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Chapter 10. Making Sense of Quantum Mechanics 

This (rather brief) chapter addresses the conceptually important issues of quantum measurements and 
quantum state interpretation. Please note that some of these issues are still subjects of debate1 – 
fortunately not affecting the quantum mechanics’ practical results discussed in the previous chapters.  

 

10.1. Quantum measurements 

 The knowledge base outlined in the previous chapters gives us a sufficient background for a (by 
necessity, very brief) discussion of quantum measurements.2 Let me start by reminding the reader of the 
only quantum theory’s postulate that relates it to experiment. In the simplest case when the system is in 
a coherent (pure) quantum state, its ket-vector may be represented as a linear superposition  

                   
j

jj a ,     (10.1) 

where aj are the eigenstates of the operator of an observable A, related to its eigenvalues Aj by Eq. 
(4.68): 
      jjj aAaA ˆ .     (10.2) 

In such a state, the outcome of a single measurement (at this stage, meaning a perfect measurement) of 
the observable A may be uncertain but is restricted to the set of eigenvalues Aj, with the jth outcome 
probability equal to 

   
2

jjW  .      (10.3) 

As was discussed in Chapter 7, the state of the system (or rather of the statistical ensemble of 
macroscopically similar systems we are using for this particular series of similar experiments) may be 
mixed rather than pure, and hence even more uncertain than the state described by Eq. (1). Hence, the 
measurement postulate means that even if the system is in its least uncertain state, the measurement 
outcomes are still probabilistic.3 

 If we believe that each particular measurement may be done perfectly, and do not worry too 
much about how exactly, we are subscribing to the mathematical notion of measurement, that was, 
rather reluctantly, used in these notes – up to this point. However, the actual (physical) measurements 
are always imperfect, first of all, because of the huge gap between the energy-time scale  ~ 10–34 Js of 
the quantum phenomena in “microscopic” systems such as atoms, and the “macroscopic” scale of the 
direct human perception, so the role of the instruments bridging this gap (Fig. 1), is highly nontrivial. 

1 For an excellent review of these controversies, as presented in a few leading textbooks, I highly recommend J. 
Bell’s paper published in the collection by A. Miller (ed.), Sixty-Two Years of Uncertainty, Plenum, 1989. 
2 “Quantum measurements” is a rather unfortunate and misleading term; it would be more sensible to speak about 
“measurements of observables in quantum mechanical systems”. However, the former term is so common and 
compact that I will use it – albeit rather reluctantly.  
3 The measurement outcomes become definite only in the trivial case when the system is definitely in one of the 
eigenstates aj, say a0; then j = j,0exp{i}, and Wj = j,0. 
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  Besides the famous Bohr-Einstein discussion in the mid-1930s, which will be briefly reviewed 
in Sec. 3, the founding fathers of quantum mechanics have not paid much attention to these issues, 
apparently because of the following reason. At that time it looked like the experimental instruments (at 
least the best of them :-) were doing exactly what the measurement postulate was telling. For example, 
the z-oriented Stern-Gerlach experiment (Fig. 4.1) turns two complex coefficients  and  describing 
the spin state of the incoming particles, into a set of particle-counter clicks, with the rates proportional 
to, respectively, 2 and 2. The complex internal nature of these instruments makes more detailed 
questions unnatural. For example, each click of a Geiger counter involves an effective disappearance of 
the observed particle in a zillion-particle electric discharge avalanche it has triggered. A century ago, it 
looked much more important to extend the newborn quantum mechanics to more complex systems (such 
as atomic nuclei, etc.) than to think about the physics of such instruments. 

 However, since that time the experimental techniques, notably including high-vacuum and low-
temperature systems, micro- and nano-fabrication, and low-noise electronics, have improved quite 
dramatically. In particular, we now may observe the quantum-mechanical behavior of more and more 
macroscopic objects – such as the mechanical oscillators mentioned in Sec. 2.9. Moreover, some 
“macroscopic quantum systems” (in particular, special systems of Josephson junctions, see below) have 
properties enabling their use as essential parts of measurement setups. Such developments are making 
the line separating the “micro” and “macro” worlds finer and finer, so more inquisitive questions about 
the physical nature of quantum measurements are not so hopeless now. In my personal scheme of these 
developments, the main questions may be grouped as follows: 

 (i) Does a quantum measurement involve any laws besides those of quantum mechanics? In 
particular, should it necessarily involve a human/intelligent observer? (The last question is not as 
laughable as it may look – see below.) 

 (ii) What is the state of the measured system just after a single-shot measurement – meaning a 
measurement process limited to a time interval much shorter than the time scale of the measured 
system’s evolution? (This question is a necessary part of any discussion of repeated measurements and 
of their ultimate form – continuous monitoring of a certain observable.) 

(iii) If a measurement of an observable A has produced a certain outcome Aj, what statements 
may be made about the state of the system just before the measurement? (This question is most closely 
related to various interpretations of quantum mechanics.) 

Let me discuss these issues in the listed order. First of all, I am happy to report that there is a 
virtual consensus of physicists on some aspects of these issues. According to this consensus, any 
reasonable quantum measurement needs to result in a certain, distinguishable state of a macroscopic 
output component of the measurement instrument – see Fig. 1. (Traditionally, its component is called a 
pointer, though its role may be played by a printer or a plotter, an electronic circuit sending out the 
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result as a number, etc.). This requirement implies that the measurement process should have the 
following features: 

– provide a large “signal gain”, i.e. some means of mapping the quantum state with its -scale of 
action (i.e. of the energy-by-time product) onto a macroscopic position of the pointer with a much larger 
action scale, and 

– if we want to approach the fundamental limit of uncertainty, the instrument should introduce as 
little additional fluctuation (“noise”) as permitted by the laws of physics. 

Both these requirements are fulfilled in a well-designed Stern-Gerlach experiment – see Fig. 4.1 
again. Indeed, the magnetic field gradient, splitting the particle beam, turns the minuscule (microscopic) 
energy difference (4.167) between two spin-polarized states into a macroscopic difference between the 
final positions of two output beams, where two particle detectors may be located. However, as was 
noted above, the internal physics of the particle detectors (say, Geiger counters) at this measurement is 
rather complicated, and would not allow us to discuss some aspects of the measurement, in particular. to 
answer the second question we are working on. 

This is why let me describe the scheme of an almost similar single-shot measurement of a two-
level quantum system, which shares the simplicity, high gain, and low internal noise of the Stern-
Gerlach apparatus, but has an advantage that at its certain hardware implementations,4 the measurement 
process allows a thorough, quantitative theoretical description. Let us consider a 1D particle confined in 
a double-well potential (Fig. 2), where x is some continuous generalized coordinate – not necessarily a 
mechanical displacement. Let the particle be initially in a pure quantum state, with the energy close to 
the wells’ bottom. Then, as we know from the discussion of such systems in Secs. 2.6 and 5.1, the state 
may be represented by a ket-vector similar to that of spin-½: 

           ,     (10.4) 

where the component states  and  are described by wavefunctions localized near the potential well 
bottoms at x  x0 – see the blue lines in Fig. 2. Our goal is to measure in which well the particle resides 
at a certain time instant, say at t = 0. For that, let us rapidly change, at that moment, the potential profile 
of the system, so at t > 0, near the origin, it may be well described by an inverted parabola: 

        f
2

2

,0for  ,
2

)( xxtx
m

xU 


.    (10.5) 

4 The scheme may be implemented, for example, using a simple Josephson-junction circuit called the balanced 
comparator – see, e.g., T. Walls et al., IEEE Trans. on Appl. Supercond. 17, 136 (2007), and references therein. 
(Its ac versions, first demonstrated by I. Siddiqi et al., Phys. Rev. Lett. 94, 027005 (2005), are currently called 
“bifurcation detectors”. This term is applicable to the balanced comparator as well.) Experiments have 
demonstrated that this system may have a measurement variance dominated by the theoretically expected 
quantum-mechanical uncertainty, at quite practicable experimental conditions (temperatures of the order of 1K). 
A conceptual advantage of this system is that it is based on externally-shunted Josephson junctions, i.e. the 
devices whose quantum-mechanical model, including the coupling to the environment, is in a quantitative 
agreement with experiment – see, e.g., D. Schwartz et al., Phys. Rev. Lett. 55, 1547 (1985). Colloquially, the 
balanced comparator is a high-gain instrument with a “well-documented Hamiltonian”, eliminating the need for 
speculations about the environmental effects. In particular, the dephasing process in it, and its time T2, are well 
described by Eqs. (7.89) and (7.142), with the coefficient  equal to the Ohmic conductance G of the shunt. 
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It is straightforward to verify that the Heisenberg equations of motion in such an inverted 
potential describe an exponential growth of the operator x̂  in time (proportional to exp{t}) and hence a 
similar, proportional growth of the expectation value x and its r.m.s. uncertainty x.5 At this “inflation” 
stage, the coherence between the two component states  and  is still preserved, i.e. the time 
evolution of the system is, in principle, reversible. 

 

 

 

 

 

 

 

 

 

 

 

Now let the system be weakly coupled, also at t > 0, to a dissipative (e.g., Ohmic) environment. 
As we know from Chapter 7, such coupling ensures the state’s dephasing on some time scale T2. If  

   f200 },exp{ xTxx  ,     (10.6) 

then the process, after the potential inversion, consists of two stages, well separated in time: 

– the already discussed “inflation” stage, preserving the state components’ coherence, and 

– the dephasing stage, at which the coherence of the component states  and  is gradually 
suppressed as described by Eq. (7.89), i.e. the density matrix of the system is gradually reduced to the 
diagonal form describing a classical mixture of two probability packets with the probabilities (3) equal 
to, respectively, W = 2 and W = 2  1 – 2. 

Besides dephasing, the environment gives the motion certain kinematic friction, with the drag 
coefficient  (7.141), so the system eventually settles to rest at one of the macroscopically separated 
minima x = xf of the inverted potential (Fig. 2a), thus ensuring a high “signal gain” xf/x0 >> 1. As a 
result, the final probability density distribution w(x) along the x-axis has two narrow, well-separated 
peaks. But this is just the situation that was discussed in Sec. 2.5 – see, in particular, Fig. 2.17. Since 
that discussion is very important, let me repeat – or rather rephrase it. The final state of the system is a 
classical mixture of two well-separated states, with the respective probabilities W and W, whose sum 
equals 1. Now let us use some detector to test whether the system is in one of these states – say the right 
one. (If xf is sufficiently large, the noise contribution of this detector to the measurement uncertainty is 

5 Somewhat counter-intuitively, the latter growth improves the measurement’s fidelity. Indeed, it does not affect 
the intrinsic “signal-to-noise ratio” x/x, while making the intrinsic (say, quantum-mechanical) uncertainty much 
larger than the possible noise contribution by the later measurement stage(s).  

Fig. 10.2. The confining potential’s inversion, as viewed on the (a) 
“macroscopic” and (b) “microscopic” scales of the generalized coordinate x. 

x

0

),( txU

0t

0t

fxfx

(a)      (b) 

0t
 

0x0x

0t



Essential Graduate Physics                QM: Quantum Mechanics 

    
Chapter 10           Page 5 of 16 

negligible,6 and its physics is unimportant.) If the system has been found at this location (again, the 
probability of this outcome is W = 2), the probability of finding it at the counterpart (left) location 
at a consequent detection turns to zero.  

This probability “reduction” is a purely classical (or if you like, mathematical) effect of the 
statistical ensemble’s re-definition: W equals zero not in the initial ensemble of all similar experiments 
(where is equals 2), but only in the re-defined ensemble of experiments in that the system had been 
found at the right location. Of course, which ensemble to use, i.e. what probabilities to register/publish 
is a purely accounting decision, which should be made by a human (or otherwise intelligent :-) observer. 
If we are only interested in an objective recording of the results of a pre-fixed sequence of experiments 
(i.e. the members of a pre-defined, fixed statistical ensemble), there is no need to include such an 
observer in any discussion. In any case, this detection/registration process, very common in classical 
statistics, leaves no space for any mysterious “wave packet reduction” – understood as a hypothetical 
process that would not obey the regular laws of quantum mechanical evolution. 

The state dephasing and ensemble re-definition at measurements are also at the core of several 
paradoxes, of which the so-called quantum Zeno paradox is perhaps the most spectacular.7 Let us return 
to a two-level system with the unperturbed Hamiltonian given by Eq. (4.166), the quantum oscillation 
period 2/ much longer than the single-shot measurement time, and the system initially (at t = 0) 
definitely in one of the partial quantum states – for example, a certain potential well of the double-well 
potential. Then, as we know from Secs. 2.6 and 4.6, the probability to find the system in this initial state 
at time t > 0 is 

2

Ω
sin1

2

Ω
cos)( 22 tt

tW  .    (10.7) 

If the time is small enough (t = dt << 1/), we may use the Taylor expansion to write 

         
4

Ω
1)(

22dt
dtW  .     (10.8) 

 Now, let us use some good measurement scheme (say, the potential inversion discussed above) 
to measure whether the system is still in this initial state. If it is (as Eq. (8) shows, the probability of 
such an outcome is nearly 100%), then the system, after the measurement, is in the same state. Let us 
allow it to evolve again, following the same Hamiltonian. Then the evolution of W will follow the same 
law as in Eq. (7). Thus, when the system is measured again at time 2dt, the probability to find it in the 
same state both times is 

     .
4

Ω
1

4

Ω
1)()2(

22222




















dtdt
dtWdtW    (10.9) 

After repeating this cycle N times (with the total time t = Ndt still much less than N1/2/), the probability 
that the system is still in its initial state is  

6 At the balanced-comparator implementation mentioned above, the final state detection may be readily performed 
using a “SQUID” magnetometer based on the same Josephson junction technology – see, e.g., EM Sec. 6.5. In 
this case, the distance between the potential minima xf is close to one superconducting flux quantum (3.38), 
while the additional uncertainty induced by the SQUID may be as low as a few millionths of that amount. 
7 This name, coined by E. Sudarshan and B. Mishra in 1997 (though the paradox had been discussed in detail by 
A. Turing in 1954) is due to its superficial similarity to the classical paradoxes by the ancient Greek philosopher 
Zeno of Elea.  
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Comparing this result with Eq. (7), we see that the process of the system’s transfer to the opposite partial 
state has been slowed down rather dramatically, and in the limit N   (at fixed t), its evolution is 
virtually stopped by the measurement process. There is of course nothing mysterious here; the evolution 
slowdown is due to the state dephasing and the statistical ensemble re-definition at each measurement. 

This may be the only acceptable occasion for me to mention, very briefly, one more famous – or 
rather infamous Schrödinger cat paradox, so much overplayed in popular publications.8 For this thought 
experiment, there is no need to discuss the (rather complicated :-) physics of the cat. As soon as the 
charged particle produced at the radioactive decay reaches the Geiger counter, the initial coherent 
superposition of the two possible quantum states (“the decay has happened”/“the decay has not 
happened”) of the system is rapidly dephased, i.e. reduced to their classical mixture, leading, 
correspondingly, to the classical mixture of the final macroscopic states “cat dead”/“cat alive”. So, 
despite attempts by numerous authors lacking a proper physics background to represent this situation as 
a mystery whose discussion needs the involvement of professional philosophers, hopefully, the reader of 
these notes knows enough about dephasing from Chapter 7 to ignore all this babble.  

 

10.2. QND measurements 

 I hope that the above discussion has sufficiently illuminated the issues of group (i), so let me 
proceed to question group (ii), in particular to the general issue of the back action of the instrument 
upon the system under measurement – symbolized with the back arrow in Fig. 1. In the instruments like 
the Geiger counter, such back action is large: the instrument essentially destroys (“demolishes”) the 
state of the system under measurement. Even the “cleaner” potential-inversion measurement illustrated 
by Fig. 2 fully destroys the initial coherence of the system’s states, i.e. perturbs it very substantially.  

 However, in the 1970s it was understood that this is not really necessary. For example, in Sec. 
7.3, we have already discussed an example of a two-level system coupled with its environment and 
described by the Hamiltonian (7.68)-(7.70): 

              ,ˆˆ  and  ,ˆˆwith  ,ˆˆˆˆ
intint zzzses fHcHHHHH     (10.11) 

so 

                          0ˆ,ˆ
int HH s .     (10.12) 

Comparing this equality with Eq. (4.199), applied to the explicitly-time-independent Hamiltonian sĤ , 

            0ˆ,ˆˆˆˆ,ˆˆ,ˆˆ
intint  HHHHHHHHHi sessss 

 ,  (10.13) 

we see that in the Heisenberg picture, the Hamiltonian operator (and hence the energy) of the system of 
our interest does not change in time. On the other hand, if the “environment” in this discussion is the 
instrument used for the measurement (see Fig. 1 again), then the interaction can change its state, so it 

8 I fully agree with S. Hawking who has been quoted to say, “When I hear about the Schrödinger cat, I reach for 
my gun.” The only good aspect of this popularity is that the formulation of this paradox should be so well 
known to the reader that I do not need to waste time/space repeating it.  
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may be used to measure the system’s energy – or another observable whose operator commutes with the 
interaction Hamiltonian. Such a trick is called the quantum non-demolition (QND), or sometimes “back-
action-evading” measurements.9 Due to the lack of back action of the instrument on the corresponding 
variable, such measurements allow its continuous monitoring. Let me present a fine example of an 
actual measurement of this kind – see Fig. 3.10 

  

 

 

 

 

 

 

 

 

 

 

 
 
In this experiment, a single electron is captured in a Penning trap – a combination of a (virtually) 

uniform magnetic field B and a quadrupole electric field.11 This electric field stabilizes the cyclotron 
orbits but does not have any noticeable effect on electron motion in the plane normal to the magnetic 
field, and hence on its Landau level energies – see Eq. (3.50): 

          
e

cc with  ,
2
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m

e
nEn

B







   .    (10.14) 

(In the cited work, with B  5.3 T, the cyclic frequency c/2 was about 147 GHz, so the Landau level 

splitting c was close to 10–22 J, i.e. corresponded to kBT at T ~10 K, while the physical temperature of 
the system might be reduced well below that, down to 80 mK). Now note that the analogy between a 
Landau-level particle and a harmonic oscillator goes beyond the energy spectrum (14). Indeed, since the 
Hamiltonian of a 2D particle in a perpendicular magnetic field may be reduced to Eq. (3.47) similar to 
that of a 1D oscillator, we may repeat all procedures of Sec. 5.4 and rewrite this effective Hamiltonian 
in terms of the creation-annihilation operators – see Eq. (5.72): 

       





 

2

1
ˆˆˆ †

c aaH s  .     (10.15) 

9 For a more detailed discussion of this approach, including a review of its initial development, see V. Braginsky 
and F. Y. Khalili, Rev. Mod. Phys. 68, 1 (1996). 
10 S. Peil and G. Gabrielse, Phys. Rev. Lett. 83, 1287 (1999). 
11 It is similar to the 2D system discussed in EM Sec. 2.7 but with additional rotation about one of the axes. 

Fig. 10.3. QND measurements of single electron’s energy by Peil and Gabrielse: (a) the 
experimental setup’s core, and (b) a record of the thermal excitation and spontaneous relaxation 
of the Fock states. © 1999 APS; reproduced with permission.  

(a)         (b) 
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In the Peil and Gabrielse experiment, the trapped electron had one more degree of freedom – 
along the magnetic field. The electric field of the Penning trap created a very soft confining potential 
along this direction (vertical in Fig. 3a; I will take it for the z-axis), so small electron oscillations along 
that axis could be well described as those of a 1D harmonic oscillator of a much lower frequency, in that 
particular experiment with z/2  64 MHz. This frequency could be measured very accurately (with an 
error of ~1 Hz) by sensitive electronics whose electric field does affect the z-motion of the electron, but 
not its motion in the perpendicular plane. In an exactly uniform magnetic field, the two modes of 
electron motion would be completely uncoupled. However, the experimental setup included two special 
superconducting rings made of niobium (see Fig. 3a), which slightly distorted the magnetic field and 
created an interaction between the modes, which might be well approximated by the Hamiltonian12 

    2
int ˆ

2

1
ˆˆconstˆ † zaaH 






  ,    (10.16) 

so the main condition (12) of a QND measurement was very closely satisfied. At the same time, the 
coupling (16) ensured that a change of the Landau level number n by 1 changed the z-oscillation 
eigenfrequency by ~12.4 Hz. Since this shift was substantially larger than the used electronics’ noise, 
rare spontaneous changes of n (due to a weak coupling of the electron to the environment) could be 
readily measured – moreover, continuously monitored – see Fig. 3b. The record shows spontaneous 
excitations of the electron to higher Landau levels, with its sequential relaxation, just as described by 
Eqs. (7.208)-(7.210). The detailed data statistics analysis showed that there was virtually no effect of the 
measuring instrument on these processes – at least on the scale of minutes, i.e. as many as ~1013 
cyclotron orbit periods.13 

 It is important, however, to emphasize that any measurement – QND or not – cannot avoid the 
uncertainty relations between incompatible variables; in the particular case described above, continuous 
monitoring of the Landau state number n does not allow the simultaneous monitoring of its quantum 
phase (which may be defined exactly as in the harmonic oscillator). In this context, it is natural to 
wonder whether the QND measurement concept may be extended from quadratic-form variables like 
energy to “usual” observables such as coordinates and momenta whose uncertainties are bound by the 
ordinary Heisenberg’s relation (1.35). The answer is yes, but the required methods are a bit more tricky. 

 For example, let us place an electrically charged particle into a uniform electric field E = nxE(t) 
of an instrument, so their interaction Hamiltonian is 

xtqH ˆ)(ˆ ˆ
int E .     (10.17) 

Such interaction may certainly pass the information on the time evolution of the coordinate x to the 
instrument. However, in this case, Eq. (12) is not satisfied – at least for the kinetic-energy part of the 
particle’s Hamiltonian; as a result, the interaction distorts its time evolution. Indeed, by writing the 
Heisenberg equation (4.199) for the x-component of the momentum, we get 

12 Here I am simplifying the real situation a bit. Actually, in that experiment, there was an electron spin’s 
contribution to the interaction Hamiltonian as well, but since the used high magnetic field polarized the spins 
quite reliably, their only effect was a constant shift of the frequency z, which is not important for our discussion. 
13 See also the conceptually similar experiments, performed by different means: G. Nogues et al., Nature 400, 239 
(1999). 
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On the other hand, integrating Eq. (5.139) for the coordinate operator evolution,14 we get the expression 
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which shows that the perturbations (18) of the momentum eventually find their way to the coordinate 
evolution, not allowing its unperturbed sequential measurements. 

 However, for such an important particular system as a harmonic oscillator, the following trick is 
possible. For this system, Eqs. (5.139) with the addition (18) may be readily combined to give a second-
order differential equation for the coordinate operator, that is absolutely similar to the classical equation 
of motion of the system, and has a similar solution:15 
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.   (10.20)  

This formula confirms that generally, the external field E(t) (in our case, the sensing field of the 
measurement instrument) affects the time evolution law – of course. However, Eq. (20) shows that if the 
field is applied only at moments t’n separated by intervals T/2, where T  2/0 is the oscillation period, 
its effect on coordinate vanishes at similarly spaced observation instants tn = tn’ + (m +1/2)T. This is the 
idea of stroboscopic QND measurements. Of course, according to Eq. (18), even such measurement 
perturbs the oscillator momentum, so even if the values xn are measured with high accuracy,  
Heisenberg’s uncertainty relation is not violated. 

 For high-frequency systems, direct implementation of stroboscopic measurements is technically 
complicated, but this initial idea has opened ways to more practicable solutions. For example,16 it is 
straightforward to use the Heisenberg equations of motion to show that if the coupling of two harmonic 
oscillators, with coordinates x and X, and unperturbed frequencies  and , is modulated in time as 

       ttXxH  coscosˆˆˆ
int  ,     (10.21) 

then the coupling is reduced to non-reciprocal interaction between the quadrature components of the 
oscillations defined as:17 

14 This simple relation is limited to 1D systems with Hamiltonians of the type (1.41), but by now the reader 
certainly knows enough to understand that this discussion may be readily generalized to many other systems. 
15 Note in particular that the function sin0 (with   t – t’) under the integral, divided by 0, is nothing more 
than the temporal Green’s function G() of a loss-free harmonic oscillator – see, e.g., CM Sec. 5.1. 
16 See E. Majorana et al., Appl. Phys. B 64, 145 (1997). Note that this idea is substantially based on the prior 
work by K. Thorne et al., Phys. Rev. Lett. 40, 667 (1978) – also the detailed review paper C. Caves et al., Rev. 
Mod. Phys. 52, 41 (1980).
17 The physical sense of these relations should be clear from Fig. 5.8: they define a system of coordinates rotating 
clockwise with the angular velocity equal to , so the point representing unperturbed classical oscillations with 
that frequency is at rest in this rotating frame. Note that according to the discussion at the end of Sec. 5.5, if an 
autonomous (stand-alone) oscillator was initially in a squeezed state, the degree of squeezing of the variables x1 
and x2, i.e. their r.m.s. widths, would not change in time. 
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and similarly for the counterpart oscillator. Specifically, 1x̂  directly affects the dynamics of only 2X̂ ,  

while 1X̂  directly affects only 2x̂ . As a result, for example, if both oscillators are in their ground 
squeezed states with very narrow probability distributions of the quadrature components x1 and X2, their 
interaction (22) would not result in their broadening due to the (inevitably broad) distributions of x2 and 
X1. On this background, a useful “signal”, i.e. an additional small deterministic shift of x1, may be 
transferred to X2 without such “quantum noise contamination”. Now the oscillators may be decoupled, 
and X2 measured (for example, by using the parameter inversion discussed in Sec. 1), without perturbing 
the initial oscillator’s state. Upon restoration of the second oscillator to its initial state (with squeezed 
X2), the systems may be reconnected again, and the measurement process repeated (if desired, again and 
again), without disturbing the squeezed quadrature component x1.  

 So, periodic modulation of certain parameters of quantum systems in time may be used for 
repeated QND  measurements. Such measurements were demonstrated first using nonlinear interactions of 
optical waves.18 Similar experiments were carried out with optomechanical and electromechanical systems as 
well.19 Note that such an approach is not limited to harmonic oscillators, and may be applied, with 
appropriate modifications, to other quantum objects – notably to two-level (i.e. spin-½-like) systems.20 

 However, if the only goal of a QND measurement is a sensitive measurement of a weak classical 
force acting on a quantum probe system, e.g. a 1D oscillator of eigenfrequency 0, it may be 
implemented simpler – just by modulating the oscillator’s impedance with a frequency   20. From 
the classical dynamics, we know that if the depth of such modulation exceeds a certain threshold value, 
it results in the excitation of the degenerate parametric oscillations of frequency /2  0, with one of 
two opposite phases.21 Close to, but below the excitation threshold, the modulation boosts all 
fluctuations of the almost-excited quadrature component, including its quantum-mechanical uncertainty, 
and suppresses (squeezes) those of the counterpart component. 

 This fact may be conveniently formulated in electronic-engineering terms by using the notion of 
noise parameter N of a linear amplifier – the last term meaning any instrument for continuous 
monitoring of an input signal – e.g., a microwave or optical waveform.22 Namely, the N of the system 
discussed above (called the degenerate parametric amplifier), which is sensitive to just one quadrature 
component of the signal, may have N well below /2, due to its ground state’s squeezing.23 On the 

18 See, e.g., the review by P. Grangier et al., Nature 396, 537 (1998).  
19 See, e.g., F. Lecocq et al., Phys. Rev. X 5, 041037 (2015). 
20 See, e.g., D. Averin, Phys. Rev. Lett. 88, 207901 (2002); A. Lupaşcu et al., Nature Physics 3, 119 (2007). 
21 See, e.g., CM Sec. 5.5, and also Fig. 5.8 and its discussion in Sec. 5.6 of this course. 
22 For a quantitative definition of the latter parameter (with the dimensionality of energy), which is suitable for the 
quantum sensitivity range (N ~ ), see, e.g., I. Devyatov et al., J. Appl. Phys. 60, 1808 (1986). In the classical 
noise limit (N >> ), it coincides with kBTN, where TN is a more popular measure of electronics’ noise, called 
the noise temperature.  
23 See, e.g., the pioneering experiments with optical waves by R. Slusher et al., Phys. Rev. Lett. 55, 2409 (1985) 
and with microwaves by B. Yurke et al., Phys. Rev. Lett. 60, 764 (1988). Note also that the squeezed ground 
states of light are now used to improve the sensitivity of interferometers in gravitational wave detectors – see, e.g., 
the review by R. Schnabel, Phys. Repts. 684, 1 (2017), and the later papers by F. Acernese et al., Phys. Rev. Lett. 
123, 231108 (2019) and D. Ganapathy et al., Phys. Rev. X 13, 041021 (2023). 
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other hand, “usual” (say, transistor or laser/maser) amplifiers that are equally sensitive to both 
quadrature components of the signal, N has the minimum value /2, due to the quantum uncertainty of  
the quantum state of the amplifier itself – the fact that was recognized already in the early 1960s.24 

 Finally, let me mention that the composite systems consisting of a quantum subsystem and a 
classical subsystem performing its continuous weakly-perturbing measurement and using its results for 
providing specially crafted feedback to the quantum subsystem, may have some curious properties, in 
particular mock a quantum system detached from the environment.25  

 

10.3. Hidden variables and local reality 

 Now we are ready to proceed to the discussion of the last, hardest group (iii) of the questions 
posed in Sec. 1, namely on the state of a quantum system just before its measurement. After a very 
important but inconclusive discussion of this issue by Albert Einstein and his collaborators on one side, 
and Niels Bohr on the other side, in the mid-1930s, such discussions resumed in the 1950s.26 They have 
led to a key contribution by John Stewart Bell in the early 1960s, summarized as so-called Bell’s 
inequalities, and then to experimental work on better and better verification of these inequalities. 
(Besides that continuing work, the recent progress, in my humble view, has been rather marginal.)  

 The central question may be formulated as follows: what had been the “real” state of a quantum-
mechanical system just before a virtually perfect single-shot measurement was performed on it, and 
gave a certain documented outcome? To be specific, let us focus again on the example of Stern-Gerlach 
measurements of spin-½ particles – because of their conceptual simplicity.27 For a single-component 
system (in this case a single spin-½), the answer to the posed question may look evident. Indeed, as we 
know, if the spin is in a pure (least-uncertain) state , i.e. its ket-vector may be expressed in the form 
similar to Eq. (4),  

               ,     (10.23) 

where, as usual,  and  denote the states with definite spin orientations along the z-axis, the 
probabilities of the corresponding outcomes of the z-oriented Stern-Gerlach experiment are W = 2 
and W = 2. Then it looks natural to suggest that if a particular experiment gave the outcome 
corresponding to the state , the spin had been in that state just before the experiment. For a classical 
system such an answer would be certainly correct, and the fact that the probability W = 2 defined for 
the statistical ensemble of all experiments (regardless of their outcome), may be less than 1, would 
merely reflect our ignorance about the real state of this particular system before the measurement – 
which just reveals the real situation.  

 However, as was first argued in the famous EPR paper published in 1935 by A. Einstein, B. 
Podolsky, and N. Rosen, such an answer becomes impossible in the case of an entangled quantum 

24 See, e.g., H. Haus and J. Mullen, Phys. Rev. 128, 2407 (1962). 
25 See, e.g., the monograph by H. Wiseman and G. Milburn, Quantum Measurement and Control, Cambridge U. 
Press (2009), more recent experiments by R. Vijay et al., Nature 490, 77 (2012), and references therein. 
26 See, e.g., the collection by J. Wheeler and W. Zurek (eds.), Quantum Theory and Measurement, Princeton U. 
Press, 1983. 
27 As was discussed in Sec. 1, the Stern-Gerlach-type experiments may be readily made virtually perfect, provided 
that we do not care about the evolution of the system after the single-shot measurement.   
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system, if only one of its components is measured with an instrument. The original EPR paper discussed 
thought experiments with a pair of 1D particles prepared in a quantum state in that both the sum of their 
momenta and the difference of their coordinates simultaneously have definite values: p1 + p2 = 0, x1 – x2 
= a.28 However, usually this discussion is recast into an equivalent Stern-Gerlach experiment shown in 
Fig. 4a.29 A source emits rare pairs of spin-½ particles propagating in opposite directions. The particle 
spin states are random, but with the net spin of the pair is definitely equal to zero. After the spatial 
separation of the particles has become sufficiently large (see below), the spin state of each of them is 
measured with a Stern-Gerlach detector, with one of them (in Fig. 1, SG1) somewhat closer to the 
particle source, so it makes the measurement first, at a time t1 < t2. 

  

 

 

 

 

 

 

 First, let the detectors be oriented say along the same direction, say the z-axis. Evidently, the 
probability of each detector giving any of the values sz = /2 is 50%. However, if the first detector had 
given the result Sz = –/2, then even before the second detector’s measurement, we know that it will give 
the result Sz = +/2 with 100% probability. So far, this situation still allows for a classical interpretation, 
just as for the single-particle measurements: we may fancy that the second particle has a definite spin 
before the measurement, and the first measurement just removes our ignorance about that reality. In 
other words, the change of the probability of the outcome Sz = +/2 at the second detection from 50% to 
100% is due to the statistical ensemble re-definition: the 50% probability of this detection belongs to the 
ensemble of all experiments, while the 100% probability, to the sub-ensemble of experiments with the Sz 
= –/2 outcome of the first experiment. 

 However, let the source generate the spin pairs in the singlet state (8.18): 

           
2

1
12s .     (10.24) 

As was discussed in Sec. 8.2, this state satisfies the above assumptions: the probability of each value of 
Sz of any particle is 50%, and the sum of both Sz is definitely zero, so if the first detector’s result is Sz = 
–/2, then the state of the remaining particle is , with zero uncertainty.30 Now let us use Eqs. (4.123) to 
represent the same state (24) in a different form: 

28 This is possible because the corresponding operators commute:       0ˆ,ˆˆ,ˆˆˆ,ˆˆ 22112121  xpxpxxpp . 
29 This version was first proposed by D. Bohm in 1951. Another equivalent and experimentally more 
convenient (and as a result, frequently used) technique is the degenerate parametric excitation of entangled optical 
photon pairs – see, e.g., the publications cited at the end of this section. 
30 Here we assume that both detectors are perfect in the sense of their readout fidelity. As was discussed in Sec. 1, 
this condition may be closely approached in practical SG experiments. 

(a)    (b) 

Fig. 10. 4. (a) General scheme 
of two-particle Stern-Gerlach 
experiments, and (b) the 
orientation of the detectors, 
assumed at Wigner’s deviation 
of Bell’s inequality (36).
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Opening the parentheses (carefully, without swapping the ket-vector order, which encodes the particle 
numbers!), we get an expression similar to Eq. (24), but now for the x-basis: 

       
2

1
12s .    (10.26) 

Hence if we use the first detector (closest to the particle source) to measure Sx rather than Sz, then after it 
had given a certain result (say, Sx = –/2), we know for sure, before the second particle spin’s 
measurement, that its Sx component definitely equals +/2. 

 So, depending on the experiment performed on the first particle, the second particle, before its 
measurement, may be in one of two states – either with a definite component Sz or with a definite 
component Sx, in each case with zero uncertainty. Evidently, this situation cannot be interpreted in 
classical terms – if the particles do not interact during the measurements. A. Einstein was deeply 
unhappy with this situation because it did not satisfy what, in his view, was the general requirement to 
any theory, which nowadays is called the local reality. His definition of this requirement was as follows: 
“The real factual situation of system 2 is independent of what is done with system 1 that is spatially 
separated from the former”. (Here the term “spatially separated” is not defined, but from the context, it 
is clear that Einstein meant the detector separation by a superluminal interval, i.e. by distance 

              ,2121 ttc  rr      (10.27) 

where the difference between the measurement times on the right-hand side includes the measurement 
duration.) In Einstein’s view, since quantum mechanics did not satisfy the local reality condition, it 
could not be considered a complete theory of Nature. 

  This situation naturally raises the question of whether something (usually called hidden 
variables) may be added to the quantum-mechanical description to enable it to satisfy the local reality 
requirement. The first definite statement in this regard was John von Neumann’s “proof”31 (first famous, 
then infamous :-) that such variables cannot be introduced; for a while, his work satisfied the quantum 
mechanics’ practitioners, who apparently did not pay much attention. A major new contribution to the 
problem was made only in the 1960s by John Bell.32 First of all, he has found an elementary (in his 
words, “foolish”) error in von Neumann’s logic, which voids his “proof”. Second, he has demonstrated 
that Einstein’s local reality condition is incompatible with conclusions of quantum mechanics – that had 
been, by that time, confirmed by too many experiments to be seriously questioned. 

 Let me describe a particular version of Bell’s result (suggested by E. Wigner), using the same 
EPR pair experiment (Fig. 4a) where each SG detector may be oriented in any of three directions: a, b, 
or c – see Fig. 4b. As we already know from Chapter 4, if a fully-polarized beam of spin-½ particles is 
passed through a Stern-Gerlach apparatus forming angle  with the polarization axis, the probabilities of 
two alternative outcomes of the experiment are  

31 In his very early book J. von Neumann, Mathematische Grundlagen der Quantenmechanik [Mathematical 
Foundations of Quantum Mechanics], Springer, 1932. (The first English translation was published only in 1955.) 
32 See, e.g., either J. Bell, Rev. Mod. Phys. 38, 447 (1966) or J. Bell, Foundations of Physics 12, 158 (1982). 



Essential Graduate Physics                QM: Quantum Mechanics 

    
Chapter 10           Page 14 of 16 

           .
2

sin)(,
2

cos)( 22    WW     (10.28) 

Let us use this formula to calculate all joint probabilities of measurement outcomes, starting from the 
detectors 1 and 2 oriented, respectively, in the directions a and c. Since the angle between the negative 
direction of the a-axis and the positive direction of the c-axis is  a–,c+ =  –  (see the dashed arrow in 
Fig. 4b), we get 
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where W(x  y) is the joint probability of both outcomes x and y, while W(x  y) is the conditional 
probability of the outcome x, provided that the outcome y has happened.33 Absolutely similarly,  
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Now note that for any angle  smaller than /2 (as in the case shown in Fig. 4b), trigonometry gives 
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(For example, for   0, the left-hand side of this inequality tends to 2/2, while the right-hand side, to 
2/4.) Hence the quantum-mechanical result gives, in particular, 

     2/for ),()()(    bcWcaWbaW .   (10.33) 

 On the other hand, we can get a different inequality for these probabilities without calculating 
them from any particular theory, but using the local reality assumption. For that, let us prescribe some 
probability to each of 23 = 8 possible outcomes of a set of three spin measurements. (Due to zero net 
spin of particle pairs, the probabilities of the sets shown in both columns of the table have to be equal.) 
 
  
 
 
 
 
 
 
 
 
 

 From the local-reality point of view, these measurement options are independent, so we may 
write (see the arrows on the left of the table): 

33 The first equality in Eq. (29) is the well-known identity of the basic probability theory. 

Quantum- 
mechanical 
result 

Detector 1 Detector 2 Probability 

a+  b+  c+ a–  b–  c– W1 

a+  b+  c– a–  b–  c+ W2 

a+  b–  c+ a–  b+  c– W3 

a+  b–  c– a–  b+  c+ W4 

a–  b+  c+ a+  b–  c– W5 

a–  b+  c– a+  b–  c+ W6 

a–  b–  c+ a+  b+  c– W7 

a–  b–  c– a+  b+  c+ W8 
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On the other hand, since no probability may be negative (by its very definition), we may always write 

                 734243 WWWWWW  .    (10.35) 

Plugging into this inequality the values of these two parentheses, given by Eq. (34), we get 

        ).()()(   bcWcaWbaW     (10.36) 

 This is Bell’s inequality, which has to be satisfied by any local-reality theory; it directly 
contradicts the quantum-mechanical result (33) – opening the issue to direct experimental testing. Such 
tests were started in the late 1960s, but the first results were vulnerable to two criticisms: 

 (i) The detectors were not fast enough and not far enough to have the relation (27) satisfied. This 
is why, as a matter of principle, there was a chance that information on the first measurement outcome 
had been transferred (by some, mostly implausible) means to particles before the second measurement – 
the so-called locality loophole. 

 (ii) The particle/photon detection efficiencies were too low to have sufficiently small error bars 
for both parts of the inequality – the detection loophole. 

 Gradually, these loopholes have been closed.34 As expected, substantial violations of the Bell 
inequalities (36) (or their equivalent forms) have been proved, essentially rejecting any possibility to 
reconcile quantum mechanics with Einstein’s local reality requirement.  

  

10.4. Interpretations of quantum mechanics 

 The fact that quantum mechanics is incompatible with local reality, makes its reconciliation with 
our (classically bred) “common sense” rather challenging. Here is a brief list of the major interpretations 
of quantum mechanics, that try to provide at least a partial reconciliation of this kind. 

 (i) The so-called Copenhagen interpretation – to which most physicists adhere. This 
“interpretation” does not really interpret anything; it just accepts the intrinsic stochasticity of 
measurement results in quantum mechanics and the absence of local reality, essentially saying: “Do not 
worry; this is just how it is; live with it”. I generally subscribe to this school of thought, with the 
following qualification. While the Copenhagen interpretation implies statistical ensembles (otherwise, 
how would you define the probability? – see Sec. 1.3), its most frequently stated formulations35 do not 
put sufficient emphasis on their role, in particular on the ensemble re-definition as the only point of 
human observer’s involvement in a nearly-perfect measurement process – see Sec.1 above. The most 
famous objection to the Copenhagen interpretation belongs to A. Einstein: “God does not play dice.” 

34 Important milestones in that way were the experiments by A. Aspect et al., Phys. Rev. Lett. 49, 91 (1982) and 
M.  Rowe et al., Nature 409, 791 (2001). Detailed reviews of the experimental situation were given, for example, 
by M. Genovese, Phys. Repts. 413, 319 (2005) and A. Aspect, Physics 8, 123 (2015); see also the later paper by J. 
Handsteiner et al., Phys. Rev. Lett. 118, 060401 (2017). Presently, a high-fidelity demonstration of the Bell 
inequality violation has become a standard test in virtually every experiment with entangled qubits used for 
quantum encryption research – see Sec. 8.5, and in particular, the paper by J. Lin cited there. 
35 With certain pleasant exceptions – see, e.g. L. Ballentine, Rev. Mod. Phys. 42, 358 (1970). 
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OK, when Einstein speaks, we all should listen, but perhaps when God speaks (through random results 
of the same experiment), we have to pay even more attention. 

 (ii) Non-local reality. After the dismissal of J. von Neumann’s “proof” by J. Bell, to the best of 
my knowledge, there has been no proof that hidden parameters could not be introduced, provided that 
they do not imply the local reality. Of constructive approaches, perhaps the most notable contribution 
was made by David Bohm,36 who developed the initial Louis de Broglie’s interpretation of the 
wavefunction as a “pilot wave”, making it quantitative. In the wave-mechanics version of this concept, 
the wavefunction governed by the Schrödinger equation just guides a “real”, point-like classical particle 
whose coordinates serve as hidden variables. However, this concept does not satisfy the notion of local 
reality. For example, the measurement of the particle’s coordinate at a certain point r1 has to instantly 
change the wavefunction everywhere in space, including the points r2 in the superluminal range (27). 
After A. Einstein’s private criticism, D. Bohm essentially abandoned his theory.  

 (iii) The many-world interpretation that was introduced in 1957 by Hugh Everett and 
popularized in the 1960s and 1970s by Bruce de Witt. In this interpretation, all possible measurement 
outcomes do happen, splitting the Universe into the corresponding number of “parallel multiverses”, so 
from one of them, other multiverses and hence other outcomes cannot be observed. Let me leave to the 
reader an estimate of the rate at which new parallel multiverses have to be constantly generated (say, per 
second), taking into account that such generation should take place not only at explicit lab experiments 
but at every irreversible process – such as fission of every atomic nucleus or an absorption/emission of 
every photon, everywhere in each multiverse – whether its result is formally recorded or not. Nicolaas 
van Kampen has called this a “mind-boggling fantasy”.37 Even the main proponent of this interpretation, 
B. de Witt has confessed: “The idea is not easy to reconcile with common sense.” I agree. 

 To summarize, as far as I know, neither of these interpretations has yet provided a suggestion on 
how it might be tested experimentally to exclude the other ones. On the other hand, quantum mechanics 
makes correct (if sometimes probabilistic) predictions that do not contradict any reliable experimental 
results we are aware of. Maybe, this is not that bad for a scientific theory.38  

 

10.5. Exercise problem 

10.1.* The original (circa 1964) J. Bell’s inequality was derived for the results of SG 
measurements performed on two non-interacting particles with zero net spin, by using the following 
local-reality-based assumption: the result of each single-particle measurement is uniquely determined 
(besides the experimental setup) by some c-number hidden parameter  that may be random, i.e. change 
from experiment to experiment. Derive such inequality for the experiment shown in Fig. 4 and compare 
it with the corresponding quantum-mechanical result for the singlet state (24). 

36 D. Bohm, Phys. Rev. 85, 165; 180 (1952). 
37 N. van Kampen, Physica A 153, 97 (1988). By the way, I highly recommend the very reasonable summary of 
the quantum measurement issues, given in this paper, though believe that the quantitative theory of dephasing, 
discussed in Chapter 7 of this course, might give additional clarity to some of van Kampen’s statements. 
38 For the reader who is not satisfied with this “positivistic” approach and wants to improve the situation, my 
earnest advice is to start not from square one but from reading what other (including some very clever!) people 
thought about it. The review collection by J. Wheeler and W. Zurek, cited above, may be a good starting point.  


