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Chapter 8. Multiparticle Systems 

This chapter provides a brief introduction to the quantum mechanics of systems of similar particles, 
with special attention to the case when they are indistinguishable. For such systems, theory predicts 
(and experiment confirms) very specific effects even in the case of negligible explicit (“direct”)  
interactions between the particles, in particular, the Bose-Einstein condensation of bosons and the 
exchange interaction of fermions. In contrast, the last section of the chapter is devoted to quite a 
different topic – quantum entanglement of distinguishable systems, and attempts to use this effect for 
high-performance processing of information. 

 

8.1. Distinguishable and indistinguishable particles 

 The importance of quantum systems of many similar particles is probably self-evident; just the 
very fact that most atoms include several/many electrons is sufficient to attract our attention. There are 
also important systems where the total number of electrons is much higher than in one atom; for 
example, a cubic centimeter of typical metal houses ~1023 conduction electrons that cannot be attributed 
to particular atoms, and have to be considered common parts of the system as the whole. Though 
quantum mechanics offers virtually no exact analytical results for systems of substantially interacting 
particles,1 it reveals very important new quantum effects even in the simplest cases when particles do 
not interact, and least explicitly (directly).  

 If non-interacting particles are either different from each other by their nature, or physically 
similar but still distinguishable because of other reasons, everything is simple – at least, conceptually. 
Then, as was already discussed in Sec. 6.7, a system of two particles, 1 and 2, each in a pure quantum 
state, may be described by a state vector  

              
21

'  ,     (8.1a)

1 As was already noted in Sec. 7.3, for such systems of similar particles, the powerful methods discussed in the 
last chapter do not work well, because of the absence of a clear difference between some “system of interest” and 
elementary parts of its “environment”. 

which is a direct product of single-particle vectors, describing their states  and ’ defined in different 
Hilbert spaces. (Below, I will frequently use, for this direct product, the following convenient shorthand: 

  '  ,      (8.1b) 

in which the particle’s number is coded by the state symbol’s position.) Hence the permuted state  

                            '' P̂ ,     (8.2) 

whereP̂ is the permutation operator (which is defined by Eq. (2) itself), is different from the initial one.   

 The permutation operator may also be used for states of systems of identical particles. In 
physics, the last term may be used to describe:  

Distinguish- 
able 

particles 
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 (i) the “really elementary” particles like electrons, which (at least at this stage of development of 
physics) are considered as structure-less entities, and hence are all identical; 

 (ii) any objects (e.g., hadrons or mesons) that may be considered as a system of “more 
elementary” particles (e.g., quarks and gluons), but are placed in the same internal quantum state – most 
usually, though not necessarily, in the ground state.2 

It is important to note that identical particles still may be distinguishable – say by their clear 
spatial separation. Such systems of similar but distinguishable particles (or subsystems) are broadly 
discussed nowadays in the context of quantum computing and encryption – see Sec. 5 below. This is 
why it is insufficient to use the term “identical particles” if we want to say that they are genuinely 
indistinguishable, so I below I will use the latter term, despite it being rather unpleasant grammatically. 

 It turns out that for a quantitative description of systems of indistinguishable particles, we need 
to use, instead of direct products of the type (1), linear combinations of such direct products; in the 
above example, of ’ and ’.3 To see that, let us discuss the properties of the permutation operator 
defined by Eq. (2). Consider an observable A, and a system of eigenstates/eigenvalues of its operator: 

       jjj aAaA ˆ .      (8.3)  

If the particles are indistinguishable, the observable’s expectation value should not be affected by their 

permutation. Hence the operators Â  and P̂  have to commute and share their eigenstates. This is why 

the eigenstates of the operator P̂ are so important: in particular, they include the eigenstates of the 

Hamiltonian, i.e. the stationary states of the system.  Let us have a look at the action, on an elementary 
direct product, of the permutation operator squared: 

         ''''   PPPP ˆˆˆˆ 2 ,    (8.4) 

i.e. 2P̂  brings the state back to its original form. Since any pure state of a two-particle system may be 

represented as a linear combination of such products, this result does not depend on the state, and may 
be represented as the following operator relation:  

            .̂ˆ 2 IP       (8.5) 

Now let us find the possible eigenvalues Pj of the permutation operator. Acting by both sides of Eq. (5) 

on any of the eigenstates j of the permutation operator, we get a very simple equation for its 
eigenvalues: 

2 Note that from this point of view, even complex atoms or molecules, in the same internal quantum state, may be 
considered on the same footing as the “really elementary” particles. For example, the already mentioned recent 
spectacular interference experiments by R. Lopes et al., which require particle identity, were carried out with 
couples of 4He atoms in the same internal quantum state. 
3 A very legitimate question is why, in this situation, we need to introduce the particles’ numbers to start with. A 
partial answer is that in this approach, it is much simpler to derive (or guess) the system’s Hamiltonians from the 
correspondence principle – see, e.g., Eq. (27) below. Later in this chapter, we will discuss an alternative approach 
(the so-called “second quantization”), in which particle numbering is avoided. While that approach is more 
logical, writing adequate Hamiltonians (which, in particular, would avoid spurious self-interaction of the 
particles) within it is more challenging – see Sec. 3 below. 
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            12 jP ,      (8.6) 

with two possible solutions: 
            1jP .      (8.7) 

 Let us find the eigenstates of the permutation operator in the simplest case when each of the two 
particles can be only in one of two single-particle states – say,  and ’. Evidently, none of the simple 
products ’ and ’, taken alone, qualifies for such an eigenstate – unless the states  and ’ are 
identical. This is why let us try their linear combination 

           , 'b'aj       (8.8) 

giving 

             'b'ajjj   PP̂ .    (8.9) 

For the case Pj = +1 we have to require the states (8) and (9) to be the same, so a = b, giving the so-
called symmetric eigenstate4 

               '' 
2

1
,     (8.10) 

where the front coefficient guarantees the orthonormality of the two-particle state vectors, provided that 
the single-particle vectors are orthonormal. Similarly, for Pj = –1 we get a = –b, i.e. an antisymmetric 
eigenstate 

                     '' 
2

1
.     (8.11) 

These are the simplest (two-particle, two-state) examples of entangled states, defined as multiparticle 
system states whose vectors cannot be factored into direct products of single-particle vectors. 

 So far, our math does not preclude either sign of Pj, in particular the possibility that the sign 
would depend on the state (i.e. on the index j). Here, however, comes a crucial fact: identical particles 
fall into two groups:5 

 (i) bosons, particles with integer spin s, for whose states Pj  = +1, and 

 (ii) fermions, particles with half-integer spin, with Pj  = –1.  

This fundamental connection between the particle’s spin and parity (“statistics”) can be proved using 
quantum field theory.6 In non-relativistic quantum mechanics we are discussing now, it is usually 
considered experimental; however, our discussion of spin in Chapter 5 enables its following hand-
waving interpretation. In free space, the permutation of particles 1 and 2 may be viewed as a result of 
their pair’s common rotation by angle  =  about an arbitrary z-axis. As we have seen in Sec. 5.7, at 

4 As in many situations we have met before, the kets given by Eqs. (10) and (11) may be multiplied by the 
common factor exp{i} with an arbitrary real phase . However, until we discuss coherent superpositions of 
various states , there is no good motivation for taking   different from 0; that would only clutter the notation. 
5 This fact is often described as two different “statistics”: the Bose-Einstein statistics of bosons and Fermi-Dirac 
statistics of fermions because their statistical distributions in thermal equilibrium are indeed different – see, e.g., 
SM Sec. 2.8. However, this difference is actually bigger: we are dealing with two different quantum mechanics.  
6 Such proofs were first offered by M. Fierz in 1939 and W. Pauli in 1940, and later refined by others. 
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the rotation by this angle, the state vector  of a particle with a definite quantum number ms acquires an 
extra factor exp{ims}, where the quantum number ms may be either an integer or a half-integer. For 
bosons, i.e. the particles with integer s, ms can take only integer values, so exp{ims} = 1, and the 
product of two such factors in the state vector ’ is equal to +1. On the contrary, for the fermions with 
their half-integer s, all ms are half-integer as well, so exp{ims} = i, and the product of two such 
factors in the state vector ’ is equal to (i)2 = –1.7 

 The most impressive corollaries of Eqs. (10) and (11) are for the case when the partial states of 
the two particles are the same:  = ’. The corresponding Bose state + defined by Eq. (10) is possible; 
in particular, at sufficiently low temperatures, a set of many non-interacting Bose particles may be in the 
same ground state – the so-called Bose-Einstein condensate (“BEC”).8 The most fascinating feature of 
the condensates is that their dynamics is governed by quantum mechanical laws, which may show up in 
the behavior of their observables with virtually no quantum uncertainties9 – see, e.g., Eqs. (1.73)-(1.74). 

 On the other hand, if we take  = ’  in Eq. (11), we see that the Fermi state – becomes the null 
state, i.e. cannot exist at all. This is the mathematical expression of Pauli’s exclusion principle:10 two 
indistinguishable fermions cannot be placed into the same quantum state. (As will be discussed below, 
this is true for systems with more than two fermions as well.) Perhaps, the key importance of this 
principle is obvious: if it were not valid for electrons (that are fermions), all electrons of each atom 
would condense in their ground (1s-like) state, and all the usual chemistry (and biochemistry, and 
biology, including dear us!) would not exist. Thus, the Pauli principle makes fermions indirectly interact 
even if they do not interact directly, in the usual sense of the word “interaction”. 

  

8.2. Singlets, triplets, and the exchange interaction 

 Now let us discuss possible approaches to quantitative analyses of identical particles, starting 
from a simple case of two spin-½ particles (say, electrons), whose explicit interaction with each other 
and the external world does not involve spin. The description of such a system may be based on 
factorable states with ket-vectors 
               1212 so  ,     (8.12) 

with the orbital state vector o12 and the spin vector s12 belonging to different Hilbert spaces. It is 
frequently convenient to use the coordinate representation of such a state, sometimes called the spinor: 

              122112122121 ),(,, sso rrrrrr   .   (8.13) 

Unfortunately, the simple generalization of these arguments to an arbitrary quantum state runs into problems, so 
they cannot serve as a strict proof of the universal relation between s and Pj. 
8 For a quantitative discussion of the Bose-Einstein condensation, see, e.g., SM Sec. 3.4. Examples of such 
condensates include superfluids like helium, Cooper-pair condensates in superconductors, and BECs of weakly 
interacting atoms. 
9 For example, for a coherent condensate of N >> 1 particles of mass m, Heisenberg’s uncertainty relation takes 
the form xp = x(Nmv)   /2, so its coordinate x and velocity v may be measured simultaneously with much 
higher precision than those of a single particle. 
10 It was first formulated for electrons by Wolfgang Pauli in 1925, on the background of less general rules 
suggested by Gilbert Lewis (1916), Irving Langmuir (1919), Niels Bohr (1922), and Edmund Stoner (1924) for 
the explanation of experimental spectroscopic data.  

2-particle 
spinor 
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Since the spin-½ particles are fermions, the particle permutation has to change the spinor’s sign: 

             122121121221 ),(),(),(ˆ sss rrrrrr  P ,   (8.14) 

i.e. to change the sign of either its orbital factor or the spin factor.  

 In particular, in the case of symmetric orbital factor, 

              ),,(),( 2112 rrrr        (8.15) 

the spin factor has to obey the relation 

                  .1221 ss        (8.16) 

Let us use the ordinary z-basis (where z, in the absence of an external magnetic field, is an arbitrary 
spatial axis) for both spins. In this basis, the ket-vector of any two spins-½ may be represented as a 
linear combination of the following four basis vectors: 

                and,,, .    (8.17) 

The first two kets evidently do not satisfy Eq. (16), and cannot participate in the state. Applying to the 
remaining kets the same argumentation as has resulted in Eq. (11), we get 

                .
2

1
12  ss     (8.18) 

Such an orbital-symmetric and spin-antisymmetric state is called the singlet.  

 The origin of this term becomes clear from the analysis of the opposite (orbital-antisymmetric 
and  spin-symmetric) case: 
         .),,(),( 21122112 ss  rrrr      (8.19) 

For the composition of such a symmetric spin state, the first two kets of Eq. (17) are completely 
acceptable (with arbitrary weights), and so is an entangled spin state that is the symmetric combination 
of the two last kets, similar to Eq. (10): 

            
2

1
s ,     (8.20) 

so the general spin state is a triplet: 

               . 
2

1
012   cccs    (8.21) 

Note that any such state (with any values of the coefficients c satisfying the normalization condition), 
corresponds to the same orbital wavefunction and hence the same energy. However, each of these three 
states has a specific value of the z-component of the net spin – evidently equal to, respectively, +, –, 
and 0. Because of this, even a small external magnetic field lifts their degeneracy, splitting the energy 
level in three; hence the term “triplet”. 

In the particular case when the particles do not interact directly, for example 

        2,1with  ),(ˆ
2

ˆˆ,ˆˆˆ
2

21  ku
m

p
hhhH k

k
k r ,   (8.22) 

Triplet 
state 

Singlet 
state 
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the two-particle Schrödinger equation for the orbital wavefunction is obviously satisfied by any direct 
product, 

   ),()(),( 2121 rrrr n'n        (8.23) 

of single-particle eigenfunctions, with an arbitrary set n, n’ of quantum numbers. For the particular but 
very important case n = n’, this wavefunction is symmetric in the sense of Eq. (15), so that the (only 
acceptable) singlet state of the system, 

                 )()( 
2

1
21 rr nn  ,    (8.24) 

has energy 2n, where n is the single-particle energy level.11 In particular, for the ground state of the 
system, such singlet spin state gives the lowest energy Eg = 2g, while any triplet spin state (19) would 
require one of the particles to be in a different orbital state, i.e. in a state of higher energy, so the total 
energy of the system would be also higher. 

 Now moving to the systems in which two indistinguishable spin-½ particles do interact, let us 
consider, as the simplest but important12 example, the lower energy states of a neutral atom13 of helium 
– more exactly, 4He. Such an atom consists of a nucleus with two protons and two neutrons, with the 
total electric charge q = +2e, and two electrons “rotating” about the nucleus. Neglecting the small 
relativistic effects that were discussed in Sec. 6.3, the Hamiltonian describing the electron motion may 
be expressed as 

         
210

2

int
0

22

int21 4
ˆ,

4

2

2

ˆˆ,ˆˆˆˆ
rr 




e
U

r

e

m

p
hUhhH

k

k
k .  (8.25) 

As with most problems of multiparticle quantum mechanics, the eigenvalue/eigenstate problem 
for this Hamiltonian does not have an exact analytical solution, so let us carry out its approximate 
analysis considering the electron-electron interaction Uint as a perturbation. As was discussed in Chapter 
6, we have to start with the “0th-order” approximation in which the perturbation is ignored, so the 
Hamiltonian is reduced to the sum (22). In this approximation, the ground state of the atom is the singlet 
(24), with the orbital factor 
     )()(),( 2100110021g rrrr   ,     (8.26) 

and energy Eg = 2g. Here each factor 100(r) is the single-particle wavefunction of the ground (1s) state 
of the hydrogen-like atom with Z = 2, with quantum numbers n = 1, l = 0, and m = 0 – hence the 
wavefunctions’ indices. According to Eqs. (3.174) and (3.208), 

        
2

with  ,
2

4

1
)(),()( BB

0
0

2/3
0

0,1
0

0100

/ r

Z

r
re

r
rY

rr  


 Rr ,   (8.27) 

and according to Eqs. (3.191) and (3.201), in this approximation the total ground state energy is  

11 In this chapter, I try to use lowercase letters for all single-particle observables (in particular,  for their 
energies), in order to distinguish them as clearly as possible from the system’s observables (including the total 
energy E of the system), which are typeset in uppercase (capital) letters. 
12 Indeed, helium makes up more than 20% of all “ordinary” matter of our Universe. 
13 Note that the positive ion He+1 of this atom, with just one electron, is fully described by the hydrogen-like atom 
theory with Z = 2, whose ground-state energy, according to Eq. (3.191), is –Z2EH/2 = –2EH  –55.4 eV. 
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          eV. 1094
2
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2

22 H

2

H
2

2,1
2

0(0)
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(0)
g 



















E
EZ

n
E

ZZn


   (8.28) 

This is still somewhat far (though not terribly far!) from the experimental value Eg  –78.8 eV – see the 
bottom level in Fig. 1a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Making a minor (but very useful) detour from our main topic, let us note that we can get a much 
better agreement with experiment by accounting for the electron interaction energy in the 1st order of the 
perturbation theory. Indeed, in application to our system, Eq. (6.14) reads 

             ).,(),(),(gˆg 21g21int21g2
3

1
3

int
(1)
g

* rrrrrr  UrdrdUE     (8.29) 

Plugging in Eqs. (25)-(27), we get 

   .
)(2

exp
4

4

4

1

0

21

210

2

2
3

1
3

2

3
0

(1)
g







 










   r

rre
rdrd

r
E

rr
   (8.30) 

As may be readily evaluated analytically (this exercise is left for the reader), this expression equals 
(5/4)EH, so the corrected ground state energy, 

                   eV 8.744/54 H
(1)
g

(0)
gg  EEEE ,   (8.31) 

is much closer to experiment. 

 There is still room here for a ready improvement by using the variational method discussed in 
Sec. 2.9. For our particular case of the 4He atom, we may try to use, as the trial state, the orbital 
wavefunction given by Eqs. (26)-(27), but with the atomic number Z considered as an adjustable 

(a)                              (b) 

Fig. 8.1. The lower energy levels of a helium atom: (a) experimental data and (b) a schematic structure 
of an excited state in the first order of the perturbation theory. On panel (a), all energies are referred to 
that (-2EH  –55.4 eV) of the ground state of the positive ion He+1, so their magnitudes are the (readily 
measurable) energies of the atom’s single ionization starting from the corresponding state of the neutral 
atom. Note that the “spin direction” nomenclature on panel (b) is rather crude: it does not reflect the 
difference between the entangled states s+ and s–.
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parameter Zef < Z = 2 rather than a fixed number. The physics behind this approach is that the electric 
charge density (r) = –e(r)2 of each electron forms a negatively charged “cloud” that reduces the 
effective charge of the nucleus, as seen by the other electron, to Zefe, with some Zef < 2. As a result, the 
single-particle wavefunction spreads further in space (with the scale r0 = rB/Zef  > rB/Z), while keeping its 
functional form (27) nearly intact. Since the kinetic energy T in the system’s Hamiltonian (25) is 
proportional to r0

–2  Zef
2, while the potential energy is proportional to r0

–1  Zef
1, we can write 

            
2g

ef

2g

2

ef
efg 22

)(










ZZ
U

Z
T

Z
ZE .    (8.32) 

 Now we can use the fact that according to Eq. (3.212), for any stationary state of a hydrogen-like 
atom (just as for the classical circular motion in the Coulomb potential), U = 2E, and hence T = E – 
U = –E.  Using Eq. (30), and adding the correction (31) to the potential energy, we get 

.
24

5
8

2
4)( H

ef

2

ef
efg E

ZZ
ZE


















 






     (8.33) 

This expression allows an elementary calculation of the optimal value of Zef, and the corresponding 
minimum of the function Eg(Zef): 

                eV 5.7785.2,6875.1
32

5
12)( Hmingoptef 






  EEZ .  (8.34) 

Given the trial state’s crudeness, this number is in surprisingly good agreement with the experimental 
value cited above, with a difference of the order of 1%. 

 Now let us return to the main topic of this section – the effects of the particle (in this case, 
electron) indistinguishability. As we have just seen, the ground-level energy of the helium atom is not 
affected directly by this fact; the situation is different for its excited states – even the lowest ones. The 
reasonably good precision of the perturbation theory, which we have seen for the ground state, tells us 
that we can base our analysis of wavefunctions (e) of the lowest excited state orbitals, on products like 
100(rk)nlm(rk’), with n > 1. To satisfy the fermion permutation rule, Pj = –1, we have to take the orbital 
factor of the state in either the symmetric or the antisymmetric form: 

            )()()()(
2

1
),( 21001211002e rrrrrr1  nlmnlm  ,   (8.35) 

with the proper total permutation asymmetry provided by the corresponding spin factor (18) or (21), so 
the upper/lower sign in Eq. (35) corresponds to the singlet/triplet spin state. Let us calculate the 
expectation values of the total energy of the system in the first order of the perturbation theory. Plugging 
Eq. (35) into the 0th-order expression  

                 21e2121e2
3

1
3)0(

e ,ˆˆ,* rrrr   hhrdrdE ,   (8.36) 

we get two groups of similar terms that differ only by the particle index. We can merge the terms of 
each pair by changing the notation as (r1  r, r2  r’ ) in one of them, and (r1  r’, r2  r) in the 
counterpart term. Using Eq. (25), and the mutual orthogonality of the wavefunctions 100(r) and nlm(r), 
we get the following result: 

Orthohelium 
and  
parahelium: 
orbital 
wavefunctions 
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 (8.37) 

It may be interpreted as the sum of eigenenergies of two separate single particles, one in the ground state 
100, and another in the excited state nlm – although actually the electron states are entangled. Thus, in 
the 0th order of the perturbation theory, the electrons’ entanglement does not affect their total energy. 

 However, the potential energy of the system also includes the interaction term Uint, which does 
not allow such separation. Indeed, in the 1st approximation of the perturbation theory, the total energy Ee 
of the system may be expressed as 100 + nlm + Eint

(1), with 

   ),(),(),( 21e21int21e2
3

1
3

int
)1(

int
* rrrrrr  UrdrdUE ,   (8.38) 

Plugging Eq. (35) into this result, using the symmetry of the function Uint with respect to the particle 
number permutation, and the same particle coordinate re-numbering as above, we get 

                ,exdir
)1(

int EEE       (8.39) 

with the following, deceivingly similar expressions for the two components of this sum/difference: 

     ,)()(),()()( 100int100
33

dir
** ''U'r'drdE nlmnlm rrrrrr     (8.40) 
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33

ex
** ''U'r'drdE nlmnlm rrrrrr     (8.41) 

 Since the single-particle orbitals can be always made real, both components are positive – or at 
least non-negative. However, their physics and magnitude are different. The integral (40), called the 
direct interaction energy, allows a simple semi-classical interpretation as the Coulomb energy of 
interacting electrons, each distributed in space with the electric charge density (r) = –e*(r)(r):14 
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where (r) are the electrostatic potentials created by the electron “charge clouds”:15  
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However, the integral (41), called the exchange interaction energy, evades a classical 
interpretation, and (as it is clear from its derivation) is the direct corollary of electrons’ 
indistinguishability. The magnitude of Eex is also very much different from Edir because the function 
under the integral (41) disappears in the regions where the single-particle wavefunctions 100(r) and 
nlm(r) do not overlap. This is in full agreement with the discussion in Sec. 1: if two particles are 
identical but well separated, i.e. their wavefunctions do not overlap, the exchange interaction disappears, 

14 See, e.g., EM Sec. 1.3, in particular Eq. (1.54). 
15 Note that the result for Edir correctly reflects the basic fact that a charged particle does not interact with itself, 
even if its wavefunction is quantum-mechanically spread over a finite space volume. Unfortunately, this is not 
true for some popular approximate theories of multiparticle systems – see Sec. 4 below. 

Exchange 
interaction 

energy 

Direct 
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energy 
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i.e. measurable effects of particle indistinguishability vanish. (In contrast, the integral (40) decreases 
with the growing separation of the electrons only slowly, due to their long-range Coulomb interaction.) 

 Figure 1b shows the structure of an excited energy level, with certain quantum numbers n > 1, l, 
and m, given by Eqs. (39)-(41). The upper, so-called parahelium16 level, with the energy 

      ,100exdir100para nlmnlm EEE       (8.44) 

corresponds to the symmetric orbital state and hence to the singlet-spin state (18), while the lower, 
orthohelium level, with 
         ,paraexdir100orth EEEE nlm       (8.45) 

corresponds to the degenerate triplet-spin state (21).  

 This degeneracy may be lifted by an external magnetic field, whose effect on the electron spins17 
is described by the following evident generalization of the Pauli Hamiltonian (4.163), 

                


B

e
e21field 2with  ˆˆˆˆ 

 
m

e
H ,BBB Sss ,  (8.46) 

where  

21 ˆˆˆ ssS  ,      (8.47) 

is the operator of the (vector) sum of the system of two spins.18 To analyze this effect, we need first to 
make one more detour, to address the general issue of spin addition. The main rule19 here is that in a full 
analogy with the net spin of a single particle, defined by Eq. (5.170), the net spin operator (47) of any 

system of two spins, and its component zŜ  along the (arbitrarily selected) z-axis, obey the same 
commutation relations (5.168) as the component operators, and hence have the properties similar to 
those expressed by Eqs. (5.169) and (5.175): 

             SMSMSMMSSMSSSMSS SSSSzSS  with  ,,,ˆ,,1,ˆ 22  , (8.48) 

where the ket vectors correspond to the coupled basis of joint eigenstates of the operators of S2 and Sz 
(but not necessarily all component operators – see again the Venn shown in Fig. 5.12 and its discussion, 
with the replacements S, L  s1,2 and J  S).  Repeating the discussion of Sec. 5.7 with these 
replacements, we see that in both the coupled and the uncoupled bases, the net magnetic number MS is 
simply expressed via those of the components 

16 This terminology reflects the historic fact that the observation of two different hydrogen-like spectra, 
corresponding to the opposite signs in Eq. (39), was first taken as evidence for two different species of 4He, which 
were called, respectively, the “orthohelium” and the “parahelium”. 
17 As we know from Sec. 6.4, the field also affects the orbital motion of the electrons, so the simple analysis based 
on Eq. (46) is strictly valid only for the s excited state (l = 0, and hence m = 0). However, the orbital effects of a 
weak magnetic field do not affect the triplet-level splitting we are analyzing now. 
18 Note that similarly to Eqs. (22) and (25), here the uppercase notation of the component spins is replaced with 
the lowercase notation, to avoid any possibility of confusion with the total spin of the system. 
19 Since we already know that the spin of a particle is physically nothing more than some (if specific) part of its 
angular momentum, the similarity of the properties (48) of the sum (47) of spins of different particles to those of 
the sum (5.170) of different spin components of the same particle it very natural, but still has to be considered as a 
new fact – confirmed by a vast body of experimental data. 
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   21 ssS mmM  . (8.49)  

However, the net spin quantum number S (in contrast to the Nature-given spins s1,2 of its elementary 
components) is not universally definite, and we may immediately say only that it has to obey the 
following analog of the relation  l – s   j  (l + s) discussed in Sec. 5.7: 

             2121 ssSss  .     (8.50) 

What exactly S is (within these limits), depends on the spin state of the system. 

 For the simplest case of two spin-½ components, each with s = ½ and ms = ½,  Eq. (49) gives 
three possible values of MS, equal to 0 and 1, while Eq. (50) limits the possible values of S to just either 
0 or 1. Using the last of Eqs. (48), we see that the possible combinations of the quantum numbers are  
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It is virtually evident that the singlet spin state s– belongs to the first class, while the simple (separable) 
triplet states  and  belong to the second class, with MS = +1 and MS = –1, respectively. However, 
for the entangled triplet state s+, evidently with MS = 0, the value of S is less obvious. Perhaps the easiest 
way to recover it20 to use the “rectangular diagram”, similar to that shown in Fig. 5.14, but redrawn for 
our case of two spins, i.e., with the replacements ml  (ms)1 = ½, ms  (ms)2 = ½ – see Fig. 2.  

  

 

 

 

 

 

 

 
 Just as at the addition of various angular momenta of a single particle, the top-right and bottom-
left corners of this diagram correspond to the factorable triplet states  and , which participate in 
both the uncoupled-representation and coupled-representation bases, and have the largest value of S, i.e. 
1. However, the entangled states s, which are linear combinations of the uncoupled-representation 
states  and , cannot have the same value of S, so for the triplet state s+, S has to take the value 
different from that (0) of the singlet state, i.e. 1. With that, the first of Eqs. (48) gives the following 
expectation values for the square of the net spin operator: 
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20 Another, a bit longer but perhaps more prudent way is to directly calculate the expectation values of 2Ŝ  for the 
states s, and then find S by comparing the results with the first of Eqs. (48); it is highly recommended to the 
reader as a useful exercise.

Fig. 8.2. The “rectangular diagram” 
showing the relation between the 
uncoupled-representation states (dots) 
and the coupled-representation states 
(straight lines) of a system of two spins-
½ – cf. Fig. 5.14. 
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Note that for the entangled triplet state s+, whose ket-vector (20) is a linear superposition of two kets of 
states with opposite spins, this result is highly counter-intuitive, and shows how careful we should be 
interpreting entangled quantum states. (As will be discussed in Chapter 10, quantum entanglement 
brings even more surprises for measurements.) 

 Now we may return to the particular issue of the magnetic field effect on the triplet state of the 
4He atom. Directing the z-axis along the field, we may reduce Eq. (46) to  

             


z
z

S
SH

ˆ
ˆˆ

Befield 2 BB    .    (8.53) 

Since all three triplet states (21) are eigenstates, in particular, of the operator zŜ , and hence of the 
Hamiltonian (53), we may use the second of Eqs. (48) to calculate their energy change simply as 
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This splitting of the “orthohelium” level is schematically shown in Fig. 1b.21 

 

8.3. Multiparticle systems 

 Leaving several other problems on two-particle systems for the reader’s exercise, let me proceed 
to the discussion of systems with N > 2 indistinguishable particles, whose list notably includes atoms, 
molecules, and condensed-matter systems. In this case, Eq. (7) for fermions is generalized as 

         Nk'kkk ,...,2,1, allfor ,ˆ
'   P ,   (8.55) 

where the operator '
ˆ

kkP permutes particles with numbers k and k’. As a result, for systems with non-

directly-interacting fermions, the Pauli principle forbids any state in which any two particles have 
similar single-particle wavefunctions. Nevertheless, it permits two fermions to have similar orbital 
wavefunctions, provided that their spins are in the singlet state (18), because this satisfies the 
permutation requirement (55). This fact is of paramount importance for the ground state of the systems 
whose Hamiltonians do not depend on spin because it allows the fermions to be in their orbital single-
particle ground states, with two electrons of the spin singlet sharing the same orbital state. Hence, for 
the limited (but very important!) goal of finding ground-state energies of multi-fermion systems with 
negligible direct interaction, we may ignore the actual singlet spin structure, and reduce the Pauli 

21 It is interesting that another very important two-electron system, the hydrogen (H2) molecule, which was briefly 
discussed in Sec. 2.6, also has two similarly named forms, parahydrogen and orthohydrogen. However, their 
difference is due to two possible (respectively, singlet and triplet) states of the system of two spins of the two 
hydrogen nuclei – protons, which are also spin-½ particles. The resulting ground-state energy of the parahydrogen 
is lower than that of the orthohydrogen by only ~15 meV per molecule – the difference lower than kBT at room 
temperature (~26 meV). As a result, at very low temperatures, hydrogen at equilibrium is dominated by 
parahydrogen, but at ambient conditions, the orthohydrogen is nearly three times more abundant, due to its triple 
nuclear spin degeneracy. Curiously, the theoretical prediction of this effect by W. Heisenberg (together with F. 
Hund) in 1927 was cited in his 1932 Nobel Prize award as the most noteworthy application of quantum theory. 
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exclusion principle to the rudimentary picture of single-particle orbital energy levels, each “occupied 
with two fermions”. 

 As a very simple example, let us find the ground energy of five fermions confined in a hard-wall, 
cubic-shaped 3D volume of side a, ignoring their direct interaction. From Sec. 1.7, we know the single-
particle energy spectrum of the system:  

                        


,2,1,,  and,
2
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222

0,,  zyxzyx nnn
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 , (8.56) 

so the lowest-energy states are:  

 – one ground state with {nx,ny,nz} = {1,1,1}, and energy 111= (12+12+12)0 = 30, and 

 – three excited states, with {nx,ny,nz} equal to either {2,1,1}, or {1,2,1}, or {1,1,2}, with equal 
energies 211= 121 = 112 = (22+12+12)0 = 60. 

According to the above simple formulation of the Pauli principle, each of these orbital energy levels can 
accommodate up to two fermions. Hence the lowest-energy (ground) state of the five-fermion system is 
achieved by placing two of them on the ground level 111 = 30, and the remaining three particles, in any 
of the degenerate “excited” states of energy 60, so the ground-state energy of the system is 

     .
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246332
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000g ma
E

      (8.57) 

 Moreover, in many cases, relatively weak interaction between fermions does not blow up such a 
simple quantum state classification scheme qualitatively, and the Pauli principle allows tracing the order 
of single-particle state filling. This is exactly the simple approach that was used in our discussion of 
atoms in Sec. 3.7. Unfortunately, it does not allow for a more specific characterization of the ground 
states of most atoms, in particular the evaluation of the corresponding values of the quantum numbers S, 
L, and J  that characterize the net angular momenta of the atom, and hence its response to an external 
magnetic field. These numbers are defined by relations similar to Eqs. (48), each for the corresponding 
vector operator of the net angular momenta: 

        
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111

ˆˆ,ˆˆ,ˆˆ jJlLsS ;    (8.58) 

note that these definitions are consistent with Eq. (5.170) applied both to the angular momenta sk, lk, and 
jk of each particle, and to the full vectors S, L, and J. When the numbers S, L, and J for a state are 
known, they are traditionally recorded in the form of the so-called Russell-Saunders symbols:22 

             ,12
J

S L       (8.59) 

where S and J are the corresponding values of these quantum numbers, while L is a capital letter, 
encoding the quantum number L – via the same spectroscopic notation as for single particles (see Sec. 
3.6): L  =  S for L = 0, L  = P for L = 1, L  = D for L = 2, etc. (The reason why the front superscript of 
the Russel-Saunders symbol lists 2S + 1 rather than just S, is that according to the last of Eqs. (48), it 

22 Named after Henry Russell and Frederick Saunders, whose pioneering (circa 1925) processing of experimental 
spectral-line data has established the very idea of the vector addition of the electron spins, described by the first of 
Eqs. (58). 
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shows the number of possible values of the quantum number MS, which characterizes the state’s spin 
degeneracy, and is called its multiplicity.) 

 For example, for the simplest, hydrogen atom (Z = 1), with its single electron in the ground 1s 
state, L = l = 0, S = s = ½, and J = S = ½, so its Russell-Saunders symbol is 2S1/2. Next, the discussion of 
the helium atom (Z = 2) in the previous section has shown that in its ground state L = 0 (because of the 
1s orbital state of both electrons), and S = 0 (because of the singlet spin state), so the total angular 
momentum also vanishes: J = 0. As a result, the Russell-Saunders symbol for this state is 1S0. The 
structure of the next atom, lithium (Z = 3) is also easy to predict, because, as was discussed in Sec. 3.7, 
its ground-state electron configuration is 1s22s1, i.e. includes two electrons in the “helium shell”, i.e. on 
the 1s orbitals (now we know that they are actually in an entangled singlet spin state), and one electron 
in the 2s state, of higher energy, also with zero orbital momentum, l = 0. As a result, the total L in this 
state is evidently equal to 0, and S is equal to ½, so J = ½, meaning that the Russell-Saunders symbol of 
the lithium’s ground state is 2P1/2. Even in the next atom, beryllium (Z = 4), with the ground-state 
configuration 1s22s2, the symbol is readily predictable, because none of its electrons has non-zero orbital 
momentum, giving L = 0. Also, each electron pair is in the singlet spin state, i.e. we have S = 0, so J = 0 
– the quantum number set described by the Russell-Saunders symbol 1S0 – just as for helium. 

 However, for the next, boron atom (Z = 5), with its ground-state electron configuration 1s22s22p1 
(see, e.g., Fig. 3.24), there is no obvious way to predict the result. Indeed, this atom has two pairs of 
electrons, with opposite spins, on its two lowest s-orbitals, giving zero contributions to the net S, L, and 
J.  Hence these total quantum numbers may be only contributed by the last, fifth electron with s = ½ and 
l = 1, giving S = ½, L = 1. As was discussed in Sec. 5.7 for the single-particle case, the vector addition 
of the angular momenta S and L enables two values of the quantum number J: either L + S = ³/2 or L – S 
= ½. Experiment shows that the difference between the energies of these two states of boron is very 
small (~2 meV), so at room temperature (with kBT  26 meV) they are both partly occupied, with the 
genuine ground state having J = ½, so its Russell-Saunders symbol is 2P1/2. 

   Such energy differences, which become larger for heavier atoms, are determined both by the 
Coulomb and spin-orbit23 interactions between the electrons. Their quantitative analysis is rather 
involved (see below), but the results tend to follow simple phenomenological Hund rules, with the 
following hierarchy: 

 Rule 1. For a given electron configuration, the ground state has the largest possible S, and hence 
the largest possible multiplicity 2S + 1. 

 Rule 2. For a given S, the ground state has the largest possible L. 

 Rule 3. For given S and L, J has its smallest possible value,  L – S , if the given sub-shell {n, l} 
is filled not more than by half, while in the opposite case, J  has its largest possible value, L + S.  

 Let us see how these rules work for the boron atom we have just discussed. For it, the Hund 
Rules 1 and 2 are satisfied automatically, while the sub-shell {n = 2, l = 1}, which can house up to 2(2l 
+ 1) = 6 electrons, is filled with just one 2p electron, i.e. by less than a half of the maximum value. As a 
result, Rule 3 predicts the ground state’s value J = ½, in agreement with experiment. Generally, for 

23 In light atoms, the spin-orbit interaction is so weak that it may be reasonably well described as an interaction of 
the total momenta L and S of the system – the so-called LS (or “Russell-Saunders”) coupling. On the other hand, 
in very heavy atoms, the interaction is effectively between the net momenta jk = lk + sk of the individual electrons 
– the so-called jj coupling. This is the reason why in such atoms the Hund Rule 3 may be violated. 
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lighter atoms, the Hund rules are well obeyed. However, the lower down the Hund rule hierarchy, the 
less “powerful” the rules are, i.e. the more often they are violated in heavier atoms. 

 Now let us discuss possible approaches to a quantitative theory of multiparticle systems – not 
only atoms. As was discussed in Sec. 1, if fermions do not interact directly, the stationary states of the 
system have to be the antisymmetric eigenstates of the permutation operator, i.e. to satisfy Eq. (55). To 
understand how such states may be formed from the single-electron ones, let us return for a minute to 
the case of two electrons, and rewrite Eq. (11) in the following compact form: 
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  (8.60a) 

where, in the last form, the direct product signs are just implied. In this way, the Pauli principle is 
mapped on the well-known property of matrix determinants: if any two columns of a matrix coincide, its 
determinant vanishes. This Slater determinant approach24 may be readily generalized to N fermions 
occupying any N  (not necessarily the lowest-energy) single-particle states , ’, ’’, etc: 
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 The Slater determinant form is extremely nice and compact – in comparison with direct writing 
of a sum of N! products, each of N ket factors. However, there are two major problems with using it for 
practical calculations: 

 (i) For the calculation of any bra-ket product (say, within the perturbation theory) we still need to 
spell out each bra- and ket-vector as a sum of component terms. Even for a limited number of electrons 
(say N ~ 102 in a typical atom), the number N! ~ 10160 of terms in such a sum is impracticably large for 
any analytical or numerical calculation. 

 (ii) In the case of interacting fermions, the Slater determinant does not describe the eigenvectors 
of the system; rather the stationary state is a superposition of such basis functions, i.e. of the Slater 
determinants – each for a specific selection of N states from the full set of single-particle states – that is 
generally larger than N. 

For atoms and simple molecules, whose filled-shell electrons may be excluded from an explicit 
analysis (by describing their effects, approximately, with effective pseudo-potentials), the effective 
number N may be reduced to a smaller number Nef of the order of 10, so Nef! < 106, and the Slater 
determinants may be used for numerical calculations – for example, in the Hartree-Fock theory – see the 

24 It was suggested in 1929 by John C. Slater. 

Slater 
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next section. However, for condensed-matter systems, such as metals and semiconductors, with the 
number of free electrons is of the order of 1023 per cm3, this approach is generally unacceptable, though 
with some smart tricks (such as using the crystal’s periodicity) it may be still used for some approximate 
(also mostly numerical) calculations. 

These challenges make the development of a more general theory that would not use particle 
numbers (which are superficial for indistinguishable particles to start with) a must for getting any final 
analytical results for multiparticle systems. The most effective formalism for this purpose, which avoids 
particle numbering at all, is called the second quantization.25 Actually, we have already discussed a 
particular version of this formalism, for the case of the 1D harmonic oscillator, in Sec. 5.4.  As a 
reminder, after the definition (5.65) of the “creation” and “annihilation” operators via those of the 
particle’s coordinate and momentum, we have derived their key properties (5.89), 

                   11ˆ,1ˆ 2/12/1 †  nnnannna ,     (8.61) 

where n are the stationary (Fock) states of the oscillator. This property allows an interpretation of the 
operators’ actions as the creation/annihilation of a single excitation with the energy 0 – thus justifying 
the operator names. In the next chapter, we will show that such excitation of an electromagnetic field 
mode may be interpreted as a massless boson with s = 1, called the photon. 

 In order to generalize this approach to arbitrary bosons, not appealing to a specific system, we 
may use relations similar to Eq. (61) to define the creation and annihilation operators. The definitions 
look simple in the language of the so-called Dirac states, described by ket-vectors 

          ,,, 21 jNNN ,     (8.62) 

where Nj is the state occupancy, i.e. the number of bosons in the single-particle state j. Let me 
emphasize that here the indices 1, 2, …j,… number single-particle states (including their spin parts) 
rather than particles. Thus the very notion of an individual particle’s number is completely (and for 
indistinguishable particles, very relevantly) absent from this formalism. Generally, the set of single-
particle states participating in the Dirac state may be selected arbitrarily, provided that it is full and 
orthonormal in the sense 

           ,
2211

2121 ,,,, 
jj

j
'
j'

''

N'NN'NN'NN...,NNN,NN    (8.63) 

though for systems of non- (or weakly) interacting bosons, using the stationary states of individual 
particles in the system under analysis is almost always the best choice.  

 Now we can define the particle annihilation operator as follows: 

           .,1,,,,,ˆ 21
2/1

21   jjjj NNNNNNNa    (8.64) 

Note that the pre-ket coefficient, similar to that in the first of Eqs. (61), guarantees that any attempt to 
annihilate a particle in an initially unpopulated state gives the non-existing (“null”) state: 

25 It was invented (first for photons and then for arbitrary bosons) by P. Dirac in 1927, and then (in 1928) 
adjusted for fermions by E. Wigner and P. Jordan. Note that the term “second quantization” is rather misleading 
for the non-relativistic case discussed here, but finds certain justification in the quantum field theory. 
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           0,0,,ˆ 21 jj NNa ,     (8.65) 

where the symbol 0j means zero occupancy of the jth state. According to Eq. (63), an equivalent way to 
write Eq. (64) is 

   1,2211

2/1
2121 ,...,,,.ˆ,...,,, 

jj
jjj

'
j

''

NN'N'NN'NNNNNaNNN   (8.66) 

According to the general Eq. (4.65), the matrix element of the Hermitian-conjugate operator †ˆ ja  is 

                 

  ,1

,1,,,,,,

,,,ˆ,,,,,,,,ˆ,,,

,2211

2/1

,2211

2/1

21

2/1

21

21212121

1

1

*†







jj
j

jj

'
j

'
j

'''
jj

'
j

''
jjjj

'
j

''

N'NN'NN'N

N'NN'NN'N

N

NN,NNNNNN

N,NNaNNNNNNaN,NN













  (8.67) 

meaning that 

       ,,1,,,1,,,,ˆ 21
2/1

21
†   jjjj NNNNNNNa    (8.68) 

in total compliance with the second of Eqs. (61). In particular, this particle creation operator allows a 
description of the generation of a single particle from the vacuum (not null!) state  0, 0, …: 

         ,0,1,,0,00,,0,,0,0ˆ†  jjja      (8.69) 

and hence a product of such operators may create, from vacuum, a multiparticle state with an arbitrary 
set of occupancies: 26 

         .,,!!,0,0 ˆˆˆˆˆˆ 21
2/1

21

 

222

 

111

times

†††

times

†††

21






 NNNNaaaaaa

NN

   (8.70) 

 Next, combining Eqs. (64) and (68), we get 

            ,,,,,,,,ˆˆ 2121
†  jjjjj NNNNNNNaa     (8.71) 

so, just as for the particular case of the harmonic-oscillator excitations, the operator  

         jjj aaN ˆˆˆ †       (8.72) 

“counts” the number of particles in the jth single-particle state, while preserving the whole multiparticle 
state. Acting on a state by the creation-annihilation operators in the reverse order, we get 

         .,,,,1,,,,ˆˆ 2121
†  jjjjj NNNNNNNaa     (8.73) 

Eqs. (71) and (73) show that for any state of a multiparticle system (which may be represented as a 
linear superposition of Dirac states with all possible sets of  numbers Nj), we may write 

26 The resulting Dirac state is not an eigenstate of every multiparticle Hamiltonian. However, we will see below 
that for a set of non-interacting particles it is a stationary state, so the full set of such states may be used as a good 
basis in perturbation theories of systems of weakly interacting particles. 
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       ,ˆˆ,ˆˆˆˆˆ ††† Iaaaaaa jjjjjj 



     (8.74) 

again in agreement with what we had for the 1D oscillator – cf. Eq. (5.68). According to Eqs. (63), (64), 
and (68), the creation and annihilation operators corresponding to different single-particle states do 
commute, so Eq. (74) may be generalized as 

                ''
ˆˆ,ˆ †

jjjj Iaa 



 ,     (8.75) 

while similar operators commute, regardless of which states they act upon:  

         0̂ˆ,ˆˆ,ˆ †† 









j'jj'j aaaa .     (8.76) 

 As was mentioned earlier, a major challenge in the Dirac approach is to rewrite the Hamiltonian 
of a multiparticle system, that naturally carries particle numbers k (see, e.g., Eq. (22) for k = 1, 2), in the 
second quantization language, in which there are no these numbers. Let us start with single-particle 
components of such Hamiltonians, i.e. operators of the type 

         



N

k
kfF

1

ˆˆ .      (8.77) 

where all N operators kf̂  are similar, besides that each of them acts on one specific (kth) particle, and N 

is the total number of particles in the system, which is evidently equal to the sum of single-particle state 
occupancies: 
        .

j
jNN       (8.78) 

The most important examples of such operators are the kinetic energy of N similar single particles and 
their potential energy in an external field: 

     



N

k

k

m

p
T

1

2

2

ˆˆ ,    .)(ˆˆ
1




N

k
kuU r     (8.79) 

 For bosons, instead of the Slater determinant (60), we have to write a similar expression, but 
without the sign alternation at permutations: 

          









P N

j
j "'

N

NN
NN







operands 

2/1

1
1 !

!!
,,,  ,   (8.80) 

sometimes called the permanent. Note again that the left-hand side of this relation is written in the Dirac 
notation (that does not use particle numbering), while on its right-hand side, just in formulas of Secs. 1 
and 2, the particle numbers are coded with the positions of the single-particle states inside the state 
vectors, and the summation is over all different permutations of the states in the ket – cf. Eq. (10). 
(According to the basic combinatorics,27 there are N!/(N1!Nj!) such permutations, so the front 
coefficient in Eq. (80) ensures the normalization of the Dirac state, provided that the single-particle 

27 See, e.g., MA Eq. (2.3). 
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states , ’, are normalized.) Let us use Eq. (80) to spell out the following matrix element for a 
system with (N –1) particles: 

      
  ,ˆ

)!1(

)!1()!1(!

,,,1ˆ,...1,,

1 1

1

1

2/1'1   
 










NP NP

N

k
kj'j

jj

j'jj'j

"'f"'NN
N

NNN

NNFNN







 (8.81) 

where all non-specified occupation numbers in the corresponding positions of the bra- and ket-vectors 

are equal to each other. Each single-particle operator kf̂  participating in the operator sum acts on the 

bra- and ket-vectors of states only in one (kth) position, giving the following result, independent of the 
position number: 
            jj'j'jj'kj fff

kk
  ˆˆ

position in position n ththi
.  (8.82) 

Since in both permutation sets participating in Eq. (81), with (N – 1) state vectors each, all positions are 
equivalent, we can fix the position (say, take the first one) and replace the sum over k with the 
multiplication by of the bracket by (N – 1). The fraction of permutations with the necessary bra-vector 
(with number j) in that position is Nj/(N – 1), while that with the necessary ket-vector (with number j’) 
in the same position is Nj’/(N – 1). As a result, the permutation sum in Eq. (81) reduces to 

                       ,
11

)1(
2 2

'
'  

 


NP NP
jj

jj "''f
N

N

N

N
N      (8.83) 

where our specific position k is now excluded from both the bra- and ket-vector permutations. Each of 
these permutations now includes only (Nj – 1) states j and (Nj’ – 1) states j’, so using the state 
orthonormality, we finally arrive at a very simple result: 

          

  .

)!1()!1(!

)!2(

11
)1(

)!1(

)!1()!1(!

,,1ˆ,1,,

2/1

'1
'

'2/11

jj'j'j
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jj
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j'jj'j

fNN

NNN

N
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N

N

N

N
NNN

N

NNN

NNFNN






















 (8.84) 

 On the other hand, let us calculate the matrix elements of the following operator: 

        
',

ˆ†ˆ
jj

j'jjj' aaf .      (8.85) 

A direct application of Eqs. (64) and (68) shows that the only non-vanishing elements are 

           jj'jjj'jj'jjjj'j fNNNNaafNN 2/1
'' ,,,1ˆ†ˆ,1,,   .  (8.86) 

But this is exactly the last form of Eq. (84), so in the basis of Dirac states, the operator (77) may be 
represented as  

                
j'j

j'jjj' aafF
,

ˆˆˆ † .     (8.87) 
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 This beautifully simple relation is the key formula of the second quantization theory and is 
essentially the Dirac-representation analog of Eq. (4.59) of the single-particle quantum mechanics. Each 
term of the sum (87) may be described by a very simple mnemonic rule: for each pair of single-particle 
states j and j’, first, annihilate a particle in the state j’, then create one in the state j, and finally weigh the 
result with the corresponding single-particle matrix element. One of the corollaries of Eq. (87) is that the 
expectation value of an operator whose eigenstates coincide with the Dirac states is  

       ,,ˆ, 
j

jjjjj NfNFNF      (8.88) 

with an evident physical interpretation as the sum of single-particle expectation values over all states, 
weighed by the occupancy of each state. 

 Proceeding to fermions, which have to obey the Pauli principle, we immediately notice that any 
occupation number Nj may only take two values, 0 or 1. To account for that, and also make the key 
relation (87) valid for fermions as well, the creation-annihilation operators are defined by the following 
relations: 

        ,,0,,,)1(,1,,,ˆ,0,0,,,ˆ 212121
)1,1(  jjjjj NNNNaNNa j  (8.89) 

        ,0,1,,,ˆ,,1,,,)1(,0,,,ˆ 212121
†)1,1(†    jjjjj NNaNNNNa j  (8.90) 

where the symbol (J, J’) means the sum of all occupancy numbers in the states with numbers from J to 
J’, including the border points: 

                ,),( 



J'

Jj
jNJ'J      (8.91) 

so the sum participating in Eqs. (89)-(90) is the total occupancy of all states with the numbers below j. 
(The states are supposed to be numbered in a fixed albeit arbitrary order.)  As a result, these relations 
may be conveniently summarized in the following verbal form: if an operator replaces the jth state’s 
occupancy with the opposite one (1 with 0 and vice versa), it also changes the sign before the result if 
(and only if) the total number of particles in the states with j’ < j  is odd.  

 Let us use this (perhaps somewhat counter-intuitive) sign alternation rule to spell out the ket-
vector 11 of a completely filled two-state system, formed from the vacuum state 00 in two different 
ways. If we start by creating a fermion in state 1, we get 

             1,11,1)1(0,1ˆ0,0ˆˆ,0,10,1)1(0,0ˆ 1
212

0
1

††††  aaaa ,  (8.92a) 

while if the operator order is different, the result is 

    ,1,11,1)1(1,0ˆ0,0ˆˆ,1,01,0)1(0,0ˆ 0
121

0
2

††††  aaaa   (8.92b) 

so  

     00,0ˆˆˆˆ ††††
1221 




  aaaa .     (8.93) 

Since the action of any of these operator products on any initial state rather than the vacuum one also 
gives the null ket, we may write the following operator equality: 
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      .0̂ˆ,ˆˆˆˆˆ ††††††
211221 




 aaaaaa     (8.94) 

It is straightforward to check that this result is valid for Dirac vectors of an arbitrary length, and does 
not depend on the occupancy of other states, so we may generalize it as 

             0̂ˆ,ˆˆ,ˆ †† 














j'jj'j aaaa ;     (8.95) 

these equalities hold for j = j’ as well. On the other hand, an absolutely similar calculation shows that 
the mixed creation-annihilation commutators do depend on whether the states are different or not:28 

                jj'j'j Iaa ̂ˆ,ˆ † 






 .     (8.96) 

These equations look very much like Eqs. (75)-(76) for bosons, “only” with the replacement of 
commutators with anticommutators. Since the core laws of quantum mechanics, including the operator 
compatibility (Sec. 4.5) and the Heisenberg equation (4.199) of operator evolution in time, involve 
commutators rather than anticommutators, one might think that all the behavior of bosonic and 
fermionic multiparticle systems should be dramatically different.  However, the difference is not as big 
as one could expect; indeed, a straightforward check shows that the sign factors in Eqs. (89)-(90) just 
compensate those in the Slater determinant, and thus make the key relation (87) valid for the fermions as 
well. (Indeed, this is the very goal of the introduction of these factors.)  

To illustrate this fact on the simplest example, let us examine what the second quantization 
formalism says about the dynamics of non-interacting particles in the system whose single-particle 
properties we have discussed repeatedly, namely two nearly similar potential wells, coupled by 
tunneling through the separating potential barrier – see, e.g., Figs. 2.21 or 7.4. If the coupling is so small 
that the states localized in the wells are only weakly perturbed, then in the basis of these states, the 
single-particle Hamiltonian of the system may be represented by the 22 matrix (5.3). With the energy 
reference selected in the middle between the energies of unperturbed states, the coefficient b vanishes, 
this matrix is reduced to 

             ,with  ,h yx
z

z iccc
cc

cc











 


σc    (8.97) 

and its eigenvalues to 

      .with  ,
2/1222

zyx ccccc  c    (8.98) 

Using the key relation (87) together with Eq. (97), we may represent the Hamiltonian of the whole 
system of particles in terms of the creation-annihilation operators: 

      ,ˆ†ˆˆ†ˆˆ†ˆˆ†ˆˆ
22122111 aacaacaacaacH zz       (8.99) 

where †
2,1â and 2,1â are the operators of creation and annihilation of a particle in the corresponding 

potential well. (Again, in the second quantization approach the particles are not numbered at all!) As 

28 A by-product of this calculation is proof that the operator defined by Eq. (72) counts the number of particles Nj 
(now equal to either 1 or 0), just as it does for bosons.   
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Eq. (72) shows, the first and the last terms of the right-hand side of Eq. (99) describe the particle 
energies 1,2 = cz in uncoupled wells, 

                  ,ˆˆˆˆ,ˆˆˆˆ 2222211111
†† NNcaacNNcaac zzzz      (8.100) 

while the sum of the middle two terms is the second-quantization description of tunneling between the 
wells.  

 Now we can use the general Eq. (4.199) of the Heisenberg picture to spell out the equations of 
motion of the creation-annihilation operators. For example, 

         .ˆ†ˆ,ˆˆ†ˆ,ˆˆ†ˆ,ˆˆ†ˆ,ˆˆ,ˆˆ 22112121111111 















  aaacaaacaaacaaacHaai zz

  (8.101) 

Since the Bose and Fermi operators satisfy different commutation relations, one could expect the right-
hand side of this equation to be different for bosons and fermions. However, it is not so! Indeed, all 
commutators on the right-hand side of Eq. (101) have the following form: 

               .ˆˆˆˆˆˆˆˆ,ˆ †††
jj"j'j"j'jj"j'j aaaaaaaaa 



     (8.102) 

As Eqs. (74) and (94) show, the first pair product of operators on the right-hand side may be recast as 

                     ,ˆˆˆˆˆ ††
jj'jj'j'j aaIaa         (8.103) 

where the upper sign pertains to bosons and the lower one to fermions, while according to Eqs. (76) and 
(95), the very last pair product in Eq. (102) is 

               ,ˆˆˆˆ j"jjj" aaaa        (8.104) 

with the same sign convention. Plugging these expressions into Eq. (102), we see that regardless of the 
particle type, there is a universal (and generally very useful) commutation relation 

             jj'j"j"j'j aaaa ˆˆˆ,ˆ † 



 ,     (8.105) 

valid for both bosons and fermions. As a result, the Heisenberg equation of motion for operator 1â , and 

the equation for 2â (which may be obtained absolutely similarly), are also universal:29 

                  
.ˆˆˆ

,ˆˆˆ

212

211

acacai

acacai

z

z












     (8.106) 

This is a system of two coupled linear differential equations, which is similar to the equations for 
the c-number probability amplitudes of single-particle wavefunctions of a two-level system – see, e.g., 
Eq. (2.201) and the model solution of Problem 4.25. Their general solution is a linear superposition 

                      .expˆ)(ˆ )(
2,12,1 




 tta       (8.107) 

29 Equations of motion for the creation operators 
†ˆ 2,1a are just the Hermitian conjugates of Eqs. (106), and do not 

add any new information about the system’s dynamics. 
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As usual, in order to find the exponents , it is sufficient to plug a particular 
solution  tta  expˆ)(ˆ 2,12,1   into Eq. (106) and require that the determinant of the resulting linear 

system for the “coefficients” (actually, time-independent operators) 2,1̂  equals zero. This gives us the 

following characteristic equation 

        0















icc

cic

z

z ,     (8.108) 

with two roots  = i/2, where   2c/ – cf. Eq. (5.20). Now plugging each of the roots, one by one, 
into the system of equations for 2,1̂ , we can find these operators, and hence the general solution of 

system (98) for arbitrary initial conditions.  

Let us consider the simple case cy = cz = 0 (meaning in particular that the wells are exactly 
aligned, see Fig. 2.21), so /2  c = cx; then the solution of Eq. (106) is 

             .
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  (8.109) 

Multiplying the first of these relations by its Hermitian conjugate, and ensemble-averaging the result, we 
get 
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  (8.110) 

Let the initial state of the system be a single Dirac state, i.e. have a definite number of particles 
in each well; in this case, only the two first terms on the right-hand side of Eq. (110) are different from 
zero, giving:30  

        .
2

sin)0(
2

cos)0( 2
2

2
11

t
N

t
NN





     (8.111) 

For one particle, initially placed in either well, this gives us our old result (2.181) describing the usual 
quantum oscillations of the particle between two wells with the frequency . However, Eq. (111) is 
valid for any set of initial occupancies; let us use this fact. For example, starting from two particles, with 
initially one particle in each well, we get N1 = 1, regardless of time. So, the occupancies do not 
oscillate, and no experiment may detect the quantum oscillations, though their frequency  is still 
formally present in the time evolution equations. This fact may be interpreted as the simultaneous 
quantum oscillations of two particles between the wells, exactly in anti-phase. For bosons, we can go on 
to even larger occupancies by preparing the system, for example, in the state with N1(0) = N, N2(0) = 0. 
The result (111) says that in this case, we see that the quantum oscillation amplitude increases N-fold; 
this is a particular manifestation of the general fact that bosons can be (and in time, stay) in the same 
quantum state. On the other hand, for fermions we cannot increase the initial occupancies beyond 1, so 
the largest oscillation amplitude we can get is if we initially fill just one well. 

30 For the second well’s occupancy, the result is complementary, N2(t) = N1(0) sin2t + N2(0) cos2t, giving a 
good sanity check: N1(t) + N2(t) = N1(0) + N2(0) = const. 
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 The Dirac approach may be readily generalized to more complex systems. For example, Eq. (99) 
implies that an arbitrary system of potential wells with weak tunneling coupling between the adjacent 
wells may be described by the Hamiltonian 

            
 

  
j j'j

j'jjj'jjj aaaaH ,h.c. ˆˆˆˆˆ
,

††      (8.112) 

where the symbol {j, j’} means that the second sum is restricted to pairs of next-neighbor wells – see, 
e.g., Eq. (2.203) and its discussion. Note that this Hamiltonian is still a quadratic form of the creation-
annihilation operators, so the Heisenberg-picture equations of motion of these operators are still linear, 
and its exact solutions, though possibly cumbersome, may be studied in detail. Due to this fact, the 
Hamiltonian (112) is widely used for the study of some phenomena, for example, the very interesting 
Anderson localization effects, in which a random distribution of the localized-site energies j prevents 
tunneling particles, within a certain energy range, from spreading to unlimited distances.31  

  

8.4. Perturbative approaches 

 The situation becomes much more difficult if we need to account for explicit interactions 
between the particles. Let us assume that the interaction may be reduced to that between their pairs (as 
in the case at the Coulomb forces and most other interactions32), so it may be described by the following 
“pair-interaction” Hamiltonian  

                  ,),(ˆ
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'  
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intint 




N

kk
kk

k'kuU rr      (8.113) 

with the front factor of ½ compensating the double-counting of each particle pair by this double sum. 
The translation of this operator to the second-quantization form may be done absolutely similarly to the 
derivation of Eq. (87), and gives a  similar (though naturally more involved) result 

       ,ˆˆˆˆ
2

1ˆ
,,,

int
††

l'lj'j
ll'j'jjj'll' aaaauU      (8.114) 

where the two-particle matrix elements are defined similarly to Eq. (82): 

         .ˆint l'lj'jjj'll' uu       (8.115) 

The only new feature of Eq. (114) is a specific order of the indices of the creation operators. Note the 
mnemonic rule of writing this expression, similar to that for Eq. (87): each term corresponds to moving 
a pair of particles from states l and l’ to states j’ and j (in this order!) factored with the corresponding 
two-particle matrix element (115). 

 However, with the account of this term, the resulting Heisenberg equations of the time evolution 
of the creation/annihilation operators become nonlinear, so solving them and calculating observables 
from the results is usually impossible, at least analytically. The only case when some general results 

31 For a review of the 1D version of this problem, see, e.g., J. Pendry, Adv. Phys. 43, 461 (1994). 
32 A simple but important example from the condensed matter theory is the so-called Hubbard model, in which 
particle repulsion limits their number on each of localized sites to either 0, or 1, or 2, with negligible interaction of 
the particles on different sites – though the next-neighbor sites are still connected by tunneling, as in Eq. (112). 
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may be obtained is the weak interaction limit. In this case, the unperturbed Hamiltonian contains only 
single-particle terms such as (79), and we can always (at least as a matter of principle :-) find such a 
basis of orthonormal single-particle states j in which that Hamiltonian is diagonal in the Dirac 
representation: 
              

j
jjj aaH ˆˆˆ †)0()0(  .     (8.116) 

Now we can use Eq. (6.14), in this basis, to calculate the interaction energy as a first-order perturbation: 
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 (8.117) 

Since, according to Eq. (63), the Dirac states with different occupancies are orthogonal, the last long 
bracket is different from zero only for three particular subsets of its indices: 

 (i) j  j’, l = j, and l’ = j’. In this case, the four-operator product in Eq. (117) is equal to 

,ˆˆˆˆ ††
jj'j'j aaaa and applying the proper commutation rules twice, we can bring it to the so-called normal 

ordering, with each creation operator standing to the right of the corresponding annihilation operator, 
thus forming the particle number operator (72): 

   j'jj'j'jjj'j'jjj'jj'jjj'j'j NNaaaaaaaaaaaaaaaa ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ †††††††† 




 , (8.118) 

with a similar sign of the final result for bosons and fermions. 

 (ii) j  j’, l = j’, and l’ = j. In this case, the four-operator product is equal to j'jj'j aaaa ˆˆˆˆ †† , and 

bringing it to the form j'j NN ˆˆ  requires only one commutation: 

        j'jj'j'jjj'j'jjj'jj'j NNaaaaaaaaaaaa ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ †††††† 




 ,   (8.119) 

with the upper sign for bosons and the lower sign for fermions. 

 (iii) All indices are equal to each other, giving jjjjll'j'j aaaaaaaa ˆˆˆˆˆˆˆˆ ††††  . For fermions, such an 

operator (that “tries” to create or to kill two particles in a row, in the same state) immediately gives the 
null vector. In the case of bosons, we may use Eq. (74) to commute the internal pair of operators, getting 

       )ˆˆ(ˆˆˆˆˆˆˆˆˆˆ †††† INNaIaaaaaaa jjjjjjjjjj 




  .   (8.120) 

Note, however, that this expression formally covers the fermion case as well (always giving zero). As a 
result, Eq. (117) may be rewritten in the following universal form: 
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 The corollaries of this important result are very different for bosons and fermions. In the former 
case, the last term usually dominates, because the matrix elements (115) are typically the largest when 
all basis functions coincide. Note that this term allows a very simple interpretation: the number of the 
diagonal matrix elements it sums up for each state (j) is just the number of interacting particle pairs 
residing in that state.  

In contrast, for fermions, the last term is zero, and the interaction energy is proportional to the 
difference between the two terms inside the first parentheses. To spell them out, let us consider the case 
when there is no direct spin-orbit interaction. Then the vectors j of the single-particle state basis may 
be represented as direct products  o j  m j  of their orbital and spin-orientation parts. (Here, for the 
brevity of notation, I am using m instead of  ms.) For spin-½ particles, including electrons, mj may equal 
only either +½ or –½; in this case, the spin part of the first matrix element proportional to ujj’jj’ equals  

       m'mm'm  ,     (8.122) 

where, as in the general Eq. (115), the position of a particular state vector in each direct product encodes 
the particle’s number. Since the spins of different particles are defined in different Hilbert spaces, we 
may swap their state vectors to get 

             1
21
 m'm'mmm'mm'm ,   (8.123) 

for any pair of j and j’. On the other hand, the second matrix element, ujj’j’j, is factored as  

          mm'mm'm'mmm'm'm 
21

.   (8.124) 

In this case, it is convenient to rewrite Eq. (121) in the coordinate representation, by using 
single-particle wavefunctions called spin-orbitals  

               
jjj mo  rrr  )( .    (8.125) 

They differ from the spatial parts of the usual orbital wavefunctions of the type (4.233) only in that their 
index j should be understood as the set of the orbital-state and the spin-orientation indices.33 Also, due to 
the Pauli-principle restriction of the numbers Nj to either 0 or 1, Eq. (121) may be also rewritten without 
the explicit occupancy numbers, with the understanding that the summation is extended only over the 
pairs of occupied states. As a result, it becomes 
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  (8.126) 

In particular, for a system of two electrons, we may limit the summation to just two states (j, j’ = 
1, 2). As a result, we return to Eqs. (39)-(41), with the bottom (minus) sign in Eq. (39), corresponding to 
the triplet spin states. Hence, Eq. (126) may be considered as the generalization of the direct and 
exchange interaction picture to an arbitrary number of orbitals and an arbitrary total number N of 

33 The spin-orbitals (125) are also close to spinors (13), besides that the former definition takes into account that 
the spin s of a single particle is fixed, so the spin-orbital may be indexed by the spin’s orientation m  ms only. 
Also, if an orbital index is used, it should be clearly distinguished from j, i.e. the set of the orbital and spin 
indices. This is why I believe that the frequently met notation of spin-orbitals as j,s(r) may lead to confusion.  
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electrons. Note, however, that this formula cannot correctly describe the energy of the singlet spin 
states, corresponding to the plus sign in Eq. (39), and also of the entangled triplet states.34 The reason is 
that the description of entangled spin states, given in particular by Eqs. (18) and (20), requires linear 
superpositions of different Dirac states. (Proof of this fact is left for the reader’s exercise.)  

Now comes a very important fact: the approximate result (126), added to the sum of unperturbed 
energies j

(0), equals the sum (over j) of exact eigenenergies of the so-called Hartree-Fock equation:35 
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    (8.127) 

where u(r) is the external field’s potential acting on each particle separately – see the second of Eqs. 
(79). An advantage of this equation in comparison with Eq. (126) is that it allows the (approximate) 
calculation of not only the energy spectrum of the system but, simultaneously, a more exact calculation 
of the corresponding spin-orbitals j(r), which takes into account the electron-electron interaction. Of 
course, Eq. (127) describes a system of mutually coupled integro-differential equations. There are, 
however, efficient methods of numerical solution of such systems, typically based on iterative 
approaches. One more important practical trick is the exclusion of the filled internal electron shells (see 
Sec. 3.7) from the explicit calculations because the shell states are virtually unperturbed by the valence 
electrons involved in typical atomic phenomena and chemical reactions. In this approach, the Coulomb 
field of the shells, described by fixed pre-calculated pseudo-potentials, is added to that of the nuclei. 
This approach dramatically cuts the computing resources necessary for systems of relatively heavy 
atoms, enabling a pretty accurate simulation of electronic and chemical properties of rather complex 
molecules, with thousands of electrons.36 As a result, the Hartree-Fock approximation has become the 
de facto baseline of all so-called ab initio (“first-principle”) calculations in the very important field of 
quantum chemistry.37  

 In departures from this baseline, there are two opposite trends. For larger accuracy (and typically 
smaller systems), several “post-Hartree-Fock methods”, notably including the configuration interaction 
method,38 that are more complex but may provide higher accuracy, have been developed. There is also a 
strong opposite trend of extending such ab initio (“first-principle”) methods to larger systems while 
sacrificing some of the results’ accuracy and reliability. The ultimate limit of this trend is applicable 
when the single-particle wavefunction overlaps are small and hence the exchange interaction is 

34 Indeed, due to the condition j’ j, and Eq. (124), the calculated negative exchange interaction is limited to 
electron state pairs with the same spin direction – such as the factorable triplet states ( and ) of a two-
electron system, in which the contribution of the Eex given by Eq. (41), to the total energy is also negative. 
35 This equation was suggested in 1929 by Douglas Hartree for the direct interaction and extended to the 
exchange interaction by Vladimir Fock in 1930. It may be derived by variational methods, but to verify its 
compliance with Eq. (126), it is sufficient to multiply all terms of Eq. (127) by *j(r), integrate them over all r-
space (so the right-hand side would give j), and then sum the single-particle energies over all occupied states j. 
36 For condensed-matter systems, this and other computational methods are applied to single elementary 
spatial cells, with a limited number of electrons in them, using cyclic boundary conditions. 
37 See, e.g., A. Szabo and N. Ostlund, Modern Quantum Chemistry, Revised ed., Dover, 1996. 
38 That method, in particular, allows the calculation of proper linear superpositions of the Dirac states (such as the 
entangled states for N = 2, discussed above) which are missing in the generic Hartree-Fock approach. 
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negligible. In this limit, the last term in the square brackets in Eq. (127) may be ignored and the 
multiplier j(r) taken out of the integral, resulting in the  Schrödinger equation for a single particle but 
in a self-consistent effective potential: 

         
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
jj'

j'j r'd''u'uuuu 3
int'dirdiref )(),()()(),()()( * rrrrrrrr  .  (8.128) 

This is the so-called Hartree approximation – which gives reasonable results for some systems,39 
especially those with low electron density.  

 However, in dense electron systems (such as typical atoms, molecules, and condensed matter), 
the exchange interaction described by the second term in the square brackets of Eqs. (126)-(127) may be 
as high as ~30% of the direct interaction, and frequently cannot be ignored. The tendency to take this 
interaction in the simplest possible form is currently dominated by the so-called Density-Functional 
Theory,40 universally known by its acronym DFT. In this approach, the equation solved for each 
eigenfunction j(r) is a Schrödinger-like Kohn-Sham equation  
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and n(r) is the total electron density in a particular point, calculated self-consistently as 

            .)()()( *
j

jjn rrr       (8.131) 

The most important feature of the Kohn-Sham Hamiltonian is the simplified description of the 
exchange and correlation effects by the effective exchange-correlation potential uxc(r). This potential is 
calculated in various approximations, most of them valid only in the limit when the number of electrons 
in the system is very high. The simplest of them (proposed by Kohn et al. in the 1960s) is the Local 
Density Approximation (LDA) in which the effective exchange potential at each point r is a function 
only of the electron density n at the same point, taken from the theory of a uniform gas of free 
electrons.41 However, for many tasks of quantum chemistry, the accuracy given by the LDA is 
insufficient because inside molecules, the density n typically changes very fast, so the DFT has become 
widely accepted in that field only after the introduction, in the 1980s, of more accurate though more 
cumbersome models for uxc(r), notably the so-called Generalized Gradient Approximations (GGAs). 

Due to its relative simplicity, the so-modified DFT enables calculation of some properties of much 

39 An example of the Hartree approximation is the Thomas-Fermi model of heavy atoms (with Z >> 1), in which 
the atom’s electrons, at each distance r from the nucleus, are treated as an ideal, uniform Fermi gas, with a certain 
density n(r) corresponding to the local value uef(r), but a global value of their highest full single-particle energy,   
= 0, to ensure the equilibrium. (The analysis of this model is left for the reader’s exercise.) 
40 It had been developed by Walter Kohn and his associates (notably Pierre Hohenberg) in 1965-66, and 
eventually (in 1998) was marked with a Nobel Prize in Chemistry for W. Kohn. 
41 Just for the reader’s reference: for a uniform, degenerate Fermi-gas of electrons (with the Fermi energy F >> 
kBT), the most important, exchange part ux of uxc may be calculated analytically: ux = –(3/4)e2kF/40, where the 
Fermi momentum kF = (2meF)1/2/ is defined by the electron density: n = 2(4/3)kF

3/(2)3  kF
3/32.  
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larger systems than the methods based on the Hartree-Fock theory, with the same computing resources 
and reasonable precision. As a result, it has become a very popular tool for ab initio calculations. This 
popularity is enhanced by the availability of several advanced DFT software packages, some of them in 
the public domain.  

Please note, however, that despite this undisputable success, this approach has its problems. 
From my personal point of view, the most offensive of them is the implicit assumption of unphysical 
Coulomb interaction of an electron with itself – by dropping, on the way from Eq. (128) to Eq. (130), 
the condition j’  j at the calculation of udir

KS). As a result, all the available DFT packages I am aware of 
are either unable to account for some charge transfer effects or require substantial artificial tinkering.42  

Unfortunately, because of a lack of time/space, for details I have to refer the interested reader to 
specialized literature.43   

 

8.5. Quantum computation and cryptography 

 Now I have to review the emerging fields of quantum computation and cryptography.44 These 
fields are currently the subject of intensive research and development efforts, which have already 
brought, besides much hype, some results of general importance. My coverage will focus on these 
results, referring the reader interested in details to special literature.45 Because of the very active stage of 
the field, the style of this section is closer to a brief literature review than to a textbook’s section. 

Presently, most work on quantum computation and encryption is based on systems of spatially 
separated (and hence distinguishable) two-level systems – in this context, universally called qubits.46 

Due to this distinguishability, the issues that were the focus of the previous sections of this chapter, 
including the second quantization approach, are irrelevant here. On the other hand, systems of qubits 
have some interesting properties that have not been discussed in this course yet.  

First of all, a system of N >> 1 qubits may contain much more information than the same number 
of N classical bits.  Indeed, according to the discussions in Chapter 4 and Sec. 5.1, an arbitrary pure state 
of a single qubit may be represented by its ket vector (4.37) – see also Eq. (5.1): 

     22111
uu

N
 


,     (8.132) 

42 For just a few examples, see N. Simonian et al., J. Appl. Phys. 113, 044504 (2013); M. Medvedev et al., 
Science 335, 49 (2017); A. Hutama et al., J. Phys. Chem. C 121, 14888 (2017). 
43 See, e.g., either the monograph by R. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, 
Oxford U. Press, 1994, or the later textbook J. A. Steckel and D. Sholl, Density Functional Theory: Practical 
Introduction, Wiley, 2009. A popular review and references to more recent work in this still-developing field was 
given by A. Zangwill, Phys. Today 68, 34 (July 2015).  
44 Since these fields are much related, they are often referred to under the common title of “quantum information 
science”, though this term is rather misleading, de-emphasizing physical aspects of the topic. 
45 Despite the recent flood of new books on the field, one of its first surveys, by M. Nielsen and I. Chuang, 
Quantum Computation and Quantum Information, Cambridge U. Press, 2000, is perhaps still the best one. 
46 In some texts, the term qubit (or  “Qbit”, or “Q-bit”) is used instead for the information contents of a two-level 
system – very much like the classical bit of information (in this context, frequently called “Cbit” or “C-bit”) 
describes the information contents of a classical bistable system – see, e.g., SM Sec. 2.2. 
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where {uj} is any orthonormal two-state basis. (It is natural and common to employ, as uj, the eigenstates 
of the observable that is eventually measured in the particular physical implementation of the qubit.) It 
is also common to write the kets of these base states as 0 and 1, so Eq. (132) takes the form 

                 


j

jaaa jN
10 101

 .    (8.133) 

(Here, and in the balance of this section, the letter j is used to denote an integer equal to either 0 or 1.) 
According to this relation, any state   of a qubit is completely defined by two complex c-numbers aj, 
i.e. by 4 real numbers. Moreover, due to the normalization condition a12 + a22 = 1, we need just 3 
independent real numbers – say, the Bloch sphere coordinates  and   (see Fig. 5.3), plus the common 
phase , which becomes important only when we consider states of a several-qubit system. 

This is a good time to note that a qubit is very much different from any classical bistable system 
used to store single bits of information – such as two possible voltage states of the usual SRAM cell 
(essentially, a positive-feedback loop of two transistor-based inverters). Namely, the stationary states of 
a classical bistable system, due to its nonlinearity, are stable with respect to small perturbations, so they 
may be very robust to unintentional interactions with their environment. In contrast, the qubit’s state 
may be disturbed (i.e. its representation point on the Bloch sphere shifted) by even minor perturbations, 
because it does not have such an internal state stabilization mechanism.47 Due to this reason, qubit-based 
systems are rather vulnerable to environment-induced drifts, including the dephasing and relaxation 
discussed in the previous chapter, creating major experimental challenges – see below. 

Now, if we have a system of two qubits, the vectors of its arbitrary pure state may be represented 
as a sum of 22 = 4 terms,48 
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with four complex coefficients, i.e. eight real numbers, subject to just one normalization condition that 
follows from the requirement    = 1: 
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The evident generalization of Eqs. (133)-(134) to an arbitrary pure state of an N-qubit system is  
a sum of 2N terms: 
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including all possible combinations of 0s and 1s for N indices j, so the state is fully described by 2N 
complex numbers, i.e. 22N  2N+1 real numbers, with only one constraint, similar to Eq. (135),  imposed 
by the normalization condition. This exponential growth of the information contents would not be 

47 In this aspect as well, the information processing systems based on qubits are much closer to classical analog 
computers (which were popular once, but nowadays are used for a few special applications only) rather than 
classical digital ones. 
48 Here and in most instances below I use the same shorthand notation as was used at the beginning of this chapter 
– cf. Eq. (1b). In this short form, the qubit’s number is coded by the order of its state index inside a full ket-
vector, while in the long form, such as in Eq. (137), by the order of its single-qubit vector in a full direct product. 
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possible without the qubit state entanglement. Indeed, in the particular case when qubit states are not 
entangled, i.e. are factorable: 
                   NN

 ...21 ,     (8.137) 

where each n is described by an equality similar to Eq. (133) with its individual expansion 
coefficients, the system state description requires only 3N – 1 real numbers – e.g., N sets {, , } less 
one common phase.  

However, it would be wrong to project this exponential growth of information contents directly 
on the capabilities of quantum computation, because this process has to include the output information 
readout, i.e. qubit state measurements. Due to the fundamental intrinsic uncertainty of quantum systems, 
the measurement of a single qubit even in a pure state (133) generally may give either of two results,  
with probabilities W0 = a02 and W1 = a12. To comply with the general notion of computation, any 
quantum computer has to provide certain (or virtually certain) results, and hence the probabilities Wj 
have to be very close to either 0 or 1, so before the measurement, each measured qubit has to be in one 
of the basis states – either 0 or 1. This means that the computational system with N output qubits, just 
before their final readout, has to be in one of the factorable states 

                        NNN
jjjjjj ...... 2121  ,    (8.138) 

which is a very small subset even of the set of all unentangled states (137), and whose maximum 
information contents is just N classical bits. 

Now the reader may start thinking that this constraint strips quantum computations of any 
advantages over their classical counterparts, but such a view is also superficial. To show that, let us 
consider the scheme of the “baseline” type of quantum computation, shown in Fig. 3.  

 

 

 

 

 

 

 

 
 
 
Here each horizontal line (sometimes called a “wire”49) corresponds to a single qubit, tracing its 

time evolution in the same direction as at the usual time function plots: from left to right. This means 

49 The notion of “wires” stems from the similarity between such quantum schemes and the schematics of classical 
computation circuits – see, e.g., Fig. 4a below. In the classical case, the lines may be indeed understood as 
physical wires connecting physical devices: logic gates and/or memory cells. In this context, note that classical 
computer components also have non-zero time delays, so even in that case, the left-to-right device ordering is 
useful to indicate the timing of (and frequently the causal relation between) the signals. 

Fig. 8.3. The baseline scheme of quantum computation. 
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that the left column in of ket-vectors describes the initial state of the qubits,50 while the right column 
out describes their final (but pre-measurement) state. The box labeled U represents the qubit evolution 
in time due to their specially arranged interactions between each other and/or external drive “forces”. 
These forces are assumed to be noise-free, and the system, during this evolution, is supposed to be 
ideally isolated from any dephasing and energy-dissipating environment, so the process may be 
described by a unitary operator defined in the 2N-dimensional Hilbert space of N qubits: 

             
inout

ˆ  U .     (8.139) 

With the condition that the input and output states have the simple form (138), this equality reads 

                    inin2in1outout2out1 ... ˆ... NN jjjUjjj  .   (8.140) 

The art of quantum computer design consists of selecting such unitary operators Û  that would: 

– satisfy Eq. (140), 
– be physically implementable, and 
–enable substantial performance advantages of the quantum computation over its classical 

counterparts with similar functionality, at least for some digital functions (algorithms). 

 I will have time/space to demonstrate the possibility of such advantages on just one, perhaps the 
simplest example – the so-called Deutsch problem,51 discussing several common notions and issues of 
this field on the way. Let us consider the family of single-bit classical Boolean functions jout = f(jin). 
Since both j are Boolean variables, i.e. may take only values 0 and 1, there are evidently only 22 = 4 
such functions – see the first four columns of the following table: 

        

 

(8.141) 

 
 

 

 Of them, the functions f1 and f4, whose values are independent of their arguments, are called 
constants, while the functions f2 (called “YES” or “IDENTITY”) and f3 (“NOT” or “INVERSION”) are 
called balanced. The Deutsch problem is to determine the class of a single-bit function, implemented in 
a “black box”, as being either constant or balanced, using just one experiment. 

50 As was discussed in Chapter 7, the preparation of a pure state (133) is (conceptually :-) straightforward. Placing 
a qubit into a weak contact with an environment of temperature T << /kB, where  is the difference between 
energies of the eigenstates 0 and 1, we may achieve its relaxation into the lowest-energy state. Then, if the qubit 
must be set into a different pure state, it may be driven there by the application of a pulse of a proper external 
classical “force”. In most physical implementations of qubits, the most practicable way for that step is to use the 
proper part of the Rabi oscillation period – see Sec. 6.5. 
51 It is named after David Elieser Deutsch, whose 1985 paper (motivated by an inspirational but not very specific 
publication by Richard Feynman in 1982) launched the whole field of quantum computation. 

f f(0) f(1) class F f(1)–f(0) 

f1 0 0 constant 0 0 

f2 0 1 balanced 1 +1 

f3 1 0 balanced 1 –1 

f4 1 1 constant 0 0 
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 Classically, this is clearly impossible, and the simplest way to perform the function’s 
classification involves two similar black boxes f – see Fig. 4a.52 It also uses the so-called exclusive-OR 
(XOR for short) gate whose output is described by the following function F of its two Boolean 
arguments j1 and j2:53 

      








.  if1,

,  if0,
),(

21

21
2121 jj

jj
jjjjF     (8.142) 

In the particular circuit shown in Fig. 4a, the gate produces the following output:  

)1()0( ffF  ,     (8.143) 

which is equal to 1 if f(0)  f(1), i.e. if the function f is balanced, and to 0 in the opposite case – see 
column F in Eq. (141).  

  

 

 

 

 

 

 

 On the other hand, as will be shown below, any of the four functions f may be implemented 
quantum-mechanically, for example (Fig. 5a) as a unitary transform of two input qubits, acting as 
follows on each basis component j1j2  j1j2 of the general input state (134): 

               )(ˆ
12121 jfjjjjf  ,     (8.144) 

where f  is the corresponding classical Boolean function – see the table in Eq. (141). 

 

 

 

 
 
 

In the particular case when f  in Eq. (144) is just the YES function: f(j) = f2(j) = j, this “circuit” is 
reduced to the so-called CNOT gate, a key ingredient of many other quantum computation schemes, 
performing the following two-qubit transform: 

52 Alternatively, we may perform two sequential experiments on the same black box f, first recording, and then 
recalling the first experiment’s result. However, the Deutsch problem calls for a single-shot experiment. 
53 The XOR sign  should be by no means confused with the sign  of the direct product of state 
vectors (which in this section is just implied). 

(a)                              (b) 

Fig. 8.5. Two-qubit quantum gates: (a) a 
two-qubit function f and (b) its particular 
case C (CNOT), and their actions on a 
basis state.
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Fig. 8.4. The simplest (a) classical and (b) quantum ways to classify a single-bit Boolean function f.
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                   12121
ˆ jjjjjC  .                                  (8.145a) 

Let us use Eq. (142) to spell out this function for all four possible input qubit combinations: 

  1011ˆ,1110ˆ,0101ˆ,0000ˆ  CCCC .            (8.145b) 

In plain English, this means that acting on a basis state j1j2, the CNOT gate leaves the state of the first, 
source qubit (shown by the upper horizontal line in Fig. 5) intact, but flips the state of the second, target 
qubit if the first one is in the basis state 1. In even simpler words, the state j1 of the source qubit controls 
the NOT function acting on the target qubit; hence the gate’s name CNOT – the semi-acronym of 
“Controlled NOT”. 

For the quantum function (144), with an arbitrary and unknown f, the Deutsch problem may be 
solved within the general scheme shown in Fig. 3, with the particular structure of the unitary-transform 
box U spelled out in Fig. 4b, which involves just one implementation of the function f.  Here the single-
qubit quantum gate H performs the Hadamard (or “Walsh-Hadamard“ or “Walsh”) transform,54 whose 
operator is defined by the following actions on the qubit’s basis states: 

   10
2

1
1ˆ,10

2

1
0ˆ  HH ,   (8.146) 

– see also the two left state-label columns in Fig. 4b.55 Since this operator has to be linear (to be 
quantum-mechanically realistic), it needs to perform the action (146) on the basis states even when they 
are parts of a linear superposition – as they are, for example, for the two right Hadamard gates in Fig. 
4b. For example, as immediately follows from Eqs. (146) and the operator’s linearity,  

                  .010
2

1
10

2

1

2

1
1ˆ0ˆ

2

1
10

2

1ˆ0ˆˆ 
















 HHHHH   (8.147a) 

Absolutely similarly, we may get56 

        11ˆˆ HH .               (8.147b) 

 Let us carry out a sequential analysis of the whole “circuit” shown in Fig. 4b. Since the input 
states of gate f  in this particular circuit are described by Eqs. (146), its output state’s ket is 

                           11ˆ10ˆ01ˆ00ˆ
2

1
10

2

1
10

2

1ˆ1ˆ0ˆˆ ffffff 







HH . (8.148) 

Now we may apply Eq. (144) to each component in the parentheses:  

54 Named after mathematicians J. Hadamard (1865-1963) and J. Walsh (1895-1973). Note that to avoid any 

chance of confusion between the Hadamard transform’s operator Ĥ  and the general Hamiltonian operator Ĥ , in 
these notes, they are typeset using different fonts. 
55 Note that according to Eq. (146), the Hadamard operator does not belong to the class of transforms described 
by Eq. (140) – while the whole “circuit” shown in Fig. 4b, does – see below. 
56 Since the states 0 and 1 form a full basis of a single qubit, both Eqs. (147) may be summarized as operator 

equality Îˆ 2 H . It is also easy to verify that the Hadamard transform of an arbitrary state may be represented on 
the Bloch sphere (Fig. 5.3) as a -rotation about the axis that bisects the angle between the x- and z-axes. 

CNOT 
 function 

Hadamard 
transform 



Essential Graduate Physics                           QM: Quantum Mechanics 

    
Chapter 8             Page 35 of 52 

         

   .)1(1)1(01)0(1)0(00

)1(11)1(01)0(10)0(00

11ˆ01ˆ10ˆ00ˆ11ˆ10ˆ01ˆ00ˆ

ffff

ffff

ffffffff







 (8.149) 

Note that the contents of the first parentheses of the last expression, characterizing the state of the target 
qubit, is equal to (0 – 1)  (–1)0 (0 – 1) if f(0) = 0 (and hence 0f(0) = 0 and 1f(0) = 1), and to 
(1 – 0)  (–1)1(0 – 1) in the opposite case f(0) = 1, so both cases may be described in one shot by 
rewriting the parentheses as (–1)f(0)(0 – 1). The second parentheses are absolutely similarly controlled 
by the value of f(1), so the two outputs of gate f  are unentangled: 

                     ,10
2

1
1)1(0

2

1
101)1(0)1(

2

1
1ˆ0ˆˆ )1()0(  Ffff HH  (8.150) 

where the last step has used the fact that the classical Boolean function F defined by Eq. (142) is equal 
to [f(1) – f(0)] – please compare the last two columns in Eq. (141). The front sign  in the last form of 
Eq. (150) may be prescribed to any of the component ket-vectors – for example to that of the target 
qubit, as shown by the third column of state labels in Fig. 4b.  

 This intermediate result is already rather remarkable. Indeed, it shows that, despite the 
superficial impression one could get from Fig. 5, the gates f and C, being “controlled” by the source 
qubit, may change that qubit’s state as well! This fact (partly reflected by the vertical direction of the 
control lines in Figs. 4 and 5, symbolizing the same stage of the system’s time evolution) shows how 
careful one should be interpreting quantum-computational “circuits”, thriving on qubits’ entanglement: 
the “signals” on different sections of a horizontal “wire” may differ – see Fig. 4b again.  

At the last stage of the circuit shown in Fig. 4b, the qubit components of the state (150) are fed 
into one more pair of Hadamard gates, whose outputs therefore are 

          0ˆ1ˆ
2

1
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1ˆ  and,1ˆ)1(0ˆ
2

1
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2

1ˆ HHHHHH 







 FF . (8.151) 

Now using Eqs. (146) again, we see that the output state ket-vectors of the source and target qubits are, 
respectively,  

          1  and,1
2

)1(1
0

2

)1(1





 FF

.    (8.152) 

Since, according to Eq. (142), the Boolean function F may take only values 0 or 1, the final state of the 
source qubit is always one of its basis states j, namely the one with j = F. Its measurement tells us 
whether the function f, participating in Eq. (144), is constant or balanced – see Eq. (141) again.57 

Thus, the quantum circuit shown in Fig. 4b indeed solves the Deutsch problem in one shot. 
Reviewing our analysis, we may see that this is possible because the unitary transform performed by the 
quantum gate f is applied to the linear combinations (146) rather than to the basis states 0 and 1. Due to 
this trick, the quantum state components depending on f(0) and f(1) are processed simultaneously, in 

57 Note that the last Hadamard transform of the target qubit (i.e. the Hadamard gate shown in the lower right 
corner of Fig. 4b) is not necessary for the Deutsch problem’s solution – though it should be included if we want 
the whole circuit to satisfy the condition (140).  
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parallel. This quantum parallelism may be extended to circuits with many (N >> 1)  qubits and, for some 
tasks, provide a dramatic performance increase – for example, reducing the necessary circuit component 
number from O(2N) to O(N p), where p is a finite (and not very big) number. 

However, this efficiency comes at a high price. Indeed, let us discuss the possible physical 
implementation of quantum gates, starting from the single-qubit case, on an example of the Hadamard 
gate (146). With the linearity requirement, its action on the arbitrary state (133) should be 

           ,1
2

1
0

2

1
10

2

1
10

2

1
1ˆ0ˆˆ

10101010 aaaaaaaa  HHH    (8.153) 

meaning that the state probability amplitudes in the end (t = T) and in the beginning (t = 0) of the qubit 
evolution in time have to be related as 
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 TT      (8.154) 

This task may be again performed using the Rabi oscillations, which were discussed in Sec. 6.5, 
i.e. by applying to the qubit (a two-level system), for a limited time period T, a weak sinusoidal external 

signal of frequency  equal to the intrinsic quantum oscillation frequency nn’ defined by Eq. (6.85). 
The analysis of the Rabi oscillations was carried out in Sec. 6.5, even for non-vanishing (though small) 
detuning  =  – nn, but only for the particular initial conditions when at t = 0 the system was fully in 
one on the basis states (there labeled as n’), i.e. the counterpart state (there labeled n) was empty. For 
our current purposes, we need to find the amplitudes a0,1(t) for arbitrary initial conditions a0,1(0), subject 
only to the time-independent normalization condition  a02 + a12 = 1. For the case of exact tuning,  = 
0, the solution of the system (6.94) is elementary,58 and gives the following solution:59 
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teiatata

teiatata
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 


   (8.155) 

where  is the Rabi oscillation frequency (6.99), in the exact-tuning case proportional to the amplitude 
A of the external ac drive A = Aexp{i} – see Eq. (6.86). Comparing these expressions with Eqs. 
(154), we see that for t = T = /4 and  = /2 they “almost” coincide, besides the opposite sign of 

a1(T). Conceptually the simplest way to correct this deficiency is to follow the ac “/4-pulse”, just 

discussed, by a short dc “-pulse” of the duration T’ = /, which temporarily creates a small additional 

energy difference  between the basis states 0 and 1. According to the basic Eq. (1.62), such difference 
creates an additional phase difference T’/ between the states, equal to  for the “-pulse”.  

Another way (that may be also useful for two-qubit operations) is to use another, auxiliary state 
with energy E2 whose distances from the basic levels E1 and E0 are significantly different from the 
difference (E1 – E0) – see Fig. 6a. In this case, the weak external ac field tuned to any of the three 
potential quantum transition frequencies nn’  (En – En’)/ initiates such transitions between the 
corresponding states only, with a negligible perturbation of the third state. (Such transitions may be 

58 An alternative way to analyze the qubit evolution is to use the Bloch equation (5.21), with an appropriate 
function (t) describing the control field. 
59 To comply with our current notation, the coefficients an’ and an of Sec. 6.5 are replaced with a0 and a1.  
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again described by Eqs. (155), with the appropriate index changes.) For the Hadamard transform 
implementation, it is sufficient to apply (after the already discussed /4-pulse of frequency 10, and with 
the initially empty level E2), an additional -pulse of frequency 20, with any phase . Indeed, according 
to the first of Eqs. (155), with the due replacement a1(0)  a2(0) = 0, such pulse flips the sign of the 
amplitude a0(t), while the amplitude a1(t), not involved in this additional transition, remains unchanged. 

 

 

   

 

 

 

 

 
 Now let me describe the conceptually simplest (though, for some qubit types, not the most 
practically convenient) scheme for the implementation of two-qubit gates, on an example of the CNOT 
gate whose operation is described by Eq. (145). For that, evidently, the involved qubits have to interact 
for some time T. As was repeatedly discussed in the two last chapters, in most cases such interaction of 
two subsystems is factorable – see Eq. (6.145). For qubits, i.e. two-level systems, each of the component 
operators may be represented by a 22 matrix in the basis of states 0 and 1. According to Eq. (4.106), 
such a matrix may be always expressed as a linear combination (bI + c), where b and three Cartesian 
components of the vector c are c-numbers. Let us consider the simplest form of such factorable 
interaction Hamiltonian: 
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    (8.156) 

where the upper index is the qubit number and  is a c-number constant.60 According to Eq. (4.175), by 
the end of the interaction period, this Hamiltonian produces the following unitary transform: 
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   (8.157) 

Since in the basis of unperturbed two-bit basis states j1j2, the product operator    21 ˆˆ zz  is diagonal, so is 
the unitary operator (157), with the following action on these states: 

60 The assumption of simultaneous time independence of the basis state vectors and the interaction operator 
(within the time interval 0 < t < T) is possible only if the basis state energy difference  of both qubits is exactly 
the same. In this case, the simple Eq. (156) follows from Figs. 6b, which shows the spectrum of the total energy E 
= E1 + E2 of the two-bit system. In the absence of interaction (Fig. 6b), the energies of two basis states, 01 and 
10, are equal, enabling even a weak qubit interaction to cause their substantial evolution in time – see Sec. 6.7. If 
the qubit energies are different (Fig. 6c), the interaction may still be reduced, in the rotating-wave approximation, 
to Eq. (156), by compensating the energy difference (1 – 2) with an external ac signal of frequency  = (1 – 
2)/ – see Sec. 6.5. 

Fig. 8.6. Energy-level schemes used for unitary transformations of (a) single qubits and (b, c) two-qubit systems. 
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        ,expˆ
21

)2()1(
21int jjijjU zz      (8.158) 

where    –T/, and z are the eigenvalues of the Pauli matrix z for the basis states of the 

corresponding qubit: z  = +1 for j = 0, and z = –1 for j = 1. Let me, for clarity, spell out Eq. (158) 
for the particular case   = –/4 (corresponding to the qubit coupling time T = /4): 

        1111ˆ,1010ˆ,0101ˆ,0000ˆ 4/4/4/4/
intintintint

 iiii eUeUeUeU   .  (8.159) 

In order to compensate for the undesirable parts of this joint phase shift of the basis states, let us 
now apply similar individual “rotations” of each qubit by angle ’ = +/4, using the following product 
of two independent operators, plus (just for the result’s clarity) a common, and hence inconsequential, 
phase shift ” = –/4:61 
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Since this operator is also diagonal in the j1j2 basis, it is easy to calculate the change of the basis states 

by the total unitary operator intcomtot
ˆˆˆ UUU  : 

             1111ˆ,1010ˆ,0101ˆ,0000ˆ
tottottottot  UUUU . (8.161) 

This result already shows the main “miracle action” of two-qubit gates, such as the one shown in Fig. 
4b: the source qubit is left intact (only if it is in one of the basis states!), while the state of the target 
qubit is altered. True, this change (of the sign) is still different from the CNOT operator’s action (145), 
but may be readily used for its implementation by sandwiching the transform Utot between two 
Hadamard transforms of the target qubit alone: 

     2
tot

2 ˆˆˆ
2

1ˆ HH UC  .     (8.162) 

 So, we have spent quite a bit of time on the discussion of the very simple CNOT gate,62 and now 
I can reward the reader for their effort with a bit of good news: it has been proved that an arbitrary 
unitary transform that satisfies Eq. (140), i.e. may be used to implement the general scheme outlined in 
Fig. 3, may be decomposed into a set of CNOT gates, possibly augmented with simpler single-qubit 
gates.63 Unfortunately, I have no time for a detailed discussion of more complex circuits.64 The most 

61 As Eq. (4.175) shows, each of the component unitary transforms }ˆ'exp{ zi   may be created by applying to 

each qubit, for time interval T’ = ’/’, a constant external field described by Hamiltonian z'H  ˆˆ  . We 

already know that for a charged, spin-½ particle, such Hamiltonian may be created by applying a z-oriented 
external dc magnetic field – see Eq. (4.163). For most other physical implementations of qubits, the organization 
of such a Hamiltonian is also straightforward – see, e.g., Fig. 7.4 and its discussion. 
62 As was discussed above, this gate is identical to the two-qubit gate shown in Fig. 5a  for f = f3, i.e. f(j) = j.  The 
implementation of the gate of f for 3 other possible functions f  requires straightforward modifications, whose 
analysis is left for the reader’s exercise. 
63 This fundamental importance of the CNOT gate was perhaps a major reason why David Wineland, the leader of 
the NIST group that had demonstrated its first experimental implementation in 1995 (following the theoretical 
suggestion by J. Cirac and P. Zoller), was awarded the 2012 Nobel Prize in Physics – shared with Serge Haroche, 
the leader of another group working towards quantum computation. 
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famous of them is the scheme for integer number factoring, suggested in 1994 by Peter Winston Shor.65 
Due to its potential practical importance for breaking the broadly used communication encryption 
schemes such as the RSA code,66 this opportunity has incited much enthusiasm and triggered 
experimental efforts to implement quantum gates and circuits using a broad variety of two-level 
quantum systems. By now, the following experimental options have given the most significant results:67  

(i) Trapped ions. The first experimental demonstrations of quantum state manipulation 
(including the already mentioned first CNOT gate) have been carried out using deeply cooled atoms in 
optical traps, similar to those used in frequency and time standards. Their total spins are natural qubits, 
whose states may be manipulated using the Rabi transfers excited by suitably tuned lasers. The spin 
interactions with the environment may be very weak, resulting in large dephasing times T2 – up to a few 
seconds. Since the distances between ions in the traps are relatively large (of the order of a micron), 
their direct spin-spin interaction is even weaker, but the ions may be made effectively interacting either 
via their mechanical oscillations about the potential minima of the trapping field or via photons in 
external electromagnetic resonators (“cavities”).68 Perhaps the main challenge of using this approach to 
quantum computation is poor “scalability”, i.e. the enormous experimental difficulty of creating and 
managing large ordered systems of individually addressable qubits. Only very recently, the first 32-qubit 
system was demonstrated.69 

(ii) Nuclear spins are also typically very weakly connected to their environment, with dephasing 
times T2 exceeding 10 seconds in some cases. Their eigenenergies E0 and E1 may be split by external dc 
magnetic fields (typically, of the order of 10 T), while the interstate Rabi transfers may be readily 
achieved by using the nuclear magnetic resonance, i.e. the application of external ac fields with 
frequencies  = (E1 – E0)/ – typically, of a few hundred MHz. The challenges of this option include the 
weakness of spin-spin interactions (typically mediated through molecular electrons), resulting in a very 
slow spin evolution, whose time scale / may become comparable with T2, and also very small level 
separations E1 – E0, corresponding to a few K, i.e. much smaller than the thermal energy at room 
temperature, creating a challenge of qubit state preparation.70 Despite these challenges, the nuclear spin 
option was used for the first implementation of the Shor algorithm for factoring of a small number (15 = 
53) as early as 2001.71 However, the extension of this success to larger systems, beyond the set of spins 
inside one molecule, is extremely challenging. 

64 For that, the reader may be referred to either the monographs by Nielsen-Chuang and Reiffel-Polak, cited 
above, or to a shorter (but much more formal) textbook by N. Mermin, Quantum Computer Science, Cambridge 
U. Press, 2007. 
65 A clear description of this algorithm may be found in several accessible sources, including Wikipedia – see the 
article Shor’s Algorithm. 
66 Named after R. Rivest, A. Shamir, and L. Adleman, the authors of the first open publication of the code in 
1977, but actually invented earlier (in 1973) by C. Cocks.  
67 For a discussion of other possible implementations (such as quantum dots and dopants in crystals) see, e.g., T. 
Ladd et al., Nature 464, 45 (2010), and references therein.  
68 A brief discussion of such interactions (so-called Cavity QED) will be given in Sec. 9.4 below. 
69 See, e.g., S. A. Moses, Phys. Rev. X 13, 041052 (2023). Note also the related work on arrays of trapped neutral 
atoms  – see, e.g., D. Bluvstein et al., Nature 604, 451 (2022). 
70 This challenge may be partly mitigated using ingenious spin manipulation techniques such as refocusing – see, 
e.g., either Sec. 7.7 in Nielsen and Chuang, or J. Keeler’s monograph cited at the end of Sec. 6.5. 
71 B. Lanyon et al., Phys. Rev. Lett. 99, 250505 (2001). 
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(iii) Josephson-junction devices. Much better scalability may be achieved with solid-state 
devices, especially using superconductor integrated circuits including weak contacts – Josephson 
junctions – see their brief discussion in Sec. 1.6. The qubits of this type are based on the fact that the 
energy U of such a junction is a highly nonlinear function of the Josephson phase difference  – see Sec. 
1.6. Indeed, combining Eqs. (1.73) and (1.74), we can readily calculate U() as the work W of an 
external circuit increasing the phase from, say, zero to some value : 
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There are several options for using this nonlinearity for creating qubits;72 currently, the leading 
option, called the phase qubit, is using the two lowest eigenstates localized in one of the potential wells 
of the periodic potential (163). A major problem with such qubits is that at the very bottom of this well 
the potential U() is almost quadratic, so the energy levels are nearly equidistant – cf. Eqs. (2.262), 
(6.16), and (6.23). This is even more true for the so-called “transmons” (and “Xmons”, and “Gatemons”, 
and several other very similar devices73) – the currently used phase qubits versions, where a Josephson 
junction is made a part of an external electromagnetic oscillator, making its relative total nonlineartity 
(anharmonism) even smaller. As a result, the external rf drive of frequency  = (E1 – E0)/, used to 
arrange the state transforms described by Eq. (155), may induce simultaneous undesirable transitions to 
(and between) higher energy levels. This effect may be mitigated by a reduction of the ac drive 
amplitude, but at a price of the proportional increase of the operation time and hence of dephasing 
effects – see below. (I am leaving a quantitative estimate of such an increase for the reader’s exercise.) 

Since the coupling of Josephson-junction qubits may be most readily controlled (and, very 
importantly, kept stable if so desired), they have been used to demonstrate the largest prototype quantum 
computing systems to date, despite quite modest dephasing times T2 – for purely integrated circuits, in 
the tens of microseconds at best, even at operating temperatures in tens of mK. Several groups have 
announced chips with up to a few hundred of such qubits, but to the best of my knowledge, only their 
much smaller subsets could be used for high-fidelity quantum operations so far.74   

(iv) Optical systems, attractive because of their inherently enormous bandwidth, pose a special 
challenge for quantum computation: due to the virtual linearity of most electromagnetic media, the 
implementation of qubits requires relatively large components and high optical power.75 In 2001, a very 

72 The “most quantum” option in this technology is to use Josephson junctions very weakly coupled to their 
dissipative environment (so the effective resistance shunting the junction is much higher than the quantum 

resistance unit RQ  (/2) /e2 ~ 104 ). In this case, the Josephson phase variable   behaves as a coordinate of a 
1D quantum particle moving in the 2-periodic potential (163), forming the energy band structure En(q) similar to 
those discussed in Sec. 2.7. Both theory and experiment show that in this case, the quantum states in adjacent 
Brillouin zones differ by the charge of one Cooper pair 2e. (This is exactly the effect responsible for the Bloch 
oscillations of frequency (2.252).) These two states may be used as the basis states of charge qubits. 
Unfortunately, such qubits are rather sensitive to charged impurities, randomly located in the junction’s vicinity, 
which may cause uncontrollable changes of its parameters, so currently, this option is not very actively pursued. 
73 For a recent review of these devices see, e.g., G. Wendin, Repts. Progr. Phys. 80, 106001 (2017). 
74 See, e.g., C. Song et al., Phys. Rev. Lett. 119, 180511 (2017); S. Krinner et al., Nature 605, 669 (2022); R. 
Acharya et al., Nature 614, 676 (2023); R. Acharya et al., arXiv:2408.13687 (2024).
75 For a state-of-the-art recent work in this direction see, e.g., X. Qiang et al., Nature Photonics 12, 534 (2018). 
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smart way around this hurdle was invented.76 In this KLM scheme (also called “linear optical quantum 
computing”), nonlinear elements are not needed at all, and quantum gates may be composed just of 
linear devices (such as optical waveguides, mirrors, and beam splitters), plus single-photon sources and 
detectors. However, estimates show that this approach requires many more physical components than 
those using nonlinear quantum systems such as usual qubits,77 so right now it is not very popular. 

So, despite three decades of large-scale (multi-billion-dollar) experimental and theoretical 
efforts, the progress of quantum computing development has been rather gradual. The main culprit here 
is the unintentional coupling of qubits to their environment, leading most importantly to their state 
dephasing, and eventually to errors. Let me discuss this major issue in detail. 

Of course, some error probability exists in classical digital logic gates and memory cells as 
well.78 However, in this case, there is no conceptual problem with the device state measurement, so the 
error may be detected and corrected in many ways. Conceptually,79 the simplest of them is the so-called 
majority voting logic – using several similar logic circuits operating in parallel and fed with identical 
input data. Evidently, two such devices can detect a single error in one of them, while three devices in 
parallel may correct such an error, by taking two coinciding output signals for the genuine one.  

For quantum computation, the general idea of using several devices (say, qubits) for coding the 
same information remains valid; however, there are two major complications. First, as we know from 
Chapter 7, the environment’s dephasing effect may be described as a slow random drift of the 
probability amplitudes aj, leading to the deviation of the output state fin from the required form (140), 
and hence to a non-vanishing probability of wrong qubit state readout  – see Fig. 3. Hence the quantum 
error correction has to protect the result not against possible random state flips 0  1, as in classical 
digital computers, but against these “creeping” analog errors. 

Second, the qubit state is impossible to copy exactly (clone) without disturbing it, as follows 
from the following simple calculation.80 Cloning some state  of one qubit to another qubit that is 
initially in an independent state (say, the basis state 0), without any change of , means the following 
transformation of the two-qubit ket: 0  . If we want such transform to be performed by a real 
quantum system, whose evolution is described by a unitary operator û , and to be correct for an arbitrary 
state , it has to work not only for both basis states of the qubit: 

  ,1110ˆ,0000ˆ  uu             (8.164) 

but also for their arbitrary linear combination (133). Since the operator û  has to be linear, we may use 
that relation, and then Eq. (164) to write 

76 E. Knill et al., Nature 409, 46 (2001).  
77 See, e.g., Y. Li et al., Phys. Rev. X 5, 041007 (2015). 
78 In modern integrated circuits, such “soft” (runtime) errors are created mostly by the high-energy neutrons of 
cosmic rays, and also by the -particles emitted by radioactive impurities in silicon chips and their packaging. 
79 Practically, the majority voting logic increases circuit complexity and power consumption, so it is used only in 
the most critical points. Since in modern digital integrated circuits, the bit error rate is very small (< 10-5), in most 
of them, less radical but also less penalizing schemes are used – if used at all. 
80 Amazingly, this simple no-cloning theorem was discovered as late as 1982 (to the best of my knowledge, 
independently by W. Wooters and W. Zurek, and by D. Dieks), in the context of work toward quantum 
cryptography – see below. 
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                   110010ˆ00ˆ010ˆ0ˆ 101010 aauauaaauu  .  (8.165) 

On the other hand, the desired result of state cloning is 

         110110001010 2
110

2
01010 aaaaaaaa  ,  (8.166)  

i.e. is evidently different, so, for an arbitrary state ,  and an arbitrary unitary operator û , 

              0û ,      (8.167) 

meaning that the qubit state cloning is indeed impossible.81 This problem may be, however, indirectly 
circumvented – for example, in the way shown in Fig. 7a.  

 

 

 

 

 

 

 

 Here the CNOT gate, whose action is described by Eq. (145), entangles an arbitrary input state 
(133) of the source qubit with a basis initial state of an ancillary target qubit – frequently called the 
ancilla. Using Eq. (145), we can readily calculate the output two-qubit state’s vector: 

         110010ˆ00ˆ010ˆ
1010102

aaCaCaaaC
N




 .  (8.168) 

We see that this circuit does perform the desired operation (165), i.e. gives the initial source qubit’s 
probability amplitudes a0 and a1 equally to two qubits, i.e. duplicates the input information. However, in 
contrast with “genuine” cloning, it changes the state of the source qubit as well, making it entangled 
with the target (ancilla) qubit. Such “quasi-cloning” is the key element of most suggested quantum error 
correction techniques. 

Consider, for example, the three-qubit “circuit” shown in Fig. 7b, which uses two ancilla qubits  
– see the two lower “wires”. At its first two stages, the double application of the quasi-cloning produces 
an intermediate state A with the following ket-vector: 

    111000 10 aaA  ,     (8.169) 

which is an evident generalization of Eq. (168).82 Next, subjecting the source qubit to the Hadamard 
transform (146), we get the three-qubit state B represented by the state vector 

81 Note that this does not mean that two (or several) qubits cannot be put into the same, arbitrary quantum state – 
theoretically, with arbitrary precision. Indeed, they may be first set into their lowest-energy stationary states, and 
then driven into the same arbitrary state (133) by exerting on them similar classical external fields. So, the no-
cloning theorem pertains only to qubits in unknown states  – but this is exactly what we need for error correction 
– see below. 
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Fig. 8.7. (a) Quasi-cloning, and (b) detection and correction of dephasing errors in a single qubit. 
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                 1110
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1
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1
10  aaB .   (8.170) 

 Now let us assume that at this stage, the source qubit comes into contact with a dephasing 
environment – in Fig. 7b, symbolized by the single-qubit “gate” . As we know from Chapter  7 (see 
Eq. (7.22) and its discussion, and also Sec. 7.3), its effect may be described by a random shift of the 
relative phase of two states:83 

     1100 ,
 ii ee  .      (8.171) 

As a result, for the intermediate state C (see Fig. 7b) we may write  

              1110
2

1
0010

2

1
10

 iiii eeaeeaC   .  (8.172) 

 At this stage of this simple theoretical model, the coupling with the environment is completely 
stopped (ahh, if this could be possible! we might have quantum computers by now :-), and the source 
qubit is fed into one more Hadamard gate. Using Eqs. (146) again, for state D after this gate we get 

    111cos0sin001sin0cos 10   iaiaD .  (8.173) 

Next, the qubits are passed through the second, similar pair of CNOT gates – see Fig. 7b. Using Eq. 
(145), for the resulting state E we readily get the following expression: 

        100cos011sin111sin000cos 1100  aiaiaaE  ,           (8.174a) 

whose right-hand side may by evidently re-grouped as 

        11sin1000cos10 0110  iaaaaE  .            (8.174b) 

This is already a rather remarkable result. It shows that if we measured the ancilla qubits at stage 
E, and both results corresponded to states 0, we might be 100% sure that the source qubit (which is not 
affected by these measurements!) is in its initial state even after the interaction with the environment. 
The only result of an increase of this unintentional interaction (as quantified by the r.m.s. magnitude of 
the random phase shift ) is the growth of the probability, 

         2sinW ,      (8.175) 

of getting the opposite result, which would signal a dephasing-induced error in the source qubit. Such 
implicit measurement, without disturbing the source qubit, is called quantum error detection.  

 An even more impressive result may be achieved by the last component of the circuit, the so-
called Toffoli (or “CCNOT”) gate, denoted by the rightmost symbol in Fig. 7b. This three-qubit gate is 
conceptually similar to the CNOT gate discussed above, besides that it flips the basis state of its target 
qubit only if both source qubits are in state 1. (In the circuit shown in Fig. 7b, the former role is played 

82 This state is also the three-qubit example of the so-called Greenberger-Horne-Zeilinger (GHZ) states, which 
are frequently called the “most entangled” states of a system of N > 2 qubits. 
83 Let me emphasize again that Eq. (171) is strictly valid only if the interaction with the environment is a pure 
dephasing, i.e. does not include the energy relaxation of the qubit or its thermal activation to the higher-energy 
eigenstate; however, it is a reasonable description of errors in the frequent case when T2 << T1. 
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by our source qubit, while the latter role, by the two ancilla qubits.) According to its definition, the 
Toffoli gate does not affect the first parentheses in Eq. (174b), but flips the source qubit’s states in the 
second parentheses, so for the output three-qubit state F we get 

       11sin1000cos10 1010  iaaaaF  .            (8.176a) 

 Obviously, this result may be factored as 

         11sin00cos10 10  iaaF  ,            (8.176b) 

showing that now the source qubit is again fully unentangled from the ancilla qubits. Moreover, by 
calculating the norm squared of the second operand, we get  

          1sincos11sin00cos11sin00cos 22   ii ,  (8.177) 

so the final state of the source qubit exactly coincides with its initial state. This is the famous miracle of 
quantum state correction, taking place “automatically” – without any qubit measurements, and for any 
random phase shift .  

The circuit shown in Fig. 7b may be further improved by adding Hadamard gate pairs, similar to 
that used for the source qubit, to the ancilla qubits as well. It is straightforward to show that if the 
dephasing is small in the sense that the W given by Eq. (175) is much less than 1, this modified circuit 
may provide a substantial error probability reduction (to ~W2) even if the ancilla qubits are also 
subjected to a similar dephasing and the source qubits, at the same stage – i.e. between the two 
Hadamard gates. Such perfect automatic correction of any error (not only of an inner dephasing of a 
qubit and its relaxation/excitation but also of the mutual dephasing between qubits) of any used qubit 
needs even more parallelism. The first circuit of that kind, based on nine qubits, which is a natural 
generalization of the three-qubit circuit discussed above, was invented in 1995 by the same P. Shor. 
Later, five-qubit circuits enabling similar error correction were suggested. (The further parallelism 
reduction has been proved impossible.) 

However, all these results assume that the error correction circuits as such are perfect, i.e. 
completely isolated from the environment. In the real world, this cannot be done. Now the key question 
is what maximum level Wmax of the error probability in each gate (including those in the used error 
correction scheme) can be automatically corrected, and how many qubits with W < Wmax would be 
required to implement quantum computers producing important practical results – first of all, factoring 
of large numbers.84 To the best of my knowledge, estimates of these two related numbers have been 
made only for some very specific approaches, and they are rather pessimistic. For example, using the so-
called surface codes, which employ many physical qubits for coding an informational one, and hence 
increase its fidelity, Wmax may be increased to ~10–3 but even then we would need ~108 physical qubits 
for breaking the 2,048-bit RSA encryption within 1 hour.85 This is very far from what currently looks 
doable using the existing approaches. Moreover, several classical encryption algorithms that are 
currently deemed quantum-resistant have already been developed86 for the replacement of the RSA. 87    

84 In order to compete with the existing classical factoring algorithms, such numbers should have at least 103 bits. 
85 C. Gidney and M. Ekerå, Quantum 5, 433 (2021). 
86 See, e.g., https://en.wikipedia.org/wiki/NIST_Post-Quantum_Cryptography_Standardization. 
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Because of this hard situation, the current development of quantum computing is focused on 
finding at least some problems that could be within the reach of either the existing systems, or their 
immediate extensions, and simultaneously would present some practical interest. Currently, to the best 
of my knowledge, all suggested problems of this kind address either specially crafted mathematical 
problems,88 or properties of some simple physical systems – such as the molecular hydrogen89 or the 
deuteron (the deuterium’s nucleus, i.e. the proton-neutron system).90 In the latter case, the interaction 
between the qubits of the computational system is organized so that the system’s Hamiltonian is similar 
to that of the quantum system of interest. (For this work, quantum simulation is a more adequate name 
than “quantum computation”.91)  

Such simulations are pursued by some teams using schemes different from that shown in Fig. 3. 
Of those, the most developed is the so-called adiabatic quantum computation,92 which drops the hardest 
requirement of negligible interaction with the environment. In this approach, the qubit system is first 
prepared in a certain initial state and then is let to evolve on its own, with no effort to couple-uncouple 
qubits by external control signals during the evolution.93 Due to the interaction with the environment, in 
particular the dephasing and the energy dissipation it imposes, the system eventually relaxes to a final 
incoherent state, which is then measured. (This reminds the scheme shown in Fig. 3, with the important 
difference that the transform U may be not fully unitary.) From numerous runs of such an experiment, 
the outcome statistics may be revealed. Thus, in this approach, the interaction with the environment is 
allowed to play a certain role in the system evolution, though every effort is made to reduce it, thus 
slowing down the relaxation process – hence the word “adiabatic” in the name of this approach. This 
slowness allows the system to exhibit some quantum properties, in particular, quantum tunneling94 
through the energy barriers separating close energy minima in the multi-dimensional space of states. 
This tunneling creates a substantial difference in the finite state statistics from that in purely classical 
systems, where such barriers may be overcome only by thermally-activated jumps over them.95   

Due to technical difficulties of the organization and precise control of long-range interaction in 
multi-qubit systems, the adiabatic quantum computing demonstrations so far have been limited to a few 
simple arrays described by the so-called extended quantum Ising (“spin-glass”) model 

87 A comprehensive review of the quantum cryptography work was recently given by S. Pirandola et al., Adv. 
Opt. Photon. 12, 1012 (2020). 
88 F. Arute et al., Nature 574, 505 (2019). Note that the claim of the first achievement of “quantum supremacy”, 
made in this paper, refers only to an artificial, specially crafted mathematical problem, and does not change my 
assessment of the current status of this technology. 
89 P. O’Malley et al., Phys. Rev. X 6, 031007 (2016). 
90 E. Dumitrescu et al., Phys. Lett. Lett. 120, 210501 (2018). 
91 To the best of my knowledge, this idea was first put forward by Yuri I. Malin in his book Computable and 
Incomputable published in 1980, i.e. before the famous 1982 paper by Richard Feynman. Unfortunately, since the 
book was in Russian, this suggestion was acknowledged by the international community only much later. 
92 Note that the qualifier “quantum” is important in this term, to distinguish this research direction from the 
classical adiabatic (or “reversible”) computation – see, e.g., SM Sec. 2.3 and references therein. 
93 Some hybrids of this approach with the “usual” scheme of quantum computation have been demonstrated, in 
particular, using some control of inter-bit coupling during the relaxation process – see, e.g., R. Barends et al., 
Nature 534, 222 (2016).   
94 As a reminder, this process was repeatedly discussed in this course, starting from Sec. 2.3. 
95 A quantitative discussion of such jumps may be found, for example, in SM Sec. 5.6. 
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where the curly brackets denote the summation over pairs of close (though not necessarily closest) 
neighbors. Though the Hamiltonian (178) is the traditional playground of phase transitions theory (see, 
e.g., SM Chapter 4), to the best of my knowledge there are not many practically important tasks that 
could be achieved by studying the statistics of its solutions. Moreover, even for this limited task, the 
speed of the largest experimental adiabatic quantum “computers”, with several hundreds of Josephson-
junction qubits96 is still comparable with that of classical, off-the-shelf semiconductor processors (with 
the dollar cost lower by many orders of magnitude), and no dramatic change of this comparison is 
predicted for realistic larger systems. 

 To summarize the current (circa mid-2024) situation with the quantum computation 
development, it faces a very hard challenge of mitigating the effects of unintentional coupling with the 
environment. This problem is exacerbated by the lack of algorithms, beyond Shor’s factoring, that 
would give quantum computation a substantial advantage over the classical competition in solving real-
world problems, and hence a much broader potential customer base that would provide the field with the 
necessary long-term motivation and resources. So far, even the leading experts in this field abstain from 
predictions on when quantum computation may become a self-supporting commercial technology. 

 There may be somewhat better prospects for another application of entangled qubit systems, 
namely to telecommunication cryptography.97 The initial motivation here was much more modest: to 
replace the currently dominating classical encryption, based on the public-key RSA code mentioned 
above, which may be broken by factoring very large numbers, with a quantum encryption system that 
would be fundamentally unbreakable. The basis of this opportunity is the measurement postulate and the 
no-cloning theorem: if a message is carried over by a qubit, it is impossible for an eavesdropper (in 
cryptography, traditionally called Eve) to either measure or copy it faithfully, without also disturbing its 
state. However, as we have seen from the discussion of Fig. 7a, state quasi-cloning using entangled 
qubits is possible, so the issue is far from being simple, especially if we want to use a publicly 
distributed quantum key, in some sense similar to the classical public key used at the RSA encryption. 
Unfortunately, I would not have time/space to discuss various options for quantum cryptography and 
public distribution of quantum keys,98 but cannot help demonstrating how inventive and counter-
intuitive they may be, on the famous example of the so-called quantum teleportation (Fig. 8).99  

 Suppose that some party A (in cryptography, traditionally called Alice) wants to send to party B 
(Bob) the full information about the pure quantum state  of a qubit, unknown to either party. Instead of 
sending her qubit directly to Bob, Alice asks him to send her one qubit () of a pair of other qubits 
prepared in a certain entangled state, for example in the singlet state described by Eq. (11); in our 
current notation                                                                                                                                                                       

96 See, e.g., R. Harris et al., Science 361, 162 (2018). Similar demonstrations with trapped-ion systems so far have 
been on a smaller scale, with a few tens of qubits – see, e.g., J. Zhang et al., Nature 551, 601 (2017). 
97 This general field was pioneered in the 1970s by S. Wisener.  
98 Two of them are the BB84 suggested in 1984 by C. Bennett and G. Brassard, and the EPRBE suggested in 
1991 by A. Ekert. For details, see, e.g., the review by N. Gizin et al., Rev. Mod. Phys. 74, 145 (2002). 
99 This procedure had been first suggested in 1993 by the same Charles Bennett and then was repeatedly 
demonstrated experimentally – see, e.g., L. Steffen et al., Nature 500, 319 (2013) and literature therein. 
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The initial state of the whole three-qubit system may be represented in the form  
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which may be equivalently rewritten as the following linear superposition, 
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of the following four states of the qubit pair : 
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After having received qubit  from Bob, Alice measures which of these four states the pair  
has. This may be achieved, for example, by measurement of one observable represented by the 
operator      zz ˆˆ  and another one corresponding to      xx ˆˆ – cf. Eq. (156). (Since all four states (181) 

are eigenstates of both these operators, these two measurements do not affect each other and may be 
performed in any order.)  The measured eigenvalue of the former operator enables distinguishing the 
couples of states (181) with different values of the lower index, while the latter measurement 
distinguishes the states with different upper indices.  

Then Alice reports the measurement result (which may be coded with just two classical bits) to 
Bob over a classical communication channel. Since the measurement places the pair  definitely into 
the corresponding state, the remaining Bob’s bit ’ is now definitely in the unentangled single-qubit 
state that is represented by the corresponding parentheses in Eq. (180b). Note that each of these 
parentheses contains both coefficients a0,1, i.e. the whole information about the initial state that the qubit 
 had initially. If Bob likes, he may now use appropriate single-qubit operations, similar to those 
discussed earlier in this section, to move his qubit ’ into the state exactly similar to the initial state of 
qubit . This fact does not violate the no-cloning theorem (167) because the measurement has already 
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Fig. 8.8. Sequential stages of a “quantum 
teleportation” procedure: (a) the initial state 
with entangled qubits  and ’, (b) the back 
transfer of the qubit , (c) the measurement of 
the pair , (d) the forward transfer of two 
classical bits with the measurement results, and 
(e) the final state, with the state of the qubit ’ 
mirroring the initial state of the qubit . 
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changed the state of .) This is, of course, a “teleportation” only in a very special sense of this term, but 
a good example of the importance of qubit entanglement’s preservation at their spatial transfer.100  

Returning for just a minute to quantum cryptography: since its most common quantum key 
distribution protocols require just a few simple quantum gates, whose experimental implementation is 
already not a large technological challenge, the main focus of the current effort in the field is on 
decreasing the single-photon dephasing in long electromagnetic-wave transmission channels, with 
sufficiently high qubit transfer fidelity. The recent progress was rather impressive, with the 
demonstrated transfer of entangled qubits over landlines longer than 100 km,101 and over at least one 
satellite-based line longer than 1,000 km;102 and also a whole quantum key distribution over a 
comparable distance, though at a very low rate yet.103, 104  

 

8.6. Exercise problems 

 8.1. Prove that Eq. (30) indeed yields Eg
(1) = (5/4)EH. 

 
 8.2. For a dilute gas of helium atoms in their ground state, with n atoms per unit volume, 
calculate its weak-field 

 (i) electric susceptibility e, and 
 (ii) magnetic susceptibility m, 

and compare the results. 

 Hint: You may use the results of the variational description of the helium atom’s ground state in 
Sec. 2, and the model solutions of Problems 6.8 and 6.15. 
 
 8.3. Calculate the expectation values of the observables s1s2, S

2  (s1 + s2)
2, and Sz  s1z + s2z, for 

the singlet and triplet states of the system of two spins-½, directly – without using the general Eq. (48). 
Compare the results with those for the system of two classical geometric vectors of length /2 each. 
 
 8.4. Discuss the factors 1/2 that participate in Eqs. (18) and (20) for the entangled states of the 
system of two spins-½, in terms of Clebsh-Gordan coefficients similar to those discussed in Sec. 5.7. 
 
 8.5.* Use the perturbation theory to calculate the so-called hyperfine splitting of the ground 
energy of the hydrogen atom,105 due to the interaction between the spins of its nucleus (proton) and 
electron. 

100 For this course, this was also a good primer for the forthcoming discussion of the EPR paradox and Bell’s 
inequalities in Chapter 10. 
101 See, e.g.,  T. Herbst et al., Proc. Natl. Acad. Sci. 112, 14202 (2015), and references therein. 
102 J. Yin et al., Science 356, 1140 (2017). 
103 H.-L. Yin et al., Phys. Rev. Lett. 117, 190501 (2016). 
104 For a deeper look at this field, adequate measures of the informational capacity of quantum channels would 
need to be discussed. Due to lack of time/space, I have to refer the interested reader to literature – for example, to 
Chapter 12 in Nielsen and Chuang, or to S. Barnett, Quantum Information, Oxford, 2009. 
105 This effect was discovered by A. Michelson in 1881 and explained theoretically by W. Pauli in 1924, with the 
first quantitative calculation made in 1930 by E. Fermi. 
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 Hint: The proton’s magnetic moment operator is described by the same Eq. (4.115) as the 
electron, but with a positive gyromagnetic ratio p = gpe/2mp  2.675108 s-1T-1, whose magnitude is 
much smaller than that of the electron (e   1.7611011 s-1T-1), due to the much higher mass, mp  
1.67310-27 kg  1,835 me. (The g-factor of the proton is also different, gp  5.586.106) 
 
 8.6. In the simple case of just two similar spin-interacting particles, distinguishable by their 
spatial location, the famous Heisenberg model of ferromagnetism107 is reduced to the following 
Hamiltonian: 

 2121 ˆˆˆˆ ssss  BJH , 

where J is the spin interaction constant,   is the gyromagnetic ratio of each particle, and B is the 
external magnetic field. Find the stationary states and energies of this system for spin-½ particles. 
 
 8.7. Two spins-½, different gyromagnetic ratios 1 and 2, are placed in an external magnetic 
field B. In addition, the spins interact as in the Heisenberg model:  

21int ˆˆˆ ss  JH . 

Find the stationary states and energies of the system.  
  
 8.8. Two similar spins-½ with a gyromagnetic ratio , localized at two points separated by 
distance a, interact via the field of their magnetic dipole moments. Calculate the stationary states and 
energies of the system. 
 

8.9. Consider the permutation of two identical particles, each of spin s. How many different 
symmetric and antisymmetric spin states can the system have? 

 
 8.10. For a system of two identical particles with s = 1:  

 (i) List all spin states forming the uncoupled-representation basis. 
 (ii) List all possible pairs {S, MS} of the quantum numbers describing the states of the coupled-
representation basis – see Eq. (48). 
 (iii)Which of the {S, MS} pairs describe the states symmetric, and which the states 
antisymmetric, with respect to the particle permutation?    
 
 8.11. Represent the operators of the total kinetic energy and the total orbital angular momentum 
of a system of two particles, with masses m1 and m2, as combinations of the terms describing the center-
of-mass motion and the relative motion. Use the results to calculate the energy spectrum of the so-called 
positronium – a metastable “atom”108 consisting of one electron and its positively charged antiparticle, 
the positron. 

106 The relatively large value of the proton’s g-factor results from the quark-gluon structure of this particle. (An 
exact calculation of gp remains a challenge for quantum chromodynamics.) 
107 It was suggested in 1926 independently by W. Heisenberg and P. Dirac. A discussion of thermal effects in this 
and other similar systems (especially the Ising model of ferromagnetism) may be found in SM Chapter 4. 
108 Its lifetime (either 0.124 ns or 138 ns, depending on the parallel or antiparallel configuration of the component 
spins), is limited by the weak interaction of its components, which causes their annihilation with the emission of 
several gamma-ray photons. 
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8.12. Calculate the energy spectrum of the system of two identical spin-½ particles moving along 
the x-axis, which is  described by the following Hamiltonian: 

 21
2
2
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2
00

0

2
2

0

2
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ˆˆ xxxx
m

m

p
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p
H 


 , 

and the degeneracy of each energy level. 
 
 8.13. Two particles with similar masses m and charges q are free to move along a planar circle of 
radius R. In the limit of very strong Coulomb interaction of the particles, find the lowest eigenenergies 
of the system, and sketch the system of its energy levels. Discuss possible effects of particle 
indistinguishability. 
 
 8.14. Low-energy spectra of many diatomic molecules may be well described by modeling the 
molecule as a system of two particles connected with a light and elastic but very stiff spring. Calculate 
the energy spectrum of a molecule within this model. Discuss possible effects of nuclear spins on 
spectra of the so-called homonuclear diatomic molecules formed by two similar atoms. 
 
 8.15. Two indistinguishable spin-½ particles are attracting each other at contact: 

    0,with ,, 2121  WW xxxxU   

but are otherwise free to move along the x-axis. Find the energy and the orbital wavefunction of the 
ground state of the system. 

  
 8.16. Two indistinguishable spin-½  particles are confined to move around a circle of radius R, 
and interact only at a very short arc distance l = R(1 – 2)  R between them, so the interaction 
potential U may be well approximated with a delta function of . Find the ground state and its energy, 
for the cases of: 

 (i) the orbital (spin-independent) repulsion:  WÛ , 

 (ii) the spin-spin interaction:  21 ˆˆˆ ss  WU , 

both with W  > 0. Analyze the trends of your results in the limits W  0 and W  . 
 
 8.17. Two particles of mass M, separated by two much lighter particles of mass 
m << M, are placed on a circle of radius R – see the figure on the right. The particles 
fully repulse each other at contact, but otherwise, each of them is free to move along 
the circle. Calculate the lower part of the system’s energy spectrum. 
 

8.18. Two spin-½ particles are confined in a spherically symmetric potential well U0(r) = 
m0

2r2/2. In addition, they directly interact via a short-range potential that may be described as Uint = 
W(r1 – r2). In the first approximation in small W, calculate the energies of  

(i) the ground state, and  
(ii) the lowest excited states of the system. 

 

M

M

m

m



Essential Graduate Physics                           QM: Quantum Mechanics 

    
Chapter 8             Page 51 of 52 

 8.19. N indistinguishable spin-½ particles are placed into the spherically-symmetric potential 
well U(r) = m0

2r2/2. Neglecting the explicit interaction of the particles, find the ground-state energy of 
the system. 
 
 8.20. Use the Hund rules to evaluate the quantum numbers L, S, and J in the ground states of 
carbon and nitrogen atoms. Write down the Russell-Saunders symbols for these states. 
 
 8.21. N >> 1 indistinguishable, non-interacting quantum particles are placed into a hard-wall 
rectangular box with sides ax, ay, and az. Calculate the ground-state energy of the system and the average 
forces it exerts on each face of the box.  Can we characterize the forces by certain pressure P? 

 Hint: Consider separately the cases of bosons and fermions. 
 
 8.22. A system of three spins-½ is described by the Heisenberg Hamiltonian 

 133221 ˆˆˆˆˆˆˆ ssssss  JH , 

where J is a spin interaction constant (cf. Problems 6 and 7). Find the stationary states and energies of 
this system, and give an interpretation of your results. 
 
 8.23. For a system of three spins-½, find the common eigenstates and eigenvalues of the 

operators zŜ  and 2Ŝ , where 321 ˆˆˆˆ sssS   is the vector operator of the total spin of the system. Do the 

corresponding quantum numbers S and MS obey Eqs. (48)? 
  
 8.24. Explore basic properties of the Heisenberg model (whose few-spin versions were the 
subjects of Problems 6, 7, and 23), for a 1D chain of N spins-½: 

 
,0with  ,ˆˆˆˆ

',
'   JJH

j
j

jj
jj sss B  

where the summation is over all N spins, with the symbol {j, j’} meaning that the first sum is only over 
the adjacent spin pairs. In particular, find the ground state of the system and its lowest excited states in 
the absence of external magnetic field B, and also the dependence of their energies on the field. 

 Hint: For the sake of simplicity, you may assume that the first sum includes the term 1ˆˆ ss N  as 

well. (Physically, this means that the chain is bent into a closed loop. 109) 
 
 8.25. Calculate commutators of the following operators: 






   22111221 ˆˆˆˆ

2

1
ˆ,ˆˆˆ,ˆˆˆ †††† aaaaaaaa z , 

where †
2,1â and 2,1â  are the operators of the creation and annihilation of bosons in two different states. 

 

109 Note that for dissipative spin systems,  differences between low-energy excitations of open-end and closed-end 
1D chains may be substantial even in the limit N   – see, e.g., SM Sec. 4.5. However, for our Hamiltonian 
(and hence dissipation-free) system, the differences are relatively small. 
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8.26. Compose the simplest model Hamiltonians, in terms of the second quantization formalism, 
for systems of indistinguishable particles placed in the following external potentials: 

 (i) two weakly coupled potential wells, with on-site particle interactions giving additional energy 
J per each pair of particles in the same potential well, and 
 (ii) a periodic 1D potential, with the same particle interactions, in the tight-binding limit. 

 
8.27. For each of the Hamiltonians composed in the previous problem, derive the Heisenberg 

equations of motion for particle creation/annihilation operators. 
  
 8.28. Express the ket-vectors of all possible Dirac states of three indistinguishable  

 (i) bosons, and  
 (ii) fermions, 

via those of the single-particle states , ’, and ” they occupy. 
 
 8.29. Explain why the general perturbative result (8.126), when applied to the 4He atom, gives 
the correct110 expression (8.29) for the ground singlet state, and correct Eqs. (8.39)-(8.42) (with the 
minus sign in the first of these relations) for the excited triplet states, but cannot describe these results, 
with the plus sign in Eq. (8.39), for the excited singlet state. 
 
 8.30.* Explore the Thomas-Fermi model111 of a heavy atom, with the nuclear charge Q = Ze >> 
e, in which the interaction between electrons is limited to their contribution to the common electrostatic 
potential (r). In particular, derive the ordinary differential equation obeyed by the radial distribution of 
the potential, and use it to estimate the effective radius of the atom. 
 
 8.31.* Use the Thomas-Fermi model explored in the previous problem to calculate the total 
binding energy of a heavy atom. Compare the result with that of the simpler model, in that the Coulomb 
electron-electron interaction is completely ignored. 
  

8.32. Suggest and explore a simple model of dephasing in a system consisting of N similar, 
distinct, non-interacting components. How does the dephasing time scale with N?  
 
 8.33. The notion of the reduced density operator ŵ  defined by Eq. (7.160) is sometimes used for 
the characterization of entanglement in multi-qubit systems. Calculate ŵ  for one qubit of a two-qubit 
system that is in an arbitrary pure state, and analyze the result. 
 
 8.34. For a system of two distinct qubits (i.e. two-level systems), introduce a reasonable 
uncoupled-representation z-basis and write, in this basis, the 44 matrix of the operator that swaps their 
states. 
 

8.35. Find a time-independent Hamiltonian that causes the qubit evolution described by Eqs. 
(155). Discuss the relation between your result and the time-dependent Hamiltonian (6.86). 

 

110 Correct in the sense of the first order of the perturbation theory. 
111 It was suggested in 1927, independently, by L. Thomas and E. Fermi. 


