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Chapter 3. Ideal and Not-So-Ideal Gases 

In this chapter, the general principles of thermodynamics and statistics, discussed in the previous two 
chapters, are applied to examine the basic physical properties of gases, i.e. collections of identical 
particles (for example, atoms or molecules) that are free to move inside a certain volume, either not 
interacting or weakly interacting with each other. We will see that due to the quantum statistics, 
properties of even the simplest, so-called ideal gases, with negligible direct interactions between 
particles, may be highly nontrivial. 

 

3.1. Ideal classical gas 

 Direct interactions of typical atoms and molecules are well localized, i.e. rapidly decreasing 
when the distance r exceeds a certain scale r0. In a gas of N particles inside volume V, the average 
distance rave between the particles is (V/N)1/3. As a result, if the gas density n  N/V = (rave)

-3 is much 
lower than r0

-3, i.e. if nr0
3 << 1, the chance for its particles to approach each other and interact 

significantly is rather small. The model in which such direct interactions are completely ignored is 
called the ideal gas.  

 Let us start with a classical ideal gas, which may be defined as the ideal gas in whose behavior 
the quantum effects are also negligible. As was discussed in Sec. 2.8, the condition of that is to have the 
average occupancy of each quantum state low: 

         1kN .      (3.1) 

It may seem that we have already found all properties of such a system, in particular, the equilibrium 
occupancy of its states – see Eq. (2.111):  
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In some sense this is true, but we still need, first, to see what exactly Eq. (2) means for the gas, i.e. a 
system with an essentially continuous energy spectrum, and, second, to show that, rather surprisingly, 
the particles’ indistinguishability affects some properties of even classical gases. 

 The first of these tasks is evidently easiest for gas out of any external fields and with no internal 
degrees of freedom.1 In this case, k is just the kinetic energy of the particle, which is an isotropic and 
parabolic function of p: 
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Now we have to use two facts from other fields of physics, hopefully well known to the reader. First, in 
quantum mechanics, the linear momentum p is associated with the wavevector k of the de Broglie wave, 

1 In more realistic cases when particles do have internal degrees of freedom, but they are all in a certain (say,  
ground) quantum state, Eq. (3) is valid as well, with k counted from the fixed (e.g., ground-state) internal energy. 
The effect of thermal excitation of the internal degrees of freedom will be discussed at the end of this section. 
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p = k. Second, the eigenvalues of k for any waves (including the de Broglie waves) in free space are 
uniformly distributed in the momentum space, with a constant density of states, given by Eq. (2.82): 
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where g is the degeneracy of the particle’s internal states (for example, for all spin-½ particles, the spin 
contribution to the internal degeneracy g = 2s + 1 = 2). Even regardless of the exact proportionality 
coefficient between dNstates and d3p, the very fact that this coefficient does not depend on p means that 
the probability dW to find the particle in a small region d3p = dp1dp2dp3 of the momentum space is 
proportional to the right-hand side of Eq. (2), with k given by Eq. (3): 
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This is the famous Maxwell distribution.2 The normalization constant C may be readily found 
from the last form of Eq. (5), by requiring the integral of dW over all the momentum space to equal 1. 
Namely, such integral is evidently a product of three similar 1D integrals over each Cartesian 
component pj of the momentum (j = 1, 2, 3), which may be readily reduced to the well-known 
dimensionless Gaussian integral,3 so we get 
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As a sanity check, let us use the Maxwell distribution to calculate the average energy 
corresponding to each half-degree of freedom: 
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The last, dimensionless integral equals 1/2/2,4 so, finally, 
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2 This formula had been suggested by J. C. Maxwell as early as 1860, i.e. well before the Boltzmann and Gibbs 
distributions were developed. Note also that the term “Maxwell distribution” is often associated with the 
distribution of the particle momentum (or velocity) magnitude, 
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which immediately follows from the first form of Eq. (5), combined with the expression d3p = 4p2dp due to the 
spherical symmetry of the distribution in the momentum/velocity space. 
3 See, e.g., MA Eq. (6.9b). 
4 See, e.g., MA Eq. (6.9c). 
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 This result is (fortunately :-) in agreement with the equipartition theorem (2.48). It also means 
that the r.m.s. velocity of each particle is 
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For a typical gas (say, for N2, our air’s main component), with m  28mp  4.710-26 kg, this velocity, at 
room temperature (T = kBTK  kB300 K  4.110-21 J) is about 500 m/s, comparable with the sound 
velocity in the same gas – and well above with the muzzle velocity of a typical handgun bullet. Still, it is 
measurable using even simple table-top equipment (say, a set of two concentric, rapidly rotating 
cylinders with a thin slit collimating an atomic beam emitted at the axis) that was available in the end of 
the 19th century. Experiments using such equipment gave convincing early confirmations of the 
Maxwell distribution. 

 This is all very simple (isn’t it?), but actually the thermodynamic properties of a classical gas, 
especially its entropy, are more intricate. To show that, let us apply the Gibbs distribution to a gas 
portion consisting of N particles rather than just one of them. If the particles are exactly similar, the 
eigenenergy spectrum {k} of each of them is also exactly the same, and each value Em of the total 
energy is just the sum of particular energies k(l) of the particles, where k(l), with l = 1, 2, … N, is the 
number of the energy level on which the lth particle resides. Moreover, since the gas is classical,  Nk  
<< 1, the probability of having two or more particles in any state may be ignored. As a result, we can 
use Eq. (2.59) to write 
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where the summation has to be carried over all possible states of each particle. Since the summation 
over each set {k(l)} concerns only one of the operands of the product of exponents under the sum, it is 
very tempting to complete the calculation as follows: 
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where the final summation is over all states of one particle. This formula is indeed valid for 
distinguishable particles.5 However, if the particles are indistinguishable (again, meaning that they are 
internally identical and free to move within the same spatial region), Eq. (11) has to be modified by 
what is called the correct Boltzmann counting: 
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that considers all quantum states different only by particle permutations, as the same state.  

5 Since, by our initial assumption, each particle belongs to the same portion of gas, i.e. cannot be distinguished 
from others by its spatial position, this requires some internal “pencil mark” for each particle – for example, a 
specific structure or a specific quantum state of its internal degrees of freedom. 
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 This expression is valid for any set {k} of eigenenergies. Now let us use it for the translational 
3D motion of free particles, taking into account that the fundamental relation (4) implies the following 
rule for the replacement of a sum over quantum states of such motion with an integral:6 
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In application to Eq. (12), this rule yields 
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The integral in the square brackets is the same one as in Eq. (6), i.e. is equal to (2mT)1/2, so finally 
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Now, assuming that N >> 1,7 and applying the Stirling formula, we can calculate the gas’ free energy: 
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 The first of these relations exactly coincides with Eq. (1.45), which was derived in Sec. 1.4 from 
the equation of state PV = NT, using thermodynamic identities. At that stage, this equation of state was 
just postulated, but now we can derive it by calculating the pressure from Eq. (16a), using the second of 
Eqs. (1.35): 
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So, the equation of state of the ideal classical gas, with density n  N/V, is indeed given by Eq. (1.44):  
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Hence we may use Eqs.(1.46)-(1.51), derived from this equation of state, to calculate all other 
thermodynamic variables of the gas. For example, using Eq. (1.47) with f(T) given by Eq. (16b), for the 
internal energy and the specific heat of the gas we immediately get 

6 As a reminder, we have already used this rule twice in Sec. 2.6, with particular values of g. 
7 For the opposite limit when N = g = 1,  Eq. (15) yields the results obtained, by two alternative methods, in the 
solutions of Problems 2.8 and 2.9. Indeed, for N = 1, the “correct Boltzmann counting” factor N! equals 1, so that 
the particle distinguishability effects vanish – naturally.  
8 This formula was derived (independently) by O. Sackur and H. Tetrode as early as in 1911, i.e. well before the 
final formulation of quantum mechanics in the late 1920s. 
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in full agreement with Eq. (8) and hence with the equipartition theorem.  

 Much less trivial is the result for entropy (essentially, conjectured in Sec. 1.4): 
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This formula provides the means to resolve the following gas mixing paradox (sometimes called the 
“Gibbs paradox”). Consider two volumes, V1 and V2, separated by a partition, each filled with the same 
gas, with the same density n, at the same temperature T, and hence with the same pressure P. Now let us 
remove the partition and let the gas portions mix; would the total entropy change? According to Eq. 
(20), it would not, because the ratio V/N, and hence the expression in the square brackets is the same in 
the initial and the final state, so the entropy is additive, as any extensive variable should be. This makes 
full sense if the gas particles in both parts of the volume are truly identical, i.e. the partition’s removal 
does not change our information about the system. However, let us assume that all particles are 
distinguishable; then the entropy should clearly increase because the mixing would decrease our 
information about the system, i.e. increase its disorder. A quantitative description of this effect may be 
obtained using Eq. (11). Repeating for Zdist the calculations made above for Z, we readily get a different 
formula for entropy: 
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Please notice that in contrast to the S given by Eq. (20), this entropy includes the term lnV 
instead of ln(V/N), so Sdir is not proportional to N (at fixed temperature T and density N/V). While for 
distinguishable particles this fact does not present any conceptual problem, for indistinguishable 
particles it would mean that entropy was not an extensive variable, i.e. would contradict the basic 
assumptions of thermodynamics. This fact emphasizes again the necessity of the correct Boltzmann 
counting in the latter case.  

Using Eq. (21), we can calculate the change of entropy due to mixing two gas portions, with N1 
and N2 distinguishable particles, at a fixed temperature T (and hence at unchanged function fdist): 
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so the change is positive even for V1/N1 = V2/N2. Note that for a particular case, V1 = V2 = V/2, Eq. (22) 
reduces to the simple result, Sdist = (N1 + N2) ln2, which may be readily understood in terms of the 
information theory. Indeed, allowing each particle of the total number N = N1 + N2 to spread to a twice 
larger volume, we lose one bit of information per particle, i.e. I = (N1 + N2) bits for the whole system. 
Let me leave it for the reader to show that Eq. (22) remains valid if particles in each sub-volume are 
indistinguishable from each other but different from those in another sub-volume, i.e. for mixing of two 
different gases.9 However, it is certainly not applicable to the system where all particles are identical, 

9 By the way, if an ideal classical gas consists of particles of several different sorts, its full pressure is a sum of 
independent partial pressures exerted by each component – the so-called Dalton law. While this fact was an 
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stressing again that the correct Boltzmann counting (12) does indeed affect the gas entropy, even though 
it may be not as consequential as the Maxwell distribution (5), the equation of state (18), and the 
average energy (19).  

 In this context, one may wonder whether the change (22) (called the mixing entropy) is 
experimentally observable. The answer is yes. For example, after free mixing of two different gases, and 
hence increasing their total entropy by Sdist, one can use a thin movable membrane that is 
semipermeable, i.e. whose pores are penetrable for particles of one type only, to separate them again, 
thus reducing the entropy back to the initial value, and measure either the necessary mechanical work 
W = TSdist or the corresponding heat discharge into the heat bath. Practically, measurements of this 
type are easier in weak solutions10 – systems with a small relative concentration c << 1 of particles of 
one sort (solute) within much more abundant particles of another sort (solvent). The mixing entropy also 
affects the thermodynamics of chemical reactions in gases and liquids.11 Note that besides purely 
thermal-mechanical measurements, the mixing entropy in some conducting solutions (electrolytes) is 
also measurable by a purely electrical method, called cyclic voltammetry, in which a low-frequency ac 
voltage, applied between two solid-state electrodes embedded in the solution, is used to periodically 
separate different ions, and then mix them again.12 

 Now let us briefly discuss two generalizations of our results for ideal classical gases. First, let us 
consider such gas in an external field of potential forces. It may be described by replacing Eq. (3) with 
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where rk is the position of the kth particular particle, and U(r) is the potential energy of the particle. If 
the potential U(r) is changing in space sufficiently slowly,13 Eq. (4) is still applicable, but only to small 
volumes, V → dV = d3r whose linear size is much smaller than the spatial scale of substantial variations 
of the function U(r). Hence, instead of Eq. (5), we may only write the probability dW of finding the 
particle in a small volume d3rd3p of the 6-dimensional phase space: 
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important experimental discovery in the early 1800s, for statistical physics this is just a straightforward corollary 
of Eq. (18) because in an ideal gas, the component particles do not interact. 
10 The statistical mechanics of weak solutions is very similar to that of ideal gases, with Eq. (18) recast into the 
following formula (derived in 1885 by J. van ’t Hoff), PV = cNT, for the partial pressure of the solute. One of its 
corollaries is that the net force (called the osmotic pressure) exerted on a semipermeable membrane is 
proportional to the difference in the solute concentrations it is supporting. 
11 Unfortunately, I do not have time for even a brief introduction to this important field and have to refer the 
interested reader to specialized textbooks – for example, P. A. Rock, Chemical Thermodynamics, University 
Science Books, 1983; or P. Atkins, Physical Chemistry, 5th ed., Freeman, 1994; or G. M. Barrow, Physical 
Chemistry, 6th ed., McGraw-Hill, 1996.
12 See, e.g., either Chapter 6 in A. Bard and L. Falkner, Electrochemical Methods, 2nd ed., Wiley, 2000 (which is a 
good introduction to electrochemistry as a whole); or Sec. II.8.3.1 in F. Scholz (ed.), Electroanalytical Methods, 
2nd ed., Springer, 2010. 
13 Quantitatively, the spatial scale of substantial variations of the potential, U(r)/T-1, has to be much larger than 
the mean free path l of the gas particles, i.e. the average distance a particle passes between successive collisions 
with its counterparts. (For more on this notion, see Chapter 6 below.) 
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Hence, the Maxwell distribution of particle velocities is still valid at each point r, so the equation of 
state (18) is also valid locally. A new issue here is the spatial distribution of the total density, 

              pdwNn 3),()( prr ,     (3.25) 

of all gas particles, regardless of their momentum/velocity. For this variable, Eq. (24) yields14 
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where the potential energy at the origin (r = 0) is used as the reference for U. The local gas pressure may 
be still calculated from the local form of Eq. (18): 
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 A simple example of numerous applications of Eq. (27) is an approximate description of the 
Earth’s atmosphere. At all heights h << RE ~ 6106 m above the Earth’s surface (say, above the sea 
level), we may describe the Earth’s gravity effect by the potential U = mgh, and Eq. (27) yields the so-
called barometric formula 
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For the same N2, the main component of the atmosphere, at TK = 300 K, h0  ≈ 7 km. This result gives the 
correct order of magnitude of the atmosphere’s thickness, though the exact law of the pressure change 
differs somewhat from Eq. (28) because electromagnetic radiation flows result in a relatively small 
deviation of the atmospheric air from the thermal equilibrium, namely a drop of its temperature T with 
height, with the so-called lapse rate of about 2% (~6.5 K) per kilometer. 

 The second generalization I need to discuss is to particles with internal degrees of freedom. Now 
ignoring the potential energy U(r),  we may describe them by replacing Eq. (3) with 
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where k’ describes the internal energy spectrum of the kth particle. If the particles are similar, we may 
repeat all the above calculations, and see that all their results (including the Maxwell distribution, and 
the equation of state) are still valid, with the only exception of Eq. (16), which now becomes  
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 As we already know from Eqs. (1.50)-(1.51), this change may affect both specific heats of the 
ideal gas – though not their difference, cV – cP = 1. They may be readily calculated for usual atoms and 
molecules, at not very high temperatures (say the room temperature of ~25 meV), because in these 
conditions, k’ >> T for most of their internal degrees of freedom, including the electronic and 

14 In some textbooks, Eq. (26) is also called the Boltzmann distribution, though it certainly should be 
distinguished from Eq. (2.111). 

Barometric 
formula 
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vibrational ones. (The typical energy of the lowest electronic excitations is of the order of a few eV, and 
that of the lowest vibrational excitations is only an order of magnitude lower.) As a result, these degrees 
of freedom are “frozen out”: they are in their ground states, so their contributions exp{-k’/T} to the sum 
in Eq. (30), and hence to the heat capacity, are negligible. In monoatomic gases, this is true for all 
degrees of freedom besides those of the translational motion, already taken into account by the first term 
in Eq. (30), i.e. by Eq. (16b), so their specific heat is typically well described by Eq. (19).  

 The most important exception is the rotational degrees of freedom of diatomic and polyatomic 
molecules. As quantum mechanics shows,15 the excitation energy of these degrees of freedom scales as 
2/2I, where I is the molecule’s relevant moment of inertia. In the most important molecules, this energy 
is rather low (for example, for N2, it is close to 0.25 meV, i.e. ~1% of the room temperature), so at usual 
conditions they are well excited and, moreover, behave virtually as classical degrees of freedom, each 
giving a quadratic contribution to the molecule’s kinetic energy. As a result, they obey the equipartition 
theorem, each giving an extra contribution of T/2 to the energy, i.e. ½ to the specific heat.16 In 
polyatomic molecules, there are three such classical degrees of freedom (corresponding to their rotations 
about the three principal axes17), but in diatomic molecules, only two.18 Hence, these contributions may 
be described by the following generalization of Eq. (19): 

           









  molecules. polyatomic of gasesfor     3,

      molecules, diatomic of gasesfor  5/2,

                     gases, monoatomicfor  ,3/2

Vc    (3.31) 

 Please keep in mind, however, that as the above discussion shows, this simple result is invalid at 
very low and very high temperatures. In the latter case, the most frequent violations of Eq. (31) are due 
to the thermal activation of the vibrational degrees of freedom; for many important molecules, it starts at 
temperatures of a few thousand K. 

 

3.2. Calculating  

 Now let us discuss the properties of ideal gases of free, indistinguishable particles in more detail, 
paying special attention to the chemical potential  – which, for some readers, may still be a somewhat 
mysterious aspect of the Fermi and Bose distributions. Note again that particle indistinguishability is 
conditioned by the absence of thermal excitations of their internal degrees of freedom, so in the balance 
of this chapter such excitations will be ignored, and the particle’s energy k will be associated with its 
“external” energy alone: for a free particle in an ideal gas, with its kinetic energy (3). 

 Let us start from the classical gas, and recall the conclusion of thermodynamics that   is just the 
Gibbs potential per unit particle – see Eq. (1.56). Hence we can calculate  = G/N from Eqs. (1.49) and 
(16b). The result, 

15 See, e.g., either the model solution of Problem 2.14 (and references therein) or QM Secs. 3.6 and 5.6. 
16 This result may be readily obtained again from the last term of Eq. (30) by treating it exactly like the first one 
was and then applying the general Eq. (1.50). 
17 See, e.g., CM Sec. 4.1. 
18 This conclusion of the quantum theory may be interpreted as the indistinguishability of the rotations about the 
molecule’s symmetry axis. 
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which may be rewritten as  
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gives us some idea about  not only for a classical gas but for quantum (Fermi and Bose) gases as well. 
Indeed, we already know that for indistinguishable particles, the Boltzmann distribution (2.111) is valid 
only if  Nk  << 1. Comparing this condition with the quantum statistics (2.115) and (2.118), we see 
again that the condition of the gas behaving classically may be expressed as 

              1exp 
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T
k      (3.33) 

for all k. Since the lowest value of k given by Eq. (3) is zero, Eq. (33) may be satisfied only if 
exp{/T} << 1. This means that the chemical potential of a classical gas has to be not just negative, but 
also “strongly negative” in the sense  

  .T        (3.34a) 

According to Eq. (32), this condition may be represented as  

          0TT  ,      (3.34b) 

with T0 defined as 

                ,
2

ave
3/2

23/223/22

0 mrgg

n

mgV

N

m
T




















     (3.35) 

where rave is the average distance between the gas particles: 
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With the last form of T0, the condition (34) is very transparent physically: disregarding the factor 
g2/3 (which is typically of the order of 1), it means that the average thermal energy of a particle, which is 
always of the order of T, has to be much larger than the energy of quantization of particle’s motion at 
the length rave. An alternative form of the same condition is 

            
2/1cc

3/1
ave )(

  where,
mT

rrgr


  .    (3.37) 

In quantum mechanics, the parameter rc so defined is frequently called the correlation length.19 For a 
typical gas (say, N2, with m  14mp  2.310-26 kg) at the standard room temperature (T = kB300K  
4.110-21 J), the correlation length rc is close to 10-11 m, i.e. is significantly smaller than the physical size 
r0 ~ 310-10 m of the molecule. This estimate shows that at room temperatures, as soon as any practical 
gas is rare enough to be ideal (rave >> r0), it is classical. Thus, the only way to observe quantum effects 
in the translational motion of molecules is by using very deep refrigeration. According to Eq. (37), for 

19See, e.g., QM Sec. 7.2 and in particular Eq. (7.37). 

Quantum 
scale of 

temperature 
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the same nitrogen molecule, taking rave ~ 102r0 ~ 10-8 m (to ensure that direct interaction effects are 
negligible), the temperature should be well below 1 mK.  

 In order to analyze quantitatively what happens with gases when T is reduced to such low values, 
we need to calculate  for an arbitrary ideal gas of indistinguishable particles. Let us use the lucky fact 
that the Fermi-Dirac and the Bose-Einstein statistics may be represented with one formula:  

                1

1
/ 

  Te
N  ,     (3.38) 

where (and everywhere in the balance of this section) the top sign stands for fermions and the lower one 
for bosons, to discuss fermionic and bosonic ideal gases in one shot.  

If we deal with a member of the grand canonical ensemble (Fig. 2.13), in which not only T but 
also  is externally fixed, we may use Eq. (38) to calculate the average number N of particles in volume 
V. If the volume is so large that N >> 1, we may use the general state counting rule (13) to get 
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In most practical cases, however, the number N of gas particles is fixed by particle confinement (i.e. the 
gas portion under study is a member of a canonical ensemble – see Fig. 2.6), and hence  rather than N 
should be calculated. Let us use the trick already mentioned in Sec. 2.8: if N is very large, the relative 
fluctuation of the particle number, at fixed , is negligibly small (N/N ~ 1/N << 1), and the relation 
between the average values of N and  should not depend on which of these variables is exactly fixed. 
Hence, Eq. (39), with  having the sense of the average chemical potential, should be valid even if N is 
exactly fixed, so the small fluctuations of N are replaced with (equally small) fluctuations of . 
Physically, in this case the role of the -fixing environment for any sub-portion of the gas is played by 
the rest of it, and Eq. (39) expresses the condition of self-consistency of such chemical equilibrium.  

So, at N >> 1, Eq. (39) may be used to calculate the average  as a function of two independent 
parameters: N (i.e. the gas density n = N/V) and temperature T. For carrying out this calculation, it is 
convenient to convert the right-hand side of Eq. (39) to an integral over the particle’s energy (p) = 
p2/2m, so p = (2m)1/2,  and dp = (m/2)1/2d, getting 
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 This key result may be represented in two other, sometimes more convenient forms. First, Eq. 
(40), derived for our current (3D, isotropic and parabolic-dispersion) approximation (3), is just a 
particular case of the following self-evident state-counting relation 
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where  
                  ddNg states      (3.42) 

is the temperature-independent density of all quantum states of a particle – regardless of whether they 
are occupied or not. Indeed, according to the general Eq. (4), for the simple isotopic model (3), 

Basic 
equation  
for  
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so plugging it into Eq. (41), we return to Eq. (39).  

 On the other hand, for some calculations, it is convenient to introduce the following 
dimensionless energy variable:   /T, to express Eq. (40) via a dimensionless integral: 
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As a sanity check, in the classical limit (34), the exponent in the denominator of the fraction under the 
integral is much larger than 1, and Eq. (44) reduces to 
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By the definition of the gamma function (),20 the last integral is just (3/2) = 1/2/2, and we get 
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which is exactly the same result as given by Eq. (32), which was obtained earlier in a rather different 
way – from the Boltzmann distribution and thermodynamic identities.  

 Unfortunately, in the general case of arbitrary , the integral in Eq. (44) cannot be worked out 
analytically.21 The best we can do is to use the T0 defined by Eq. (35), to rewrite Eq. (44) in the 
following convenient, fully dimensionless form: 
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and then use this relation to calculate the ratios T/T0 and /T0  (/T)(T/T0), as functions of /T 
numerically. After that, we may plot the results versus each other, now considering the former ratio as 
the argument. Figure 1 below shows the resulting plots for both particle types. They show that at high 
temperatures, T >> T0, the chemical potential is negative and approaches the classical behavior given by 
Eq. (46) for both fermions and bosons – just as we could expect. However, at temperatures T ~ T0 the 
type of statistics becomes crucial. For fermions, the reduction of temperature leads to  changing its 
sign from negative to positive and then approaching a constant positive value called the Fermi energy, 
F  7.595 T0 at T  0. On the contrary, the chemical potential of a bosonic gas stays negative and then 
turns into zero at a certain critical temperature Tc  3.313 T0. Both these limits, which are very 
important for applications, may (and will be :-) explored analytically, separately for each statistics. 

20 See, e.g., MA Eq. (6.7a). 
21 For the reader’s reference only: for the upper sign, the integral in Eq. (40) is a particular form (for s = ½) of a 
special function called the complete Fermi-Dirac integral Fs, while for the lower sign, it is a particular case (for s 
= 3/2) of another special function called the polylogarithm Lis. (In what follows, I will not use these notations.) 
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 Before carrying out such analyses (in the next two sections), let me show that rather surprisingly, 
for any non-relativistic ideal quantum gas, the relation between the product PV and the energy, 

            EPV
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2
 ,      (3.48) 

is exactly the same as follows from Eqs. (18) and (19) for the classical gas, and hence does not depend 
on the particle statistics. To prove this, it is sufficient to use Eqs. (2.114) and (2.117) for the grand 
thermodynamic potential of each quantum state, which may be conveniently represented by a single 
formula, 
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and sum them over all states k, using the general summation formula (13). The result for the total grand 
potential of a 3D gas with the dispersion law (3) is 
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Working out this integral by parts, exactly as we did it with the one in Eq. (2.90), we get 
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But the last integral is just the total energy E of the gas: 
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so for any temperature and any particle type,  = –(2/3)E. But since, from thermodynamics,  = –PV, 
we have Eq. (48) proved. This universal relation22 will be repeatedly used below. 

22 For gases of diatomic and polyatomic molecules, whose rotational degrees of freedom are usually thermally 
excited, Eq. (48) is valid only for the translational motion’s energy. 
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3.3. Degenerate Fermi gas 

 Analysis of low-temperature properties of a Fermi gas is very simple in the limit T = 0. Indeed, 
in this limit, the Fermi-Dirac distribution (2.115) is just the step function: 
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– see the bold line in Fig. 2a. Since the function  = p2/2m is isotropic in the momentum space, in that 
space the particles, at T = 0, fully occupy all possible quantum states inside a sphere (called either the 
Fermi sphere or the Fermi sea) with some radius pF (Fig. 2b), while all states above the sea surface are 
empty. Such degenerate Fermi gas is a striking manifestation of the Pauli principle: though in 
thermodynamic equilibrium at T = 0 all particles try to lower their energies as much as possible, only g 
of them may occupy each translational (“orbital”) quantum state. As a result, the sphere’s volume is 
proportional to the particle number N, or rather to their density n = N/V. 

 

 

 

 

 

 

 Indeed, the radius pF may be readily related to the number of particles N using Eq. (39), with the 
upper sign, whose integral in this limit is just the Fermi sphere’s volume: 
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Now we can use Eq. (3) to express via N the chemical potential   (which, in the limit T = 0, bears the 
special name of the Fermi energy F)23: 
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where T0 is the quantum temperature scale defined by Eq. (35). This formula quantifies the low-
temperature trend of the function (T), clearly visible in Fig. 1, and in particular, explains the ratio F/T0 
mentioned in Sec. 2. Note also a simple and very useful relation, 
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that may be obtained immediately from the comparison of Eqs. (43) and (54). 

 The total energy of the degenerate Fermi gas may be (equally easily) calculated from Eq. (52): 

23 Note that in the electronic engineering literature,  is usually called the Fermi level, for any temperature. 
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showing that the average energy,    E/N, of a particle inside the Fermi sea is equal to 3/5 of that (F) 
of the particles in the most energetic occupied states, on the Fermi surface. Since, according to the basic 
formulas of Chapter 1, at zero temperature H = G = N, and F = E,  the only thermodynamic variable 
still to be calculated is the gas pressure P. For it, we could use any of the thermodynamic relations P = 
(H – E)/V or P = –(F/V)T, but it is even easier to use our recent result (48). Together with Eq. (56), it 
yields 
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From here, it is straightforward to calculate the isothermal bulk modulus (reciprocal compressibility),24 
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which is frequently simpler to measure experimentally than P. 

 Perhaps the most important example25 of the degenerate Fermi gas is the conduction electrons in 
metals – the electrons that belong to the outer shells of isolated atoms but become shared in solid metals, 
and as a result, can move through the crystal lattice almost freely. Though the electrons (which are 
fermions with spin s = ½ and hence with the spin degeneracy g = 2s + 1 = 2) are negatively charged, the 
Coulomb interaction of the conduction electrons with each other is substantially compensated by the 
positively charged ions of the atomic lattice, so they follow the simple model discussed above, in which 
the interaction is disregarded, reasonably well. This is especially true for alkali metals (forming Group 1 
of the periodic table of elements), whose experimentally measured Fermi surfaces are spherical within 
1% – even within 0.1% for Na. 

Table 1 lists, in particular, the experimental values of the bulk modulus for such metals, together with 
the values given by Eq. (58) using the F calculated from Eq. (55) with the experimental density of the 
conduction electrons. The agreement is pretty impressive, taking into account that the simple theory 
described above completely ignores the Coulomb and exchange interactions of the electrons. This 
agreement implies that, surprisingly, the experimentally observed firmness of solids (or at least metals) 
is predominantly due to the kinetic energy (3) of the conduction electrons, rather than any electrostatic 
interactions – though, to be fair, these interactions are the crucial factor defining the equilibrium value 

24 For a general discussion of this notion, see, e.g., CM Eqs. (7.32) and (7.36). 
25 Recently, nearly degenerate gases (with F ~ 5T) have been formed of weakly interacting Fermi atoms as well – 
see, e.g., K. Aikawa et al., Phys. Rev. Lett. 112, 010404 (2014), and references therein. Another interesting 
example of the system that may be approximately treated as a degenerate Fermi gas is the set of Z >> 1 electrons 
in a heavy atom. However, in this system the account of electron interaction via the electrostatic field they create 
is important. Since for this Thomas-Fermi model of atoms, the thermal effects are unimportant, it was discussed 
already in the quantum-mechanical part of this series (see QM Chapter 8). However, its analysis may be 
streamlined using the notion of the chemical potential, introduced only in this course – the problem left for the 
reader’s exercise.   
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of n. Numerical calculations using more accurate approximations (e.g., the Density Functional 
Theory26), which agree with experiment with a few-percent accuracy, confirm this conclusion.27 
 

Table 3.1. Experimental and theoretical parameters of electrons’ Fermi sea in some alkali metals28 

Metal F (eV) 
Eq. (55) 

K (GPa) 
Eq. (58) 

K (GPa) 
experiment 

 (mcal/moleK2) 
Eq. (69) 

 (mcal/moleK2) 
experiment 

Na 3.24 923 642 0.26 0.35 

K 2.12 319 281 0.40 0.47 

Rb 1.85 230 192 0.46 0.58 

Cs 1.59 154 143 0.53 0.77 

 

 Looking at the values of F listed in this table, note that room temperatures (TK ~ 300 K) 
correspond to T ~ 25 meV. As a result, most experiments with metals, at least in their solid or liquid 
form, are performed in the limit T << F. According to Eq. (39), at such temperatures, the occupancy 
step described by the Fermi-Dirac distribution has a non-zero but relatively small width of the order of T 
– see the dashed line in Fig. 2a. Calculations for this case are much facilitated by the so-called 
Sommerfeld expansion formula29 for the integrals like those in Eqs. (41) and (52): 
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where () is an arbitrary function that is sufficiently smooth at   =  and integrable at  = 0. To prove 
this formula, let us introduce another function, 
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and work out the integral I(T) by parts:  

      
     






 







00

)( dfNdN
d

df
TI  

               






















 

0

.
0

0











 d

N
fNdffN   (3.61) 

26 See, e.g., QM Sec. 8.4. 
27 Note also a huge difference between the very high bulk modulus of metals (K ~ 1011 Pa) and its very low values 
in usual, atomic gases (for them, at ambient conditions, K ~105 Pa). About four orders of magnitude of this 
difference is due to that in the particle density N/V, but the balance is due to the electron gas’ degeneracy. Indeed, 
in an ideal classical gas, K = P = T(N/V), so that the factor (2/3)F in Eq. (58), of the order of a few eV in metals, 
should be compared with the factor T  25 meV in the classical gas at room temperature.  
28 Data from N. Ashcroft and N. D. Mermin, Solid State Physics, W. B. Saunders, 1976. 
29 Named after Arnold Sommerfeld, who was the first (in 1927) to apply quantum mechanics to degenerate Fermi 
gases, in particular to electrons in metals, and may be credited for most of the results discussed in this section. 

Sommerfeld 
expansion 
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As evident from Eq. (2.115) and/or Fig. 2a, at T <<  the function –N()/ is close to zero for all 
energies, besides a narrow peak of the unit area, at   . Hence, if we expand the function f() in the 
Taylor series near this point, just a few leading terms of the expansion should give us a good 
approximation: 
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  (3.62) 

In the last form of this relation, the first integral over   equals N( = 0) – N( =  = 1, the second 
one vanishes (because the function under it is antisymmetric with respect to the point  = ), and only 
the last one needs to be dealt with explicitly, by working it out by parts and then using a table integral:30 
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Being plugged into Eq. (62), this result proves the Sommerfeld formula (59). 

 The last preparatory step we need to make is to account for a possible small difference (as we 
will see below, also proportional to T2) between the temperature-dependent chemical potential (T) and 
the Fermi energy defined as F  (0), in the largest (first) term on the right-hand side of Eq. (59): 
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 Now, applying this formula to Eq. (41) and the last form of Eq. (52), we get the following results 
(which are valid for any dispersion law (p) and even any dimensionality of the gas): 
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If the number of particles does not change with temperature, N(T) = N(0), as in most experiments, Eq. 
(65) gives the following formula for finding the temperature-induced change of : 
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Note that the change is quadratic in T and negative, in agreement with the numerical results shown with 
the red line in Fig. 1. Plugging this expression (which is only valid when the magnitude of the change is 
much smaller than F) into Eq. (66), we get the following temperature correction to the energy: 

30 See, e.g., MA Eqs. (6.8c) and (2.12b), with n = 1. 
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where within the accuracy of our approximation,  may be replaced with F. (Due to the universal 
relation (48), this result also gives the temperature correction to the Fermi gas’ pressure.) Now we may 
use Eq. (68) to calculate the heat capacity of the degenerate Fermi gas: 
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According to Eq. (55b), in the particular case of a 3D gas with the isotropic and parabolic dispersion law 
(3), Eq. (69) reduces to 
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 This important result deserves a discussion. First, note that within the range of validity of the 
Sommerfeld approximation (T << F), the specific heat of the degenerate gas is much smaller than that 
of the classical gas, even without internal degrees of freedom: cV = 3/2 – see Eq. (19). The physical 
reason for such a low heat capacity is that the particles deep inside the Fermi sea cannot pick up thermal 
excitations with available energies of the order of T << F, because the states immediately above them 
are already occupied. The only particles (or rather quantum states, due to the particle 
indistinguishability) that may be excited with such small energies are those at the Fermi surface, more 
exactly within a surface layer of thickness  ~ T << F; Eq. (70) presents a very vivid manifestation of 
this fact. 

 The second important feature of Eqs. (69)-(70) is the linear dependence of the heat capacity on 
temperature, which decreases with a reduction of T much slower than that of crystal vibrations – see Eq. 
(2.99). This means that in metals, the specific heat at temperatures T << TD is dominated by the 
conduction electrons. Indeed, experiments confirm not only the linear dependence (70) of the specific 
heat,31 but also the values of the proportionality coefficient    CV/T for cases when F can be calculated 
independently, for example for alkali metals – see the two rightmost columns of Table 1 above. More 
typically, Eq. (69) is used for the experimental measurement of the density of states on the Fermi 
surface, g(F) – the factor which participates in many theoretical results, in particular in transport 
properties of degenerate Fermi gases (see Chapter 6 below).  

 

3.4. Bose-Einstein condensation 

 Now let us explore what happens at the cooling of an ideal gas of bosons. Figure 3a shows the 
same plot as Fig. 1b, i.e. the result of a numerical solution of Eq. (47) with the appropriate (lower) sign 
in the denominator, on a more appropriate log-log scale. One can see that the chemical potential  
indeed tends to zero at some finite “critical temperature” Tc. It may be found by taking  = 0 in Eq. (47), 
thus reducing it to a table integral:32 

31 Solids, with their low thermal expansion coefficients, provide virtually-fixed-volume confinement for the 
electron gas, so that the specific heat measured at ambient conditions may be legitimately compared with the 
calculated cV.  
32 See, e.g., MA Eq. (6.8b) with s = 3/2, and then Eqs. (2.7b) and (6.7e). 
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explaining the Tc/T0 ratio which was already mentioned in Sec. 2 and indicated in Figs. 1 and 3. 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us have a good look at the temperature interval 0 < T < Tc, which cannot be directly 
described by Eq. (40) (with the appropriate negative sign in the denominator), and hence may look 
rather mysterious. Indeed, within this range, the chemical potential  cannot either be negative or equal 
to zero because according to Eq. (71); in this case, Eq. (40) would give a value of N smaller than the 
number of particles we actually have. On the other hand,  cannot be positive either, because the 
integral (40) would diverge at    due to the divergence of the factor N() – see, e.g., Fig. 2.15.  

The only possible resolution of the paradox, suggested by A. Einstein in 1925, is as follows: at T 
< Tc, the chemical potential of each particle of the system still equals exactly zero, but a certain number 
(N0 of N) of them are in the ground state (with   p2/2m = 0), forming the so-called Bose-Einstein 
condensate, usually referred to as the BEC. Since the condensate particles do not contribute to Eq. (40) 
(because of the factor 1/2 = 0), their number N0 may be calculated by using that formula or, 
equivalently, Eq. (44) with  = 0, to find the number (N – N0) of particles still remaining in the gas, i.e. 
having energies   > 0: 
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Fig. 3.3. The Bose-Einstein condensation: 
(a) the chemical potential of the gas and (b) 
its pressure, as functions of temperature. The 
dashed line corresponds to the classical gas. 
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This result is even simpler than it may look. Indeed, let us write it for the case T = Tc, when N0 = 0:33 
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Dividing both sides of Eqs. (72) and (73), we get an extremely simple and elegant result:  
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 Please note that this result is only valid for the particles whose motion, within the volume V, is 
free – in other words, for a system of free particles confined within a rigid-wall box of volume V. In 
most experiments with the Bose-Einstein condensation of dilute gases of neutral (and hence very weakly 
interacting) atoms, they are held not in such a box, but at the bottom of a “soft” potential well, which 
may be well approximated by a 3D quadratic parabola: U(r) = m2r2/2. It is straightforward (and hence 
left for the reader’s exercise) to show that in this case, the dependence of N0(T) is somewhat different: 
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where Tc
* is a different critical temperature, which now depends on , i.e. on the confining potential’s 

“steepness”. (In this case, V is not exactly fixed; however, the effective volume occupied by the particles 
at T = Tc

* is related to this temperature by a formula close to Eq. (71), so all estimates given above are 
still valid.) Figure 4 shows one of the first sets of experimental data for the Bose-Einstein condensation 
of a dilute gas of neutral atoms. Taking into account the finite number of particles in the experiment, the 
agreement with the simple theory is surprisingly good.  

 Returning to the spatially uniform Bose system, let us explore what happens below the critical 
temperature with its other parameters. Formula (52) with the appropriate (lower) sign shows that 
approaching Tc from higher temperatures, the gas energy and hence its pressure do not vanish  – see the 
red line in Fig. 3b. Indeed, at T = Tc (where  = 0), that formula yields34 
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so using the universal relation (48), we get the following pressure value: 
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which is somewhat lower than, but comparable with P(0) for the fermions – cf. Eq. (57). 

33 This is, of course, just another form of Eq. (71). As was mentioned earlier, the dimensionless integral involved 
in all these three relations is equal to (3/2)(3/2)  2.315. 
34 For the involved dimensionless integral see, e.g., MA Eqs. (6.8b) with s = 5/2, and then Eqs. (2.7b) and (6.7c). 
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 Now we can use the same Eq. (52), also with   = 0, to calculate the energy of the gas at T < Tc, 
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Comparing this relation with the first form of Eq. (75), which features the same integral, we 
immediately get one more simple temperature dependence: 
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From the universal relation (48), we immediately see that the gas pressure follows the same dependence: 
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This temperature dependence of pressure is shown with the blue line in Fig. 3b. The plot shows that for 
all temperatures (both below and above Tc) the pressure is lower than that of the classical gas of the 
same density. Now note also that since, according to Eqs. (57) and (76), P(Tc)  P0  V-5/3, while 
according to Eqs. (35) and (71), Tc  T0  V-2/3, the pressure (79) is proportional to V-5/3/(V-2/3)5/2 = V0, 
i.e. does not depend on the volume at all! The physics of this result (which is valid at T < Tc only) is that 
as we decrease the volume at a fixed total number N of particles, more and more of them go to the 
condensate, decreasing the number (N – N0) of particles in the gas phase, but not changing its spatial 
density and pressure. Such behavior is very typical for the coexistence of two different phases of the 
same matter – see, in particular, the next chapter. 

  The last thermodynamic variable of major interest is heat capacity, because it may be most 
readily measured. For temperatures T  Tc, it may be easily calculated from Eq. (78): 
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so below Tc, the capacity increases with temperature, at the critical temperature reaching the value 

Fig. 3.4. The total number N of trapped 87Rb 
atoms (inset) and their ground-state fraction 
N0/N, as functions of the ratio T/Tc, as measured 
in one of the pioneering experiments – see J. 
Ensher et al., Phys. Rev. Lett. 77, 4984 (1996). In 
this experiment, Tc

* was as low as 0.2810-6 K. 
The solid line shows the simple theoretical 
dependence N(T) given by Eq. (74b), while other 
lines correspond to more detailed theories taking 
into account the finite number N of trapped 
atoms. © 1996 APS, reproduced with permission. 
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which is approximately 28% above that (3N/2) of the classical gas. (As a reminder, in both cases we 
ignore possible contributions from the internal degrees of freedom.) The analysis for T  Tc is a little bit 
more cumbersome because differentiating E over temperature – say, using Eq. (52) – one should also 
take into account the temperature dependence of   that follows from Eq. (40) – see also Fig. 1. 
However, the most important feature of the result may be predicted without such calculation (which is 
left for the reader’s exercise). Namely, since at T >> Tc the heat capacity has to approach the classical 
value 1.5N, a temperature increase from Tc up must decrease CV from the value (81), thus forming a 
sharp maximum (a “cusp”) at the critical point T = Tc – see Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 Such a cusp is a good indication of the Bose-Einstein condensation in virtually any experimental 
system, especially because inter-particle interactions (unaccounted for in our simple discussion) 
typically make this feature even more substantial, frequently turning it into a weak (logarithmic) 
singularity. Historically, such a singularity was the first noticed, though not immediately understood 
sign of the Bose-Einstein condensation observed in 1931 by W. Keesom and K. Clusius in liquid 4He at 
its -point (called so exactly because of the characteristic shape of the CV(T) plot) T = Tc  2.17 K. 
Other major milestones of the Bose-Einstein condensation research history include: 

 - the experimental discovery of superconductivity (which was later explained as the result of the 
Bose-Einstein condensation of electron pairs) by H. Kamerlingh-Onnes in 1911; 

 - the development of the Bose-Einstein statistics, and predicting the condensation, by S. Bose 
and A. Einstein, in 1924-1925; 

 - the discovery of superfluidity in liquid 4He by P. Kapitza  and (independently) by J. Allen and 
D. Misener in 1937, and its explanation as a result of the Bose-Einstein condensation by F. and H. 
Londons and L. Titza, with further significant elaborations by L. Landau – all in 1938; 

 - the explanation of superconductivity as a result of electron binding into Cooper pairs, with  a 
simultaneous Bose-Einstein condensation of the resulting bosons, by J. Bardeen, L. Cooper, and J. 
Schrieffer in 1957; 

 - the discovery of superfluidity of two different phases of 3He, due to the similar Bose-Einstein 
condensation of pairs of its fermion atoms, by D. Lee, D. Osheroff, and R. Richardson in 1972; 

Fig. 3.5. Temperature dependences of the heat 
capacity of an ideal Bose-Einstein gas, 
numerically calculated from Eqs. (52) and (40) 
for T  Tc, and given by Eq. (80) for T  Tc. 0 2 4 6 8 10
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 - the first observation of the Bose-Einstein condensation in dilute gases (87Ru by E. Cornell, C. 
Wieman, et al., and 23Na by W. Ketterle et al.) in 1995. 

 The importance of the last achievement stems from the fact that in contrast to other mentioned 
Bose-Einstein condensates, in dilute gases (with the typical density n as low as ~1014 cm-3) the particles 
interact very weakly, and hence many experimental results are very close to the simple theory described 
above and its straightforward elaborations – see, e.g., Fig. 4.35 On the other hand, the importance of 
other Bose-Einstein condensates, which involve more complex and challenging physics, should not be 
underestimated – as it sometimes is.  

 Perhaps the most important feature of any Bose-Einstein condensate is that all N0 condensed 
particles are in the same quantum state, and hence are described by exactly the same wavefunction. This 
wavefunction is substantially less “feeble” than that of a single particle – in the following sense. In the 
second quantization language,36 the well-known commutation relations for the generalized coordinates 
and momenta may be rewritten for the creation/annihilation operators; in particular, for bosons, 

            .ˆˆ,ˆ † Iaa        (3.82) 

Since â  and †â are the quantum-mechanical operators of the complex amplitude a = Aexp{i} and its 
complex conjugate a* = Aexp{–i}, where A and  are the real amplitude and phase of the 
wavefunction, Eq. (82) yields the following approximate uncertainty relation (strict in the limit  << 1) 
between the number of particles N = AA* and the phase : 

          ½N .      (3.83) 

 This means that a condensate of N >> 1 bosons may be in a state with both phase and amplitude 
of the wavefunction behaving virtually as c-numbers, with very small relative uncertainties: N << N,  
 << 1. Moreover, such states are much less susceptible to unintentional perturbations including the 
instruments used for measurements. For example, the electric current carried along a superconducting 
wire by a coherent Bose-Einstein condensate of Cooper pairs may be as high as hundreds of amperes. 
As a result, the “strange” behaviors predicted by the quantum mechanics are not averaged out as in the 
usual particle ensembles (see, e.g., the discussion of the density matrix in Sec. 2.1), but may be directly 
revealed in macroscopic, measurable dynamics of the condensate. 

 For example, the density j of the electric “supercurrent” of the Cooper pairs may be described by 
the same formula as the well-known usual probability current density of a single quantum particle,37 just 
multiplied by the electric charge q = –2e of a single pair, and the pair density n: 

          





  Aj



 q

m
qn  ,     (3.84) 

35 Such controllability of theoretical description has motivated the use of dilute-gas BECs for modeling of 
renowned problems of many-body physics – see, e.g. the review by I. Bloch et al., Rev. Mod. Phys. 80, 885 
(2008). These efforts are assisted by the development of better techniques for reaching the necessary sub-K 
temperatures – see, e.g., the recent work by J. Hu et al., Science 358, 1078 (2017). For a more general, detailed 
discussion see, e.g., C. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd ed., Cambridge U. 
Press, 2008. 
36 See, e.g., QM Sec. 8.3. 
37 See, e.g., QM Eq. (3.28). 
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where A is the vector potential of the (electro)magnetic field. If a superconducting wire is not extremely 
thin, the supercurrent does not penetrate into its interior.38 As a result, the contour integral of Eq. (84), 
taken along a closed superconducting loop inside its interior (where j = 0), yields 

          ,2Δ Md
q

C

  rA


     (3.85) 

where M is an integer. But, according to the basic electrodynamics, the integral on the left-hand side of 
this relation is nothing more than the flux  of the magnetic field B piercing the wire loop area A. Thus 
we immediately arrive at the famous magnetic flux quantization effect:  

            Wb1007.2
2

Φ  where,ΦΦ 15
00

2   q
Mrd

A

n


B ,  (3.86) 

which was theoretically predicted in 1950 and experimentally observed in 1961. Amazingly, this effect 
holds even (citing H. Casimir’s famous expression) “over miles of dirty lead wire”, sustained by the 
coherence of the Bose-Einstein condensate of Cooper pairs.  

 Other prominent examples of such macroscopic quantum effects in Bose-Einstein condensates 
include not only the superfluidity and superconductivity as such, but also the Josephson effect, 
quantized Abrikosov vortices, etc. Some of these effects are discussed in other parts of this series.39 

 

3.5. Gases of weakly interacting particles 

 Now let us discuss the effects of weak particle interaction effects on the properties of their gas. 
(Unfortunately, I will have time to do that only very briefly, and only for classical gases.40) In most 
cases of interest, particle interaction may be well described by a certain potential energy U, so in the 
simplest model, the total energy is 

      



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,...,,..,
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rrr ,    (3.87) 

where rk is the radius vector of the kth particle’s center.41 First, let us see how far would the statistical 
physics allow us to proceed for an arbitrary potential U. For N >> 1, at the calculation of the Gibbs 
statistical sum (2.59), we may perform the usual transfer from the summation over all quantum states of 
the system to the integration over the 6N-dimensional space, with the correct Boltzmann counting: 

   
 

























Vr

TE

k

N
N

N

N

k

j

N

N

m

m rdrd
T

U
pdpd

mT

pg

N
eZ 3

1
313

1
3

1

2

3
...

),...(
exp...

2
exp

2!

1/ rr


 

38 This is the Meissner-Ochsenfeld (or just “Meissner”) effect which may be also readily explained using Eq. (84) 
combined with the Maxwell equations – see, e.g., EM Sec. 6.4. 
39 See  EM Secs. 6.4-6.5, and QM Secs. 1.6 and 3.1. 
40 Discussions of the effects of weak interactions on the properties of quantum gases may be found, for example, 
in the textbooks by Huang and by Pathria and Beale – see References. 
41 One of the most significant effects neglected by Eq. (87) is the influence of atomic/molecular angular 
orientations on their interactions. 
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But according to Eq. (14), the first operand in the last product is just the statistical sum of an ideal gas 
(with the same g, N, V, and T), so we may use Eq. (2.63) to write 

  ,...1
1

1ln

...
),...(

exp
1

ln

3
1

3
ideal

3
1

31
ideal

/












































Vr

TU

Vr

k

NN

k

N
N

N

rdrde
V

TF

rdrd
T

U

V
TFF

rr

   (3.89)

where Fideal is the free energy of the ideal gas (i.e. of the same gas but with U = 0), given by Eq. (16). 

 I believe that Eq. (89) is a very convincing demonstration of the enormous power of statistical 
physics methods. Instead of trying to solve an impossibly complex problem of classical dynamics of N 
>> 1 (think of N ~ 1023) interacting particles, and only then calculating appropriate ensemble averages, 
the Gibbs approach reduces finding the free energy (and then, from thermodynamic relations, all other 
thermodynamic variables) to the calculation of just one integral on its right-hand side of Eq. (89). Still, 
this integral is 3N-dimensional and may be worked out analytically only if the particle interactions are 
weak in some sense. Indeed, the last form of Eq. (89) makes it especially evident that if U  0 
everywhere, the term in the parentheses under the integral vanishes, and so does the integral itself, and 
hence the addition to Fideal.  

 Now let us see what would this integral yield for the simplest, short-range interactions, in which 
the potential U is substantial only when the mutual distance rkk’  rk – rk’ between the centers of two 
particles is smaller than a certain value 2r0, where r0 may be interpreted as the particle’s radius. If the 
gas is sufficiently dilute, so the radius r0 is much smaller than the average distance rave between the 
particles, the integral in the last form of Eq. (89) is of the order of (2r0)

3N, i.e. much smaller than (rave)
3N 

 VN. Then we may expand the logarithm in that expression into the Taylor series with respect to the 
small second term in the square brackets, and keep only its first non-zero term: 
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Moreover, if the gas density is so low, the chances for three or more particles to come close to 
each other and interact (collide) simultaneously are typically very small, so pair collisions are the most 
important ones. In this case, we may recast the integral in Eq. (90) as a sum of  N(N – 1)/2  N2/2 similar 
terms describing such pair interactions, each of the type 

                    k'k
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.   (3.91) 

It is convenient to think about the rkk’  rk – rk’ as the radius vector of the particle number k in the 
reference frame with the origin placed at the center of the particle number k’ – see Fig. 6a. Then in Eq. 
(91), we may first calculate the integral over rk’, while keeping the distance vector rkk’, and hence 
U(rkk’), constant, getting one more factor V. Moreover, since all particle pairs are similar, in the 
remaining integral over rkk’ we may drop the radius vector’s index, so Eq. (90) becomes 
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where the function B(T), called the second virial coefficient,42 has an especially simple form for 
spherically symmetric interactions: 
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From Eq. (92), and the second of the thermodynamic relations (1.35), we already know something 
particular about the equation of state P(V, T) of such a gas: 
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We see that at a fixed gas density n = N/V, the pair interaction creates additional pressure, proportional 
to (N/V)2 = n2 and a function of temperature, B(T)T. 

 
 
 
 
 
 
 
 
 

 Let us calculate B(T) for a few simple models of particle interactions. The solid curve in Fig. 7 
shows (schematically) a typical form of the interaction potential between electrically neutral 
atoms/molecules. At large distances the interaction of particles without their own permanent electrical 
dipole moment p, is dominated by the attraction (the so-called London dispersion force) between the 
correlated components of the spontaneously induced dipole moments, giving U(r)  r–6 at r  .43 At 
closer distances the potential is repulsive, growing very fast at r  0, but its quantitative form is specific 
for particular atoms/molecules.44 The crudest description of such repulsion is given by the so-called 
hardball (or “hard-sphere”) model: 

42 The term “virial”, from the Latin viris (meaning “force”), was introduced to molecular physics by R. Clausius. 
The motivation for the adjective “second” for B(T) is evident from the last form of Eq. (94), with the “first virial 
coefficient”, standing before the N/V ratio and sometimes denoted A(T), equal to 1 – see also Eq. (100) below. 
43 Indeed, independent fluctuation-induced components p(t) and p’(t) of dipole moments of two particles have 
random mutual orientation, so that the time average of their interaction energy, proportional to p(t)p’(t)/r3, 
vanishes. However, the electric field E of each dipole p, proportional to r-3, induces a correlated component of p’, 
also proportional to r-3, giving interaction energy U(r) proportional to p’E  r-6, with a non-zero statistical 
average. Quantitative discussions of this effect, within several models, may be found, for example, in QM 
Chapters 3, 5, and 6. 
44 Note that the particular form of the first term in the approximation U(r) = a/r12 – b/r6 (called either the 
Lennard-Jones potential or the “12-6 potential”), that had been suggested in 1924, lacks physical justification, 
and in professional physics was soon replaced with other approximations, including the so-called exp-6 model, 

Fig. 3.6. The definition of the 
interparticle distance vectors 
at their (a) pair and (b) triple 
interactions. 
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– see the dashed line and the inset in Fig. 7. (The distance 2r0 is sometimes called the van der Waals 
radius of the particle.) 

 

 

 

 

 

 

 
  
 As Eq. (93) shows, in this model the second virial coefficient is temperature-independent: 
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 so the equation of state (94) still gives a linear dependence of pressure on temperature. 

 A correction to this result may be obtained by the following approximate account of the long-
range attraction (see the dash-dotted line in Fig. 7):45 
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For this improved model, Eq. (93) yields: 
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In this model, the equation of state (94) acquires a temperature-independent term: 
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Still, the correction to the ideal-gas pressure is proportional to (N/V)2 and has to be relatively small for 
this result to be valid. 

which fits most experimental data much better. However, the Lennard-Jones potential still keeps creeping from 
one undergraduate textbook to another one, apparently for a not better reason than enabling a simple analytical 
calculation of the equilibrium distance between the particles at T  0. 
45 The strong inequality U << T in this model is necessary not only to make the calculations simpler. A deeper 
reason is that if (–Umin) becomes comparable with T,  particles may become trapped in this potential well, forming 
a different phase – a liquid or a solid. In such phases, the probability of finding more than two particles interacting 
simultaneously is high, so Eq. (92), on which Eqs. (93)-(94) and Eqs. (98)-(99) are based, becomes invalid. 

Fig. 3.7. Pair interactions of particles. 
Solid line: a typical interaction potential; 
dashed line: its hardball model (95); 
dash-dotted line: the improved model 
(97) – all schematically. The inset 
illustrates the hardball model’s physics. 
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 Generally, the right-hand side of Eq. (99) may be considered as the sum of two leading terms in 
the general expansion of P into the Taylor series in low density n = N/V of the gas:  
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where C(T) is called the third virial coefficient. It is natural to ask how can we calculate C(T) and the 
higher virial coefficients. This may be done by a tedious direct analysis of Eq. (90),46 but the 
calculations may be streamlined using a different, rather counter-intuitive approach called the cluster 
expansion method.47 

 Let us apply to our system, with the energy given by Eq. (87), the grand canonical distribution. 
(Just as in Sec. 2, we may argue that if the average number N of particles in each member of a grand 
canonical ensemble, with fixed  and T,  is much larger than 1, the relative fluctuations of N are small, 
so all its thermodynamic properties should be similar to those when N is exactly fixed.) For our current 
purposes, Eq. (2.109) may be rewritten in the form 
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(Notice that here, as at all discussions of the grand canonical distribution, N means a particular rather 
than the average number of particles.)  Now let us try to forget for a minute that in real systems of 
interest the number of particles is extremely large, and start to calculate, one by one, the first terms ZN.   

 In the term with N = 0, both contributions to Em,N  vanish, and so does the factor N/T, and hence 
Z0 = 1. In the next term, with N = 1,  the interaction term vanishes, so Em,1 is reduced to the kinetic 
energy of one particle, giving 
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Making the usual transition from the summation to integration, we may write 
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This is the same simple (Gaussian) integral as in Eq. (6), giving 
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 Now let us explore the next term, with N = 2, which describes, in particular, pair interactions U = 
U(r), with r = r – r’. Due to the assumed particle indistinguishability, this term needs the “correct 
Boltzmann counting” factor 1/2! – cf. Eqs. (12) and (88): 

46 L. Boltzmann has used that way to calculate the 3rd and 4th virial coefficients for the hardball model – as much 
as can be done analytically. 
47 This method was developed in 1937-38 by J. Mayer and collaborators for the classical gas, and generalized to 
quantum systems in 1938 by B. Kahn and G. Uhlenbeck.  

Pressure: 
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expansion 
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Since U is coordinate-dependent, here the transfer from the summation to integration should be done 
more carefully than in the first term – cf. Eqs. (24) and (88): 
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Comparing this expression with Eq. (103) for the parameter Z, we get 
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Acting absolutely similarly, for the third term of the grand canonical sum we may get 
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where r’ and r” are the vectors characterizing the mutual positions of three particles in their “cluster” – 
see Fig. 6b.  

 These results may be readily generalized to clusters of arbitrary size N. Plugging the resulting 
expression for ZN  into the first of Eqs. (101) and recalling that  = –PV, we get the equation of state of 
the gas in the form 
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As a sanity check: at U = 0, all integrals IN are equal to 1, and the expression under the logarithm is just 
the Taylor expansion of the function eZ, giving P = TZ/V, and  = –PV = –TZ. In this case, according to 
the last of Eqs. (1.62), the average number of particles in the system is N = –(/)T,V = Z, because 
since Z  exp{/T}, Z/ = Z/T.48 Thus, in this limit, we have happily recovered the equation of state 
of the ideal gas. 

 Returning to the general case of non-zero interactions, let us assume that the logarithm in Eq. 
(109) may be also represented as a direct Taylor expansion in Z: 
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where Jl are some Z-independent coefficients, still to be calculated. (The lower limit of the sum reflects 
the fact that according to Eq. (109), at Z = 0, P = (T/V) ln1 = 0, so the coefficient J0 in a more complete 
version of Eq. (110) would equal 0 anyway.) According to Eq, (1.60), this expansion corresponds to the 
grand potential 
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48 Actually, the fact that in that case N = Z could have been noted earlier – just by comparing Eq. (104) with Eq. 
(32b). 

Cluster 
expansion: 
pressure 
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Again using the last of Eqs. (1.62), and the already mentioned fact that according to Eq. (104), Z/ = 
Z/, we get 
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(Note that this sum differs from that in Eq. (110) “only” by an extra factor l in each term.) 

 Equations (110) and (112) essentially give the solution of our problem by representing the 
equation of state of the gas in the parametric form, with the factor Z serving as the parameter. The only 
remaining conceptual action item is to express the coefficients Jl via the integrals IN  participating in the 
expansion (109). This may be done using the well-known Taylor expansion of the logarithm function, 49 
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Applying it to Eq. (109), we get a Taylor series in Z, starting as 
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Comparing this expression with Eq. (110), we see that 

          
 

  ...,2
1

)1(3)1(

,1
1

1

,1

33
2

233

3
22

1

/)(/)(/)(/),(

/)(

r"r'ddeeee
V

IIJ

rde
V

IJ

J

T'''UT"UT'UT"'U

TU

















rrrrr

r

 (3.115) 

where "'''' rrr   – see Fig. 6b. The expression for J2, describing the pair interactions of particles, 
shows that besides a factor of (V/2), this is just the second virial coefficient B(T) – cf. Eq. (93). As a 
reminder, the subtraction of 1 from the integral I2 in that expression makes the contribution of each 
elementary 3D volume d3r into the integral J2 different from zero only if at this r two particles interact 
(U  0). Very similarly, in the last of Eqs. (115), the subtraction of three pair-interaction terms from (I3 
– 1) makes the contribution from an elementary 6D volume d3r’d3r” into the integral J3 different from 
zero only if at that mutual location of particles, all three of them interact simultaneously,  etc. 

49 Looking at Eq. (109), one might think that since   = Z + Z2I2/2 +… is of the order of at least Z ~ N, the 
expansion (113), which converges only if   < 1, is illegitimate for N >> 1. However, it is justified by the result 
(114), in which the nth term is of the order of Nn(V0/V)n-1/n!, so that the series does converge if the gas density is 
sufficiently low: N/V << 1/V0, i.e. rave >> r0. This is the very beauty of the cluster expansion whose few first 
terms, perhaps unexpectedly, give good approximation even for gases with N >> 1 particles. The physics behind 
this trick is that the subtraction of 1 from each exponent of the type exp{-U/T} automatically includes, to the final 
result, contributions from only minor but the only important parts of the 6N-dimensional phase space, in which 
the particles interact. As a result, the sum (114) is over the number of particles in each cluster (not in the whole 
gas!), with an analytical summation of equal contributions from all possible clusters with the same number l of 
particles in each of them – just as it is done by Eqs. (92)-(93) for the particular case l = 2. 

Cluster 
expansion: 

N 
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 The relations (110), (114), and (115) give the final result of the cluster expansion. To see this 
result at work, let us eliminate the factor Z from this system of equations, with accuracy up to terms 
O(Z2). For that, we need to spell out each of these relations up to terms O(Z3): 
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and then divide these two expressions, getting the result 
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In this approximation, we may again use Eq. (117), now solved for Z with the same accuracy O(Z2): 
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Plugging this expression into Eq. (118), we get the virial expansion (100) with 
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 The first of these relations, combined with the first two of Eqs. (115), yields for the 2nd virial 
coefficient the same Eq. (93) that was obtained from the Gibbs distribution, in particular Eq. (96), B(T) 
= 4V0, for the hardball model. The second of these results enables the calculation of the 3rd virial 
coefficient; for the hardball model, C(T) = 10V0

2. (Let me leave the proof of the last result for the 
reader’s exercise.)  Evidently, a more complete expansion of  Eqs. (110), (114), and (115) may be used 
to calculate an arbitrary virial coefficient, though starting from the 5th of them, the calculations of the 
necessary coefficients Jl may be completed only numerically even for the simplest hardball model. 

 Note that in this model, the virial coefficients B(T), C(T), etc. do not actually depend on 
temperature. (This is clear already from the above expressions for the integrals In and hence Jn.) As a 
result, by reproducing the calculations (1.45)-(1.47) for Eq. (100), we may readily see that the internal 
energy E of the gas, in the hardball model, is independent of its volume – just as for the ideal one. 

 

3.6. Exercise problems 

 3.1. Use the Maxwell distribution for an alternative (statistical) calculation of the mechanical 
work performed by the Szilard engine discussed in Sec. 2.3. 

 Hint: You may assume the simplest geometry of the engine – see Fig. 2.4. 
 
 3.2. Use the Maxwell distribution to calculate the drag 

coefficient   –F/u, where is the force exerted by an ideal 
classical gas on a piston moving with a low velocity u, in the simplest 
geometry shown in the figure on the right, assuming that collisions of 
the gas particles with the piston are elastic. 

A 

u 

2nd and 3rd  
virial 
coefficients 
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 3.3. Derive the equation of state of an ideal classical gas from the grand canonical distribution. 
 
 3.4. Prove that Eq. (22), derived for the change of entropy at the mixing of two ideal classical 
gases of completely distinguishable particles (that initially had equal densities N/V and temperatures T), 
is also valid if particles in each of the initial volumes are indistinguishable from each other but different 
from those in the counterpart volume. For simplicity, you may assume that the masses and internal 
degeneracy factors of all the particles are equal. 
 
 3.5. A round cylinder of radius R and length L, containing an ideal classical gas of N >> 1 
particles of mass m each, is rotated about its symmetry axis with an angular velocity . Assuming that 
the gas as a whole rotates with the cylinder and is in thermal equilibrium at temperature T,  

 (i) calculate the gas pressure distribution along the cylinder’s radius, and  
 (ii) neglecting the internal degrees of freedom of the particles, calculate the total energy of the 

gas and its heat capacity. 

Analyze the results in the high- and low-temperature limits.  
  

 3.6. N >> 1 classical, non-interacting, indistinguishable particles of mass m are confined in a 
parabolic, spherically-symmetric 3D potential well U(r) = r2/2. Use two different approaches to 
calculate all major thermodynamic characteristics of the system, including its heat capacity, in thermal 
equilibrium at temperature T. Which of the results should be changed if the particles are distinguishable? 

 Hint: Suggest a replacement of the notions of volume and pressure, appropriate for this system. 
 
 3.7. In the simplest model of thermodynamic equilibrium between the liquid and gas phases of 
the same molecules, temperature and pressure do not affect the molecule's condensation energy . 
Calculate the density and pressure of such saturated vapor, assuming that it behaves as an ideal gas of 
classical particles. 
 
 3.8. An ideal classical gas of N >> 1 particles is confined in a container of volume V and wall 
surface area A. The particles may condense on the walls, releasing energy  per particle and forming an 
ideal 2D gas on their surfaces. Calculate the number of condensed particles and the gas pressure, and 
discuss their temperature dependences, in thermodynamic equilibrium.. 
 
 3.9. The inner surfaces of the walls of a closed container of volume V, filled with N >> 1 
particles, have NS >> 1 similar particle traps (small potential wells). Each trap can hold only one 
particle, at a potential energy – < 0 relative to that in the volume. Assuming that the gas of the particles 
in the volume is ideal and classical, derive an equation for the chemical potential  of the system in 
equilibrium, and use it to calculate this potential and the gas pressure in the limits of small and large 
values of the N/NS ratio. 
 
 3.10. Calculate the magnetic response (the Pauli paramagnetism) of a degenerate ideal gas of 
spin-½ particles to a weak external magnetic field, due to a partial spin alignment with the field. 
 
 3.11. Calculate the magnetic response (the Landau diamagnetism) of a degenerate ideal gas of 
electrically charged fermions to a weak external magnetic field, due to their orbital motion. 
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 3.12.* Explore the Thomas-Fermi model of a heavy atom, with nuclear charge Q = Ze >> e, in 
which the electrons are treated as a degenerate Fermi gas, interacting with each other only via their 
contribution to the common electrostatic potential (r). In particular, derive the ordinary differential 
equation obeyed by the radial distribution of the potential, and use it to estimate the effective radius of 
the atom.50  
 
 3.13.* Use the Thomas-Fermi model that was explored in the previous problem to calculate the 
total binding energy of a heavy atom. Compare the result with that of a simpler model, in that the 
Coulomb electron-electron interaction is completely ignored. 
 
 3.14. Calculate the characteristic Thomas-Fermi length TF of weak electric field’s screening by 
conduction electrons in a metal, by modeling their ensemble as a degenerate, isotropic Fermi gas, with 
the electrons’ interaction limited (as in the two previous problems) by their contribution to the common 
electrostatic potential. 

 Hint: Assume that TF is much larger than the Bohr radius rB.  
 
 3.15. For a degenerate ideal 3D Fermi gas of N particles confined in a rigid-wall box of volume 
V, calculate the temperature effects on its pressure P and the heat capacity difference (CP – CV), in the 
leading approximation in T << F. Compare the results with those for the ideal classical gas. 

 Hint: You may like to use the solution of Problem 1.9. 
 
 3.16. How would the Fermi statistics of an ideal gas affect the barometric formula (28)? 
 
 3.17. Derive general expressions for the energy E and the chemical potential  of a uniform 
Fermi gas of N >> 1 non-interacting, indistinguishable, ultra-relativistic particles.51 Calculate E and also 
the gas pressure P explicitly in the degenerate gas limit T  0. In particular, is Eq. (48) valid in this 
case?  
 
 3.18. Use Eq. (49) to calculate the pressure of an ideal gas of ultra-relativistic, indistinguishable 
quantum particles, for an arbitrary temperature, as a function of the total energy E of the gas and its 
volume V. Compare the result with the corresponding relations for the electromagnetic blackbody 
radiation and for an ideal gas of non-relativistic particles. 
 
 3.19.* Calculate the speed of sound in an ideal gas of ultra-relativistic fermions of density n at 
negligible temperature. 
 

50 Since this problem and the next one are important for atomic physics and, at their solution, thermal effects may 
be ignored, they were given in Chapter 8 of the QM part of the series as well, for the benefit of the readers who 
would not take this SM course. Note, however, that the argumentation in their solutions may be streamlined by 
using the notion of the chemical potential , which was introduced only in this course. 
51 This is, for example, an approximate but reasonable model for electrons in a white dwarf star. (Their Coulomb 
interaction is mostly compensated by the electric charges of nuclei of fully ionized helium atoms.) 
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 3.20. Calculate basic thermodynamic characteristics, including all relevant thermodynamic 
potentials, specific heat, and the surface tension of a non-relativistic 2D electron gas with a constant 
areal density n   N/A: 

 (i) at T = 0, and  
 (ii) at low temperatures (in the lowest nonvanishing order in T/F << 1),  

neglecting the Coulomb interaction effects.52 
 
 3.21. Calculate the differential latent heat ef ≡ –N(Q/N0)N,V of evaporation of a spatially 
uniform Bose-Einstein condensate as a function of temperature T. Here Q is the heat absorbed by the 
(condensate + gas) system of N >> 1 particles as a whole, while N0 is the number of particles in the 
condensate alone. 
 

3.22.* For a spatially uniform ideal Bose gas, calculate the law of the chemical potential’s 
disappearance at T  Tc and use the result to prove that at the critical point T = Tc, the heat capacity CV 
is a continuous function of temperature. 
 
 3.23. In Chapter 1, several thermodynamic relations involving entropy have been discussed, 
including the first of Eqs. (1.39): 
                  ./ PTGS        

If we combine this expression with Eq. (1.56), G = N, it looks like that, for the Bose-Einstein 
condensate, the entropy should vanish because its chemical potential  equals zero at temperatures 
below the critical point  Tc. On the other hand, by dividing both parts of Eq. (1.19) by dT, and assuming 
that at this temperature change the volume is kept constant, we get 

                 ./ VV TSTC    

(This equality was also mentioned in Chapter 1.) If the CV is known as a function of temperature, the last 
relation may be integrated over T to calculate S: 
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According to Eq. (80), the specific heat for the Bose-Einstein condensate is proportional to T 3/2, so the 
integration gives a non-zero entropy S  T 3/2. Resolve this apparent contradiction, and calculate the 
value of the genuine entropy at T = Tc. 
 
 3.24.  The standard analysis of the Bose-Einstein condensation, outlined in Sec. 4, may seem to 
ignore the energy quantization of the particles confined in volume V. Use the particular case of a cubic 
confining volume V = aaa with rigid walls to analyze whether the main conclusions of the standard 
theory, in particular Eq. (71) for the critical temperature of the system of N >> 1 particles, are affected 
by such quantization. 

52 This condition may be approached reasonably well, for example, in 2D electron gases formed in semiconductor 
heterostructures (see, e.g., the discussion in QM Sec. 1.6, and the solution of Problem 3.2 of that course), due to 
not only the electron field’s compensation by background ionized atoms, but also by its screening by the highly 
doped semiconductor’s bulk. 
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 3.25.* N >> 1 non-interacting bosons are confined in a spherically symmetric potential well U(r) 
= m2r2/2. Develop the theory of the Bose-Einstein condensation in this system; in particular, prove Eq. 
(74b) and calculate the critical temperature Tc

*. Looking at the solution, what is the most straightforward 
way to detect the condensation in experiment? 
 
 3.26. Calculate the chemical potential of a uniform ideal 2D gas of spin-0 Bose particles as a 
function of its areal density n (the number of particles per unit area), and find out whether such gas can 
condense at low temperatures. Review your result for the case of a large (N >> 1) but finite number of 
particles. 
  
 3.27. Can the Bose-Einstein condensation be achieved in a 2D system of N >> 1 non-interacting 
bosons placed into the axially symmetric potential well U() = m22/2, where  is the 2D radius vector 
within the particle confinement plane? If yes, calculate the critical temperature of the condensation. 
 
 3.28. Use Eqs. (115) and (120) to calculate the third virial coefficient C(T) for the hardball 
model of particle interactions. 
 
 3.29. Assuming the hardball model, with volume V0 per molecule, for the liquid phase, describe 
how the results of Problem 7 change if the liquid forms spherical drops of radius R >> V0

1/3. Briefly 
discuss the implications of the result for water cloud formation in the atmosphere. 
 Hint: Surface effects in a macroscopic volume of a liquid may be well described by attributing 
an additional energy  (equal to the surface tension) to the unit surface area.53  
 
 3.30. A 1D Tonks’ gas is a set of N classical hard rods of length l confined to a segment of length 
L > Nl, in thermal equilibrium at temperature T: 

 (i) Calculate the system’s average internal energy, entropy, both heat capacities, and the average 
force F exerted by the rods on the “walls” confining them to the segment L. 
 (ii) Expand the calculated equation of state F(L, T) into the Taylor series in linear density N/L of 
the rods, find all virial coefficients, and compare the 2nd of them with the result following from the 1D 
version of Eq. (93). 

 
 
  

 

 

  

53 See, e.g., CM Sec. 8.2. 


