(0)  E(0), we 

reduce it to 

         )0()0(

1

)1()0( EEnn'Hnn" n

N

n"
n'n" 



,    (6.24) 

where now the indices n’ and n” number the N states of the group.4 For n = n’, Eq. (24)  may be 
rewritten as  
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For each n’ = 1, 2, …N, this is a system of N linear, homogenous equations (with N terms each) for N 
unknown coefficients n”(0)n’ . In this problem, we may readily recognize the problem of 
diagonalization of the perturbation matrix H(1) – cf. Sec. 4.4 and in particular Eq. (4.101). As in the 
general case, the condition of self-consistency of the system is: 
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where now the index n numbers the N roots of this equation, in arbitrary order. According to the 
definition (25) of En

(1), the resulting N energy levels En may be found as E(0) + En
(1). If the perturbation 

matrix is diagonal in the chosen basis n(0), the result is extremely simple, 

     )1()1()0(
nnnn HEEE  ,     (6.27) 

and formally coincides with Eq. (14) for the non-degenerate case, but now it may give a different result 
for each of N previously degenerate states n.  

4 Note that here the choice of the basis is to some extent arbitrary because due to the linearity of equations of 
quantum mechanics, any linear combination of the states n”(0) is also an eigenstate of the unperturbed 
Hamiltonian. However, for using Eq. (25), these combinations have to be orthonormal, as was supposed in the 
derivation of Eq. (7). 

Fig. 5.2. Lifting the energy 
level degeneracy by a 
perturbation (schematically).  
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 Now let us see what this general theory gives for several important examples. First of all, let us 
consider a system with just two degenerate states with energy sufficiently far from all other levels. Then, 
in the basis of these two degenerate states, the most general perturbation matrix is 

              
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

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
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1211)1(H
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This matrix coincides with the general matrix (5.2) of a two-level system. Hence, we come to the very 
important conclusion: for a weak perturbation, all properties of any double-degenerate system are 
identical to those of the genuine two-level systems, which were the subject of numerous discussions in 
Chapter 4 and again in Sec. 5.1. In particular, its eigenenergies are given by Eq. (5.6), and may be 
described by the level-anticrossing diagram shown in Fig. 5.1. 

 

6.2. The linear Stark effect 

 As a more involved example of the level degeneracy lifting by a perturbation, let us discuss the 
Stark effect5 – the atomic level splitting by an external electric field. Let us study this effect, in the linear 
approximation, for a hydrogen-like atom/ion.6 Taking the direction of the external electric field E  
(which is practically always uniform on the atomic scale) for the z-axis, the perturbation may be 
represented by the following Hamiltonian: 

             cosˆˆˆ )1( rqzqzFH EE  .    (6.29) 

(In the last form, the operator sign is dropped, because we will work in the coordinate representation.)  

 As you (should :-) remember, energy levels of a hydrogen-like atom/ion depend only on the 
principal quantum number n – see Eq. (3.201); hence all the states, besides the ground 1s state with n = 
1 and l = m = 0, have some orbital degeneracy, which grows rapidly with n. Let us consider the lowest 
degenerate level with n = 2. Since, according to Eq. (3.203), 0  l  n –1, at this level the orbital 
quantum number l may equal either 0 (one 2s state, with m = 0) or 1 (three 2p states, with m = 0, 1). 
Due to this 4-fold degeneracy, H(1) is a 44 matrix with 16 elements: 
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   (6.30) 

5 This effect was discovered experimentally in 1913 by Johannes Stark and independently by Antonio Lo Surdo, 
so it is sometimes (and more fairly) called the “Stark – Lo Surdo effect”. Sometimes this name is used with the 
qualifier “dc” to distinguish it from the ac Stark effect  – the energy level shift under the effect of an ac field – see 
Sec. 5 below. 
6 An analysis of the quadratic Stark effect for the ground-state energy in the same system, changing with the field 
only as E2, is left for the reader’s exercise. 
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However, there is no need to be scared. First, due to the Hermitian nature of the operator, only 
10 of these 16 matrix elements (4 diagonal and 6 off-diagonal ones) may be substantially different from 
each other. Moreover, due to the high symmetry of the problem, there are a lot of zeros even among 
these elements. Indeed, let us have a look at the angular components Yl

m of the corresponding 
wavefunctions, with l = 0 and l = 1, described by Eqs. (3.174)-(3.175). For the states with m = 1, the 
azimuthal parts of wavefunctions are proportional to exp{i}; hence the off-diagonal elements H34 and 
H43 of the matrix (30), relating these functions, are proportional to  
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The azimuthal-angle symmetry also kills the off-diagonal elements H13, H14, H23, H24 (and hence their 
complex conjugates H31, H41, H32, and H42), because they relate states with m = 0 and m = 1, and hence 
are proportional to  
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For the diagonal matrix elements H33 and H44, corresponding to l = 1 and m = 1, the azimuthal-angle 
integrals do not vanish, but since the corresponding spherical harmonics depend on the polar angle as 
sin, these elements are proportional to 
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and hence are equal to zero – as any limit-symmetric integral of an odd function. Finally, for the states 
2s and 2p with m = 0, the diagonal elements H11 and H22 are also killed by the polar-angle integration: 
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 Hence, the only non-zero elements of the matrix (30) are two off-diagonal  elements H12 and H21, 
which relate two states with the same m = 0, but different l = {0, 1}, because they are proportional to 
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What remains is to use Eqs. (3.209) for the radial parts of these functions to complete the calculation of 
those two matrix elements:  
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Due to the additive structure of the function R2,0(r), the integral falls into a sum of two table integrals, 
both of the type MA Eq. (6.7d), finally giving 

                    ,3 02112 rqHH E      (6.38) 
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where r0 is the spatial scale (3.192); for the hydrogen atom, it is just the Bohr radius rB – see Eq. (1.10). 

Thus, the perturbation matrix (30) is reduced to 
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so the condition (26) of self-consistency of the system (25), 

              

 

 

 

 

,0

000

000

003

003

1
2

1
2

1
20

0
1

2









E

E

Erq

rqE

E

E

    (6.40) 

gives a very simple characteristic equation 
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with four roots:  
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so the degeneracy is only partly lifted – see the levels in Fig. 3. 

 

 

 

 

 

 

  

  

 Generally, in order to understand the nature of states corresponding to these levels, we should 
return to Eq. (25) with each calculated value of E2

(1), and find the corresponding expansion coefficients 
n”(0)n’ that describe the perturbed states. However, in our simple case, the outcome of this procedure 
is clear in advance. Indeed, since the states with {l = 1, m =  1} are not affected by the perturbation at 
all (in the linear approximation in the electric field), their degeneracy is not lifted, and energy is not 
affected – see the middle line in Fig. 3. On the other hand, the partial perturbation matrix connecting the 
states 2s and 2p, i.e. the top left 22 part of the full matrix (39), is proportional to the Pauli matrix x, 
and we already know the result of its diagonalization – see Eqs. (4.113)-(4.114). This means that the 
upper and lower split levels correspond to very simple linear combinations of the previously degenerate 
states with m = 0, 

Fig. 6.3. The linear Stark effect for the 
level n = 2 of a hydrogen-like atom. 
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             ps 22
2

1
 .     (6.43)  

 Finally, let us estimate the magnitude of the linear Stark effect for a hydrogen atom. For a very 
high dc electric field of E = 3106 V/m,7  q  = e  1.610-19 C, and r0 = rB  0.510-10 m, we get a level 
splitting of 3qEr0  0.810-22 J  0.5 meV. This number is much lower than the unperturbed energy of 
the level, E2 = –EH/(222)  –3.4 eV, so the perturbative result is quite applicable. On the other hand, the 
calculated splitting is much larger than the resolution limit imposed by the line’s natural width (~10-7 E2, 
see Chapter 9), so the effect is quite observable even in substantially lower electric fields. Note, 
however, that our simple results are quantitatively correct only when the Stark splitting (42) is much 
larger than the fine-structure splitting of the same level in the absence of the field– see the next section. 

 

6.3. Fine structure of atomic levels 

 Now let us use the same perturbation theory to analyze, also for the simplest case of a hydrogen-
like atom/ion, the so-called fine structure of atomic levels – their degeneracy lifting even in the absence 
of external fields. Since the effective speed v of the electron motion in atoms is much smaller than the 
speed of light c, the fine structure may be analyzed as a sum of two independent relativistic effects. To 
analyze the first of them, let us expand the well-known classical relativistic expression8 for the kinetic 
energy T = E – mc2 of a free particle with the rest mass m,9 
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into the Taylor series in the small ratio (p/mc)2  (v/c)2: 
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and drop all the terms besides the two spelled-out ones. Of them, the first term is non-relativistic, while 
the second one represents the main relativistic correction to T.  

Following the correspondence principle, the quantum-mechanical problem in this approximation 
may be described by Eq. (1) with the unperturbed Hamiltonian  

       
r

C
rUrU

p
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,    (6.46) 

(whose eigenstates and eigenenergies were discussed in Sec. 3.5) and the kinetic-relativistic perturbation 
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Using Eq. (46), we may rewrite the last formula as 

7 This value approximately corresponds to the threshold of electric breakdown in the air at ambient conditions, 
due to the impact ionization. As a result, experiments with higher dc fields are rather difficult. 
8 See, e.g., EM Eq. (9.78). 
9 This fancy font is used, as in Secs. 3.5-3.8, to distinguish the mass m from the magnetic quantum number m. 
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so its matrix elements participating in the characteristic equation (25) for a given degenerate energy 
level (3.201), i.e. a given principal quantum number n, are 
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where the bra- and ket-vectors describe the unperturbed eigenstates, whose eigenfunctions (in the 
coordinate representation) are given by Eq. (3.200): n,l,m = Rn,l(r)Yl

m(,). 

 It is straightforward (and hence left for the reader’s exercise) to prove that all off-diagonal 
elements of the set (49) are equal to 0. Thus we may use Eq. (27) for each set of the quantum 
numbers{n, l, m}:  
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where the index m has been dropped, because the radial wavefunctions Rn,l(r), which affect these 
expectation values, do not depend on that quantum number. Now using Eqs. (3.191), (3.201) and the 
first two of Eqs. (3.211), we finally get 
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 Let us discuss this result. First of all, its last form confirms that the correction (51) is indeed 
much smaller than the unperturbed energy En (and hence the perturbation theory is valid) if the latter is 
much smaller than the relativistic rest energy mc2 of the particle – as it is for the hydrogen atom. Next, 
since in the Bohr problem’s solution, n  l + 1, the first fraction in the parentheses of Eq. (51) is always 
larger than 1, and hence than ¾ , so the kinetic relativistic correction to energy is negative for all n and 
l.  (Actually, this fact could be predicted already from Eq. (47), which shows that the perturbation’s 
Hamiltonian is a negatively defined form.) Finally, for a fixed principal number n, the negative 
correction’s magnitude decreases with the growth of l. This fact may be interpreted using the second of 
Eqs. (3.211): the larger is l (at fixed n), the larger is the particle’s effective distance from the center, and 
hence the smaller is its effective velocity, i.e. the smaller is the magnitude of the quantum-mechanical 
average of the negative relativistic correction (47) to the kinetic energy. 

 The result (51) is valid for the Coulomb interaction U(r) = –C/r of any physical nature. However, 
if we speak specifically about hydrogen-like atoms/ions, there is also another relativistic correction to 
energy, due to the so-called spin-orbit interaction (alternatively called the “spin-orbit coupling”). Its 
physics may be understood from the following semi-quantitative classical reasoning: from the “the point 
of view” of an electron rotating about the nucleus at distance r with velocity v, it is the nucleus, of the 
electric charge Ze, that rotates about the electron with the velocity (–v) and hence the time period T  = 

2r/v. From the point of view of magnetostatics, such circular motion of the electric charge Q = Ze , is 
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equivalent to a circular dc electric current I = Q/T = (Ze)(v/2r). At the electron’s location, i.e. in the 
center of the current loop, it creates the magnetic field with the following magnitude:10 
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The field’s direction n is perpendicular to the apparent plane of the nucleus’ rotation (i.e. that of the real 
rotation of the electron), and hence its vector may be readily expressed via the similarly directed vector  
L = mevrn of the electron’s angular (orbital) momentum: 

               LLnn
2

e
3

0e
3

0
e

e
3

0
2

0

4444 cmr

Ze

mr

Ze
vrm

mr

Ze

r

Zev
a 








B ,  (6.53) 

where the last step used the basic relation between the SI-unit constants: 0  1/c20. 

A more careful (but still classical) analysis of the problem11 brings both good and bad news. The 
bad news is that the result (53) is wrong by the so-called Thomas factor of two even for the circular 
motion, because the electron moves with acceleration, and the reference frame bound to it cannot be 
inertial (as was implied in the above reasoning), so the effective magnetic field felt by the electron is 
actually 

       L
2

e
3

08 cmr

Ze


B .     (6.54) 

 The good news is that this result is valid not only for circular but an arbitrary orbital motion in 
the Coulomb field U(r). Hence from the discussion in Sec. 4.1 and Sec. 4.4 we may expect that the 
quantum-mechanical description of the interaction between this effective magnetic field and the 
electron’s spin moment (4.115) is given by the following perturbation Hamiltonian12  
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where at spelling out the electron’s gyromagnetic ratio e  –gee/2me, the small correction to the value ge 

= 2 of the electron’s g-factor (see Sec. 4.4) is ignored, because Eq. (55) is already a small correction. 
This expectation is confirmed by the fully-relativistic Dirac theory, to be discussed in Sec. 9.7 below: it 
yields, for an arbitrary central potential U(r), the following spin-orbit coupling Hamiltonian: 
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H .     (6.56) 

For the Coulomb potential U(r) = –Ze2/40r, this formula is reduced to Eq. (55). 

10 See, e.g., EM Sec. 5.1, in particular, Eq. (5.24). Note that such an effective magnetic field is induced by any 
motion of electrons, in particular that in solids, leading to a variety of spin-orbit effects there – see, e.g., a concise 
review by R. Winkler et al., in B. Kramer (ed.), Advances in Solid State Physics 41, 211 (2001). 
11 It was carried out first by Llewellyn Thomas in 1926; for a simple review see, e.g., R. Harr and L. Curtis, Am. 
J. Phys. 55, 1044 (1987). 
12 In the Gaussian units, Eq. (55) is valid without the factor 40 in the denominator; while Eq. (56), “as is”. 
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 As we already know from the discussion in Sec. 5.7, the angular factor of this Hamiltonian 
commutes with all the operators of the coupled-representation group (inside the blue line in Fig. 5.12): 

2L̂ , 2Ŝ , 2Ĵ , and zĴ , and hence is diagonal in the coupled-representation basis with definite quantum 
numbers l,  j, and mj (and of course s = ½). Hence, using Eq. (5.181) to rewrite Eq. (56) as 
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we may again use Eq. (27) for each set {s, l, j, mj}, with common n: 
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where the indices irrelevant for each particular factor have been dropped. Now using the last of Eqs. 
(3.211),  and similar expressions (5.169), (5.175), and (5.177) for eigenvalues of the involved operators, 
we get an explicit expression for the spin-orbit corrections13 
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with l and j related by Eq. (5.189): j = l  ½. 

The last form of its result shows clearly that this correction has the same magnitude scale as the 
kinetic correction (51).14 In the 1st order of the perturbation theory, they may be just added (with m = 
me), giving a surprisingly simple formula for the net fine structure of the nth energy level:  
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This simplicity, as well as the independence of the result of the orbital quantum number l,  will become 
less surprising when (in Sec. 9.7) we see that this formula follows in one shot from the Dirac theory, in 
which the Bohr atom’s energy spectrum is numbered only with n and j, but not l. Let us recall that for 
an electron (s = ½), according to Eq. (5.189) with 0  l  n – 1, the quantum number j may take n 
positive half-integer values, from ½ to n – ½.  Hence, Eq. (60) shows that the fine structure of the nth 
Bohr’s energy level has n sub-levels – see Fig. 4.  

 Please note that according to Eq. (5.175), each of these sub-levels is still (2j + 1)-times 
degenerate in the quantum number mj. This degeneracy is very natural, because all m-numbers describe 
the state orientation in a certain direction, while in the absence of an external field, the system is still 
isotropic. Moreover, on each fine-structure level (besides the highest one with j = n – ½), each of the mj-
states is doubly degenerate in the orbital quantum number l = j  ½ – see the labels of l in Fig. 4. 
(According to Eq. (5.190), each of these states, with fixed j and mj, may be represented as a linear 

13 The factor l  in the denominator does not give a divergence at l = 0, because in this case j = s = ½, so j(j + 1) = 
¾, and the numerator turns into 0 as well. A careful analysis of this case (see, e.g., G.  Woolgate, Elementary 
Atomic Structure, 2nd ed., Oxford, 1983),  including the so-called Darwin term not described by Eqs. (51) and 
(59), shows that the final Eq. (60), which does not include l, is valid even in this case.  
14 This is natural because the magnetic interaction of charged particles is essentially a relativistic effect, of the 
same order (~v2/c2) as the kinetic correction (47)   – see, e.g., EM Sec. 5.1, in particular Eq. (5.3). 
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combination of two states with adjacent values of l, and hence different electron spin orientations, ms = 
½, weighed with the Clebsch-Gordan coefficients.) 

 

 

 

 

 
 
 
These details aside, one may crudely say that the relativistic corrections combined make the total 

eigenenergy grow with l, contributing to the effect already mentioned in the discussion of the periodic 
table of elements in Sec. 3.7. The relative scale of this increase may be quantified by the largest 
deviation from the unperturbed energy En, reached for the s-states (with l = 0): 

         





 






 










2
22

2

2

0

2

2
e

)1(
max

4

31

4

31

4
34

2 nn
Z

nnc

Ze
n

cm

E

E

E
n

n


 

.  (6.61) 

where  is the fine-structure (“Sommerfeld’s”) constant, 
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(which was already mentioned in Sec. 4.4), which characterizes the relative strength (or rather 
weakness) of the electromagnetic effects in quantum mechanics – which in particular makes perturbative 
quantum electrodynamics possible.15 These expressions show that the fine-structure splitting is a very 
small effect (~2 ~ 10-6) for the hydrogen atom, but it rapidly grows (as Z2) with the nuclear charge (i.e. 
the atomic number) Z, and becomes rather substantial for the heaviest stable atoms with Z ~ 102. 

 

6.4. The Zeeman effect 

 Now, we are ready to review the Zeeman effect – the atomic level splitting by an external 
magnetic field.16 Using Eq. (3.26), with q = –e, for the description of the electron’s orbital motion in the 
field, and the Pauli Hamiltonian (4.163) with  = –e/me, for the electron spin’s interaction with the field, 
we see that even for a hydrogen-like (i.e. single-electron) atom/ion, neglecting the relativistic effects, 
the full Hamiltonian is rather involved:  

      .ˆ
4

ˆˆ
2

1ˆ
e0

2
2

e

SAp  B
m

e

r

Ze
e

m
H


    (6.63) 

15 The expression 2 = EH/mec
2, where EH is the Hartree energy (1.13), i.e. the scale of the basic energies En, is 

also very revealing. 
16 It was discovered experimentally in 1896 by Pieter Zeeman who, amazingly, was fired from the University of 
Leiden for unauthorized use of lab equipment for this work – just to receive a Nobel Prize for it in a few years! 
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There are several simplifications we may make. First, let us assume that the external field is 
spatial-uniform on the atomic scale (which is a very good approximation for most cases), so we can take 
its vector potential in an axially symmetric gauge – cf. Eq. (3.132): 

        .
2

1
rA  B       (6.64) 

Second, let us neglect the terms proportional to B2, which are small in practical magnetic fields of the 
order of a few teslas.17 The remaining term in the effective kinetic energy, describing the interaction 
with the magnetic field, is linear in the momentum operator, so we may repeat the standard classical 
calculation18 to reduce it to the product of B by the orbital magnetic moment’s component mz = –
eLz/2me – besides that both mz and Lz should be understood as operators now. As a result, the 

Hamiltonian (63) reduces to Eq. (1), ,ˆˆ )1()0( HH   where )0(Ĥ  is that of the atom at B  = 0, and  
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 This expression immediately reveals the major complication with the Zeeman effect’s analysis. 
Namely, in comparison with the equal orbital and spin contributions to the total angular momentum 
(5.170) of the electron, its spin produces a twice larger contribution to the magnetic moment, so the 

right-hand side of Eq. (65) is not proportional to zzz SLJ ˆˆˆ  . As a result, the effect’s description is 
quite simple only in two limits.  

If the magnetic field is so high that its effects are much stronger than the relativistic (fine-
structure) effects discussed in the previous section, we may treat the two terms in Eq. (65) as 
independent perturbations of different (orbital and spin) degrees of freedom. Since each of the 
perturbation matrices is diagonal in its own z-basis, we can again use Eq. (27) to write 
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This result describes the splitting of each 2(2l + 1)-degenerate energy level, with certain n and l, into 
(2l +3) levels (Fig. 5), with the adjacent level distance of BB, of the order of 10-4 eV per tesla. 

 

  

 

 

 

17 Despite its smallness, the quadratic term is necessary for a description of the negative contribution of the orbital 
motion to the magnetic susceptibility m (the so-called orbital diamagnetism, see EM Sec. 5.5), whose analysis, 
using Eq. (63), is left for the reader’s exercise. 
18 See, e.g., EM Sec. 5.4, in particular, Eqs. (5.95) and (5.100). 
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 Note that all these levels, besides the top and bottom ones, remain doubly degenerate. This limit 
of the Zeeman effect is sometimes called the Paschen-Back effect – whose simplicity was recognized 
only in the 1920s, due to the need in very high magnetic fields for its observation. 

In the opposite limit of relatively low magnetic fields, the Zeeman effect takes place on the 
background of the much larger fine-structure splitting. As was discussed in Sec. 3, at B = 0 each split 
sub-level has a 2(2j + 1)-fold degeneracy corresponding to (2j + 1) different values of the half-integer 
quantum number mj, ranging from –j to +j, and two values of the integer l = j  ½ – see Fig. 4.19 The 
magnetic field lifts this degeneracy. Indeed, in the coupled representation discussed in Sec. 5.7, the 
perturbation (65) is described by the matrix with elements 
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 To spell out the second term, let us use the general expansion (5.183) for the particular case s = 
½,  when (as was discussed at the end of Sec. 5.7) it has at most two non-vanishing terms, with the 
Clebsh-Gordan coefficients (5.190):   
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Taking into account that the operator zŜ  gives non-zero brackets only for ms = ms’, the 22 matrix of 

elements ½½,ˆ½½, ss   mmmSmmm jlzjl  is diagonal, so we may use Eq. (27) to get  

            

   

,for ,
12

1
1

12

1
1

2

12

½

212

½

22

B
e

e

)0(

jmj
l

m
l

m
m

e

l

ml

l

ml
m

m

e
EE

jjj

jj
j








































B
B

B






 (6.69) 

where the two signs correspond to the two possible values of l = j  ½ – see Fig. 6.  

 

 

 

 

 

 

 

 

19 In the almost-hydrogen-like, but more complex atoms (such as those of alkali metals), the degeneracy in l may 
be lifted by electron-electron Coulomb interaction even in the absence of an external magnetic field. 

Fig. 6.6. The anomalous Zeeman effect in a hydrogen-like atom/ion. 
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We see that the magnetic field splits each sub-level of the fine structure, with a given l, into 2j + 
1 equidistant levels, with the distance between the levels depending on l. In the late 1890s when this 
effect was first observed (by T. Preston), there was no notion of spin at all, so this puzzling result was 
called the anomalous Zeeman effect.20  

The strict quantum-mechanical analysis of the anomalous Zeeman effect for arbitrary s (which is 
important for applications to multi-electron atoms) is conceptually not too complex but requires explicit 
expressions for the corresponding Clebsch-Gordan coefficients, which are rather bulky. Let me just cite 
the unexpectedly simple result of this analysis: 

                ,Δ B gmE jB      (6.70a) 

where g is the so-called Lande factor:21 
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jj
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g .    (6.70b) 

For s = ½ (and hence j = l  ½), this factor is reduced to the parentheses in the last forms of Eq. (69).  

It is remarkable that Eqs. (70) may be readily derived using very plausible classical arguments, 
similar to those used in Sec. 5.7 – see Fig. 5.13 and its discussion. As was discussed in Sec. 5.6, in the 
absence of spin, the quantization of the observable Lz is a modification of the classical picture of the 
torque-induced precession of the vector L about the magnetic field’s direction, so the interaction energy, 
proportional to BLz = B L, remains constant – see Fig. 7a. On the other hand, at the spin-orbit 
interaction without an external magnetic field, the Hamiltonian function of the system includes the 
product SL, so in the stationary state it has to be constant, together with J2, L2, and S2. Hence, this 
system’s classical image is a joint precession of the vectors S and L about the direction of the vector J = 
L + S, in such a manner that the spin-orbit interaction energy, proportional to the product LS, remains 
constant (Fig. 7b). On this backdrop, the anomalous Zeeman effect in a relatively weak magnetic field B 
= Bnz corresponds to a much slower additional precession of the vector J about the z-axis, “dragging” 
with it the vectors L and S, rapidly rotating around it. 

 

 

 

 

 

 

 

 

20 In this terminology, the normal Zeeman effect, observed in atoms with zero net spin, is the one with no spin 
splitting, i.e. without the second terms in the parentheses of Eqs. (66), (67), and (69). 
21 This formula is frequently used with capital letters J, S, and L, which denote the quantum numbers of the atom 
as a whole. 

Fig. 6.7. Classical images of (a) 
the orbital angular momentum’s 
quantization in a magnetic field, 
and (b) the fine-structure level 
splitting. 
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This physical picture allows us to conjecture that what is important for the slow precession rate 
are only the vectors L and S averaged over the period of their much faster precession around vector J – 
in other words, only their components LJ and SJ along the vector J. Classically, these components may 
be calculated as 

               .  and,
22

J
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L
JJ JJ





     (6.71) 

The scalar products participating in these expressions may be readily expressed via the squared lengths 
of the vectors, using the following geometric formulas: 
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As a result, we get the following time average: 
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  (6.73) 

The last move is to smuggle in some quantum mechanics by using, instead of the vector lengths 
squared and the z-component of Jz,  their eigenvalues given by Eqs. (5.169), (5.175), and (5.177). As a 
result, we immediately arrive at the exact Eqs. (70). This coincidence encourages thinking about 
quantum mechanics of angular momenta in the classical terms of torque-induced precession, which turns 
out to be very fruitful in some more complex problems of atomic and molecular physics.  

The high-field limit and low-field limits of the Zeeman effect, described respectively by Eqs. 
(66) and (69), are separated by a medium field range, in which the Zeeman splitting is of the order of the 
fine-structure splitting analyzed in Sec. 3. There is no time in this course for a quantitative analysis of 
this (conceptually simple) crossover, which involves rather cumbersome algebra.22 

 

6.5. Time-dependent perturbations 

 Now let us proceed to the case when the perturbation )1(Ĥ in Eq. (1) is a function of time, while 
)0(Ĥ  is time-independent. The adequate perturbative approach to this problem, and its results, depend 

critically on the relation between the characteristic frequency  of the perturbation and the distance 
between the initial system’s energy levels: 

      'nn EE  .     (6.74) 

 In the case when all essential frequencies of a perturbation are very small in the sense of Eq. 
(74), we are dealing with the so-called adiabatic change of parameters, that may be treated essentially as 
a time-independent perturbation – see the previous sections of this chapter). The most interesting 
observation here is that the adiabatic perturbation does not allow any significant transfer of the system’s 

22 For a more complete discussion of the Stark, Zeeman, and fine-structure effects in atoms, I can recommend, for 
example, either the monograph by G. Woolgate cited above, or the one by I. Sobelman, Theory of Atomic Spectra, 
Alpha Science, 2006. 
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probability from one eigenstate to another. For example, in the WKB limit of the orbital motion, the 
Bohr quantization rule and its Wilson-Sommerfeld modification (2.110) guarantee that the integral 

            
C

drp ,      (6.75) 

taken along the particle’s classical trajectory, is an adiabatic invariant, i.e. does not change at a slow 
change of system’s parameters. (It is curious that classical mechanics also guarantees the invariance of 
the integral (75), but its proof there23 is much harder than the quantum-mechanical derivation of this 
fact, carried out in Sec. 2.4.) This is why even if the perturbation becomes large with time (while 
changing sufficiently slowly), we can expect the classification of eigenstates and eigenvalues to persist.  

 Let us proceed to the harder case when both sides of Eq. (74) are comparable, using for this 
discussion the Schrödinger picture of quantum dynamics, given by Eq.  (4.158). Combining it with Eq. 
(1), we get the Schrödinger equation in the form 

             )()(ˆ)( )1()0( ttHHt
t

i  



 .    (6.76) 

Very much in the spirit of our treatment of the time-independent case in Sec. 1, let us represent the time-
dependent ket-vector of the system with its expansion,           

     )()( tnnt
n

  ,     (6.77) 

over the full and orthonormal set of the unperturbed, stationary ket-vectors defined by the equation 

           nEnH n)0(ˆ .     (6.78) 

(Note that these kets n are exactly what was called n(0) in Sec. 1; we may afford a less bulky notation 
in this section because only the lowest orders of the perturbation theory will be discussed.) Plugging the 
expansion (77), with n replaced with n’, into both sides of Eq. (76), and then inner-multiplying both its 
sides by the bra-vector n of another unperturbed (and hence time-independent) state of the system, we 
get the following set of linear, ordinary differential equations for the expansion coefficients: 

            ,)()()()(
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n
nnn tn'tHtnEtn

dt

d
i     (6.79)  

where the matrix elements of the perturbation, in the unperturbed state basis, defined similarly to Eq. 
(8), are now functions of time:  

          n'tHntH nn )(ˆ)( )1()1(
'  .     (6.80) 

The set of differential equations (79), which are still exact, may be useful for numerical 
calculations.24 However, it has a certain technical inconvenience, which becomes clear if we consider its 
(evident) solution in the absence of perturbation:25 

23 See, e.g., CM Sec. 10.2. 
24 Even if the problem under analysis may be described by the wave-mechanics Schrödinger equation (1.25), 
direct numerical integration of that partial differential equation is typically less convenient than that of the 
ordinary differential equations (79). 
25 This is of course just a more general form of Eq. (1.62) of the wave mechanics of time-independent systems. 
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We see that these solutions oscillate very fast, and their numerical modeling may represent a challenge 
for even the fastest computers. These spurious oscillations (whose frequency, in particular, depends on 
the energy reference level) may be partly tamed by looking for the general solution of Eqs. (79) in a 
form inspired by Eq. (81): 
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 Here an(t) are new functions of time (essentially, the stationary states’ probability amplitudes), 
which may be used, in particular, to calculate the time-dependent level occupancies, i.e. the probabilities 
Wn to find the perturbed system on the corresponding energy levels of the unperturbed system: 

                22
)()( tatntW nn   .    (6.83) 

Plugging Eq. (82) into Eq. (79), for these functions, we readily get a slightly modified system of 
equations: 
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      (6.84) 

where the factors nn’, defined by the relation 

                n'nnn' EE  ,     (6.85) 

have the physical sense of frequencies of potential quantum transitions between the nth and n’ th energy 
levels of the unperturbed system. (The conditions when such transitions indeed take place will be clear 
soon.) The advantages of Eq. (84) over Eq. (79), for both analytical and numerical calculations, are their 
independence of the energy reference, and lower frequencies of oscillations of the right-hand side terms, 
especially when the energy levels of interest are close to each other.26 

 In order to continue our analytical treatment, let us focus on a particular but very important 
problem of a sinusoidal perturbation turned on at some moment – which may be taken for t = 0: 
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where the perturbation amplitude operators Â  and ,ˆ †A 27 and hence their matrix elements, 

26 Note that the relation of Eq. (84) to the initial Eq. (79) is very close to the relation of the interaction picture of 
quantum dynamics, discussed at the end of Sec. 4.6, to its Schrödinger picture, with the perturbation Hamiltonian 
playing the role of the interaction one – compare Eqs. (1) and Eq. (4.206). Indeed, Eq. (84) could be readily 
obtained from the interaction picture, and I did not do this just to avoid using this heavy bra-ket artillery for our 
current (relatively) simple problem, and hence to keep its physics more transparent. 
27 The notation of the amplitude operators in Eq. (86) is justified by the fact that the perturbation Hamiltonian has 
to be self-adjoint (Hermitian), and hence each term on the right-hand side of that relation has to be a Hermitian 
conjugate of its counterpart, which is evidently true only if the amplitude operators are also the Hermitian 
conjugates of each other. Note, however, that each of these amplitude operators is generally not Hermitian. 
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          ,ˆ,ˆ *†
n'nnn' An'AnAn'An      (6.87) 

are time-independent after the turn-on moment. In this case, Eq. (84) yields 
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 This is, generally, still a nontrivial system of coupled differential equations; however, it allows 
simple and explicit solutions in two very important limits. First, let us assume that our system initially 
was definitely in one eigenstate n’ (usually, though not necessarily, in the ground state), and that the 
occupancies Wn of all other levels stay very low all the time. (We will find the condition when the 
second assumption is valid a posteriori – from the solution.) With these assumptions,  

              ,'for ,1;1 nnaa nn'      (6.89) 

Eq. (88) may be readily integrated, giving 
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This expression describes what is colloquially called the ac excitation of (other) energy levels. 
Qualitatively, it shows that the probability Wn (83) of finding the system in each state (“on each energy 
level”) of the system does not tend to any constant value but rather oscillates in time. It also shows that 
the ac-field-induced transfer of the system from one state to the other one has a clearly resonant 
character: the maximum occupancy Wn of a level with number n  n’ grows infinitely when the 
corresponding detuning28 
      nn'nn   ' ,     (6.91) 

tends to zero. This conclusion is clearly unrealistic, and is an artifact of our initial assumption (89); 
according to Eq. (90), it is satisfied only if29 

              nn'nnA   ' ,     (6.92) 

and hence which does not allow a deeper analysis of the resonant excitation.  

 In order to overcome this limitation, we may perform the following trick – very similar to the 
one we used for the transfer to the degenerate case in Sec. 1. Let us assume that for a certain level n,  

           n'nn"n"n'n"nnn , allfor ,,,'      (6.93) 

– the condition illustrated in Fig. 8. Then, according to Eq. (90), we may ignore the occupancy of all but 
two levels, n and n’, and also the second, non-resonant term with frequency nn’ +    2 >> nn’ in 
Eqs. (88),30 now written for two probability amplitudes, an and an’.  

28 The notion of detuning is also very useful in the classical theory of oscillations (see, e.g., CM Chapter 5), where 
the role of nn’ is played by the own frequency 0 of the oscillator.  
29 Strictly speaking, one more condition is that the number of “resonance” levels is also not too high – see Sec. 6. 
30 The second assumption, i.e. the omission of non-resonant terms in the equations for amplitudes is called the 
Rotating Wave Approximation (RWA); the same idea in the classical theory of oscillations is the basis of what is 
usually called the van der Pol method, and its result, the reduced equations  – see, e.g., CM Secs. 5.3-5.5. 



Essential Graduate Physics                           QM: Quantum Mechanics 

    
Chapter 6             Page 21 of 36 

 

 

 

 

 

 

 

The result is the following system of two linear equations: 

                ,, * titi eAaaiAeaai nn'n'n
       (6.94) 

which uses the shorthand notation A  Ann’ and   nn’. (I will use this simplified notation for a while – 
until other energy levels become involved, at the beginning of the next section). This system may be 
readily reduced to a form without explicit time dependence of the right-hand parts – for example, by 
introducing the following new probability amplitudes, with the same moduli: 
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so   
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Plugging these relations into Eq. (94), we get two usual linear first-order differential equations: 
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As the reader knows very well by now, the general solution of such a system is a linear combination of 
two exponential functions, exp{t}, with the exponents  that may be found by plugging any of these 
functions into Eq. (97), and requiring the consistency of the two resulting linear algebraic equations. In 
our case, the consistency condition (i.e. the characteristic equation of the system) is 
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and has two solutions  = i, where 
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 The coefficients at the exponents are determined by initial conditions. If, as was assumed before, 
the system was on the level n’ initially (at t = 0), i.e. if an’ (0) = 1, an(0) = 0, so bn’ (0) = 1, bn(0) = 0 as 
well, then Eqs. (97) yield, in particular: 
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so the nth level occupancy is 
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This is the famous Rabi oscillation formula.31 It shows that if the detuning is large in comparison 
with  A /, though still small in the sense of Eq. (93), the frequency 2 of the Rabi oscillations is 
completely determined by the detuning, and their amplitude is small: 
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– the result which could be obtained directly from Eq. (90), just neglecting the second term on its right-
hand side. However, now we may also analyze the results of an increase of the perturbation amplitude: it 
leads not only to an increase of the amplitude of the probability oscillations but also of their frequency – 
see Fig. 9. Ultimately, at  A  >>  (for example, at the exact resonance,  = 0., i.e. nn’ = , so En = 
En’ + ), Eqs. (101)-(102) give  =  A / and (Wn)max = 1, i.e. describe a periodic, full “repumping” of 
the system from one level to another and back, with a frequency proportional to the perturbation 
amplitude.32 

  

 

 

 

 

 

 

 

 

 

 This effect is a close analog of the quantum oscillations in two-level systems with time-
independent Hamiltonians, which were discussed in Secs. 2.6 and 5.1. Indeed, let us revisit, for a 
moment, their discussion started at the end of Sec.1 of this chapter, now paying more attention to the 
time evolution of the system under a perturbation. As was argued in that section, the most general 
perturbation Hamiltonian lifting the two-fold degeneracy of an energy level, in an arbitrary basis, has 
the matrix (28). Let us describe the system’s dynamics using, again, the Schrödinger picture, 
representing the ket-vector of an arbitrary state of the system in the form (5.1), where  and  are the 

31 It was derived in 1952 by Isaac Rabi, in the context of his group’s pioneering experiments with the ac 
(practically, microwave) excitation of quantum states, using molecular beams in vacuum. 
32 As Eqs. (82), (96), and (99) show, the lowest frequency in the system is l = n’ – /2 + , so at A  0,  l  
n’ + 2A2/. This effective shift of the lowest energy level (which may be measured by another “probe” field 
of a different frequency) is a particular case of the ac Stark effect, which was already mentioned in Sec. 2. 
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time-independent states of the basis in that Eq. (28) is written (now without any obligation to associate 
these states with the z-basis of any spin-½.) Then, the Schrödinger equation (4.158) yields   
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 As we know (for example, from the discussion in Sec. 5.1), the average of the diagonal elements 
of the matrix gives just a common shift of the system’s energy; for the purpose of the analysis, it may be 
absorbed into the energy reference level. Also, the Hamiltonian operator has to be Hermitian, so the off-
diagonal elements of its matrix have to be complex-conjugate. With this, Eqs. (103) are reduced  to the 
form,  

           11221212 with  ,
2

,
2

* HHHiHi     , (6.104) 

which is absolutely similar to Eqs. (97). In particular, these equations describe the quantum oscillations 
of the probabilities W = 2 and W = 2 with the frequency33  
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The similarity of Eqs. (97) and (104), and hence of Eqs. (99) and (105), shows that the “usual” 
quantum oscillations and the Rabi oscillations have essentially the same physical nature, besides that in 
the latter case the external ac signal quantum  bridges the separated energy levels, effectively 
reducing their difference (En – En’) to a much smaller difference –  (En – En’) – . Also, since the 
Hamiltonian (28) is similar to that given by Eq. (5.2), the dynamics of such a system with two ac-
coupled energy levels, within the limits (93) of the perturbation theory, is completely similar to that of a 
time-independent two-level system. In particular, its state may be similarly represented by a point on the 
Bloch sphere shown in Fig. 5.3, with its dynamics described, in the Heisenberg picture, by Eq. (5.19). 
This fact is very convenient for the experimental implementation of quantum information processing 
systems (to be discussed in more detail in Sec. 8.5), because it enables qubit manipulations in a broad 
variety of physical systems with well-separated energy levels, using external ac (usually either 
microwave or optical) sources.  

Note, however, that according to Eq. (90), if a system has energy levels other than n and n’, they 
also become occupied to some extent. Since the sum of all occupancies equals 1, this means that (Wn)max 
may approach 1 only if the other excitation amplitude is very small, and hence the state manipulation 
time scale T  = 2/ = 2/ A  is very long. The ultimate limit in this sense is provided by the harmonic 
oscillator where all energy levels are equidistant, and the probability repumping between all of them 
occurs at comparable rates. In particular, in this system, the implementation of the full Rabi oscillations 
is impossible even at the exact resonance.34  

33 By the way, Eq. (105) gives a natural generalization of the relations obtained for the frequency of such 
oscillations in Sec. 2.6, where the coupled potential wells were assumed to be exactly similar, so  = 0. Moreover, 
Eqs. (104) gives a long-promised proof of Eqs. (2.201), and hence a better justification of Eqs. (2.203). 
34 From Sec. 5.5, we already know what happens to the ground state of an oscillator at its external sinusoidal (or 
any other) excitation: it turns into a Glauber state, i.e. a superposition of all Fock states – see Eq. (5.134). 
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However, I would not like these quantitative details to obscure from the reader the most 
important qualitative (OK, maybe semi-quantitative :-) conclusion of this section’s analysis: a resonant 
increase of the interlevel transition intensity at   nn’. As will be shown later in the course, in a 
quantum system coupled to its environment at least slightly (hence in reality, in any quantum system), 
such increase is accompanied by a sharp increase of the external field’s absorption, which may be 
measured. This increase is used in numerous applications, notably including the magnetic resonance 
techniques already mentioned in Sec. 5.1. 

 

6.6. Quantum-mechanical Golden Rule 

 One of the results of the past section, Eq. (102), may be used to derive one of the most important 
and nontrivial results of quantum mechanics. For that, let us consider the case when the perturbation 
causes quantum transitions from a discrete energy level En’ into a group of eigenstates with a very dense 
(essentially continuous) spectrum En – see Fig. 10a.  

 

  

 

 

 

 

 

If, for all states n of the group, the following conditions are satisfied 
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then Eq. (102) coincides with the result that would follow from Eq. (90). This means that we may apply 
Eq. (102), with the indices n and n’ duly restored, to any level n of our tight group. As a result, the total 
probability of having our system transferred from the initial level n’ to that group is  
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Now comes the main, absolutely beautiful trick: let us assume that the summation over n is 
limited to a tight group of very similar states whose matrix elements Ann’ are virtually similar (we will 
check the validity of this assumption later on), so we can take Ann’2 out of the sum in Eq. (107) and then 
replace the sum with the corresponding integral:    
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 (6.108) 

where n is the density of the states n on the energy axis: 
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Fig. 6.10. Deriving the Golden 
Rule: (a) the energy level 
scheme, and (b) the function 
under the integral in Eq. (108). 
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This density and the matrix element Ann’ have to be evaluated at nn’ = 0, i.e. at energy En = En’ + , 
and are assumed to be constant within the final state group. At fixed En’, the function under integral 
(108) is even and decreases fast at nn’t >> 1 – see Fig. 10b. Hence we may introduce a dimensionless 
integration variable   nn’t, and extend the integration over it formally from – to +. Then the 
integral in Eq. (108) is reduced to a table one,35  and yields 
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where  the constant 

                        nnn'A  22


      (6.111) 

is called the transition rate.36 This is one of the most famous and useful results of quantum mechanics, 
its Golden Rule37, which deserves much discussion.  

 First of all, let us reproduce the reasoning already used in Sec. 2.5 to show that the meaning of 
the rate  is much deeper than Eq. (110) seems to imply. Indeed, due to the conservation of the total 
probability, Wn’ + W = 1, we can rewrite that equation as 

        .0 tn'W       (6.112) 

Evidently, this result cannot be true for all times, otherwise the probability Wn’ would become negative. 
The reason for this apparent contradiction is that Eq. (110) was obtained in the assumption that initially, 
the system was completely on level n’: Wn’(0) = 1. Now, if at the initial moment the value of Wn’ is 
different, the result (110) has to be multiplied by that number, due to the linear relation (88) between 
dan/dt and an’. Hence, instead of Eq. (112), we get a differential equation similar to Eq. (2.159), 

               n'tn' WW 0
 ,     (6.113) 

which, for a time-independent , has the evident solution, 

            ,)0()( Γ
''

teWtW nn
      (6.114) 

describing the exponential decay of the initial state’s occupancy, with the time constant   = 1/. 

 I am inviting the reader to review this fascinating result again: by the summation of periodic 
oscillations (102) over many levels n, we have got an exponential decay (114) of the probability. This 
trick becomes possible because the effective range En of the state energies En giving substantial 

35 See, e.g., MA Eq. (6.12). 
36 In some texts, the density of states in Eq. (111) is replaced with a formal expression n(En – En’ – ). Indeed, 
applied to a finite energy interval En with n >> 1 levels, it gives the same result: n  (dn/dEn)En  nEn. 
Such replacement may be technically useful in some cases, but is incorrect for n ~ 1, and hence should be used 
with the utmost care, so for most applications, the more explicit form (111) is preferable. 
37 Sometimes Eq. (111) is called “Fermi’s Golden Rule”. This is rather unfair, because this result had been 
developed mostly by the same P. A. M. Dirac in 1927, and Enrico Fermi’s role was not much more than 
advertising it, under the name of “Golden Rule No. 2”, in his influential lecture notes on nuclear physics that were 
published much later, in 1950. (To be fair to Fermi, he has never tried to pose as the Golden Rule’s author.) 
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contributions to the integral (108), shrinks with time: En ~ /t.38 However, since most of the decay 
(114) takes place within the time interval of the order of    1/, the range of the participating final 
energies may be estimated as 

       



~nE .     (6.115) 

This estimate is very instrumental for the formulation of conditions of the Golden Rule’s validity. First, 
we have assumed that the matrix elements of the perturbation and the density of states are independent 
of the energy within the interval (115). This gives the following requirement 

                   ~~ n'nn EEE  ,     (6.116) 

Second, for the transfer from the sum (107) to the integral (108), we need the number of states within 
that energy interval, Nn = nEn, to be much larger than 1. Merging Eq. (116) with Eq. (92) for all the 
energy levels  n”  n, n’ not participating in the resonant transition, we may summarize all conditions of 
the Golden Rule validity as 

        n'n"n   Γ1 .     (6.117) 

(The reader may ask whether I have neglected the condition expressed by the first of Eqs. (106). 
However, for nn’ ~ En/ ~ , this condition is just Ann’2 << ()2, so plugging it into Eq. (111), 

                 n
 22
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

,     (6.118) 

and canceling one  and one , we see that it coincides with the first relation in Eq. (117) above.)  

 Let us have a look at whether these conditions may be satisfied in practice, at least in some 
cases. For example, let us consider the optical ionization of an atom, with the released electron confined 
in a volume of the order of 1 cm3  10-6 m3.  According to Eq. (1.90), with E  of the order of the atomic 
ionization energy En – En’ =  ~ 1 eV, the density of electron states in that volume is of the order of 
1021 1/eV, while the right-hand side of Eq. (117) is of the order of En ~ 1 eV. Thus the conditions (117) 
provide an approximately 20-orders-of-magnitude range for acceptable values of . This illustration 
should give the reader a taste of why the Golden Rule is applicable to so many situations. 

 The physical picture of the initial state’s decay is also very important. According to Eq. (114), 
the external excitation transfers the system into the continuous spectrum of levels n, and it never comes 
back to the initial level n’. However, it was derived from the quantum mechanics of Hamiltonian 
systems, whose equations are invariant with respect to time reversal.39 This paradox is a result of our 
generalization (113) of the exact result (112) This trick, breaking the time-reversal symmetry, is 
absolutely adequate for the physics under study. Indeed, some gut feeling of the physical sense of the 
resulting irreversibility may be obtained from the following observation. As Eq. (1.86) illustrates, the 
distance between the adjacent orbital energy levels tends to zero only if the system’s size goes to 
infinity. This means that our assumption of the continuous energy spectrum of the finial states n 

38 This is one more appearance of the “energy-time uncertainty relation”, which was discussed in Sec. 2.5.  
39 This situation is similar to the irreversible increase of entropy of macroscopic systems, despite the fact that their 
microscopic components obey reversible laws of motion, which is postulated in thermodynamics and explained in 
statistical physics – see, e.g., SM Secs. 1.2 and 2.2.
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essentially requires these states to be broadly extended in space – being either fully free or virtually free 
de Broglie waves. Thus the Golden Rule corresponds to the (physically justified) assumption that in an 
infinitely large system, the traveling de Broglie waves excited by a local source and propagating 
outward from it, would never come back, and even if they did, unpredictable phase shifts introduced by 
minor uncontrollable perturbations on their way would never allow them to sum up in the coherent way 
necessary to bring the system back into the initial state n’. (This is essentially the same situation that was 
discussed, for a particular 1D wave-mechanical system, in Sec. 2.5.)  

 To get a feeling of the Golden Rule at work, let us apply it to the following simple problem – 
which is a toy model of the photoelectric effect, briefly discussed in Sec. 1.1(ii). A 1D particle is 
initially trapped in the ground state of a narrow potential well described by Eq. (2.158): 

            0with  ),()(  WW xxU  .    (6.119) 

Let us calculate the rate  of the particle’s “ionization” (i.e. its excitation into a group of extended, 
delocalized states) by a weak classical sinusoidal force of amplitude F0 and frequency , suddenly 
turned on at some instant, say t = 0. 

 As a reminder, the initial localized state (in our current notation, n’) of such a particle was 
already found in Sec. 2.6: 
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The final, extended states n, with a continuous spectrum, for this problem exist only at energies En > 0, 
so the excitation rate is different from zero only for frequencies 
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The weak sinusoidal force may be described by the following perturbation Hamiltonian, 
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so according to Eq. (86), which serves as the amplitude operator’s definition, in this case 
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 The matrix elements Ann’ that participate in Eq. (111) may be readily calculated in the coordinate 
representation: 
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 Since, according to Eq. (120), the initial n’ is a symmetric function of x, any non-vanishing  
contributions to this integral are given only by antisymmetric functions n(x), proportional to sinknx, 
with the wave number kn related to the final energy by the well-familiar equality (1.89): 
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As we know from Sec. 2.6 (see in particular Eq. (2.167) and its discussion), such antisymmetric 
functions, with n(0) = 0, are not affected by the zero-centered delta-functional potential (119), so their 
density n is the same as that in completely free space, and we could use Eq. (1.93). However, since that 
relation was derived for traveling waves, it is more prudent to repeat its derivation for standing waves, 
confining them to an artificial segment [-l/2, +l/2] – long in the sense 

1, llkn  ,       (6.126) 

so it does not affect the initial localized state and the excitation process. Then the confinement 
requirement n(l/2) = 0 immediately yields the condition knl/2 = n, so Eq. (1.93) is indeed valid, but 
only for positive values of kn, because sinknx with kn  –kn does not describe an independent standing-
wave eigenstate.  Hence the final state density is 
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It may look troubling that the density of states depends on the artificial segment’s length l, but 
the same l also participates in the final wavefunctions’ normalization factor,40 
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and hence in the matrix element (124): 
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These two integrals may be readily worked out by parts. Taking into account that due to the condition 
(126), their upper limits may be extended to , the result is 
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Note that the matrix element is a smooth function of kn (and hence of En), so an important condition of 
the Golden Rule, the virtual constancy of Ann’ on the interval En ~  << En, is satisfied. So, the general 
Eq. (111) is reduced, for our problem, to the following expression:  
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which is independent of the artificially introduced l – thus justifying its use. 

 Note that due to the above definitions of kn and , the expression in the parentheses in the 
denominator of the last expression does not depend on the potential well’s “weight” W, and is a function 

of only the excitation frequency  (and the particle’s mass): 

40 The normalization to infinite volume, by using Eq. (4.263), is also possible, but physically less transparent. 
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As a result, Eq. (131) may be recast simply as 
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What is hidden here is that kn, defined by Eq. (125) with En = En’ + , is a function of the external 
force’s frequency, changing as 1/2 at   >> min  (so  drops as -7/2 at   ), and as ( – min)

1/2 
when  approaches the “red boundary” (121) of the ionization effect, so   ( – min)

1/2   0 in that 
limit as well.  

A conceptually very similar but a bit more involved analysis of this effect in a more realistic 3D 
case, namely the hydrogen atom’s ionization by an optical wave, is left for the reader’s exercise. 

 

6.7. Golden Rule for step-like perturbations 

 Now let us reuse some of our results for a perturbation being turned on at t = 0, but after that 
time-independent: 
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A superficial comparison of this equality and the former Eq. (86) seems to indicate that we may use all 

our previous results, taking  = 0 and replacing †ˆˆ AA  with  1Ĥ . However, that conclusion (which 
would give us a wrong factor of 2 in the result) does not take into account the fact that when analyzing 
both the two-level approximation in Sec. 5 and the Golden Rule in Sec. 6, we have dropped the second 
(non-resonant) term in Eq. (90). In our current case (134), with  = 0, there is no such difference 
between these terms. This is why it is more prudent to use the general Eq. (84),  
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in which the matrix element of the perturbation is now time-independent at t > 0. We see that it is 
formally equivalent to Eq. (88) with only the first (resonant) term kept, provided that we make the 
following replacements: 

          ''',ˆˆ
nnnnnnHA   .    (6.136) 

 Let us use this equivalency to consider the results of coupling between a discrete-energy state n’, 
to which the particle is initially placed, and a dense group of states with a quasi-continuum spectrum, in 
the same energy range. Figure 11a shows an example of such a system: a particle is initially (say, at t = 
0) placed into a potential well separated by a penetrable potential barrier from a formally infinite region 
with a continuous energy spectrum. Let me hope that the physical discussion in the last section makes 
the outcome of such an experiment evident: the particle will gradually and irreversibly tunnel out of the 
well, so the probability Wn’(t) of its still residing in the well will decay in accordance with Eq. (114). 
The rate of this decay may be found by making the replacements (136) in Eq. (111): 
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where the states n and n’ now have virtually the same energy.41  

 

 

 

 

 

 
 

It is very informative to compare this result, semi-quantitatively, with Eq. (105) for a symmetric 
(En = En’) system of two potential wells separated by a similar potential barrier – see Fig. 11b. For the 
symmetric case, i.e.  = 0, Eq. (105) is reduced to simply 
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Here I have used the index “con” (from “confinement”) to emphasize that this matrix element is 
somewhat different from the one participating in Eq. (137), even if the potential barriers are similar. 
Indeed, in the latter case, the matrix element, 

 dxHn'HnH nnnn  ˆˆ *
'' ,    (6.139) 

has to be calculated for two wavefunctions n and n’ confined to spatial intervals of the same scale lcon, 
while in Eq. (137), the wavefunctions n are extended over a much larger distance l >> lcon – see Fig. 
11. As Eq. (128) tells us, in the 1D model this means an additional small factor of the order of (lcon/l)

1/2. 
Now using Eq. (128) as a crude but suitable model for the final-state wavefunctions, we arrive at the 
following estimate, which is independent of the artificially introduced length l: 
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where En’ ~ 2/ml2
con  is the scale of the distances between the adjacent eigenenergies of the particle in 

an unperturbed potential well. Since the condition of validity of Eq. (138) is  << En’, we see that  

            .~ 



 



nE

.     (6.141) 

 This (sufficiently general42) perturbative result confirms the conclusion of a more particular 
analysis carried out at the end of Sec. 2.6: the rate of the (irreversible) quantum tunneling into a state 
continuum is always much lower than the frequency of (reversible) quantum oscillations between 

41 The condition of validity of Eq. (137) is again given by Eq. (117), just with   = 0 in the upper limit for . 
42 It is straightforward to verify that the estimate (141) is valid for similar problems of any spatial dimensionality, 
not just for the 1D case we have analyzed. 

(a)                (b) 

Fig. 6.11. Tunneling from a discrete-energy state n’: (a) to a 
state continuum, and (b) to another discrete-energy state n.  
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discrete states separated with the same potential barrier – at least for the case when both are much lower 
than En’/, so the perturbation theory is valid. A very handwaving interpretation of this result is that the 
particle performs the quantum oscillations between the confined state in the well and the space-extended 
states behind the barrier many times before finally “deciding to perform” an irreversible transition into 
the unconfined continuum. This qualitative picture is consistent with experimentally observable effects 
of dispersive electromagnetic environments on electron tunneling.43 

Let me conclude this section (and this chapter) with the application of Eq. (137) to a very 
important case that will provide a smooth transition to the next chapter’s topic. Consider a composite 
system consisting of two component systems, a and b, with the energy spectra sketched in Fig. 12. 

  

 

 

 

 

 
 
Let the systems be completely independent initially. The independence means that in the absence 

of their coupling, the total Hamiltonian of the system may be represented as a sum of two operators: 

         ),(ˆ)(ˆˆ )0( bHaHH ba       (6.142) 

where arguments a and b symbolize the non-overlapping sets of the degrees of freedom of the two 
systems. Such operators, belonging to their individual, different Hilbert spaces, naturally commute. 
Similarly, the eigenkets of the system may be naturally factored as 

              ba nnn  .     (6.143) 

The direct product sign  is used here (and below) to denote the formation of a joint ket-vector from the 
kets of the independent systems, belonging to different Hilbert spaces. Evidently, the order of operands 
in such a product may be changed at will. As a result, its eigenenergies separate into a sum, just as the 
Hamiltonian (142) does: 

          .ˆˆˆˆˆ )0( nEEnnHnnHnnHHnH nbnaabbbaababa   (6.144) 

In such composite systems, the relatively weak interaction of its components may be usually 
represented as a product of two Hermitian operators, each depending only on the degrees of freedom of 
one component system: 

               )(ˆ)(ˆˆ )1( bBaAH  .     (6.145) 

A very common example of such an interaction is the electric-dipole interaction between an atomic-
scale system (with a linear size of the order of the Bohr radius rB ~ 10-10 m) and the electromagnetic 
field at optical frequencies   ~ 1016 s-1, with the wavelength  = 2c/ ~ 10-6 m >> rB: 

43 See, e.g., P. Delsing et al., Phys. Rev. Lett. 63, 1180 (1989). 

Fig. 6.12. Energy relaxation in 
system a due to its weak coupling 
to system b (which serves as the 
environment of a). 
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             
k

kkq,H rdd ˆˆwith  ˆˆ ˆ)1( E ,    (6.146) 

where the dipole electric moment d depends only on the positions rk of the charged particles (numbered 
with index k) of the atomic system, while the electric field E  is a function of only the electromagnetic 
field’s degrees of freedom – to be discussed in Chapter 9 below. 

 Returning to the general situation shown in Fig. 12, if the component system a was initially in an 
excited state n’a, the interaction (145), turned on at some moment of time, may bring it into another 
discrete state na of lower energy – for example, the ground state. In the process of this transition, the 
released energy, in the form of an energy quantum 

      
naan EE  ' ,     (6.147) 

is picked up by system b: 
              naanbnbnnb EEEEE  '''  ,    (6.148) 

so the total energy E = Ea + Eb of the system does not change. (If the states na and n’b are the ground 
states of the component systems, as they are in most applications of this analysis, and we take the 
ground state energy Eg = Ena + En’b of the composite system for the reference, then Eq. (148) gives 
merely Enb = En’a.) If the final state nb of system b is inside a state group with a quasi-continuous energy 
spectrum (Fig. 12), the process has the exponential character (114)44 and may be interpreted as the effect 
of energy relaxation of system a, with the released energy quantum  absorbed by system b.  

 If the relaxation rate  is sufficiently low, it may be described by the Golden Rule (137). Since 
the perturbation (145) does not depend on time explicitly, and the total energy E does not change, this 
relation, with the account of Eqs. (143) and (145), takes the form  

   bbnnaannnnnnn n'BnBn'AnABA ˆ  and,ˆ  where,
2

''

2

'

2

'  


, (6.149) 

where n is the density of the final states of system b at the relevant energy (147).45 In particular, Eq. 
(149), with the dipole Hamiltonian (146), will enable us to readily calculate, in Chapter 9, the natural 
linewidth of atomic electric-dipole transitions.  

 Instead, I will now proceed to a general discussion of the effects of quantum systems’ interaction 
with their environment, toward which the situation shown in Fig. 12 provides a clear conceptual path. 
Indeed, in this case the transition from the Hamiltonian (and hence reversible) quantum dynamics of the 
whole composite system a + b to the Golden-Rule-governed (and hence irreversible) dynamics of 
system a has been achieved essentially by following this component system alone, i.e. ignoring the 
details of the exact state of system b. (As was argued in the previous section, the quasi-continuous 
spectrum of the latter system essentially requires it to have a large spatial size, so it may be legitimately 
called the  environment of the “open” system a.) This is exactly the approach that will be pursued in the 
next chapter. 

44 This process is spontaneous: it starts as soon as either the interaction (145) has been turned on or (if it had been 
already on) as soon as the system a is placed into the excited state n’a. 
45 Note that these partial matrix elements may be calculated in the Heisenberg picture as well, because due to the 
general Eq. (4.149) and the energy balance (147), the additional time dependences of these elements would be 
proportional to exp{it}, and cancel at their multiplication.  

Golden 
Rule 
for coupled 
systems 
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6.8. Exercise problems 

 6.1. Use Eq. (6.14) of the lecture notes to prove the following general form of the Hellmann-
Feynman theorem:46   

n
H

n
En

 




 ˆ

, 

where  is an arbitrary c-number parameter. 

6.2. Establish a relation between Eq. (16) and the result of the classical theory of weakly 
anharmonic (“nonlinear”) oscillations at negligible damping. 

 Hint: You may like to use N. Bohr’s reasoning that was discussed in Problem 1.1. 
 
6.3. An additional weak time-independent force F is exerted on a 1D particle that had been 

placed into a hard-wall potential well 

 








     otherwise.     ,

,0for               ,0 ax
xU  

Calculate, sketch, and discuss the 1st-order perturbation of its ground-state wavefunction. 
 

 6.4. A time-independent force F =  (nxy+nyx), where  is a small constant, is applied to a 3D 
isotropic harmonic oscillator of mass m and frequency 0, located at the origin. Calculate, in the first 
order of the perturbation theory, the effect of the force upon the ground-state energy of the oscillator and 
its lowest excited energy level. How small should the constant   be for your results to be quantitatively 
correct? 

6.5. A 1D particle of mass m is localized at a narrow potential well that may be approximated 
with a delta function: 

    0. with  ,  WW xxU   

Calculate the change of its ground state energy by an additional weak time-independent force F, in the 
first non-vanishing approximation of the perturbation theory. Discuss the limits of validity of this result, 
taking into account that at F  0, the localized state of the particle is metastable. 
 

 6.6. Use Eq. (16) to calculate the eigenvalues of the operator 2L̂ , in the limit  m   l >> 1, by 
purely wave-mechanical means.  

 Hint: Try the following substitution: () = f()/sin1/2. 
 
 6.7. In the lowest non-vanishing order of the perturbation theory, calculate the shift of the 
ground-state energy of an electrically charged spherical rotor (i.e. a particle of mass m, free to move 
over a spherical surface of radius R) due to a weak uniform time-independent electric field E. 
 
 6.8. Use the perturbation theory to evaluate the effect of a time-independent uniform electric 
field E on the ground state energy Eg of a hydrogen atom. In particular: 

46 As a reminder, proof of its wave-mechanics form was the task of Problem 1.7. 
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 (i) calculate the 2nd-order shift of Eg, neglecting the extended unperturbed states with E > 0, and 
bring the result to the simplest analytical form you can, 
 (ii) find the lower and the upper bounds on the shift, and 
 (iii) discuss the simplest experimental manifestation of this quadratic Stark effect. 
 
 6.9. A particle of mass m, with electric charge q, is in its ground s-state with a given energy Eg < 
0, being localized by a very-short-range, spherically symmetric potential well. Calculate its static 
electric polarizability. 
 
 6.10. In some atoms, the effect of nuclear charge screening by electrons on the motion of each of 
them may be reasonably well approximated by the replacement of the Coulomb potential (3.190), U = –
C/r, with the so-called Hulthén potential 

   
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Assuming that the effective screening radius a is much larger than r0  2/mC, use the perturbation 
theory to calculate the energy spectrum of a single particle of mass m, moving in this potential, in the 
lowest order needed to lift the l-degeneracy of the energy levels. 
 
 6.11. In the lowest non-vanishing order of the perturbation theory, calculate the correction to 
energies of the ground state and all lowest excited states of a hydrogen-like atom/ion, due to the 
electron’s penetration into the nucleus, by modeling it the latter a spinless, uniformly charged sphere of 
radius R << rB/Z. 
 

6.12. A particle of mass m is placed inside a hard-wall ellipsoid whose surface is described by 
the equation 

  .1,1with  ,1
2

2

2

22


  ab

b

z

a

yx
 

Calculate its ground-state energy in the 1st order in the small parameter , and interpret the result. 
 
 6.13. Prove that the relativistic correction operator (48) indeed has only diagonal matrix 
elements in the basis of unperturbed Bohr atom states (3.200). 
 
 6.14. Calculate the lowest-order relativistic correction to the ground-state energy of a 1D 
harmonic oscillator. 
 
 6.15. Use the perturbation theory to calculate the contribution to the magnetic susceptibility m 
of a dilute gas, that is due to the orbital motion of a single electron inside each gas particle. Spell out 
your result for a spherically symmetric ground state of the electron, and give an estimate of the 
magnitude of this orbital susceptibility. 

 
 6.16. A certain energy level degeneracy is not lifted in the 1st order of the stationary perturbation 
theory. Calculate its lifting in the 2nd

 order of the theory. Apply the result to a planar rotor of mass m 
and radius R, with electric charge q, placed into a weak, uniform, time-independent electric field E. 
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 6.17.* The Hamiltonian of a quantum system is slowly changed over time. 

 (i) Develop a theory of quantum transitions in the system, and spell out its result in the 1st 
approximation in the speed of the change.  
 (ii) Use this approximation to calculate the probability that a finite-time pulse of a slowly 
changing force F(t) drives a 1D harmonic oscillator, initially in its ground state, into an excited state. 
 (iii) Compare the last result with the exact one. 
 
 6.18. Use the single-particle model to calculate the complex electric permittivity () of a dilute 
gas of similar atoms, due to their induced electric polarization by a weak external ac field, for a field 
frequency  very close to one of the quantum transition frequencies nn’. Based on the result, calculate 
and estimate the absorption cross-section of each atom. 

Hint: In the single-particle model, the atom’s properties are determined by Z similar, non-
interacting electrons, each moving in a similar static attracting potential, generally different from the 
Coulomb one, because it is contributed not only by the nucleus but also by other electrons. 

 
 6.19. Use the solution of the previous problem to generalize the expression for the London 
dispersion force between two atoms (whose calculation in the harmonic oscillator model was the subject 
of Problems 3.20 and 5.20) to the single-particle model with an arbitrary energy spectrum. 
 
 6.20.  Use the solution of the previous problem to calculate the potential energy of the interaction 
of two hydrogen atoms, both in their ground state, separated by distance r >> rB. 
 

6.21. In a certain quantum system, distances between the three lowest 
energy levels are slightly different – see the figure on the right (  << 1,2). 
Assuming that the involved matrix elements of the perturbation Hamiltonian 
are known and are all proportional to the external ac field’s amplitude, find 
the time necessary to populate the first excited level almost completely (with 
a given precision   << 1), by using the Rabi oscillation effect, if at t = 0, the 
system is in its ground state. Spell out your result for a weakly anharmonic 
1D oscillator.  
  
 6.22.* Analyze the possibility of a slow transfer of a system from one of 
its energy levels to another one (in the figure on the right, from level  1 to level 
3), by using the scheme shown in that figure, in which the monochromatic 
external excitation amplitudes A+ and A– may be slowly changed at will. 
 
 6.23. A weak external force pulse F(t), of a finite time duration, is applied to the particle in a 
system with a discrete energy spectrum, which initially was in its ground state.  

 (i) Derive, in the lowest non-vanishing order of the perturbation theory, a formula for the 
probability that the pulse drives the particle into its lowest excited state.  
 (ii) Specify this formula for a 1D harmonic oscillator and compare the result with the exact 
solution of the problem. 
 (iii) Spell out the perturbative result for the Gaussian-shaped waveform F(t) = F0exp{–t2/2} and 
analyze its dependence on the scale   of the pulse duration. 
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 6.24. A spatially uniform but time-dependent external electric field E(t) is applied, starting from t 
= 0, to a charged planar rotor, initially in its ground state.  

 (i) Calculate, in the lowest non-vanishing order in the field’s strength, the probability that by a 
certain time t > 0, the rotor is in its mth excited state.  
 (ii) Spell out and analyze your results for a constant-magnitude field rotating, with a constant 
angular velocity , within the rotor’s plane. 
 (iii) Do the same for a monochromatic field of frequency , with a fixed direction. 

 
6.25. A heavy relativistic particle, with electric charge q = Ze, flies by a hydrogen atom, initially 

in its ground state, with an impact parameter b within the range rB << b <<  rB/, where   1/137 is the 
fine structure constant. Calculate the total probability of the atom’s transition to one of its lowest excited 
states. 
 
 6.26. Develop a general theory of quantum excitations of the higher levels of a discrete-spectrum 
system, initially in the ground state,  by a weak time-dependent perturbation, up to the 2nd order. Spell 
out and discuss the result for the case of monochromatic excitation, with a nearly perfect tuning of its 
frequency  to the half of a certain quantum transition frequency n0  (En – E0)/ . 

 
 6.27. A particle of mass m is initially in a localized ground state, with energy Eg < 0, of a very-
short-range, spherically symmetric potential well. Calculate the rate of its delocalization by an applied 
classical force F(t) = nF0cost with a time-independent direction n. 

 
6.28.* Calculate the rate of ionization of a hydrogen atom, initially in its ground state, by a 

classical, linearly polarized electromagnetic wave with an electric field’s amplitude E0, and a frequency 
  within the range 

.
B

2
Be r

c

rm
 

 

Recast your result in terms of the cross-section of electromagnetic wave absorption. Discuss briefly 
what changes of the theory would be necessary if either of the above conditions had been violated. 
 

6.29.* Use the quantum-mechanical Golden Rule to derive the general expression for the electric 
current I through a weak tunnel junction between two conductors, biased with dc voltage V, treating the 
conductors as degenerate Fermi gases of electrons with negligible direct interaction. Simplify the result 
in the low-voltage limit. 

 Hint: The electric current flowing through a weak tunnel junction is so low that it does not 
substantially perturb the electron states inside each conductor. 
  
 6.30.* Generalize the result of the previous problem to the case when a weak tunnel junction is 
biased with voltage V(t) = V0 + Acost, with  generally comparable with eV0 and eA. 
 
 6.31.* Use the quantum-mechanical Golden Rule to derive the Landau-Zener formula (2.257). 


