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Chapter 2. Principles of Physical Statistics 

This chapter is the keystone of this course. It starts with a brief discussion of such basic notions of 
statistical physics as statistical ensembles, probability, and ergodicity. Then the so-called 
microcanonical distribution postulate is formulated, simultaneously with the statistical definition of 
entropy. This basis enables a ready derivation of the famous Gibbs (“canonical”) distribution – the 
most frequently used tool of statistical physics. Then we will discuss one more, “grand canonical” 
distribution, which is more convenient for some tasks. In particular, it is immediately used for the 
derivation of the most important Boltzmann, Fermi-Dirac, and Bose-Einstein statistics of independent 
particles, which will be repeatedly utilized in the following chapters. 

 

2.1. Statistical ensembles and probability 

 As was already discussed in Sec. 1.1, statistical physics deals with situations when either 
unknown initial conditions, or system’s complexity, or the laws of its motion (as in the case of quantum 
mechanics) do not allow a definite prediction of measurement results. The main formalism for the 
analysis of such systems is the probability theory, so let me start with a very brief review of its basic 
concepts, using an informal “physical” language – less rigorous but (hopefully) more transparent than 
standard mathematical treatments,1 and quite sufficient for our purposes. 

 Consider N >> 1 independent similar experiments carried out with apparently similar systems 
(i.e. systems with identical macroscopic parameters such as volume, pressure, etc.), but still giving, by 
any of the reasons listed above, different results of measurements. Such a collection of experiments, 
together with a fixed method of result processing, is a good example of a statistical ensemble. Let us 
start from the case when each experiment may have M different discrete outcomes, and the number of 
experiments giving these outcomes is N1, N2,…, NM, so 
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The probability of each outcome, for the given statistical ensemble, is then defined as 

              .lim
N

N
W m

Nm       (2.2) 

Though this definition is so close to our everyday experience that it is almost self-evident, a few remarks 
may still be relevant. 

 First, the probabilities Wm depend on the exact statistical ensemble they are defined for, notably 
including the method of result processing. As the simplest example, consider throwing the standard 
cubic-shaped dice many times. For the ensemble of all thrown and counted dice, the probability of each 
outcome (say, “1”) is 1/6. However, nothing prevents us from defining another statistical ensemble of 
dice-throwing experiments in which all outcomes “1” are discounted. Evidently, the probability of 

1 For the reader interested in a more rigorous approach, I can recommend, for example, Chapter 18 of the famous 
handbook by G. Korn and T. Korn – see MA Sec. 16(ii). 
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finding the outcome “1” in this modified (but legitimate) ensemble is 0, while for all other five 
outcomes (“2” to “6”), it is 1/5 rather than 1/6. 

 Second, a statistical ensemble does not necessarily require N similar physical systems, e.g., N 
distinct dice. It is intuitively clear that tossing the same die N times constitutes an ensemble with similar 
statistical properties. More generally, a set of N experiments with the same system gives a statistical 
ensemble equivalent to the set of experiments with N different systems, provided that the experiments 
are kept independent, i.e. that outcomes of past experiments do not affect the experiments to follow. 
Moreover, for many physical systems of interest, no special preparation of each new experiment is 
necessary, and N experiments separated by sufficiently long time intervals, form a “good” statistical 
ensemble  – the property called ergodicity.2 

 Third, the reference to infinite N in Eq. (2) does not strip the notion of probability of its practical 
relevance. Indeed, it is easy to prove (see Chapter 5) that, at very general conditions, at finite but 
sufficiently large N, the numbers Nm are approaching their average (or expectation) values3 

       NWN mm  ,     (2.3) 

with the relative deviations decreasing as ~1/Nm1/2, i.e. as 1/N1/2. 

 Now let me list those properties of probabilities that we will immediately need. First, dividing 
both sides of Eq. (1) by N and following the limit N  , we get the well-known normalization 
condition  
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just remember that it is true only if each experiment definitely yields one of the outcomes N1, N2,…, NM.  

 Second, if we have an additive function of the results,  
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where fm are some definite (deterministic) coefficients, the statistical average (also called the 
expectation value) of this function is naturally defined as 

2 The most popular counter-examples are provided by some energy-conserving systems. Consider, for example, a 
system of particles placed in a potential that is a quadratic-polynomial function of its coordinates. The theory of 
oscillations tells us (see, e.g., CM Sec. 6.2) that this system is equivalent to a set of non-interacting harmonic 
oscillators. Each of these oscillators conserves its own initial energy Ej forever, so the statistics of N 
measurements of one such system may differ from that of N different systems with a random distribution of Ej, 
even if the total energy of the system, E = jEj, is the same. Such non-ergodicity, however, is a rather feeble 
phenomenon and is readily destroyed by any of many mechanisms, such as weak interaction with the environment 
(leading, in particular, to oscillation damping), potential anharmonicity (see, e.g., CM Chapter 5), and chaos (CM 
Chapter 9), all of them growing fast with the number of particles in the system, i.e. the number of its degrees of 
freedom. This is why an overwhelming part of real-life systems are ergodic; for readers interested in non-ergodic 
exotics, I can recommend the monograph by V. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, 
Addison-Wesley, 1989. 
3 Here (and everywhere in this series) angle brackets … mean averaging over a statistical ensemble, which is 
generally different from averaging over time – as it will be the case in quite a few examples considered below. 
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so using Eq. (3) we get 
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Note that Eq. (3) may be considered as the particular form of this general result, when all fm = 1. Eq. (5) 
with these fm defines what is sometimes called the counting function. 

 Next, the spectrum of possible experimental outcomes is frequently continuous for all practical 
purposes. (Think, for example, about the set of positions of the marks left by bullets fired into a target 
from afar.) The above formulas may be readily generalized to this case; let us start from the simplest 
situation when all different outcomes may be described by just one continuous scalar variable q – which 
replaces the discrete index m in Eqs. (1)-(7). The basic relation for this case is the self-evident fact that 
the probability dW of having an outcome within a very small interval dq surrounding some point q is 
proportional to the magnitude of that interval: 

      dqqwdW )( ,     (2.8) 

where w(q) is some function of q, which does not depend on dq. This function is called probability 
density. Now all the above formulas may be recast by replacing the probabilities Wm with the products 
(8), and the summation over m, with the integration over q. In particular, instead of Eq. (4) the 
normalization condition now becomes 

          ,1)( dqqw       (2.9) 

where the integration should be extended over the whole range of possible values of q. Similarly, instead 
of the discrete values fm participating in Eq. (5), it is natural to consider a function f(q). Then instead of 
Eq. (7), the expectation value of the function may be calculated as 

             .)()( dqqfqwf      (2.10) 

 It is also straightforward to generalize these formulas to the case of more variables. For example, 
the state of a classical particle with three degrees of freedom may be fully described by the probability 
density w defined in the 6D space of its generalized radius-vector q and momentum p. As a result, the 
expectation value of a function of these variables may be expressed as a 6D integral 

                .),(),( 33 pqddfwf pqpq     (2.11) 

  Some systems considered in this course consist of components whose quantum properties 
cannot be ignored, so let us discuss how  f  should be calculated in this case. If by fm we mean 
measurement results, then Eq. (7) (and its generalizations) remains valid, but since these numbers 
themselves may be affected by the intrinsic quantum-mechanical uncertainty, it may make sense to have 
a bit deeper look into this situation. Quantum mechanics tells us4 that the most general expression for 
the expectation value of an observable f  in a certain ensemble of macroscopically similar systems is 

4 See, e.g., QM Sec. 7.1. 
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Here fmm’ are the matrix elements of the quantum-mechanical operator f̂ corresponding to the 
observable f, in a full basis of orthonormal states  m, 

               m'fmf mm
ˆ

'  ,     (2.13) 

while the coefficients Wmm’ are the elements of the so-called density matrix W, which represents, in the 

same basis, the density operator Ŵ describing properties of this ensemble. Eq. (12) is evidently more 
general than Eq. (7), and is reduced to it only if the density matrix is diagonal: 

       '' mmmmm WW       (2.14) 

(where mm’ is the Kronecker symbol), when the diagonal elements Wm play the role of probabilities of 
the corresponding states.  

 Thus formally, the largest difference between the quantum and classical description is the 
presence, in Eq. (12), of the off-diagonal elements of the density matrix. They have the largest values in 
a pure (also called “coherent”) ensemble, in which the state of the system may be described with state 
vectors, e.g., the ket-vector 
      

m
m m ,     (2.15) 

where m are some (generally, complex) coefficients. In this case, the density matrix elements are 
merely 
        '' mmmmW  ,     (2.16) 

so the off-diagonal elements are of the same order as the diagonal elements. For example, in the very 
important particular case of a two-level system, the pure-state density matrix is 
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so the product of its off-diagonal components is as large as that of the diagonal components.  

 In the most important basis of stationary states, i.e. the eigenstates of the system’s time-
independent Hamiltonian, the coefficients m oscillate in time as5  

       ,expexp)0()(






 







 m

m
m

m
mm it

E
it

E
it 


   (2.18) 

where Em are the corresponding eigenenergies, m are constant phase shifts, and  is the Planck constant. 
This means that while the diagonal terms of the density matrix (16) remain constant, its off-diagonal 
components are oscillating functions of time: 

5 Here I use the Schrödinger picture of quantum dynamics, in which the matrix elements fnn’ representing 
quantum-mechanical operators, do not evolve in time. The final results of this discussion do not depend on the 
particular picture – see, e.g., QM Sec. 4.6. 
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Due to the extreme smallness of  on the human scale of things), minuscule random perturbations of 
eigenenergies are equivalent to substantial random changes of the phase multipliers, so the time average 
of any off-diagonal matrix element tends to zero. Moreover, even if our statistical ensemble consists of 
systems with exactly the same Em, but different values m (which are typically hard to control at the 
initial preparation of the system), the average values of all Wmm’ (with m  m’) vanish again.  

 This is why, besides some very special cases, typical statistical ensembles of quantum particles 
are far from being pure, and in most cases (certainly including the thermodynamic equilibrium), a good 
approximation for their description is given by the opposite limit of the so-called classical mixture, in 
which all off-diagonal matrix elements of the density matrix equal zero, and its diagonal elements Wmm 
are merely the probabilities Wm of the corresponding eigenstates. In this case, for the observables 
compatible with energy, Eq. (12) is reduced to Eq. (7), with fm being the eigenvalues of the variable f, so 
we may base our further discussion on this key relation and its continuous extensions (10)-(11). 

  

2.2. Microcanonical ensemble and distribution 

 Now we may move to the now-standard approach to statistical mechanics, based on the three 
statistical ensembles introduced in the 1870s by Josiah Willard Gibbs.6  The most basic of them is the 
so-called  microcanonical statistical ensemble7 defined as a set of macroscopically similar closed 
(isolated) systems with virtually the same total energy E. Since in quantum mechanics the energy of a 
closed system is quantized, in order to make the forthcoming discussion suitable for quantum systems as 
well, it is convenient to include in the ensemble all systems with energies Em within a relatively narrow 
interval ΔE << E (see Fig. 1) that is nevertheless much larger than the average distance E between the 
energy levels, so that the number M of different quantum states within the interval ΔE is large, M >> 1. 
Such choice of E is only possible if E << E; however, the reader should not worry too much about 
this condition, because the most important applications of the microcanonical ensemble are for very 
large systems (and/or very high energies) when the energy spectrum is very dense.8 

 

 

 

 

 

6 Personally, I believe that the genius of J. Gibbs, praised by Albert Einstein as the “greatest mind in American 
history”, is still insufficiently appreciated, and agree with R. Millikan that Gibbs “did for statistical mechanics and 
thermodynamics what […] Maxwell did for electrodynamics”. 
7 The terms “microcanonical”, as well as “canonical” (see Sec. 4 below) are apparently due to Gibbs and I was 
unable to find out his motivation for the former name. (“Canonical” in the sense of “standard” or “common” is 
quite appropriate, but why “micro”? Perhaps to reflect the smallness of ΔE?) 
8 Formally, the main result of this section, Eq. (20), is valid for any M (including M = 1); it is just less informative 
for small M (and trivial for M = 1). 

E

E
Fig. 2.1. A very schematic image of the microcanonical 
ensemble. (Actually, the ensemble deals with quantum 
states rather than energy levels. An energy level may be 
degenerate, i.e. correspond to several states.) 
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 This ensemble serves as the basis for the formulation of the postulate which is most frequently 
called the microcanonical distribution (or, more adequately, “the main statistical postulate” or “the main 
statistical hypothesis”): in the thermodynamic equilibrium of a microcanonical ensemble, all its states 
have equal probabilities, 

               const.
1


M
Wm      (2.20) 

Though in some constructs of statistical mechanics, this equality is derived from other axioms, which 
look more plausible to their authors, I believe that Eq. (20) may be taken as the starting point of the 
statistical physics, supported “just” by the compliance of all its corollaries with experimental 
observations.  

Note that the postulate (20) is closely related to the macroscopic irreversibility of the systems 
that are microscopically virtually reversible (closed): if such a system was initially in a certain state, its 
time evolution with even minuscule interactions with the environment (which is necessary for reaching 
the thermodynamic equilibrium) eventually leads to the uniform distribution of its probability among all 
states with essentially the same energy. Each of these states is not “better” than the initial one; rather, in 
a macroscopic system, there are just so many of these states that the chance to find the system in the 
initial state is practically nil – again, think about the ink drop diffusion into a glass of water.9 

 Now let us find a suitable definition of entropy S of a microcanonical ensemble’s member – for 
now, in the thermodynamic equilibrium only. This was done in 1877 by another giant of statistical 
physics, Ludwig Eduard Boltzmann – on the basis of the prior work by James Clerk Maxwell on the 
kinetic theory of gases – see Sec. 3.1 below. In present-day terminology, since S is a measure of 
disorder, it should be related to the amount of information10 lost when the system went irreversibly from 
the full order to its current state – in equilibrium, to the full disorder, i.e. from one definite state to the 
microcanonical distribution (20). In an even more convenient formulation,  this is the amount of 
information necessary to find the exact state of a certain system in a microcanonical ensemble.  

 In the information theory, the amount of information necessary to make a definite choice 
between two  options with equal probabilities (Fig. 2a)  is defined as 

               .12log)2( 2 I      (2.21) 

 

 

 

 

 

 

9 Though I have to move on, let me note that the microcanonical distribution (20) is a very nontrivial postulate, 
and my advice to the reader is to find some time to give additional thought to this keystone of the whole building 
of statistical mechanics. 
10 I will rely on the reader’s common sense and intuitive understanding of what information is, because even in 
the formal information theory, this notion is essentially postulated – see, e.g., the wonderfully clear short textbook 
by J. Pierce, An Introduction to Information Theory, Dover, 1980. 

(a)           (b) 

1 bit 1 bit 

1 bit 

Fig. 2.2. “Logarithmic trees” of binary decisions 
for choosing between (a) M = 2, and (b) M = 4 
opportunities with equal probabilities. 

Micro- 
canonical 
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 This unit of information is called a bit. Now, if we need to make a choice between four equally 
probable opportunities, it can be made in two similar steps (Fig. 2b), each requiring one bit of 
information, so the total amount of information necessary for the choice is 

       .4log2)2(2)4( 2 II      (2.22) 

An obvious extension of this process to the choice between M = 2m states gives 

     .log)2()( 2 MmmIMI       (2.23) 

 This measure, if extended naturally to any integer M, is quite suitable for the definition of 
entropy at equilibrium, with the only difference that, following tradition, the binary logarithm is 
replaced with the natural one:11 
          .ln MS         (2.24a) 

Using Eq. (20), we may recast this definition in its most frequently used form  

             m
m

W
W

S ln
1

ln  .     (2.24b) 

(Again, please note that Eqs. (24) are valid in thermodynamic equilibrium only!) 

 Note that Eq. (24) satisfies the major properties of the entropy discussed in thermodynamics. 
First, it is a unique characteristic of the disorder. Indeed, according to Eq. (20), M (at fixed E) is the 
only possible measure characterizing the microcanonical distribution, and so is its unique function lnM. 
This function also satisfies another thermodynamic requirement to the entropy, of being an extensive 
variable. Indeed, for several independent systems, the joint probability of a certain state is just a product 
of the partial probabilities, and hence, according to Eq. (24), their entropies just add up. 

 Now let us see whether Eqs. (20) and (24) are compatible with the 2nd law of thermodynamics. 
For that, we need to generalize Eq. (24) for S to an arbitrary state of the system (generally, out of 
thermodynamic equilibrium), with an arbitrary set of state probabilities Wm. Let us first recognize that M 
in Eq. (24) is just the number of possible ways to commit a particular system to a certain state m (m = 1, 
2,…M), in a statistical ensemble where each state is equally probable. Now let us consider a more 
general ensemble, still consisting of a large number N >> 1 of similar systems, but with a certain number 
Nm = WmN >> 1 of systems in each of M states, with the factors Wm not necessarily equal. In this case, 
the evident generalization of Eq. (24) is that the entropy SN  of the whole ensemble is 

           ,..),(ln 21 NNMSN  ,     (2.25) 

where M (N1,N2,…) is the number of ways to commit a particular system to a certain state m while 
keeping all numbers Nm fixed. This number M (N1,N2,…) is clearly equal to the number of ways to 
distribute N distinct balls between M different boxes, with the fixed number Nm of balls in each box, but 

11 This is of course just the change of a constant factor: S(M) = lnM = ln2  log2M = ln2  I(M)  0.693 I(M). A 
review of Chapter 1 shows that nothing in thermodynamics prevents us from choosing such a constant coefficient 
arbitrarily, with the corresponding change of the temperature scale – see Eq. (1.9). In particular, in the SI units, 
where Eq. (24b) becomes S = –kBlnWm, one bit of information corresponds to the entropy change ΔS = kB ln2 ≈ 
0.693 kB  0.96510-23 J/K. (The formula “S = k logW” is engraved on L. Boltzmann’s tombstone in Vienna.) 
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in no particular order within it. Comparing this description with the definition of the so-called 
multinomial coefficients,12 we get 
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 To simplify the resulting expression for SN, we can use the famous Stirling formula, in its 
crudest, de Moivre’s form,13 whose accuracy is suitable for most purposes of statistical physics: 
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When applied to our current problem, this formula gives the following average entropy per system,14 
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and since this result is only valid in the limit Nm   anyway, we may use Eq. (2) to represent it as 
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This extremely important result15 may be interpreted as the average of the entropy values given by Eq. 
(24), weighed with specific probabilities Wm per the general formula (7).16 

 Now let us find what distribution of probabilities Wm provides the largest value of the entropy 
(29). The answer is almost evident from a good glance at Eq. (29). For example, if for a subgroup of M’ 
 M states, the coefficients Wm are constant and equal to 1/M’, so Wm = 0 for all other states, all M’ non-
zero terms in the sum (29) are equal to each other, so  

         ,lnln
1

M'M'
M'

M'S       (2.30) 

and the closer M’ to its maximum value M the larger S. Hence, the maximum of S is reached at the 
uniform distribution given by Eq. (24).  

12 See, e.g., MA Eq. (2.3). Despite the intimidating name, Eq. (26) may be very simply derived. Indeed, N! is just 
the number of all possible permutations of N balls, i.e. of the ways to place them in certain positions – say, inside 
M boxes. Now to take into account that the particular order of the balls in each box is not important, that number 
should be divided by all numbers Nm! of possible permutations of balls within each box – that’s it! 
13 See, e.g., MA Eq. (2.10). 
14 Strictly speaking, I should use the notation S here. However, following the style accepted in thermodynamics, 
I will drop the averaging signs until we will really need them to avoid confusion. Again, this shorthand is not too 
bad because the relative fluctuations of entropy (as those of any macroscopic variable) are very small at N >> 1. 
15 With the replacement of lnWm with log2Wm (i.e. division of both sides by ln2), Eq. (29) becomes the famous 
Shannon (or “Boltzmann-Shannon”) formula for the average information I per symbol in a long communication 
string using M different symbols, with probability Wm each. 
16 In some textbooks, this interpretation is even accepted as the derivation of Eq. (29); however, it is evidently 
less rigorous than the one outlined above.  
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 In order to prove this important fact more strictly, let us find the maximum of the function given 
by Eq. (29). If its arguments W1, W2, …WM  were completely independent, this could be done by finding 
the point (in the M-dimensional space of the coefficients Wm) where all partial derivatives S/Wm equal 
zero. However, since the probabilities are constrained by condition (4), the differentiation has to be 
carried out more carefully, taking into account this interdependence: 
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At the maximum of the function S, such expressions should be equal to zero for all m. This condition 
yields S/Wm = , where the so-called Lagrange multiplier  is independent of m. Indeed, at such point 
Eq. (31) becomes 
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 For our particular expression (29), the condition S/Wm =  yields 
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The last equality holds for all m (and hence the entropy reaches its maximum value) only if Wm is 
independent of m.  Thus the entropy (29) indeed reaches its maximum value (24) at equilibrium. 

 To summarize, we see that the statistical definition (24) of entropy does fit all the requirements 
imposed on this variable by thermodynamics. In particular, we have been able to prove the 2nd law of 
thermodynamics using that definition together with the fundamental postulate (20).  

 Now let me discuss one possible point of discomfort with that definition: the values of M, and 
hence Wm, depend on the accepted energy interval ΔE of the microcanonical ensemble, for whose choice 
no exact guidance is offered. However, if the interval ΔE contains many states, M >> 1, as was assumed 
before, then with a very small relative error (vanishing in the limit M → ∞), M may be represented as 

      ,)( EEgM        (2.34) 

where g(E) is the density of states of the system: 
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Σ(E) being the total number of states with energies below E. (Note that the average interval E between 
energy levels, mentioned at the beginning of this section, is just E/M = 1/g(E).) Plugging Eq. (34) into 
Eq. (24), we get 
      ,ln)(lnln EEgMS       (2.36) 

so the only effect of a particular choice of ΔE is an offset of the entropy by a constant, and in Chapter 1 
we have seen that such a constant offset does not affect any measurable quantity. Of course, Eq. (34), 
and hence Eq. (36) are only precise in the limit when the density of states g(E) is so large that the range 
available for the appropriate choice of E, 
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             ,)(1 EEEg       (2.37) 

is sufficiently broad: g(E)E = E/E >> 1. 

 In order to get some gut feeling of the functions g(E) and S(E) and the feasibility of the condition 
(37), and also to see whether the microcanonical distribution may be directly used for calculations of 
thermodynamic variables in particular systems, let us apply it to a microcanonical ensemble of many 
sets of N >> 1 independent, similar harmonic oscillators with frequency ω. (Please note that the 
requirement of a virtually fixed energy is applied, in this case, to the total energy EN of each set of 
oscillators, rather to energy E of a single oscillator – which may be virtually arbitrary though certainly 
much less than EN ~ NE >> E.) Basic quantum mechanics tells us17 that the eigenenergies of such an 
oscillator form a discrete, equidistant spectrum: 

        ,...2,1,0  where,
2

1







  mmEm      (2.38) 

If ω is kept constant, the ground-state energy ω/2 does not contribute to any thermodynamic properties 
of the system,18 so for the sake of simplicity we may take that point as the energy origin, and replace Eq. 
(38) with Em = mω. Let us carry out an approximate analysis of the system for the case when its 
average energy per oscillator, 

                      ,
N

E
E N       (2.39) 

is much larger than the energy quantum ω. 

 For one oscillator, the number of states with energy 1 below a certain value E1 >> ω is 
evidently Σ(E1) ≈ E1/ω  (E1/ω)/1! (Fig. 3a). For two oscillators, all possible values of the total 
energy (ε1 + ε2) below some level E2 correspond to the points of a 2D square grid within the right 
triangle shown in Fig. 3b, giving Σ(E2) ≈ (1/2)(E2/ω)2  (E2/ω)2/2!. For three oscillators, the possible 
values of the total energy (ε1 + ε2 + ε3) correspond to those points of the 3D cubic grid, that fit inside the 
right pyramid shown in Fig. 3c, giving Σ(E3) ≈ (1/3)[(1/2)(E3/ω)3]  (E3/ω)3/3!, etc. 

 

 

  

 

 

 

 

 
 

17 See, e.g., QM Secs. 2.9 and 5.4. 
18 Let me hope that the reader knows that the ground-state energy is experimentally measurable – for example, 
using the famous Casimir effect – see, e.g., QM Sec. 9.1. (In Sec. 5.5 below I will briefly discuss another method 
of experimental observation of that energy.)  
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Fig. 2.3. Calculating functions Σ(EN) for systems of (a) one, (b) two, and (c) three harmonic oscillators.
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 An evident generalization of these formulas to arbitrary N gives the number of states19 

              .
!

1
)(

N

N
N

E

N
E 









     (2.40) 

Differentiating this expression over the energy, we get 

           
 

,
)!1(

1)(
)(

1

N

N
N

N

N
N

E

NdE

Ed
Eg









     (2.41) 

so 
    .const)ln(ln)1()!1(lnconst)(ln)(  NENNEgES NNNN  (2.42) 

For N >> 1, we may ignore the difference between N and (N – 1) in both instances, and use the Stirling 
formula (27) to simplify this result as 

        































 

N

N
N

EE
N

N

E
NES

 
lnln1lnconst)( .  (2.43) 

(The second step is only valid at very high E/ ratios when the logarithm in Eq. (43) is substantially 
larger than 1.) Returning for a second to the density of states, we see that in the limit N → , it is 
exponentially large: 

         ,)(
N

N
N

E
eEg

S









     (2.44) 

so the conditions (37) may be indeed satisfied within a very broad range of ΔE. 

 Now we can use Eq. (43) to find all thermodynamic properties of the system, though only in the 
limit E >> . Indeed, according to thermodynamics, if the system’s volume and the number of particles 
in it are fixed, the derivative dS/dE is nothing else than the reciprocal temperature in thermal 
equilibrium – see Eq. (1.9). In our current case, we imply that the harmonic oscillators are distinct, for 
example by their spatial positions. Hence, even if we can speak of some volume of the system, it is 
certainly fixed.20 Differentiating Eq. (43) over energy E, we get 

           .
11

EE

N

dE

dS

T NN

N       (2.45) 

Reading this result backward, we see that the average energy E of a harmonic oscillator equals T (i.e. 
kBTK is SI units). At this point, the first-time student of thermodynamics should be very much relieved to 
see that the counter-intuitive thermodynamic definition (1.9) of temperature does indeed correspond to 
what we all have known about this notion from our kindergarten physics courses. 

 The result (45) may be readily generalized. Indeed, in quantum mechanics, a harmonic oscillator 
with eigenfrequency   may be described by the Hamiltonian operator 

19 The coefficient 1/N! in this formula has the geometrical meaning of the (hyper)volume of the N-dimensional 
right pyramid with unit sides. 
20 For the same reason, the notion of pressure P in such a system is not clearly defined, and neither are any 
thermodynamic potentials but E and F. 
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2

ˆ

2

ˆˆ
22 qp

H



m

,      (2.46) 

where q is some generalized coordinate, p is the corresponding generalized momentum, m is the 
oscillator’s mass,21 and  is its spring constant, so  = (/m)1/2. Since in the thermodynamic equilibrium 
the density matrix is always diagonal in the basis of stationary states m (see Sec. 1 above), the quantum-
mechanical averages of the kinetic and potential energies may be found from Eq. (7): 

             ,
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  (2.47) 

where Wm is the probability to occupy the mth energy level, while bra- and ket-vectors describe the 
stationary state corresponding to that level.22 However, both classical and quantum mechanics teach us 
that for any m, the bra-ket expressions under the sums in Eqs. (47), which represent the average kinetic 
and mechanical energies of the oscillator on its mth energy level, are equal to each other, and hence each 
of them is equal to Em/2. Hence, even though we do not know the exact probability distribution Wm yet 
(it will be calculated in Sec. 5 below), we may conclude that in the “classical limit” T >> , 

             
222

22 Tqp



m

.     (2.48) 

 Now let us consider a system with an arbitrary number of degrees of freedom, described by a 
more general Hamiltonian:23 
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ˆwith  ,ˆˆ

22
jj

j

j
j

j
j

qp
HHH


 

m
,    (2.49) 

with (generally, different) frequencies j = (j/mj)
1/2. Since the “modes” (effective harmonic oscillators) 

contributing to this Hamiltonian, are independent, the result (48) is valid for each of the modes. This is 
the famous equipartition theorem: at thermal equilibrium at temperature T >> j, the average energy of 
each so-called half-degree of freedom (which is defined as any variable, either pj or qj, giving a 
quadratic contribution to the system’s Hamiltonian), is equal to T/2.24 In particular, for each of three 
Cartesian component contributions to the kinetic energy of a free-moving particle, this theorem is valid 
for any temperature, because such components may be considered as 1D harmonic oscillators with 
vanishing potential energy, i.e. j = 0, so condition T >> j is fulfilled at any temperature. 

21 I am using this fancy font for the mass to avoid any chance of its confusion with the state number. 
22 Note again that while we have committed the energy EN of N oscillators to be fixed (to apply Eq. (36), valid 
only for a microcanonical ensemble at thermodynamic equilibrium), the single oscillator’s energy E in our 
analysis may be arbitrary – within the very broad limits  << E  EN ~ NT. 
23 As a reminder, the Hamiltonian of any system whose classical Lagrangian function is an arbitrary quadratic 
form of its generalized coordinates and the corresponding generalized velocities may be brought to the form (49) 
by an appropriate choice of “normal coordinates” qj which are certain linear combinations of the original 
coordinates – see, e.g., CM Sec. 6.2.  
24 This also means that in the classical limit, the heat capacity of a system is equal to one-half of the number of its 
half-degrees of freedom (in the SI units, multiplied by kB). 

Equipartition 
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 I believe that this case study of harmonic oscillator systems was a fair illustration of both the 
strengths and the weaknesses of the microcanonical ensemble approach.25 On one hand, we could 
readily calculate virtually everything we wanted in the classical limit T >> , but calculations for an 
arbitrary T ~ , though possible, would be rather unpleasant because for that, all vertical steps of the 
function Σ(E N) have to be carefully counted. In Sec. 4 below, we will see that other statistical ensembles 
are much more convenient for such calculations. 

 Let me conclude this section with a short notice on deterministic classical systems with just a 
few degrees of freedom (and even simpler mathematical objects called “maps”) that may exhibit 
essentially disordered behavior, called deterministic chaos.26 Such chaotic system may be approximately 
characterized by an entropy defined similarly to Eq. (29), where Wm are the probabilities to find it in 
different small regions of phase space, at well-separated small time intervals. On the other hand, one can 
use an expression slightly more general than Eq. (29) to define the so-called Kolmogorov (or 
“Kolmogorov-Sinai”) entropy K that characterizes the speed of loss of the information about the initial 
state of the system, and hence what is called the “chaos depth”. In the definition of K, the sum over m is 
replaced with the summation over all possible permutations {m} = m0, m1, …, mN-1 of small space 
regions, and Wm is replaced with W{m}, the probability of finding the system in the corresponding 
regions m at time moment tm, with tm = m, in the limit   0, with N = const. For chaos in the simplest 
objects, 1D maps, K is equal to the Lyapunov exponent   > 0.27 For systems of higher dimensionality, 
which are characterized by several Lyapunov exponents , the Kolmogorov entropy is equal to the 
phase-space average of the sum of all positive .  These facts provide a much more practicable way of 
(typically, numerical) calculation of the Kolmogorov entropy than the direct use of its definition.28 

 

2.3. Maxwell’s Demon, information, and computation 

 Before proceeding to other statistical distributions, I would like to make a detour to address one 
more popular concern about Eq. (24) – the direct relation between entropy and information. Some 
physicists are still uneasy with entropy being nothing else than the (deficit of) information, though, to 
the best of my knowledge, nobody has yet been able to suggest any experimentally verifiable difference 
between these two notions. Let me give one example of their direct relationship.29 Consider a cylinder 
containing just one molecule (considered as a point particle), and separated into two halves by a 
movable partition with a door that may be opened and closed at will, at no energy cost – see Fig. 4a. If 
the door is open and the system is in thermodynamic equilibrium, we do not know on which side of the 
partition the molecule is. Here the disorder, i.e. the entropy has the largest value, and there is no way to 
get, from a large ensemble of such systems in equilibrium, any useful mechanical energy. 

 

25 The reader is strongly urged to solve Problem 2, whose task is to do a similar calculation for another key (“two-
level”) physical system, and compare the results. 
26 See, e.g., CM Chapter 9 and the literature therein. 
27 For the definition of , see, e.g., CM Eq. (9.9). 
28 For more discussion, see, e.g., either Sec. 6.2 of the monograph H. G. Schuster and W. Just, Deterministic 
Chaos, 4th  ed., Wiley-VHS, 2005, or the monograph by Arnold and Avez, cited in Sec. 1. 
29 This system is frequently called the Szilard engine, after L. Szilard who published its detailed theoretical 
discussion in 1929, but is essentially a straightforward extension of the thought experiment suggested by J. 
Maxwell as early as 1867. 
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 Now, let us consider that we know (as instructed by, in Lord Kelvin’s formulation, an omniscient 
Maxwell’s Demon) on which side of the partition the molecule is currently located. Then we may close 
the door, trapping the molecule, so its repeated impacts on the partition create, on average, a pressure 
force F  directed toward the empty part of the volume (in Fig. 4b, the right one). Now we can get from 
the molecule some mechanical work, say by allowing the force F to move the partition to the right, and 
picking up the resulting mechanical energy by some deterministic (zero-entropy) external mechanism. 
After the partition has been moved to the right end of the volume, we can open the door again (Fig. 4c), 
equalizing the molecule’s average pressure on both sides of the partition, and then slowly move the 
partition back to the middle of the volume – without its resistance, i.e. without doing any substantial 
work. With the continuing help from Maxwell’s Demon, we can repeat the cycle again and again, and 
hence make the system perform unlimited mechanical work, fed “only” by the molecule’s thermal 
motion, and the information about its position – thus implementing the perpetual motion machine of the 
2nd kind – see Sec. 1.6. The fact that such heat engines do not exist means that getting any new 
information, at a non-zero temperature (i.e. at a substantial thermal agitation of particles) has a non-zero 
energy cost. 

 In order to evaluate this cost, let us calculate the maximum work per cycle that can be made by 
the Szilard engine (Fig. 4), assuming that it is constantly in the thermal equilibrium with a heat bath of 
temperature T. Formula (21) tells us that the information supplied by the demon (on what exactly half of 
the volume contains the molecule) is exactly one bit, I (2) = 1. According to Eq. (24), this means that by 
getting this information we are changing the entropy of our system by  

         2ln IS .     (2.50) 

Now, it would be a mistake to plug this (negative) entropy change into Eq. (1.19). First, that relation is 
only valid for slow, reversible processes. Moreover (and more importantly), this equation, as well as its 
irreversible version (1.41), is only valid for a fixed statistical ensemble. The change SI does not belong 
to this category and may be formally described by the change of the statistical ensemble – from the one 
consisting of all similar systems (experiments) with an unknown location of the molecule to a new 
ensemble consisting of the systems with the molecule in its certain (in Fig. 4, left) half.30  

 Now let us consider a slow expansion of the “gas” after the door had been closed. At this stage, 
we do not need the Demon’s help any longer (i.e. the statistical ensemble may be fixed), and can indeed 
use the relation (1.19). At the assumed isothermal conditions (T = const), this relation may be integrated 

30 This procedure of the statistical ensemble re-definition is the central point of the connection between physics 
and information theory, and is crucial in particular for any (or rather any meaningful :-) discussion of 
measurements in quantum mechanics – see, e.g., QM Secs. 2.5 and 10.1. 

(a)             (b)        (c) 

Fig. 2.4. The Szilard engine: a cylinder with a single molecule and a movable partition: (a) before 
and (b) after closing the door, and (c) after opening the door at the end of the expansion stage.

v
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over the whole expansion process, getting Q = TS. At the final position shown in Fig. 4c, the 
system’s entropy should be the same as initially, i.e. before the door had been opened, because we again 
do not know where in the volume the molecule is. This means that the entropy was replenished, during 
the reversible expansion, from the heat bath, by S = –SI = +ln2, so Q = TS = Tln2. Since by the end 
of the whole cycle, the internal energy E of the system is the same as before, all this heat could have 
gone into the mechanical energy obtained during the expansion. Thus the maximum obtained work per 
cycle (i.e. for each obtained information bit) is Tln2 (kBTKln2 in the SI units), about 410-21 Joule at 
room temperature. This is exactly the energy cost of getting one bit of new information about a system at 
temperature T. The smallness of that amount on the everyday human scale has left the Szilard engine an 
academic theoretical exercise for almost a century. However, recently several such devices, of various 
physical nature, were implemented experimentally (with the Demon’s role played by an instrument 
measuring the position of the particle without a substantial effect on its motion), and the relation Q = 
Tln2 was proved, with a gradually increasing precision.31 

 Actually, discussion of another issue closely related to Maxwell’s Demon, namely energy 
consumption at numerical calculations, was started earlier, in the 1960s. It was motivated by the 
exponential (Moore’s-law) progress of the digital integrated circuits, which has led in particular, to a 
fast reduction of the energy E  “spent” (turned into heat) per one binary logic operation. In the recent 
generations of semiconductor digital integrated circuits, the typical E is still above 10-17 J, i.e. still 
exceeds the room-temperature value of Tln2  410-21 J by several orders of magnitude.32 Still, some 
engineers believe that thermodynamics imposes this important lower limit on E and hence presents an 
insurmountable obstacle to the future progress of computation. Unfortunately, in the 2000s this delusion 
resulted in a substantial and unjustified shift of electron device research resources toward using “non-
charge degrees of freedom” such as spin (as if they do not obey the general laws of statistical physics!), 
so the issue deserves at least a brief discussion. 

 Let me believe that the reader of these notes understands that, in contrast to naïve popular talk, 
computers do not create any new information; all they can do is reshape (“process”) the input 
information, losing most of it on the go. Indeed, any digital computation algorithm may be decomposed 
into simple, binary logical operations, each of them performed by a circuit called the logic gate. Some of 
these gates (e.g., the logical NOT performed by inverters, as well as memory READ and WRITE 
operations) do not change the amount of information in the computer. On the other hand, such 
information-irreversible logic gates as two-input NAND (or NOR, or XOR, etc.) erase one bit at each 
operation, because they turn two input bits into one output bit – see Fig. 5a.  

 In 1961, Rolf Landauer argued that each  logic operation should turn into heat at least energy  

        2ln2ln KBmin TkTE  .     (2.51) 

This result may be illustrated with the Szilard engine (Fig. 4), operated in a reversed cycle. At the first 
stage, with the partition’s door closed, it uses external mechanical work E = Tln2 to reduce the volume 
in that the molecule is confined, from V to V/2, pumping heat Q = E into the heat bath. To model a 
logically irreversible logic gate, let us now open the door in the partition, and thus lose one bit of 

31 See, for example, A. Bérut et al., Nature 483, 187 (2012); J. Koski et al., PNAS USA 111, 13786 (2014); Y. Jun 
et al., Phys. Rev. Lett. 113, 190601 (2014); J. Peterson et al., Proc. Roy. Soc. A 472, 20150813 (2016). 
32 In practical computers, the effective E is even much higher (currently, above ~10-15 J) due to the high energy 
cost of moving data across a multi-component system, in particular between its logic and memory chips. 
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information about the molecule’s position. Then we will never get the work Tln2 back, because moving 
the partition back to the right, with the door open, takes place at zero average pressure. Hence, Eq. (51) 
gives a fundamental limit for energy loss (per bit) at the logically irreversible computation. 

 

 

 

 

 

 

 

 

 However, in 1973 Charles Bennett came up with convincing arguments that it is possible to 
avoid such energy loss by using only operations that are reversible not only physically, but also 
logically.33 For that, one has to avoid any loss of information, i.e. any erasure of intermediate results, for 
example in the way shown in Fig. 5b.34 At the end of all calculations, after the result has been copied 
into memory, the intermediate results may be “rolled back” through reversible gates to be eventually 
merged into a copy of input data, again without erasing a single bit. The minimal energy dissipation at 
such reversible calculation tends to zero as the operation speed is decreased, so the average energy loss 
per bit may be less than the perceived “fundamental thermodynamic limit” (51). The price to pay for this 
ultralow dissipation is a very high complexity of the hardware necessary for the storage of all 
intermediate results. However, using irreversible gates sparsely, it may be possible to reduce the 
complexity dramatically, so in the future such mostly reversible computation may be able to reduce 
energy consumption in practical digital electronics.35 

 Before we leave Maxwell’s Demon behind, let me use it to revisit, for one more time, the 
relation between the reversibility of the classical and quantum mechanics of Hamiltonian systems and 
the irreversibility possible in thermodynamics and statistical physics. In the thought experiment shown 
in Fig. 4, the laws of mechanics governing the motion of the molecule are reversible at all times. Still, at 
partition’s motion to the right, driven by molecular impacts, the entropy grows, because the molecule 
picks up the heat  Q > 0, and hence the entropy S = Q/T > 0, from the heat bath. The physical 
mechanism of this irreversible entropy (read: disorder) growth is the interaction of the molecule with 
uncontrollable components of the heat bath and the resulting loss of information about its motion. 
Philosophically, such emergence of irreversibility in large systems is a strong argument against 
reductionism – a naïve belief that by knowing the exact laws of Nature at the lowest, most fundamental 

33 C. Bennett, IBM J. Res. Devel. 17, 525 (1973); see also C. Bennett, Int. J. Theor. Phys. 21, 905 (1982). 
34 For that, all gates have to be physically reversible, with no static power consumption. Such logic devices do 
exist, though they are still not very practicable – see, e.g., K. Likharev, Int. J. Theor. Phys. 21, 311 (1982). 
(Another reason why I am citing, rather reluctantly, my own paper is that it also gave a constructive proof that the 
reversible computation may also beat the perceived “fundamental quantum limit”, Et > , where t is the time 
of the binary logic operation.) 
35 Many currently explored schemes of quantum computing are also reversible – see, e.g., QM Sec. 8.5 and 
references therein. 
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Fig. 2.5. Simple examples 
of  (a) irreversible and (b) 
potentially reversible logic 
circuits. Each rectangle 
denotes a circuit storing one 
bit of information. 
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level of its complexity, we can readily understand all phenomena on the higher levels of its organization. 
In reality, the macroscopic irreversibility of large systems is a good example36 of a new law (in this case, 
the 2nd law of thermodynamics) that becomes relevant on a substantially new, higher level of complexity 
– without defying the lower-level laws. Without such new laws, very little of the higher-level 
organization of Nature may be understood. 

 

2.4. Canonical ensemble and the Gibbs distribution 

 As was shown in Sec. 2, the microcanonical distribution may be directly used for solving some 
important problems. However, its further development, also due to J. Gibbs, turns out to be much more 
convenient for calculations.  

 Let us consider a statistical ensemble of macroscopically similar systems, each in thermal 
equilibrium with a heat bath of the same temperature T (Fig. 6a). Such an ensemble is called canonical. 

 

 

 

 

 

 

 

 

 

 It is intuitively evident that if the heat bath is sufficiently large, any thermodynamic variables 
characterizing the system under study should not depend on the heat bath’s environment. In particular, 
we may assume that the heat bath is thermally insulated, so the total energy E of the composite system, 
consisting of the system of our interest plus the heat bath, does not change in time. For example, if the 
system under study is in a certain (say, mth ) quantum state,  then the sum 

                HBEEE m       (2.52) 

is time-independent. Now let us partition the considered canonical ensemble of such systems into much 
smaller sub-ensembles, each being a microcanonical ensemble of composite systems whose total, time-
independent energies E are the same – as was discussed in Sec. 2, within a certain small energy interval 
E << E – see Fig. 6b. Due to the very large size of each heat bath in comparison with that of the 
system under study, the heat bath’s density of states gHB is very high, and E may be selected so 

                    HB
HB

1
EEEE

g m'm   ,    (2.53)  

where m and m’ are any states of the system of our interest.  

36 Another famous example is Charles Darwin’s theory of biological evolution. 
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Fig. 2.6. (a) A system in a heat 
bath (i.e. a canonical ensemble’s 
member) and (b) the energy 
spectrum of the composite system 
(including the heat bath). 
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 According to the microcanonical distribution, within each of these microcanonical sub-
ensembles, the probabilities to find the composite system in any state are equal. Still, the heat bath 
energies EHB = E – Em (Fig. 6b) of the members of this sub-ensemble may be different – due to the 
difference in Em. The probability W(Em) to find the system of our interest (within the selected sub-
ensemble) in a state with energy Em is proportional to the number M of the corresponding heat baths in 
the sub-ensemble. As Fig. 6b shows, in this case we may write M = gHB(EHB)E. As a result, within 
the microcanonical sub-ensemble with the total energy E, 

             EEEgEEgMW mm )()( HBHBHB .   (2.54) 

 Let us simplify this expression further, using the Taylor expansion with respect to relatively 
small Em << E. However, here we should be careful. As we have seen in Sec. 2, the density of states of 
a large system is a nearly exponential function of energy, so if we applied the Taylor expansion directly 
to Eq. (54), the Taylor series would only converge for very small Em. A much broader applicability 
range may be obtained by taking the logarithms of both parts of Eq. (54) first: 

         )(constln)(ln const ln HBHB mmm EESEEEgW   ,  (2.55)  

where the last step used Eq. (36) for the heat bath, and incorporated ln (E) into the (inconsequential) 
constant. Now, we can Taylor-expand the (much more smooth) function of energy on the right-hand side 
of Eq. (55), and limit ourselves to the two leading terms of the series: 

           .constln 00
HB

HB
HB m

mm
m E

dE

dS
SW EE       (2.56) 

But according to Eq. (1.9), the derivative participating in this expression is nothing other than 
the reciprocal temperature of the heat bath, which (due to the large bath size) does not depend on 
whether Em is equal to zero or not. Since our system of interest is in the thermal equilibrium with the 
bath, this is also the temperature T of the system – see Eq. (1.8). Hence Eq. (56) is merely 

             
T

E
W m

m  constln .     (2.57) 

This equality describes a substantial decrease of Wm as Em is increased by ~T, and hence our linear 
approximation (56) is virtually exact as soon as EHB is much larger than T – the condition that is rather 
easy to satisfy, because as we have seen in Sec. 2, the average energy per one degree of freedom of the 
system of the heat bath is also of the order of T, so its total energy is much larger than T because of its 
much larger size. 

 Now we should be careful again because so far, Eq. (57) was only derived for a sub-ensemble 
with a certain fixed E. However, since the second term on the right-hand side of Eq. (57) includes only 
Em and T, which are independent of E, this relation, perhaps with different constant terms, is valid for 
all sub-ensembles of the canonical ensemble, and hence for that ensemble as the whole. Hence for the 
total probability of finding our system of interest in a state with energy Em, in the canonical ensemble 
with temperature T, we can write 
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.  This is the famous Gibbs distribution,37 sometimes called the “canonical distribution”, which is 
arguably the summit of statistical physics,38 because it may be used for a straightforward (or at least 
conceptually straightforward :-) calculation of all statistical and thermodynamic variables of a vast range 
of systems. Its physical sense is very clear: the interaction with the heat bath “punishes” the system 
states (by the reduction of their probability) for having higher energies – on the scale T of its thermal 
agitation. 

 Now let us calculate the coefficient Z participating in Eq. (58). Requiring, per Eq. (4), the sum of 
all Wm to be equal to 1, we get 

             
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Z exp ,     (2.59) 

where the summation is formally extended to all quantum states of the system, though in practical 
calculations, the sum may be truncated to include only the states that are noticeably occupied. The 
apparently humble normalization coefficient Z turns out to be so important for applications that it has a 
special name – or actually, two names: either the statistical sum or the partition function of the system. 
To appreciate the importance of Z, let us use the general expression (29) for entropy to calculate it for 
the particular case of the canonical ensemble, i.e. the Gibbs distribution (58) of the probabilities Wn: 
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On the other hand, according to the general rule (7), the thermodynamic (i.e. ensemble-averaged) value 
E of the internal energy of the system is  
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so the second term on the right-hand side of Eq. (60) is just E/T, while the first term equals lnZ, due to 
Eq. (59). (By the way, using the notion of reciprocal temperature   1/T, with the account of Eq. (59), 
Eq. (61a) may be also rewritten as  

      .
)(ln





Z

E      (2.61b) 

This formula is very convenient for calculations if our prime interest is the average internal energy E 
rather than F or Wn.) With these substitutions, Eq. (60) yields a very simple relation between the 
statistical sum and  the entropy of the system: 

       Z
T

E
S ln .      (2.62) 

37 The temperature dependence of the type exp{–const/T}, especially when showing up in rates of certain events, 
e.g.,  chemical reactions, is also frequently called the Arrhenius law – after chemist S. Arrhenius who has noticed 
this law in numerous experimental data. In all cases I am aware of, the Gibbs distribution is the underlying reason 
for the Arrhenius law. (We will see several examples of that later in this course.) 
38 This is the opinion of many physicists, including Richard Feynman – who climbs on this “summit” already on 
the first page of his brilliant book Statistical Mechanics, CRC Press, 1998. (This is a collection of lectures on a 
few diverse, mostly advanced topics of statistical physics, rather than its systematic course, so it can hardly be 
used as the first textbook on the subject. However, I can highly recommend its first chapter to all my readers.) 
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 Now using Eq. (1.33), we see that Eq. (62) gives a straightforward way to calculate the free 
energy F of the system from nothing other than its statistical sum (and temperature): 

           .ln ZTTSEF       (2.63) 

 The relations (61b) and (63) play a key role in the connection of statistics to thermodynamics, 
because they enable the calculation, from Z alone, of the thermodynamic potentials of the system in 
equilibrium, and hence of all other variables of interest, using the general thermodynamic relations – see 
especially the circular diagram shown in Fig. 1.6, and its discussion in Sec. 1.4. Let me only note that to 
calculate pressure P from the second of Eqs. (1.35), we would need to know the explicit dependence of 
F, and hence of the statistical sum Z on the system’s volume V. This would require the calculation, by 
appropriate methods of either classical or quantum mechanics, of the dependence of the eigenenergies 
Em on the volume. Numerous examples of such calculations will be given later in the course. 

 Before proceeding to such examples, let us notice that Eqs. (59) and (63) may be readily 
combined to give an elegant equality, 
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This formula, together with Eq. (59), enables us to rewrite the Gibbs distribution (58) in another form: 
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more convenient for some applications. In particular, this expression shows that since all probabilities 
Wm are below 1, F is always lower than the lowest energy level. Also, Eq. (65) clearly shows that the 
probabilities Wm do not depend on the energy reference, i. e. on an arbitrary constant added to all Em – 
and hence to E and F. 

  

2.5. Harmonic oscillator statistics 

 The last property may be immediately used in our first example of the Gibbs distribution 
application to a particular but very important system – the harmonic oscillator, for a much more general 
case than was done in Sec. 2, namely for an arbitrary relation between T and .39 Let us consider a 
canonical ensemble of similar oscillators, each in contact with a heat bath of temperature T. Selecting 
the ground-state energy /2 for the origin of E, the oscillator eigenenergies (38) become Em = m 
(with m = 0, 1,…), so the Gibbs distribution (58) for probabilities of these states is 
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with the following statistical sum: 
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39 The task of making a very similar (and even simpler) calculation for another key class of quantum-mechanical 
objects, two-level systems, is left for the reader’s exercise.  
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This is just the well-known infinite geometric progression (the “geometric series”),40 with the sum 
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so Eq. (66) yields 

                 .1 // TmT eeWm
        (2.69) 

 Figure 7a shows Wm for several lower energy levels, as functions of temperature, or rather of the 
T/ ratio. The plots show that the probability of finding the oscillator in each particular state (except 
for the ground one, with m = 0) vanishes in both low- and high-temperature limits, and reaches its 
maximum value Wm ~ 0.3/m at T ~ m, so the contribution mWm of each excited level to the average 
oscillator energy E is always smaller than .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  
 This average energy may be calculated in either of two ways: either using Eq. (61a) directly: 
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or (simpler) using Eq. (61b), as 
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Both methods give (of course) the same result,41 

40 See, e.g., MA Eq. (2.8b). 
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Fig. 2.7. Statistical and thermodynamic parameters of a harmonic oscillator, as functions of temperature. 
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which is valid for arbitrary temperature and plays a key role in many fundamental problems of physics. 
The red line in Fig. 7b shows this result as a function of the normalized temperature. At relatively low 
temperatures, T << , the oscillator is predominantly in its lowest (ground) state, and its energy (on top 
of the constant zero-point energy /2, which was used in our calculation as the reference) is 
exponentially small: E   exp{-/T} << T, . On the other hand, in the high-temperature limit, the 
energy tends to T. This is exactly the result (a particular case of the equipartition theorem) that was 
obtained in Sec. 2 from the microcanonical distribution. Please note how much simpler is the calculation 
using the Gibbs distribution, even for an arbitrary ratio T/. 

 To complete the discussion of the thermodynamic properties of the harmonic oscillator, we can 
calculate its free energy using Eq. (63): 
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Now the entropy may be found from thermodynamics: either from the first of Eqs. (1.35), S = –(∂F/∂T)V, 
or (even more easily) from Eq. (1.33): S = (E – F)/T. Both relations give, of course, the same result: 
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Finally, since in the general case, the dependence of the oscillator properties (essentially, of ) on 
volume V is not specified, such variables as P, , G, W, and  are not defined, and what remains is to 
calculate the average heat capacity C per one oscillator: 
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 The calculated thermodynamic variables are plotted in Fig. 7b as functions of temperature. In the 
low-temperature limit (T << ), they all tend to zero. On the other hand, in the high-temperature limit 
(T >> ), F  –T ln(T/) –, S  ln(T/)  +, and C  1 (in the SI units, C  kB). Note that 
the last limit is the direct corollary of the equipartition theorem: each of the two “half-degrees of 
freedom” of the oscillator gives, in the classical limit, the same contribution C = ½ into its heat capacity. 

 Now let us use Eq. (69) to discuss the statistics of the quantum oscillator described by the 
Hamiltonian (46), in the coordinate representation. Again using the density matrix’s diagonality in 
thermodynamic equilibrium, we may use a relation similar to Eqs. (47) to calculate the probability 
density to find the oscillator at coordinate q: 
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41 It was first obtained in 1924 by S. Bose and is sometimes called the Bose distribution – a particular case of the 
Bose-Einstein distribution to be discussed in Sec. 8 below. 
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where m(q) is the normalized eigenfunction of the mth stationary state of the oscillator. Since each 
m(q) is proportional to the Hermite polynomial42 that requires at least m elementary functions for its 
representation, working out the sum in Eq. (76) is a bit tricky,43 but the final result is rather simple: w(q) 
is just a normalized Gaussian distribution (the “bell curve”), 
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with q = 0, and 
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Since the function coth tends to 1 at  → , and diverges as 1/ at  → 0, Eq. (78) shows that the width 
q of the coordinate distribution is nearly constant (and equal to that, (/2m)1/2, of the ground-state 
wavefunction 0) at T << , and grows as (T/m2)1/2  (T/)1/2 at T/ → .  

 As a sanity check, we may use Eq. (78) to write the following expression,  

         








 ,for      /2,

,for ,4/

2
coth

42

2

TT

T

T

q
U







   (2.79) 

for the average potential energy of the oscillator. To comprehend this result, let us recall that Eq. (72) 
for the average full energy E was obtained by counting it from the ground state energy /2 of the 
oscillator. If we add this reference energy to that result, we get 
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We see that for arbitrary temperature, U = E/2, as was already discussed in Sec. 2. This means that the 
average kinetic energy, equal to E – U, is also the same:44 
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In the classical limit T >> , each of the energies tends to T/2, reproducing the equipartition theorem 
(48). 

 

2.6. Two important applications 

 The results of the previous section, especially Eq. (72), have innumerable applications in physics 
and related disciplines, and here I have time for a brief discussion of only two of them.  

 (i) Blackbody radiation. Let us consider a free-space volume V limited by non-absorbing (i.e. 
ideally reflecting) walls. Electrodynamics tells us45 that the electromagnetic field in such a “cavity” may 
be represented as a sum of modes with a time evolution similar to that of the usual harmonic oscillator.  

42 See, e.g., QM Sec. 2.10. 
43 The calculation may be found, e.g., in QM Sec. 7.2.   
44 As a reminder: the equality of these two averages, for arbitrary temperatures, was proved already in Sec. 2.  
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If the volume V is large enough,46 the number of these modes within a small range dk of the wave vector 
magnitude k is 
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where for electromagnetic waves, the degeneracy factor g is equal to 2, due to their two different 
independent (e.g., linear) polarizations of waves with the same wave vector k. With the linear, isotropic 
dispersion relation for waves in vacuum, k = /c, Eq. (82) yields 
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 On the other hand, quantum mechanics says47 that the energy of such a “field oscillator” is 
quantized per Eq. (38), so at thermal equilibrium its average energy is described by Eq. (72). Plugging 
that result into Eq. (83), we see that the spectral density of the electromagnetic field’s energy, per unit 
volume, is 
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 This is the famous Planck’s blackbody radiation law.48 To understand why its common name 
mentions radiation, let us consider a small planar part, of area dA, of a surface that completely absorbs 
electromagnetic waves incident from any direction.  (Such “perfect black body” approximation may be 
closely approached using special experimental structures, especially in limited frequency intervals.) 
Figure 8 shows that if the arriving wave was planar, with the incidence angle , then the power dP() 
absorbed by the surface of small area dA, within a small frequency interval d, i.e. the energy incident 
at that area in unit time, would be equal to the radiation energy within the same frequency interval, 
contained inside an imaginary cylinder (shaded in Fig. 8) of height c, base area dAcos, and hence 
volume dV = c dAcos : 

      cos)()()( dAcdudVdud P .    (2.85) 

  

 

 

 

 

 

45 See, e.g., EM Sec. 7.8. 
46 In our current context, the volume should be much larger than (c/T)3, where c  3108 m/s is the speed of 
light. For the room temperature (T  kB300K  410-21 J), this lower bound is of the order of 10-16 m3. 
47 See, e.g., QM Sec. 9.1. 
48 Let me hope the reader knows that this law was first suggested in 1900 by Max Planck as an empirical fit for 
the experimental data on blackbody radiation, and this was the historic point at which the Planck constant  (or 
rather h  2) was introduced – see, e.g., QM Sec. 1.1. 
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 Since the thermally-induced field is isotropic, i.e. propagates equally in all directions, this result 
should be averaged over all solid angles within the polar angle interval 0    /2: 
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Hence Planck’s expression (84), multiplied by c/4, gives the power absorbed by such a “blackbody” 
surface. But at thermal equilibrium, this absorption has to be exactly balanced by the surface’s own 
radiation, due to its non-zero temperature T. 

  I hope the reader is familiar with the main features of the Planck law (84), including its general 
shape (Fig. 9), with the low-frequency asymptote u()  2 (due to its historic significance, bearing the 
special name of the Rayleigh-Jeans law), the exponential drop at high frequencies (the Wien law), and 
the resulting maximum of the function u(), reached at the frequency max with 

T82.2max  ,     (2.87) 

i.e. at the wavelength max = 2/kmax = 2c/max  2.22 c/T.  

 

 

 

 

 

 

 

 

 

 

 Still, I cannot help mentioning a few important particular values: one corresponding to the 
visible light (max ~ 500 nm) for the Sun’s effective surface temperature TK  6,000 K, and another one 
corresponding to the mid-infrared range (max ~10 m) for the Earth’s surface temperature TK  300 K. 
The balance of these two radiations, absorbed and emitted by the Earth, determines its surface 
temperature and hence has the key importance for all life on our planet. This is why it is at the front and 
center of the current climate change discussions. As one more example, the cosmic microwave 
background (CMB) radiation, closely following the Planck law with TK = 2.725 K (and hence having the 
maximum density at max  1.9 mm), and in particular its (very small) anisotropy, is a major source of 
data for modern cosmology.  

 Now let us calculate the total energy E of the blackbody radiation inside some volume V. It may 
be found from Eq. (84) by its integration over all frequencies: 49,50   

49 The last step in Eq. (88) uses a table integral, equal to (4)(4) = (3!)(4/90) = 4/15 – see, e.g., MA Eq. (6.8b), 
with s = 4, and then MA Eqs. (6.7e), and (2.7b). 
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Fig. 2.9. The frequency dependence of the 
blackbody radiation density, normalized by 
u0  T3/22c3, according to the Planck law 
(red line) and the Rayleigh-Jeans law (blue 
line).
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Using Eq. (86) to recast Eq. (88) into the total power radiated by a blackbody surface, we get the well-
known Stefan (or “Stefan-Boltzmann”) law51 
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where   is the Stefan-Boltzmann constant 
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 By this point, the thoughtful reader should have an important concern ready: Eq. (84) and hence 
Eq. (88) are based on Eq. (72) for the average energy of each oscillator, referred to its ground-state 
energy /2. However, the radiation power should not depend on the energy origin; why have not we 
included the ground energy of each oscillator into the integration (88), as we have done in Eq. (80)? The 
answer is that usual radiation detectors only measure the difference between the power Pin of the 
incident radiation (say, that of a blackbody surface with temperature T) and their own back-radiation 
power Pout, corresponding to some effective temperature Td of the detector – see Fig. 10. But however 

low Td is, the temperature-independent contribution /2 of the ground-state energy to the back 
radiation is always there. Hence, the term /2 drops out from the balance, and cannot be detected – at 
least in this simple way. This is the reason why we had the right to ignore this contribution in Eq. (88) – 
very fortunately, because it would lead to the integral’s divergence at its upper limit. However, let me 
repeat that the ground-state energy of the electromagnetic field oscillators is physically real and may be 
important – see Sec. 5.5 below. 

 

 

 

 

 

  

 One more interesting result may be deduced from the free energy F of the electromagnetic 
radiation, which may be calculated by integration of Eq. (73) over all the modes, with the appropriate 
weight (83): 

50 Note that the heat capacity CV  (E/T)V, following from Eq. (88), is proportional to T3 at any temperature, and 
hence does not obey the trend CV   const at T  . This is the result of the unlimited growth, with temperature, 
of the number of thermally-exited field oscillators with frequencies   below T/. 
51 Its functional part (E  T4) was deduced in 1879 by Joseph Stefan from earlier experiments by John Tyndall. 
Theoretically, it was proved in 1884 by L. Boltzmann, using a result derived earlier by Adolfo Bartoli from the 
Maxwell equations for the electromagnetic field – all well before Max Planck’s work. 

Fig. 2.10. The power balance at 
the electromagnetic radiation 
power measurement. 
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Representing 2d as d(3)/3, we can readily work out this integral by parts, reducing it to a table 
integral similar to that in Eq. (88), and getting a surprisingly simple result: 
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Now we can use the second of the general thermodynamic relations (1.35) to calculate the pressure 
exerted by the radiation on the walls of the containing volume V:52 
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 Rewritten in the form,   

                 
3

E
PV  ,      (2.92b) 

this result may be considered as the equation of state of the electromagnetic field, i.e. from the quantum-
mechanical point of view, of the photon gas. Note that the equation of state (1.44) of the ideal classical 
gas may be represented in a similar form, but with a coefficient generally different from Eq. (92). 
Indeed, according to the equipartition theorem, for an ideal gas of non-relativistic particles whose 
internal degrees of freedom are in a fixed (say, ground) state, the temperature-dependent energy is that 
of the three translational “half-degrees of freedom”, E = 3N(T/2). Expressing from here the product NT 
= (2E/3), and plugging it into Eq. (1.44), we get a relation similar to Eq. (92), but with a twice larger 
factor before E. On the other hand, a relativistic treatment of the classical gas shows that Eq. (92) is 
valid for any gas in the ultra-relativistic limit, T >> mc2, where m is the rest mass of the gas’ particle. 
Evidently, photons (i.e. particles with m = 0) satisfy this condition at any energy.53 

 Finally, let me note that Eq. (92) allows for the following interesting interpretation. The last of 
Eqs. (1.60), being applied to Eq. (92), shows that in this particular case, the grand thermodynamic 
potential  equals (–E/3), so according to Eq. (91), it is equal to F. But according to the definition of , 
i.e. the first of Eqs. (1.60), this means that the chemical potential of the electromagnetic field excitations 
(photons) vanishes: 

       0



N

F .     (2.93) 

In Sec. 8 below, we will see that the same result follows from the comparison of Eq. (72) and the 
general Bose-Einstein distribution for arbitrary bosons. So, from the statistical point of view, photons 
may be considered bosons with zero chemical potential. 

(ii) Specific heat of solids. The heat capacity of solids is readily measurable, and in the early 
1900s, its experimentally observed temperature dependence served as an important test for the then-

52 This formula may be also derived from the expression for the forces exerted by the electromagnetic radiation on 
the walls (see, e.g. EM Sec. 9.8), but the above calculation is much simpler. 
53 Note that according to Eqs. (1.44), (88), and (92), the difference between the equations of state of the photon 
gas and an ideal gas of non-relativistic particles, expressed in the more usual form P = P(V, T), is much more 
dramatic: P  T4V0 vs. P  T1V-1. 

Photon gas: 
PV vs. E 
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emerging quantum theories. However, the theoretical calculation of CV is not simple54 – even for 
insulators, whose specific heat at realistic temperatures is due to thermally-induced vibrations of their 
crystal lattice alone.55 Indeed, at relatively low frequencies, a solid may be treated as an elastic 
continuum. This continuum supports three different modes of mechanical waves with the same 
frequency , that all obey linear dispersion laws,  = vk, but the velocity v = vl for one of these modes 
(the longitudinal sound) is higher than that (vt) of two other modes (the transverse sound).56 At such 
frequencies, the wave mode density may be described by an evident generalization of Eq. (83): 
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For what follows, it is convenient to rewrite this relation in a form similar to Eq. (83): 
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However, the basic wave theory shows57 that as the frequency  of a sound wave in a periodic 
structure is increased so much that its half-wavelength /k approaches the crystal period d, the 
dispersion law (k) becomes nonlinear before the frequency reaches its maximum at k = /d. To make 
things even more complex, 3D crystals are generally anisotropic, so the dispersion law is different in 
different directions of the wave propagation. As a result, the exact statistics of thermally excited sound 
waves, and hence the heat capacity of crystals, is rather complicated and specific for each particular 
crystal type. 

In 1912, P. Debye suggested an approximate theory of the specific heat’s temperature 
dependence, which is in surprisingly good agreement with experiment for many insulators, including 
polycrystalline and amorphous materials. In his model, the linear (acoustic) dispersion law  = vk, with 
the effective sound velocity v defined by the second of Eqs. (94b), is assumed to be exact all the way up 
to some cutoff frequency D, the same for all three wave modes. This Debye frequency may be defined 
by the requirement that the total number of acoustic modes, calculated within this model from Eq. (94b), 
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is equal to the universal number N = 3nV of the degrees of freedom (and hence of independent 
oscillation modes) in a 3D system of nV elastically coupled particles, where n is the atomic density of 
the crystal, i.e. the number of atoms per unit volume.58 For this model, Eq. (72) immediately yields the 
following expression for the average energy and specific heat (in thermal equilibrium at temperature T ): 
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54 Due to a rather low-temperature expansion of solids, the difference between their CV and CP is small. 
55 In good conductors (e.g., metals), specific heat is contributed (and at low temperatures, dominated) by free 
electrons – see Sec. 3.3 below.  
56 See, e.g., CM Sec. 7.7. 
57 See, e.g., CM Sec. 6.3, in particular, Fig. 6.5 and its discussion. 
58 See, e.g., CM Sec. 6.2. 
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where TD  D is called the Debye temperature,59 and 
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is the Debye function. The red lines in Fig. 11 show the temperature dependence of the specific heat cV 
(per particle) within the Debye model. At high temperatures, it approaches a constant value of three, 
corresponding to the energy E = 3nVT, in agreement with the equipartition theorem for each of three 
degrees of freedom (i.e. six half-degrees of freedom) of each mode. (This value of cV is known as the 
Dulong-Petit law.) In the opposite limit of low temperatures, the specific heat is much smaller: 
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reflecting the reduction of the number of excited phonons with  < T as the temperature is decreased. 

  

 

 

 

 

 

 

 

 

 

 
 As a historic curiosity, P. Debye’s work followed one by A. Einstein, who had suggested (in 
1907) a simpler model of crystal vibrations. In his model, all 3nV independent oscillatory modes of nV 
atoms of the crystal have approximately the same frequency, say E, and Eq. (72) immediately yields 
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so the specific heat is functionally similar to Eq. (75): 

59 In the SI units, the Debye temperature TD is of the order of a few hundred K for most simple solids (e.g., ~430 
K for aluminum and ~340 K for copper), with somewhat lower values for crystals with heavy atoms (~105 K for 
lead), and reaches its highest value ~2200 K for diamond, with its relatively light atoms and very stiff lattice. 
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Fig. 2.11. The specific heat as a function of temperature in the Debye (red lines) and Einstein (blue lines) models. 
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This dependence cV(T) is shown with blue lines in Fig. 11 (assuming, for the sake of simplicity, 
that E = TD). At high temperatures, this result does satisfy the universal Dulong-Petit law (cV = 3), but 
for T << TD, Einstein’s model predicts a much faster (exponential) drop of the specific heat as the 
temperature is reduced. (The difference between the Debye and Einstein models is not too spectacular 
on the linear scale, but in the log-log plot shown on the right panel of Fig. 11, it is rather dramatic.60) 
The Debye model is in much better agreement with experimental data for simple, monoatomic crystals, 
thus confirming the conceptual correctness of his wave-based approach.  

 Note, however, that when a genius such as Albert Einstein makes an error, there is usually some 
deep and important background under it. Indeed, crystals with the basic cell consisting of atoms of two 
or more types (such as NaCl, etc.), feature two or more separate branches of the dispersion law (k) – 
see, e.g., Fig. 12. While the lower, “acoustic” branch is virtually similar to those for monoatomic 
crystals and may be approximated by the Debye model,  = vk, reasonably well, the upper (“optical”61) 
branch does not approach  = 0 at any k. Moreover, for large values of the atomic mass ratio r, the 
optical branches are almost flat, with virtually k-independent frequencies 0, which correspond to 
simple oscillations of each light atom between its heavy neighbors. For thermal excitations of such 
oscillations, and their contribution to the specific heat, Einstein’s model (with E = 0) gives a very 
good approximation, so for such solids, the specific heat may be well described by a sum of the Debye 
and Einstein laws (97) and (101), with appropriate weights. 

 

 

 

 

 

 

 
 

2.7. Grand canonical ensemble and distribution 

 As we have seen, the Gibbs distribution is a very convenient way to calculate the statistical and 
thermodynamic properties of systems with a fixed number N of particles. However, for systems in which 
N may vary, another distribution is preferable for applications. Several examples of such situations (as 

60 This is why there is the following general “rule of thumb” in quantitative sciences: if you plot your data on a 
linear rather than log scale, you better have a good excuse ready. (An example of a valid excuse: the variable you 
are plotting changes its sign within the range you want to exhibit.) 
61 This term stems from the fact that at k  0, the mechanical waves corresponding to these branches have phase 
velocities vph  (k)/k  that are much higher than that of the acoustic waves, and may approach the speed of light. 
As a result, these waves can strongly interact with electromagnetic (practically, optical) waves of the same 
frequency, while acoustic waves cannot. 

 0                   0.5      1.0 

Fig. 2.12. The dispersion relation for 
mechanical waves in a simple 1D model of a 
solid, with similar interparticle distances d, but 
alternating particle masses, plotted for a 
particular mass ratio r = 5 – see CM Chapter 6. 
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well as the basic thermodynamics of such systems) have already been discussed in Sec. 1.5. Perhaps 
even more importantly, statistical distributions for systems with variable N are also applicable to some 
ensembles of independent particles in certain single-particle states even if the number of the particles is 
fixed – see the next section. 

 With this motivation, let us consider what is called the grand canonical ensemble (Fig. 13). It is 
similar to the canonical ensemble discussed in Sec. 4 (see Fig. 6) in all aspects, besides that now the 
system under study and the heat bath (in this case, more often called the environment) may exchange not 
only heat but also particles. In this ensemble, all environments are in both the thermal and chemical 
equilibrium, with their temperatures T and chemical potentials  the same for all members. 

 

 

 

 

 

 

 

 
  
 Let us assume that the system of interest is also in chemical and thermal equilibrium with its 
environment. Then using exactly the same arguments as in Sec. 4 (including the specification of 
microcanonical sub-ensembles with fixed E and N), we may generalize Eq. (55), taking into account 
that the entropy Senv of the environment is now a function of not only its energy Eenv = E – Em,N, 62 but 
also of the number of particles Nenv = N – N,  with E and N fixed: 
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To simplify this relation, let us rewrite Eq. (1.52) in the following equivalent form: 
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Hence, if the entropy S of a system is expressed as a function of E, V, and N, then 
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Applying the first one and the last one of these relations to the last form of Eq. (102), and using the 
equality of the temperatures T and the chemical potentials  in the system under study and its 
environment, at equilibrium (as was discussed in Sec. 1.5), we get  

62 The additional index in the new notation Em,N  for the energy of the system of interest reflects the fact that its 
spectrum is generally dependent on the number N of particles in it. 

Fig. 2.13. A member of the grand canonical 
ensemble. 
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Again, exactly as at the derivation of the Gibbs distribution in Sec. 4, we may argue that since Em,N, T, 
and  do not depend on the choice of environment’s size, i.e. on E and N, the probability Wm,N for a 
system to have N particles and be in mth quantum state in the whole grand canonical ensemble should 
also obey Eq. (105). As a result, we get the so-called  grand canonical distribution: 
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where, just as in the case of the Gibbs distribution (2.58), the constant ZG (most often called the grand 
statistical sum, but sometimes the “grand partition function”) should be determined from the probability 
normalization condition. However, now the summation of the probabilities Wm,N  should be over all 
possible values of both m and N: 
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 The last multiplier in the last form of Eq. (106) is the same as in the Gibbs distribution, and its 
physical interpretation is similar: states are “punished” by lower probability for their excessively higher 
energy. The handwaving interpretation of the first multiplier, with its opposite sign, is different: in the 
absence of the energy-related penalty Em,N, the environment with an average particle energy  > 0 
“wants” to flood the system with more particles.  

 Now let us see how the grand canonical distribution may be used for calculations of measurable 
variables. First, using the general Eq. (29) to calculate the entropy from Eq. (106) (exactly like we did it 
for the canonical ensemble), we get the following expression,  
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which is evidently a generalization of Eq. (62).63 We see that now the grand thermodynamic potential   
(rather than the free energy F) may be expressed directly via the normalization coefficient ZG: 
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Finally, solving the last equality for ZG, and plugging the result back into Eq. (106), we can rewrite the 
grand canonical distribution in the form 
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similar to Eq. (65) for the Gibbs distribution. Indeed, in the particular case when the number N of 
particles is fixed, N = N, so  + N =  + N  F, Eq. (110) is reduced to Eq. (65). 

63 The average number of particles N is exactly what was called N in thermodynamics (see Chapter 1), but I 
keep this explicit notation here to make a clear distinction between this average value of the variable, and its 
particular values participating in Eqs. (102)-(110). 
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2.8. Systems of independent particles 

Now let us apply the general statistical distributions discussed above to a simple but very 
important case when the system we are considering consists of many similar particles whose direct 
interactions are negligible. As a result, each particular energy value Em,N of such a system may be 
represented as a sum of energies εk of the particles, where the index k  numbers single-particle states – 
rather than those of the whole system as the index m does. 

 Let us start with the classical limit. In classical mechanics, the energy quantization effects are 
negligible, i.e. there is a formally infinite number of quantum states k within each finite energy interval. 
However, it is convenient to keep, for the time being, the discrete-state language, with the understanding 
that the average number  Nk  of particles in each of these states, usually called the state occupancy, is 
very small. In this case, we may apply the Gibbs distribution to the canonical ensemble of single 
particles, and hence use it with the substitution Em → εk, so Eq. (58) becomes 
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where the constant c should be found from the normalization condition: 

          
k

kN .1       (2.112) 

 This is the famous Boltzmann distribution.64 Despite its formal similarity to the Gibbs 
distribution (58), let me emphasize the conceptual difference between these two important formulas. The 
Gibbs distribution describes the probability to find the whole system on one of its states with energy Em, 
and it is always valid – more exactly, for any canonical ensemble of systems in thermodynamic 
equilibrium. On the other hand, the Boltzmann distribution describes the occupancy of an energy level 
of a single particle, and, as we will see in just a minute, is valid for quantum particles only in the 
classical limit Nk  << 1, even if the particles do not interact directly. 

 The last fact may be surprising, because it may seem that as soon as particles of the system are 
independent, nothing prevents us from using the Gibbs distribution to derive Eq. (111), regardless of the 
value of  Nk . This is indeed true if the particles are distinguishable, i.e. may be distinguished from 
each other – say by their definitely different spatial positions, or by the states of certain internal degrees 
of freedom (say, spin), or by any other “pencil mark”. However, it is an experimental fact that 
elementary particles of each particular type (say, electrons) are identical to each other, i.e. cannot be 
“pencil-marked”.65 For such particles we have to be more careful: even if they do not interact directly, 

64 The distribution was first suggested in 1877 by L. Boltzmann. For the particular case when  is the kinetic 
energy of a free classical particle (and hence has a continuous spectrum), it is reduced to the Maxwell distribution 
(see Sec. 3.1 below), which was derived earlier – in 1860.  
65 This fact invites a natural question: what particles are “elementary enough” for their identity? For example, 
protons and neutrons have an internal structure, in some sense consisting of quarks and gluons; can they be 
considered elementary? Next, if protons and neutrons are elementary, are atoms? molecules? What about really 
large molecules (such as proteins)? viruses? The general answer to these questions, given by quantum mechanics 
(or rather experiment :-), is that any particles/systems, no matter how large and complex they are, are identical if 
they not only have the same internal structure but also are exactly in the same internal quantum state – for 
example, in the ground state of all their internal degrees of freedom. Evidently, the more complex are the 
particles/systems, the harder it is to enforce this situation in experiment. 

Boltzmann 
distribution 



Essential Graduate Physics               SM: Statistical Mechanics 

    
Chapter 2           Page 34 of 44 

there is still some indirect dependence in their behavior, which is especially evident for the so-called 
fermions (elementary particles with semi-integer spin): they obey the Pauli exclusion principle that 
forbids two identical particles to be in the same quantum state, even if they do not interact directly.66  

Note that the term “the same quantum state” carries a heavy meaning load here. For example, if 
two particles are confined to stay at different spatial positions (say, reliably locked in different boxes), 
they are distinguishable even if they are internally identical. Thus the Pauli principle, as well as other 
particle identity effects such as the Bose-Einstein condensation to be discussed in the next chapter, are 
important only when identical particles may move in the same spatial region. To emphasize this fact, it 
is common to use, instead of “identical”, a more precise (though grammatically rather unpleasant) 
adjective indistinguishable. 

 In order to take these effects into account, let us examine the statistical properties of a system of 
many non-interacting but indistinguishable particles (at the first stage of calculation, either fermions or 
bosons) in equilibrium, applying the grand canonical distribution (109) to a very unusual grand 
canonical ensemble: a subset of particles in the same quantum state k (Fig. 14). 

 

 
 
 
 
 
 
 

 In this ensemble, the role of the environment may be played just by the set of particles in all 
other states k’  k, because due to infinitesimal interactions, the particles may gradually change their 
states. In the resulting equilibrium, the chemical potential  and temperature T of the system should not 
depend on the state number k, though the grand thermodynamic potential k of the chosen particle 
subset may. Replacing N with Nk – the particular (not average!) number of particles in the selected kth 
state, and the particular energy value Em,N  with kNk, we reduce the final form of Eq. (109) to 
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where the summation should be carried out over all possible values of Nk. For the final calculation of 
this sum, the elementary particle type is essential.  

 On one hand, for fermions, obeying the Pauli principle, the numbers Nk in Eq. (113) may take 
only two values, either 0 (the state k is unoccupied) or 1 (the state is occupied), and the summation gives 
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66 For a more detailed discussion of this issue, see, e.g., QM Sec. 8.1. 
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single-particle energy levels: 

Fig. 2.14. The grand canonical 
ensemble of particles in the same 
quantum state with energy k  – 
schematically. 
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Now the state occupancy may be calculated from the last of Eqs. (1.62) – in this case, with the (average) 
N replaced with Nk: 
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This is the famous Fermi-Dirac distribution, derived in 1926 independently by Enrico Fermi and Paul 
Dirac. 

 On the other hand, bosons do not obey the Pauli principle, and for them the numbers Nk can take 
any non-negative integer values. In this case, Eq. (113) turns into the following equality: 
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This sum is just the usual geometric series, which converges if  < 1, giving 
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In this case, the average occupancy, again calculated using Eq. (1.62) with N replaced with  Nk , obeys 
the Bose-Einstein distribution, 
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which was derived in 1924 by Satyendra Nath Bose (for the particular case  = 0) and generalized in 
1925 by Albert Einstein to the case of arbitrary chemical potential. In particular, comparing Eq. (118) 
with Eq. (72), we see that harmonic oscillator’s excitations,67 each with energy , may be considered 
as bosons, with the chemical potential equal to zero. As a reminder, we have already obtained this 
equality ( = 0) in a different way – see Eq. (93). Its physical interpretation is that the oscillator 
excitations may be created inside the system, so there is no energy cost  of moving them into the 
system under consideration from its environment.  

 The simple form of Eqs. (115) and (118), and their similarity (besides “only” the difference of 
the signs before the unity in their denominators), is one of the most beautiful results of physics. This 
similarity, however, should not disguise the fact that the energy dependences of the occupancies Nk 
given by these two formulas are very much different – see their linear and semi-log plots in Fig. 15.  

 In the Fermi-Dirac statistics, the level occupancy is not only finite, but is below 1 at any energy, 
while in the Bose-Einstein it may be above 1, and diverges at k   . However, as the temperature is 
increased, it eventually becomes much larger than the difference (k – ). In this limit, Nk << 1, so both 
quantum distributions coincide with each other, as well as with the classical Boltzmann distribution 
(111) with c = exp{/T}: 

67 As the reader certainly knows, for electromagnetic field oscillators, such excitations are called photons; for 
mechanical oscillation modes, phonons, etc. It is important, however, not to confuse such mode excitations with 
the oscillators as such, and be very careful in prescribing to them certain spatial locations – see, e.g., QM Sec. 9.1. 
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This distribution (also shown in Fig. 15) may be, therefore, understood also as the high-temperature 
limit for indistinguishable particles of both sorts. 

 

  

 

 

 

 

 

 

 
 
 
 
 
  
 
 
 A natural question now is how to find the chemical potential  participating in Eqs. (115), (118), 
and (119). In the grand canonical ensemble as such (Fig. 13), with the number of particles variable, the 
value of  is imposed by the system’s environment. However, both the Fermi-Dirac and Bose-Einstein 
distributions are also approximately applicable (in thermal equilibrium) to systems with a fixed but very 
large number N of particles. In these conditions, the role of the environment for some subset of N’ << N 
particles is essentially played by the remaining N – N’ particles. In this case,   may be found by the 
calculation of N from the corresponding probability distribution and then requiring the result to be 
equal to the genuine number of particles in the system. In the next section, we will perform such 
calculations for several particular systems. 

 For that and other applications, it will be convenient for us to have ready formulas for the 
entropy S of a general (i.e. not necessarily equilibrium) state of systems of independent Fermi and Bose 
particles, expressed not as a function of Wm of the whole system, as in Eq. (29), but via the occupancy 
numbers  Nk . For that, let us consider an ensemble of composite systems, each consisting of M >> 1 
similar but distinct component systems, numbered by index m = 1, 2, … M, with independent (i.e. not 
directly interacting) particles – see Fig. 16. Let us assume that though in each of the M component 
systems, the number Nk

(m) of particles in their kth quantum state may be different, their total number Nk
() 

in the composite system is fixed. As a result, the total energy of the composite system is fixed as well, 
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Fig. 2.15. The Fermi-Dirac (blue line), Bose-Einstein (red line), and Boltzmann (dashed line) distributions 
for indistinguishable quantum particles. (The last distribution is valid only asymptotically, at Nk << 1.) 
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so an ensemble of many such composite systems (with the same k), in equilibrium, is microcanonical. 
According to Eq. (24a), the average entropy Sk per component system in this microcanonical ensemble 
may be calculated as 
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lim  ,     (2.121) 

where Mk is the number of possible different ways such a composite system (with fixed Nk
()) may be 

implemented.  

 

 

 

 

 

 

 

 
 Let us start with the calculation of Mk for Fermi particles – for which the Pauli principle is valid. 
Here the level occupancies Nk

(m) may be only equal to either 0 or 1, so the distribution problem is 
solvable only if Nk

()  M, and evidently equivalent to the choice of Nk
() balls (in arbitrary order) from 

the total number of M distinct balls. Comparing this formulation with the definition of the binomial 
coefficient,68 we immediately get 
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From here, using the Stirling formula (again, in its simplest form (27)), we get 
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is exactly the average occupancy of the kth single-particle state in each system, which was discussed 
earlier in this section. Since for a Fermi system,  Nk  is always between 0 and 1, its entropy (123) 
cannot be negative – see the blue line in Fig. 17. 

 In the Bose case, where the Pauli principle is not valid, the number N k
 (m) of particles in the kth 

state in each of the systems is an arbitrary (non-negative) integer. Let us consider Nk
() particles and (M 

– 1) partitions (shown by vertical lines in Fig. 16) between M systems as (M – 1 + Nk
()) mathematical 

objects ordered along one axis. Each specific location of the partitions evidently fixes all Nk
(m). Hence 

Mk may be calculated as the number of possible ways to distribute the (M – 1) indistinguishable 
partitions among these (M – 1 + Nk

()) ordered objects, i.e. as the following binomial coefficient:69 

68 See, e.g., MA Eq. (2.2). 
69 See also MA Eq. (2.4). 

Fig. 2.16. An example of a composite system of Nk
() particles in 

the kth quantum state, distributed between M component systems. 
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Applying the Stirling formula (27) again, we get the following result, 

        ,1ln1ln kkkkk NNNNS     (2.126) 

which again differs from the Fermi case (123) “only” by the signs in the second term, and is valid for 
any positive Nk - see the red line in Fig. 17. 

 In the classical limit when the average occupancies  Nk  of the state is much smaller than 1, the 
Fermi and Bose expressions for Sk  tend to the same Boltzmann limit: 

               .0for  ,ln1ln  kkkkkk NNNNNS   (2.127)  

(The last expression may be also obtained from the functionally similar Eq. (29), by considering an 
ensemble of systems consisting of just one classical particle each, so Em  k and Wm   Nk .) 

 

 

 

 

 

 

 

 

 

 
 
 Expressions (123) and (126) are valid for an arbitrary (possibly, non-equilibrium) case; they may 
be also used for an alternative derivation of the Fermi-Dirac (115) and Bose-Einstein (118) distributions, 
which are valid only in equilibrium. For that, we may use the method of Lagrange multipliers, requiring 
(just like it was done in Sec. 2) the total entropy of a system of N independent, similar particles, 
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considered as a function of state occupancies Nk, to attain its maximum, under the conditions of the 
fixed total number of particles N and total energy E: 
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The completion of this calculation is left for the reader’s exercise. 
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a quantum state as a function of 
its average occupancy Nk, for 
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2.9. Exercise problems 

2.1. A famous example of macroscopic irreversibility was suggested in 1907 by P. Ehrenfest. 
Two dogs share 2N >> 1 fleas. Each flea may jump onto another dog, and the rate  of such events (i.e. 
the probability of jumping per unit time) does not depend either on time or on the location of other fleas. 
Find the time evolution of the average number of fleas on a dog, and of the flea-related part of the total 
dogs’ entropy (at arbitrary initial conditions), and prove that the entropy can only grow.70 
 
 2.2. Use the microcanonical distribution to calculate thermodynamic properties (including the 
entropy, all relevant thermodynamic potentials, and the heat capacity) of a two-level system in 
thermodynamic equilibrium with its environment, at a temperature T that is comparable with the energy 
gap . For each variable, sketch its temperature dependence, and find its asymptotic values (or trends) in 
the low-temperature and high-temperature limits.  

 Hint: The two-level system is any quantum system with just two different stationary states, 
whose energies (say, E0 and E1) are separated by a gap    E1 – E0. Its popular (but by no means the 
only!) example is the spin-½ of a particle, e.g., an electron, in an external magnetic field.71 
 
 2.3. Solve the previous problem using the Gibbs distribution. Also, calculate the probabilities of 
the energy level occupation, and give physical interpretations of your results, in both temperature limits. 

 
2.4. A quantum spin-½ particle with a gyromagnetic ratio  is placed into an external magnetic 

field H = H nz. Neglecting the possible orbital motion of the particle, calculate its average 
magnetization mz as a function H, and in particular its low-field magnetic susceptibility , in thermal 
equilibrium at temperature T. Calculate the same characteristics for a classical magnetic dipole m of a 
fixed magnitude m0, free to change its direction in space, and compare the results. 

Hint: The low-field magnetic susceptibility of a single particle is defined72 as 

0


 HH

mz . 

  
 2.5.* Calculate the weak-field magnetic susceptibility of a hydrogen atom, at room temperature. 
Is this response to the field paramagnetic or diamagnetic? Compare the result with the estimated 
susceptibility of a hydrogen molecule H2. 
 
 2.6. N similar stiff rods of length l are connected 
with the joints that allow for free 3D rotation, to form a 
chain – see the figure on the right. The chain, in thermal 

70 This is essentially a simpler (and funnier :-) version of the particle scattering model used by L. Boltzmann to 
prove his famous H-theorem (1872). Besides the historical significance of that theorem, the model used in it (see 
Sec. 6.2 below) is as cartoonish, and not more general.  
71 See, e.g., QM Secs. 4.6 and 5.1, in particular, Eq. (4.167). 
72 This “atomic” (or “molecular”) susceptibility  should not be confused with the “volumic” susceptibility m  
Mz/H, where M  is the magnetization, i.e. the magnetic moment of a unit volume of a system – see, e.g., EM 
Eq. (5.111). For a uniform medium with n  N/V non-interacting dipoles per unit volume, m = n. 

lT
T
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equilibrium at temperature T, is stretched by a fixed force T. Calculate the spring constant  of the chain 
in the elastic limit T  0. 
 
 2.7. Calculate the low-field magnetic susceptibility of a particle with an arbitrary (either integer 
or semi-integer) spin s, neglecting its orbital motion. Compare the result with the solution of Problem 4. 

 Hint: Quantum mechanics73 tells us that the Cartesian component mz  of the magnetic moment of 
such a particle, in the direction of the applied field, has (2s + 1) stationary values:  

ssssmm ssz ,1,...,1,with  ,  m , 

where   is the gyromagnetic ratio of the particle, and  is Planck’s constant. 
 
 2.8. Analyze the possibility of using a system of non-interacting spin-½ particles placed into a 
controllable external magnetic field, for refrigeration. 
  
 2.9. A rudimentary “zipper” model of DNA replication is a chain 
of N links that may be either open or closed – see the figure on the right. 
Opening a link increases the system’s energy by  > 0; a link may 
change its state (either open or closed) only if all links to the left of it are 
open, while all those on the right of it, are closed. Calculate the average number of open links in thermal 
equilibrium, and analyze its temperature dependence, especially for the case N >> 1. 
 
 2.10. Use the microcanonical distribution to calculate the average entropy, energy, and pressure 
of a classical 3D particle of mass m, with no internal degrees of freedom, free to move in volume V, at 
temperature T. 

 Hint: Try to make a more accurate calculation than has been done in Sec. 2.2 for the system of N 
harmonic oscillators. For that, you would need to know the volume Vd of a d-dimensional hypersphere 
of a unit radius. To avoid being too cruel, I am providing it: 

             ,1
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V d

d   

where () is the gamma function.74 
 
 2.11. Solve the previous problem using the Gibbs distribution.  
  
 2.12. Calculate the average energy, entropy, free energy, and the equation of state of a classical 
2D particle (without internal degrees of freedom), free to move within area A, at temperature T, starting 
from: 
 (i) the microcanonical distribution, and 
 (ii) the Gibbs distribution. 

Hint: For the equation of state, make the appropriate modification of the notion of pressure. 
 

73 See, e.g., QM Sec. 5.7, in particular Eq. (5.169). 
74 For its definition and main properties, see, e.g., MA Eqs. (6.6)-(6.9). 

1 2 ... n N...1n
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 2.13. A quantum particle of mass m is confined to free motion along a 1D segment of length a. 
Using any approach you like, calculate the average force the particle exerts on the “walls” (ends) of such 
a “1D potential well” in thermal equilibrium, and analyze its temperature dependence, focusing on the 
low-temperature and high-temperature limits. 

 Hint: You may consider the series    





1

2exp
n

n  a known function of . 75  

 2.14. Rotational properties of diatomic molecules (such as N2, CO, etc.) may be reasonably well 
described by the so-called dumbbell model: two point particles, of masses m1 and m2, with a fixed 
distance d between them. Ignoring the translational motion of the molecule as a whole, use this model to 
calculate its heat capacity, and spell out the result in the limits of low and high temperatures. Is your 
solution valid for the so-called homonuclear molecules consisting of two similar atoms, such as H2, O2, 
N2, etc.? 
 
 2.15.* Modify the solution of the previous problem for homonuclear molecules. Specifically, 
consider the cases of molecules H2 and N2. For the first of them, compute the equilibrium ratio of the 
number of the  ortho- and parahydrogen molecules as a function of temperature. 

Hint: Use the value of d that gives the experimentally observed difference of 1.455 kJ/mol 
between the ground state energies of these two hydrogen species (“spin isomers”). 
 
 2.16. Calculate the heat capacity of a heteronuclear diatomic molecule by using the simple model 
described in Problem 14, but now assuming that the rotation is confined to one plane.76 
 
 2.17. A classical, rigid, strongly elongated body (such as a thin needle) is free to rotate about its 
center of mass and is in thermal equilibrium with its environment. Are the angular velocity vector  and 
the angular momentum vector L, on average, directed along the elongation axis of the body, or normal 
to it? 
 
 2.18. Two similar classical electric dipoles, of a fixed magnitude d, are separated by a fixed 
distance r. Assuming that each dipole moment vector d may point in any direction and that the system is 
in thermal equilibrium, write general expressions for its statistical sum Z, average interaction energy E, 
heat capacity C, and entropy S, and calculate them explicitly in the high-temperature limit. 
 
 2.19. A classical 1D particle of mass m, residing in the potential well 

  0with  ,   
xxU , 

is in thermal equilibrium with its environment, at temperature T.  Calculate the average values of its 
potential energy U and the full energy E: 

 (i) directly from the Gibbs distribution, and 
 (ii) by using the virial theorem of classical mechanics77 and the equipartition theorem. 

75 It may be reduced to the so-called elliptic theta-function 3(z, ) for a particular case z = 0 – see, e.g., Sec. 16.27 
in the Abramowitz-Stegun handbook cited in MA Sec. 16(ii). However, you do not need that (or any other) 
handbook to solve this problem. 
76 This is a reasonable model of the constraints imposed on small atomic groups (e.g., ligands) by their atomic 
environment inside some large molecules. 
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 2. 20. For a slightly anharmonic classical 1D oscillator with mass m and potential energy  

  32

2
xxxU 

  

with a small coefficient , in thermal equilibrium with its environment, calculate:  

 (i) the statistical average of the coordinate x, and  
 (ii) the deviation of the heat capacity from its basic value C =1,  

in the first (linear) approximation in low temperature T. 
 
 2.21. A small conductor (in this context, usually called the 
single-electron island) is placed between two conducting 
electrodes, with voltage V applied between them. The gap between 
one of the electrodes and the island is so narrow that electrons may 
tunnel quantum-mechanically through this gap (the “weak tunnel 
junction”) – see the figure on the right. Calculate the average 
charge of the island as a function of V at temperature T. 

 Hint: The quantum-mechanical tunneling of an electron 
through a weak junction78 between two macroscopic conductors and its subsequent energy relaxation, 
may be treated as a single inelastic (energy-dissipating) event, so the only energy essential for the 
thermal equilibrium of the system is its electrostatic potential energy. 
  
 2.22. A lumped LC circuit (see the figure on the right) is in 
thermodynamic equilibrium with its environment. Calculate the r.m.s. 
fluctuation V   V 21/2 of the voltage across it, for an arbitrary ratio T/, 
where  = (LC)-1/2 is the resonance frequency of this “tank circuit”. 

 
 2.23. Derive Eq. (92) from simplistic arguments, by representing the blackbody radiation as an 
ideal gas of photons treated as classical ultra-relativistic particles. What do similar arguments give for 
an ideal gas of classical but non-relativistic particles?  
 
 2.24. Calculate the enthalpy, the entropy, and the Gibbs energy of blackbody electromagnetic 
radiation in thermal equilibrium with temperature T inside volume V, and then use these results to find 
the law of temperature and pressure drop at an adiabatic expansion. 
 
 2.25. As was mentioned in Sec. 6(i), the relation between the temperature T of the visible Sun’s 
surface and that (To) of the Earth’s surface follows from the balance of the thermal radiation they emit. 
Prove that the experimentally observed relation indeed follows, with good precision, from a simple 
model in which the surfaces radiate as perfect black bodies with constant temperatures. 

 Hint: You may pick up the experimental values you need from any reliable source.  

77 See, e.g., CM Problem 1.12. 
78 In this particular context, the adjective “weak” denotes a junction with a tunneling transparency so low that the 
tunneling electron’s wavefunction loses its quantum-mechanical coherence before the electron has a chance to 
tunnel back. In a typical junction of a macroscopic area, this condition is fulfilled if its effective resistance is 
much higher than the quantum unit of resistance (see, e.g., QM Sec. 3.2), RQ  /2e2  6.5 k. 
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 2.26. If the surface is not perfectly radiation-absorbing (“black”), the electromagnetic power of 
its thermal radiation differs from the Planck radiation law by a frequency-dependent factor   < 1, called 
emissivity. Prove that such a surface reflects the (1 – ) fraction of the incident radiation. 
 
 2.27. If two black surfaces, facing each other, have different 
temperatures (see the figure on the right), then according to the Stefan 
radiation law (89), there is a net flow of thermal radiation, from the hotter 
surface to the colder one: 

 4
2

4
1

net TT
A

 
P

. 

For many applications, notably including most low-temperature 
experiments, this flow is detrimental. One way to suppress it is to reduce the emissivity  (for its 
definition, see the previous problem) of both surfaces – say by covering them with shiny metallic films. 
An alternative way toward the same goal is to place, between the surfaces, a thin layer (usually called 
the thermal shield), with a low emissivity of both surfaces – see the dashed line in Fig. above. Assuming 
that the emissivity is the same in both cases and neglecting its possible dependence on the angle and 
frequency, find out which way is more efficient. 
 
 2.28. Two perfectly reflecting parallel plates of area A are separated by a free-space gap of a 
constant thickness t << A1/2. Calculate the energy of the thermally-induced electromagnetic field inside 
the gap in thermal equilibrium, with temperature T in the range 

      
t

c
T

A

c 


2/1
. 

Does the field push the plates apart? 
 

 2.29. Use the Debye theory to estimate the specific heat of aluminum at room temperature (say, 
300 K) and express the result in the following popular units: 

 (i) eV/K per atom, 
 (ii) J/K per mole, and 
 (iii) J/K per gram. 

Compare the last number with the experimental value (from a reliable source). 
 
 2.30. Low-temperature specific heat of some solids has a considerable contribution from the 
thermal excitation of spin waves, whose dispersion law at   0 scales as   k2.79 Neglecting 
anisotropy, calculate the temperature dependence of this contribution to CV at low temperatures, and 
discuss conditions of its experimental observation. 

 Hint: Just as the photons and phonons discussed in section 2.6, the quantum excitations of spin 
waves (called magnons) may be considered non-interacting bosonic quasiparticles with zero chemical 
potential, whose statistics obeys Eq. (2.72). 
 
 

79 Note that the same dispersion law is typical for bending waves in thin elastic rods – see, e.g., CM Sec. 7.8. 

1T 12 TT 
netP
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 2.31. Derive a general expression for the specific heat of a very long 
straight chain of similar particles of mass m, confined to move only in the 
direction of the chain and elastically interacting with effective spring 
constants  – see the figure on the right. Spell out the result in the limits of 
very low and very high temperatures. Would using the Debye approximation change these results? 

 Hint: You may like to use the following integral:80 
6sinh

2

0
2

2 




 d

.  

 2.32. Use the Debye approximation to obtain a general expression for the longitudinal phonon 
contribution to the specific heat of a stand-alone monatomic layer of an elastic material (such as 
graphene). Find its explicit temperature dependence at T  0. 
 
 2.33. Calculate the r.m.s. thermal fluctuation of an arbitrary point of a uniform guitar string of 
length l, stretched by force T, at temperature T. Evaluate your result for l = 0.7 m, T = 103 N, and room 
temperature. 

 Hint: You may like to use the following series: 
 

 
 

2

1sin

1
2

2 


 




n n

n
, for 0    1. 

 
2.34. Use the general Eq. (123) to re-derive the Fermi-Dirac distribution (115) for a system in 

equilibrium. 
 
 2.35. Each of two identical particles, not interacting directly, may be in any of two quantum 
states, with the single-particle energies  equal to 0 and . Write down the statistical sum Z of the 
system, and use it to calculate its average total energy E at temperature T, for the cases when the 
particles are: 

 (i) distinguishable (say, by their spatial positions); 
 (ii) indistinguishable fermions; 
 (iii) indistinguishable bosons. 

Analyze and interpret the temperature dependence of E for each case, assuming that  > 0. 
 
 2.36. Each of N >> 1 indistinguishable fermions has two non-degenerate energy levels separated 
by gap . Calculate the chemical potential of their system in thermal equilibrium at temperature T, if the 
direct interaction of the particles is negligible.

80 It may be reduced, via integration by parts, to the table integral MA Eq. (6.8d) with n = 1. 

m m m
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d d


