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Chapter 4. Phase Transitions 

This chapter gives a brief discussion of the coexistence between different states (“phases”) of systems 
consisting of many similar interacting particles, and transitions between these phases. Due to the 
complexity of these phenomena, quantitative analytical results in this field have been obtained only for a 
few very simple models, typically giving rather approximate descriptions of real systems. 

 

4.1. First-order phase transitions 

 From our everyday experience, say with water ice, liquid water, and water vapor, we know that 
one chemical substance (i.e. a system of many similar particles) may exist in different stable states – 
phases. A typical substance may have: 

 (i) a dense solid phase, in which interparticle forces keep all atoms/molecules in virtually fixed 
relative positions, with just small thermal fluctuations about them; 

 (ii) a liquid phase, of comparable density, in which the relative distances between atoms or 
molecules are almost constant, but these particles are virtually free to move around each other, and 

 (iii) a gas phase, typically of a much lower density, in which the molecules are virtually free to 
move all around the containing volume.1  

 Experience also tells us that at certain conditions, two different phases may be in thermal and 
chemical equilibrium – say, ice floating on water at the freezing-point temperature. Actually, in Sec. 3.4 
we already discussed a quantitative theory of one such equilibrium: the Bose-Einstein condensate’s 
coexistence with the uncondensed gas of similar particles. However, this is a rather exceptional case 
when the phase coexistence is due to the quantum nature of the particles (bosons) rather than their direct 
interaction. Much more frequently, the formation of different phases and transitions between them are 
due to particle repulsive and attractive interactions, briefly discussed in Sec. 3.5.  

 Phase transitions are sometimes classified by their order.2 I will start their discussion with the 
so-called first-order phase transitions that feature non-zero latent heat  – the thermal energy that is 
necessary to turn one phase into another phase completely, even if temperature and pressure are kept 
constant.3 Unfortunately, even the simplest “microscopic” models of particle interaction, such as those 
discussed in Sec. 3.5, give rather complex equations of state. (As a reminder, even the simplest hardball 
model leads to the series (3.100), whose higher virial coefficients defy analytical calculation.) This is 

1 Plasma, in which atoms are partly or completely ionized, is frequently mentioned on one more phase, on equal 
footing with the three phases listed above, but one has to remember that in contrast to them, a typical 
electroneutral plasma consists of particles of two very different sorts – positive ions and electrons. 
2 Such classification schemes, started by Paul Ehrenfest in the early 1930s, have been repeatedly modified to 
accommodate new results for particular systems, and by now only the “first-order phase transition” is still a 
generally accepted term, but with a definition different from the original one. 
3 For example, for water the latent heat of vaporization at the ambient pressure is as high as ~2.2106 J/kg, i.e. ~ 
0.4 eV per molecule, making this ubiquitous liquid indispensable for fire fighting. (The latent heat of water ice’s 
melting is an order of magnitude lower.) 
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why I will follow the tradition of discussing the first-order phase transitions on the example of a simple 
phenomenological model suggested in 1873 by Johannes Diderik van der Waals.  

 For its introduction, it is useful to recall that in Sec. 3.5 we have derived Eq. (3.99) – the 
equation of state for a classical gas of weakly interacting particles, which takes into account (albeit 
approximately) both interaction components necessary for a realistic description of gas 
condensation/liquefaction: the long-range attraction of the particles and their short-range repulsion. Let 
us rewrite that result as follows: 

        





 

V

Nb

V

NT

V

N
aP 1

2

2

.     (4.1)  

As we saw while deriving this formula, the physical meaning of the constant b is the effective volume of 
space taken by a particle pair collision – see Eq. (3.96). The relation (1) is quantitatively valid only if 
the second term in the parentheses is small, Nb << V, i.e. if the total volume excluded from particles’ 
free motion because of their collisions is much smaller than the whole volume V. In order to describe the 
condensed phase (which I will call “liquid” 4), we need to generalize this relation to the case Nb ~ V. 
Since the effective volume left for particles’ motion is V – Nb, it is very natural to make the following 
replacement: V  V – Nb, in the equation of state of the ideal gas.5 If we also keep on the left-hand side 
the term aN2/V2, which describes the long-range attraction, we get the so-called van der Waals equation 
of state: 

             
NbV

NT

V

N
aP




2

2

.     (4.2) 

 Taylor-expanding the right-hand side of this relation in small Nb/V << 1, we see that its first two 
terms return us to the microscopically justified Eq. (1); however, already the next term of the expansion 
gives a virial coefficient C(T) different from the microscopically-derived Eq. (3.120), due to the 
phenomenological nature of Eq. (2). Let us explore the basic properties of this famous model. 

 It is frequently convenient to discuss any equation of state in terms of its isotherms, i.e. the P(V) 
curves plotted at constant T. As Eq. (2) shows, in the van der Waals model, such a plot depends on four 
parameters: a, b, N, and T, making formulas bulky. To simplify them, it is convenient to introduce 
dimensionless variables: pressure p  P/Pc, volume  v  V/Vc, and temperature t  T/Tc, all normalized to 
their so-called critical values,  
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whose meaning will be clear in a minute. In this notation, Eq. (2) acquires the following form 
(historically called the law of corresponding states): 
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so the isotherms p(v) depend on only one parameter, the normalized temperature t – see Fig. 1. 

4 Due to the phenomenological character of the van der Waals model, one cannot say for sure whether the 
condensed phase it predicts corresponds to a liquid or a solid. However, for most real substances at ambient 
conditions, gas coexists with liquid, hence the name. 
5 For the 1D gas of non-zero-size particles (“rods”) with hard-core next-neighbor interactions, such replacement 
gives the exact result - see the solution of Problem 3.30. Unfortunately, this is not true in higher dimensions. 
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 The most important property of these plots is that the isotherms have qualitatively different 
shapes in two temperature regions. At t > 1, i.e. T > Tc, pressure increases monotonically at gas 
compression (qualitatively, as in an ideal classical gas, with P = NT/V, to which the van der Waals 
system tends at T >> Tc), i.e. with (P/V)T < 0 at all points.6 However, below the critical temperature 
Tc, any isotherm features a segment with (P/V)T >0. It is easy to understand that, at least in a constant-
pressure experiment (see, for example, Fig. 1.5),7 these segments describe a mechanically unstable 
equilibrium. Indeed, if due to a random fluctuation, the volume deviated upward from its equilibrium 
value, the pressure would also increase, forcing the environment (say, the heavy piston in Fig. 1.5) to 
allow further expansion of the system, leading to an even higher pressure, etc. A similar deviation of 
volume downward would lead to a similar avalanche-like decrease. Such avalanche instability would 
develop further and further until the system has reached one of the stable branches with a negative slope 
(P/V)T. In the range where the single-phase equilibrium state is unstable, the system as a whole may 
be stable only if it consists of the two phases (one with a smaller, and another with a higher density n = 
N/V) that are described by the two stable branches – see Fig. 2. 

 

 

 

 

 

 

6 The special choice of the numerical coefficients in Eq. (3) makes the border between these two regions take 
place exactly at t = 1, i.e. at the temperature equal to Tc, with the critical point’s coordinates equal to Pc and Vc.  
7 Actually, this assumption is not crucial for our analysis of mechanical stability, because if a fluctuation takes 
place in a small part of the total volume V, its other parts play the role of a pressure-fixing environment. 
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Fig. 4.1. The van der Waals equation of state, 
plotted on the [v, p] plane for several values of 
the normalized temperature t  T /Tc. Shading 
shows the range of single-phase instability 
where (P/V)T > 0. 
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 In order to understand the basic properties of this two-phase system, let us recall the general 
conditions of the thermodynamic equilibrium of two systems, which have been discussed in Chapter 1: 

      21 TT   (thermal equilibrium),    (4.5) 

             21    (“chemical” equilibrium),    (4.6) 

the latter condition meaning that the average energy of a single particle in both systems has to be the 
same. To those, we should add the evident condition of mechanical equilibrium, 

                 21 PP   (mechanical equilibrium),    (4.7) 

which immediately follows from the balance of the normal forces exerted on any inter-phase boundary. 

 If we discuss isotherms, Eq. (5) is fulfilled automatically, while Eq. (7) means that the effective 
isotherm P(V) describing a two-phase system should be a horizontal line – see Fig. 2:8 

         )(0 TPP  .      (4.8) 

Along this line, the internal properties of each phase do not change; only the particle distribution is: it 
evolves gradually from all particles being in the liquid phase at point 1 to all particles being in the gas 
phase at point 2.9 In particular, according to Eq. (6), the chemical potentials  of the phases should be 
equal at each point of the horizontal line (8). This fact enables us to find the line’s position: it has to 
connect points 1 and 2 in that the chemical potentials of the two phases are equal to each other. Let us 
recast this condition as 
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where the integral may be taken along the single-phase isotherm. (For this mathematical calculation, the 
mechanical instability of states on a certain part of this curve is not important.)  By definition, along that 
curve, N = const and T = const, so according to Eq. (1.53c), dG = –SdT + VdP +dN, for a slow 
(reversible) change, dG = VdP. Hence Eq. (9) yields 
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This equality means that in Fig. 2, the shaded areas Ad and Au should be equal. 10  

8 Frequently, P0(T) is called the saturated vapor pressure. 
9 A natural question: is the two-phase state with P = P0(T) the only state existing between points 1 and 2? Indeed, 
the branches 1-1’ and 2-2’ of the single-phase isotherm also have negative derivatives (P/V)T and hence are 
mechanically stable with respect to small perturbations. However, these branches are actually metastable, i.e. 
have larger Gibbs energy per particle (i.e. ) than the counterpart phase at the same P, and are hence unstable to 
larger perturbations – such as foreign microparticles (say, dust), protrusions on the confining walls, etc. In very 
controlled conditions, these single-phase “superheated” and “supercooled” states can survive almost all the way to 
the zero-derivative points 1’ and 2’, leading to sudden jumps of the system into the counterpart phase. (At fixed 
pressure, such jumps go as shown by dashed lines in Fig. 2.) In particular, at the atmospheric pressure, purified 
water may be supercooled to almost –50C, and superheated to nearly +270C. However, at more realistic 
conditions, unavoidable perturbations result in the two-phase coexistence formation close to points 1 and 2. 
10 This Maxwell equal-area rule (also called “Maxwell’s construct”) was suggested by J. C. Maxwell in 1875 
using more complex reasoning.  
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 As the same Fig. 2 figure shows, the Maxwell rule may be rewritten in a different form,  

               
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0 0)( dVTPP ,     (4.11) 

which is more convenient for analytical calculations than Eq. (10) if the equation of state may be 
explicitly solved for P – as it is in the van der Waals model (2). Such calculation (left for the reader’s 
exercise) shows that for that model, the temperature dependence of the saturated vapor pressure at low T 
is exponential,11  

            ,for ,
8

27
with  ,exp)( ccc0 TTT

b

a

T
PTP 







 
   (4.12) 

corresponding very well to the physical picture of the particle’s thermal activation from a potential well 
of depth . 

 The signature parameter of a first-order phase transition, the latent heat of evaporation  

          
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may also be found by a similar integration along the single-phase isotherm. Indeed, using Eq. (1.19), dQ 
= TdS,  we get 
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Let us express the right-hand side of Eq. (14) via the equation of state. For that, let us take the full 
derivative of both sides of Eq. (6) over temperature, considering the value of G = N for each phase as a 
function of P and T, and taking into account that according to Eq. (7), P1 = P2 = P0(T): 
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According to the first of Eqs. (1.39), the partial derivative (G/T)P is just minus the entropy, while 
according to the second of those equalities,  (G/P)T is the volume. Thus Eq. (15)  becomes 
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Solving this equation for (S2 – S1), and plugging the result into Eq. (14), we get the following 
Clapeyron-Clausius formula: 
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For the van der Waals model, this formula may be readily used for the analytical calculation of  in two 
limits: T << Tc and (Tc – T)  << Tc – the exercises left for the reader. In the latter limit,   (Tc – T)1/2, 
naturally vanishing at the critical temperature. 

11 It is fascinating how well this Arrhenius exponent is hidden in the polynomial van der Waals equation (2)! 
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 Finally, some important properties of the van der Waals’ model may be revealed more easily by 
looking at the set of its isochores P = P(T) for V = const, rather than at the isotherms. Indeed, as Eq. (2) 
shows, all single-phase isochores are straight lines. However, if we interrupt these lines at the points 
when the single phase becomes metastable, and complement them with the (very nonlinear!) 
dependence P0(T), we get the pattern (called the phase diagram) shown schematically in Fig. 3a. 

 

 

 

 

 

 

 

 

 

 

 In this plot, one more meaning of the critical point {Pc, Tc} becomes very vivid. At fixed 
pressure P < Pc, the liquid and gaseous phases are clearly separated by the saturated pressure line P0(T), 
so if we achieve the transition between the phases just by changing temperature (see the red horizontal 
arrow in Fig. 3a), we have to pass through the phase equilibrium point, being delayed there to either put 
the latent heat into the system or take it out. However, if we perform the transition between the same 
initial and final points by changing both the pressure and temperature in a way that we go around the 
critical point (see the blue arrow in Fig. 3a), no definite point of transition may be observed: the 
substance stays in a single phase, and it is a subjective judgment of the observer in which region that 
phase should be called the liquid, and in which region, the gas. For water, the critical point corresponds 
to the temperature of 647 K (374C), and the pressure Pc  22.1 MPa (i.e. ~200 bars), so a lecture 
demonstration of its critical behavior would require substantial safety precautions. This is why such 
demonstrations are typically carried out with other substances such as either diethyl ether,12 with its 
much lower Tc (194C) and Pc (3.6 MPa), or the now-infamous carbon dioxide CO2, with even lower Tc 
(31.1C), though higher Pc (7.4 MPa). Though these substances are colorless and clear in both gas and 
liquid phases, their separation (by gravity) is still visible, due to small differences in the optical 
refraction coefficient, at P < Pc, but not above Pc.13 

 Thus, in the van der Waals model, two phases may coexist, though only at certain conditions – in 
particular, T < Tc. Now a natural, more general question is whether the coexistence of more than two 

12 (CH3-CH2)-O-(CH2-CH3), historically the first popular general anesthetic. 
13 It is interesting that very close to the critical point the substance suddenly becomes opaque – in the case of 
ether, whitish. The qualitative explanation of this effect, called the critical opalescence, is simple: at this point, 
the difference of the Gibbs energies per particle (i.e. the chemical potentials) of the two phases becomes so small 
that unavoidable thermal fluctuations lead to spontaneous appearance and disappearance of relatively large (a-
few-m-scale) single-phase regions in all the volume. A large concentration of boundaries of such randomly-
shaped regions leads to strong light scattering. 

Fig. 4.3. (a) Van der Waals model’s isochores, the saturated gas pressure diagram, and the 
critical point, and (b) the phase diagram of a typical three-phase system (all schematically). 
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phases of the same substance is possible. For example, can the water ice, the liquid water, and the water 
vapor (steam) all be in thermodynamic equilibrium? The answer is essentially given by Eq. (6). From 
thermodynamics, we know that for a uniform system (i.e. a single phase), pressure and temperature 
completely define the chemical potential (P, T). Hence, dealing with two phases, we had to satisfy just 
one chemical equilibrium condition (6) for two common arguments P and T. Evidently, this leaves us 
with one extra degree of freedom, so the two-phase equilibrium is possible within a certain range of P at 
fixed T (or vice versa) – see again the horizontal line in Fig. 2 and the bold line in Fig. 3a. Now, if we 
want three phases to be in equilibrium, we need to satisfy two equations for these variables: 

               ),(),(),( 321 TPTPTP   .    (4.18) 

Typically, the functions (P, T) are monotonic, so the two equations (18) have just one solution, the so-
called triple point {Pt, Tt}. Of course, this triple point of equilibrium between three phases should not be 
confused with the partial critical points {Pc, Tc} for each of the two-phase pairs. Fig. 3b shows, very 
schematically, their relation for a typical three-phase system solid-liquid-gas. For example, water, ice, 
and water vapor are at equilibrium at a triple point with Pt  0.612 kPa14 and Tt = 273.16 K. The 
practical importance of this particular temperature point is that by an international agreement, it has 
been accepted for the definition of not only the Kelvin temperature scale but also of the Celsius scale’s 
reference, as 0.01C, so the absolute temperature zero corresponds to exactly –273.15C.15 More 
generally, triple points of other purified simple substances (such as H2, N2, O2, Ar, Hg, and H2O) are 
also used for thermometer calibration, defining the so-called international temperature scales including 
the currently accepted scale ITS-90. 

 This analysis may be readily generalized to multi-component systems consisting of particles of 
several (say, L) sorts.16 If such a mixed system is in a single phase, i.e. is macroscopically uniform, its 
chemical potential may be defined by a natural generalization of Eq. (1.53c): 
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The last term reflects the fact that usually, every single phase is not a pure chemical substance, but has 
particles of all other components, so (l) may depend not only on P and T but also on the concentrations 
c(l)  N(l)/N of particles of each sort. If the total number N of particles is fixed, the number of 
independent concentrations is (L – 1). For the chemical equilibrium of R phases, all R values of r

(l) (r = 
1, 2, …, R) have to be equal for particles of each sort: 1

(l) = 2
(l) = … = R

(l), with each r
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on (L – 1) concentrations cr
(l), and also on P and T. This requirement gives L(R – 1) equations for (L –

1)R concentrations cr
(l), plus two common arguments P and T, i.e. for [(L –1)R + 2] independent 

variables. This means that the number of phases has to satisfy the limitation 

        2  i.e.,2)1()1(  LRRLRL ,    (4.20) 

14 Please note that for water, Pt is much lower than the normal atmospheric pressure (1 bar = 101.325 kPa). 
15 Note the recent (2018) re-definition of the “legal” kelvin via joule (see, Appendix UCA: Selected Units and 
Constants); however, the new definition is compatible, within experimental accuracy, with that mentioned above. 
16 Perhaps the most practically important example is the air/water system. For its detailed discussion, based on Eq. 
(19), the reader may be referred, e.g., to Sec. 3.9 in F. Schwabl, Statistical Mechanics, Springer (2000). Other 
important applications include liquid solutions, and metallic alloys – solid solutions of metal elements. 
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where the equality sign may be reached at just one point in the whole parameter space. This is the Gibbs 
phase rule. As a sanity check, for a single-component system, L = 1, the rule yields R  3 – exactly the 
result we have already discussed. 

 

4.2. Continuous phase transitions 

 As Fig. 2 illustrates, if we fix pressure P in a system with a first-order phase transition, and start 
changing its temperature, then the complete crossing of the transition-point line, defined by the equation 
P0(T) = P, requires the insertion (or extraction) some non-zero latent heat . Formulas (14) and (17) 
show that  is directly related to non-zero differences between the entropies and volumes of the two 
phases (at the same pressure). As we know from Chapter 1, both S and V may be represented as the first 
derivatives of appropriate thermodynamic potentials. This is why P. Ehrenfest called such transitions, 
involving jumps of potentials’ first derivatives, the first-order phase transitions.   

 On the other hand, there are phase transitions that have no first derivative jumps at the transition 
temperature Tc, so the temperature point may be clearly marked, for example, by a jump of the second 
derivative of a thermodynamic potential – for example, the derivative C/T which, according to Eq. 
(1.24), equals to 2E/T2. In the initial Ehrenfest classification, this was an example of a second-order 
phase transition. However, most features of such phase transitions are also pertinent to some systems in 
which the second derivatives of potentials are continuous as well. Due to this reason, I will use a more 
recent terminology (suggested in 1967 by M. Fisher), in which all phase transitions with  = 0 are called 
continuous.  

 Most (though not all) continuous phase transitions result from particle interactions. Here are 
some representative examples: 

 (i) At temperatures above ~490 K, the crystal lattice of barium titanate (BaTiO3) is cubic, with a 
Ba ion in the center of each Ti-cornered cube (or vice versa) – see Fig. 4a. However, as the temperature 
is being lowered below that critical value, the sublattice of Ba ions is displaced along one of six sides of 
the TiO3 sublattice, leading to a small deformation of both lattices – which become tetragonal. This is a 
typical example of a structural transition, in this particular case combined with a ferroelectric 
transition, because (due to the positive electric charge of the Ba ions) below the critical temperature the 
BaTiO3 crystal has a spontaneous electric polarization even in the absence of external electric field. 

 

 

 

 

 

  

 (ii) A different kind of phase transition happens, for example, in CuxZn1-x alloys (called brasses). 
Their crystal lattice is always cubic, but above certain critical temperature Tc (which depends on x) any 
of its nodes may be occupied by either a copper atom or a zinc atom, at random. At T < Tc, a trend 
toward ordered atom alternation arises, and at low temperatures, the atoms are fully ordered, as shown 
in Fig. 4b for the stoichiometric case x = 0.5. This is a good example of an order-disorder transition. 

Ba Ti O
Cu

Zn
Fig. 4.4. Single cells of 
crystal lattices of (a) 
BaTiO3 and (b) CuZn. 

(a)        (b) 
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 (iii) At ferromagnetic transitions (such as the one taking place, for example, in Fe at 1,388 K) 
and antiferromagnetic transitions (e.g., in MnO at 116 K), lowering of temperature below the critical 
value17 does not change atom positions substantially, but results in a partial ordering of atomic spins, 
eventually leading to their full ordering (Fig. 5). 

   

 

 

 

 

 

 

  

 Note that, as it follows from Eqs. (1.1)-(1.3), at ferroelectric transitions the role of pressure is 
played by the external electric field E, and at the ferromagnetic transitions, by the external magnetic 
field H. As we will see very soon, even in systems with continuous phase transitions, a gradual change 
of such an external field, at a fixed temperature, may induce jumps between metastable states, similar to 
those in systems with first-order phase transitions (see, e.g., the dashed arrows in Fig. 2), with non-zero 
decreases of the appropriate free energy. 

 Besides these standard examples, some other threshold phenomena, such as the formation of a 
coherent optical field in a laser, and even the self-excitation of oscillators with negative damping (see, 
e.g., CM Sec. 5.4), may be treated, at certain conditions, as continuous phase transitions.18 

 The general feature of all these transitions is the gradual formation, at T < Tc, of certain ordering, 
which may be characterized by some order parameter   0. The simplest example of such an order 
parameter is the magnetization at the ferromagnetic transitions, and this is why continuous phase 
transitions are usually discussed for certain models of ferromagnetism. (I will follow this tradition but 
mention in passing other important cases that require a substantial modification of the theory.) Most of 
such models are defined on an infinite 3D cubic lattice (see, e.g., Fig. 5), with evident generalizations to 
lower dimensions. For example, the Heisenberg model of a ferromagnet (suggested in 1928) is defined 
by the following Hamiltonian: 

            
 

 
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' ,    (4.21) 

where /ˆˆ kk Sσ   is the normalized Pauli vector operator19 acting on the quantum state of the kth spin, 

while h is the normalized external magnetic field B: 

17 For ferromagnets, this point is usually referred to at the Curie temperature, and for antiferromagnets, as the 
Néel temperature. 
18 Unfortunately, I will have no time/space for these interesting (and practically important) generalizations, and 
have to refer the interested reader to the famous monograph by R. Stratonovich, Topics in the Theory of Random 
Noise, in 2 vols., Gordon and Breach, 1963 and 1967, and/or the influential review by H. Haken, 
Ferstkörperprobleme 10, 351 (1970).  

Fig. 4.5. Classical images 
of fully ordered phases: (a)  
a ferromagnet, and (b)  an 
antiferromagnet. 

(a)    (b) 

Heisenberg  
model 
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                      Bh .      (4.22) 

(Here  is the gyromagnetic ratio of the particle; for an electron,   is very close to –e/me, so the effective 
magnitude m0 = /2 of the spin’s magnetic moment is very close to the Bohr magneton B  e/2me  
0.92710-23 J/T.) The figure brackets {k, k’} in Eq. (21) denote the summation over the pairs of adjacent 
lattice sites, so the magnitude of the constant J  may be interpreted as the maximum coupling energy per 
“bond” between two adjacent particles. At J > 0, the coupling tries to keep spins aligned, i.e. to install 
the ferromagnetic ordering.20 The second term in Eq. (21) describes the effect of the external magnetic 
field, which tries to orient all spin magnetic moments along its direction.21 

 However, even the Heisenberg model, while being rather rudimentary (in particular because its 
standard form (21) is only valid for spins-½), is still rather complex for analysis. This is why most 
theoretical results have been obtained for its classical twin, the Ising model:22 

        
 

 
k

k
kk

kkm shssJE
',

' .     (4.23) 

Here Em are the particular values of the system’s energy in each of its 2N possible states with all possible 
combinations of the binary classical variables sk = 1, while h is the normalized external magnetic 
field’s magnitude – see Eq. (22). (Despite its classical character, the variable sk, modeling the field-
oriented Cartesian component of the real spin, is usually called “spin” for brevity, and I will follow this 
tradition.) Somewhat shockingly, even for this toy model, no exact analytical 3D solution that would be 
valid at arbitrary temperatures has been found yet, and the solution of its 2D version by L. Onsager in 
1944 (see Sec. 5 below) is still considered one of the top intellectual achievements of statistical physics. 
Still, Eq. (23) is very useful for the introduction of the basic notions of continuous phase transitions and 
methods of their analysis, so for my brief discussion, I will mostly use this model.23 

 Evidently, if T = 0 and h = 0, the lowest possible energy, 

       JNdE min ,     (4.24) 

where d is the lattice dimensionality, is achieved in the “ferromagnetic” phase in which all spins sk are 
equal to either +1 or –1, so  sk  = 1 as well. On the other hand, at J = 0, the spins are independent, and 
if h = 0 as well, all sk are completely random, with a 50% probability to take either of values 1, so sk 
= 0. Hence in the general case (with arbitrary J and h),  we may use the average 

           ks       (4.25) 

19 See, e.g., QM Sec. 4.4. 
20 At J < 0, the first term of Eq. (21) gives a reasonable model of an antiferromagnet, but in this case, the external 
magnetic field effects are more subtle; I will not have time to discuss them. 
21 See, e.g., QM Eq. (4.163).  
22 Named after Ernst Ising who explored the 1D version of the model in detail in 1925, though a similar model 
was discussed earlier (in 1920) by Wilhelm Lenz. 
23 For more detailed discussions of phase transition theories (including other popular models of the ferromagnetic 
phase transition, e.g., the Potts model), see, e.g., either H. Stanley, Introduction to Phase Transitions and Critical 
Phenomena, Oxford U. Press, 1971; or A. Patashinskii and V. Pokrovskii, Fluctuation Theory of Phase 
Transitions, Pergamon, 1979; or B. McCoy, Advanced Statistical Mechanics, Oxford U. Press, 2010. For a very 
concise text, I can recommend J. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon, 1992. 

Ising 
model 
 

Ising 
model: 
order 
parameter 
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as a good measure of spin ordering, i.e. as the order parameter. Since in a real ferromagnet, each spin 
carries a magnetic moment, the order parameter  is proportional to the Cartesian component of the 
system’s average magnetization, in the direction of the applied magnetic field. 

 Now that the Ising model has given us a very clear illustration of the order parameter, let me use 
this notion for a semi-quantitative characterization of continuous phase transitions. Due to the difficulty 
of theoretical analyses of most models of the transitions at arbitrary temperatures, their theoretical 
discussions are focused mostly on a very close vicinity of the critical point Tc. Both experiment and 
theory show that in the absence of an external field, the function (T) is close to a certain power, 

               c  i.e.   ,0~for ~~
 , TTttt  

 ,   (4.26) 

of the small deviation from the critical temperature – which is conveniently normalized as 

               1~

c

c 


 t
T

TT
t .     (4.27) 

Most other key variables follow a similar temperature behavior, with critical exponents frequently being 
the same for both signs of t~ – though typically with very different proportionality factors. In particular, 
the heat capacity at a fixed magnetic field behaves as24  

         


 tch
~ .      (4.28) 

Similarly, the (normalized) low-field susceptibility25 

            







  t
h h

~
0 .     (4.29) 

 Two other important critical exponents,  and , describe the temperature behavior of the 
correlation function sksk’, whose dependence on the distance rkk’ between two spins may be well fitted 
by the following law, 

              ,exp
1

c'
2 







  r

r

r
ss kk'

kk

k'k d 
    (4.30) 

with the correlation radius 
          


 tr ~

c .      (4.31) 

 Finally, three more critical exponents, usually denoted , , and , describe the external field 
dependences of, respectively,  c, , and rc at  t~  0. For example,   may be defined as 

      
0~

1



t

h   .     (4.32)  

(Other field exponents are used less frequently, and for their discussion, the interested reader is referred 
to the special literature that was cited above.)  

24 The forms of this and other functions of  are selected to make all critical exponents non-negative. 
25 In most models of ferromagnetic phase transitions, this variable is proportional to the genuine low-field 
magnetic susceptibility m of the material – see, e.g., EM Eq. (5.111). 
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 The leftmost column of Table 1 shows the ranges of experimental values of these critical 
exponents for various 3D physical systems featuring continuous phase transitions. One can see that their 
values vary from system to system, leaving no hope for a universal theory that would describe them all 
exactly. However, certain combinations of the exponents are much more reproducible – see the four 
bottom lines of the table. 

 

Table 4.1. Major critical exponents of continuous phase transitions 

    (a) Experimental data are from the monograph by A. Patashinskii and V. Pokrovskii, cited above. 
   (b) Discontinuity at T = Tc – see below. 
   (c) Instead of following Eq. (28), in this case, ch diverges as ln t~ . 

   (d)  With the order parameter   defined as  jB/B.  

 Historically the first (and perhaps the most fundamental) of these universal relations was derived 
in 1963 by J. Essam and M. Fisher: 
      22   .     (4.33) 

It may be proved, for example, by finding the temperature dependence of the magnetic field value ht that 
changes the order parameter by the same amount as a finite temperature deviation t~  < 0 gives at h = 0. 
Comparing Eqs. (26) and (29), we get 

        
 

 tht
~ .     (4.34) 

By the physical sense of ht, we may expect that such a field has to affect the system’s free energy26 F by 
an amount comparable to the effect of a bare temperature change .~t Ensemble-averaging the last term 

26 As was already discussed in Secs. 1.4 and 2.4, there is some dichotomy of terminology for free energies in 
literature. In models (21) and (23), the magnetic field effects are accounted for at the microscopic level, by the 
inclusion of the corresponding term into each particular value Em. From this point of view, the list of macroscopic 

Exponents and 
combinations 

Experimental 
range (3D)(a) 

Landau’s 
theory 

2D Ising 
 model 

3D Ising 
 model 

3D Heisenberg 
Model(d) 

 0 – 0.14 0(b) (c) 0.12 –0.14 

 0.32 – 0.39  1/2 1/8  0.31 0.3 

 1.3 – 1.4 1 7/4 1.25 1.4 

 4 – 5 3 15 5 ? 

 0.6 – 0.7 1/2 1 0.64 0.7 

 0.05 0 1/4 0.05 0.04 

( + 2 + )/2 1.00  0.005 1 1 1 1 

 – / 0.93  0.08 1 1 1 ? 

(2 – )/ 1.02  0.05 1 1 1 1 

(2 – )/d ? 4/d 1 1 1 
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of Eq. (23) and using the definition (25) of the order parameter , we see that the change of F (per 
particle) due to the field equals –ht and, according to Eq. (26), scales as ht t~   t~ (2 + ). 

 In order to estimate the thermal effect on F, let me first elaborate a bit more on the useful 
thermodynamic formula already mentioned in Sec. 1.3:   

      
X

X T

S
TC 










 ,     (4.35) 

where X means the variable(s) maintained constant at the temperature variation. In the standard “P-V” 
thermodynamics, we may use Eqs. (1.35) for X = V, and Eqs. (1.39) for X = P, to write 

       .,
,

2

2

,,
2

2

, NPNP
P

NVNV
V T

G
T

T

S
TC

T

F
T

T

S
TC 










































   (4.36) 

As was just discussed, in the ferromagnetic models of the type (21) or (23), at a constant field h, the role 
of G is played by F, so Eq. (35) yields 

               
NhNh
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
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 .    (4.37) 

The last form of this relation means that F may be found by double integration of (–Ch/T) over 
temperature. In the limit t~  << 1, the factor T may be treated as a constant, so with Eq. (28) for ch  

Ch, the free energy scales as the double integral of ch  t~ – over t~ , i.e. as t~ (2 – ). Requiring this 

change to be proportional to the same power of t~  as the field-induced part of the energy, we finally 

get the Essam-Fisher relation (33).  

 Using similar reasoning, it is straightforward to derive a few other universal relations of critical 
exponents, including the Widom relation: 

          1

 ,      (4.38) 

very similar relations for other high-field exponents  and  (which I do not have time to discuss), and 
the Fisher relation: 
            2 .     (4.39) 

A slightly more complex reasoning, involving the so-called scaling hypothesis, yields the following 
dimensionality-dependent Josephson relation 

           2d .      (4.40) 

 The second column of Table 1 shows that at least three of these relations are in very reasonable 
agreement with experiment, so their set may be used as a testbed for various theoretical approaches to 
continuous phase transitions. 

 

variables in these systems does not include either P and V or their magnetic analogs, so we may take G  F + PV 
= F + const, and the equilibrium (at fixed h, T and N) corresponds to the minimum of the Helmholtz free energy F.  
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4.3. Landau’s mean-field theory 

 The highest-level (i.e. the most phenomenological) approach to continuous phase transitions, 
formally not based on any particular microscopic model (though implying either the Ising model (23) or 
one of its siblings), is the mean-field theory developed in 1937 by L. Landau, on the basis of prior ideas 
by P. Weiss – to be discussed in the next section. The main idea of this phenomenological approach is to 
represent the free energy’s change F at the phase transition as an explicit function of the order 
parameter  (25). Since at T  Tc, the order parameter  has to tend to zero, this change,  

            )()( cTFTFF  ,     (4.41) 

may be expanded into the Taylor series in , and only a few, most important first terms of that 
expansion retained. In order to keep the symmetry between two possible signs of the order parameter 
(i.e. between two possible spin directions in the Ising model) in the absence of the external field, at h = 0  
this expansion should include only even powers of : 

               c
42

00 at  ...,)(
2

1
)( TTTBTA

V

F
f hh 


   .   (4.42) 

As Fig. 6 shows, at A(T) < 0, and B(T) > 0, these two terms are sufficient to describe the minimum of the 
free energy at 2 > 0, i.e. to calculate the stationary values of the order parameter; this is why Landau’s 
theory ignores higher terms of the Taylor expansion – which are much smaller at   0.  

 

 

 

 

 

 

 

 Now let us discuss the temperature dependence of the coefficients A and B. As Eq. (42) shows, 
first of all, the coefficient B(T) has to be positive for any sign of t~  (T – Tc), to ensure the equilibrium 
at a finite value of 2. Thus, it is reasonable to ignore the temperature dependence of B near the critical 
temperature altogether, i.e. use the approximation 

      .0)(  bTB       (4.43)  

On the other hand, as Fig. 6 shows, the coefficient A(T) has to change sign at T = Tc, to be positive at T 
> Tc and negative at T < Tc, to ensure the transition from  = 0 at T > Tc  to a certain non-zero value of 
the order parameter at T < Tc. Assuming that A is a smooth function of temperature, we may 
approximate it by the leading term of its Taylor expansion in the difference t~   T – Tc < 0: 

        0with ,~)(  ataTA ,     (4.44) 
so Eq. (42) becomes 

         42
0 2

1~  btaf h   .     (4.45) 

Fig. 4.6. The Landau free 
energy (42) as a function of 
(a)  and (b) 2, for two signs 
of the coefficient A(T), both 
for B(T) > 0.  
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 In this rudimentary form, the Landau theory may look almost trivial, and its main strength is the 
possibility of its straightforward extension to the effects of the external field and of spatial variations of 
the order parameter. First, as the field terms in Eqs. (21) or (23) show, the applied field gives such 
systems, on average, the energy addition of –h per particle, i.e. –nh per unit volume, where n is the 
particle density. Second, since according to Eq. (31) (with  > 0, see Table 1) the correlation radius 
diverges at t~  0, in this limit, the spatial variations of the order parameter should be slow,   0. 
Hence, the effects of the gradient on F may be approximated by the first non-zero term of its expansion 
into the Taylor series in ()2. As a result, Eq. (45) may be generalized as 

             2423

2

1~Δwith  ,ΔΔ  cnhbtafrfdF   ,  (4.46) 

where c is a coefficient independent of . To avoid the unphysical effect of spontaneous formation of 
spatial variations of the order parameter, that factor has to be positive at all temperatures and hence may 
be taken for a constant in a small vicinity of Tc – the only region where Eq. (46) may be expected to 
provide quantitatively correct results. 

 Let us find out what critical exponents are predicted by this phenomenological approach. First of 
all, we may find the equilibrium values of the order parameter from the condition of F having a 
minimum, F/ = 0. At h = 0, it is easier to use the equivalent equation F/(2) = 0, where F is given 
by Eq. (45) – see Fig. 6b. This immediately yields  

               
 









.~0for                 ,0

,0~for ,/~ 2/1

t

tbta     (4.47) 

Comparing this result with Eq. (26), we see that in the Landau theory,  = ½. Next, plugging the result 
(47) back into Eq. (45), for the equilibrium (minimal) value of the free energy, we get 
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From here and Eq. (37), the specific heat, 
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has, at the critical point, a discontinuity rather than a singularity, so we need to prescribe zero value to 
the critical exponent  .  

 In the presence of a uniform field, the equilibrium order parameter should be found from the 
condition f/ = 0 applied to Eq. (46) with  = 0, giving 

       02~2 3 



nhbta
f 


.    (4.50) 

In the limit of a small order parameter,   0,  the term with 3 is negligible, and Eq. (50) gives the 
solution (stable only for t~  0): 
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so according to Eq. (29),  = 1. On the other hand, at t~  0 (or at sufficiently high fields at other 
temperatures), the cubic term in Eq. (50) is much larger than the linear one, and this equation yields  
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nh ,      (4.52) 

so comparison with Eq. (32) yields   = 3. Finally, according to Eq. (30), the last term in Eq. (46) scales 
as c2/rc

2. (If rc  , the effects of the pre-exponential factor in Eq. (30) are negligible.) As a result, the 
gradient term’s contribution is comparable27 with the two leading terms in f (which, according to Eq. 
(47), are of the same order), if  
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so according to the definition (31) of the critical exponent , in the Landau theory it is equal to ½.  

 The third column in Table 1 summarizes the critical exponents and their combinations in 
Landau’s theory. It shows that these values are somewhat out of the experimental ranges, and while 
some of their “universal” relations are correct, some are not; for example, the Josephson relation would 
be only correct at d = 4 (not the most realistic spatial dimensionality :-) The main reason for this 
disappointing result is that describing the spin interaction with the field, the Landau mean-field theory 
neglects spin randomness, i.e. fluctuations. Though a quantitative theory of fluctuations will be 
discussed only in the next chapter, we can readily perform their crude estimate. Looking at Eq. (46), we 
see that its first term is a quadratic function of the effective “half-degree of freedom”, . Hence per the 
equipartition theorem (2.28), we may expect that the average square of its thermal fluctuations, within a 
d-dimensional volume with a linear size  of the order of rc, should be of the order of T/2 (close to the 
critical temperature, Tc/2 is a good enough approximation):  
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rta d .     (4.54) 

In order to be negligible, the variance has to be small in comparison with the average 2 ~ a t~ /b – see 

Eq. (47). Plugging in the T-dependences of the operands of this relation, and values of the critical 
exponents from the Landau theory, for  > 0 we get the so-called Levanyuk-Ginzburg criterion of its 
validity: 
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We see that for any realistic dimensionality, d < 4, the order parameter’s fluctuations grow at t~  0 
faster than its average value, and hence the theory becomes invalid.  

 Thus the Landau mean-field theory is not a perfect approach to finding critical indices at 
continuous phase transitions in Ising-type systems with their next-neighbor interactions between the 
particles. However, any long-range interactions between particles increase the correlation radius rc, and 

27 According to Eq. (30), the correlation radius may be interpreted as the distance at which the order parameter  
relaxes to its equilibrium value if it is deflected from that value at some point. Since the law of such spatial 
change may be obtained by a variational differentiation of F, for the actual relaxation law, all major terms of (46) 
have to be comparable. 
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hence suppress the order parameter fluctuations. As one example, at laser self-excitation, the emerging 
coherent optical field couples essentially all photon-emitting particles in the electromagnetic cavity 
(resonator). As another example, in superconductors, the role of the correlation radius is played by the 
Cooper-pair size 0, which is typically of the order of 10-6 m, i.e. much larger than the average distance 
between the pairs (~10-8 m). As a result, the mean-field theory remains valid at all temperatures besides 
an extremely small temperature interval near Tc – for bulk superconductors,  of the order of 10–6 K.  

 The real strength of Landau’s mean-field theory is that despite its classical character, it may be 
readily generalized to a description of various Bose-Einstein condensates, i.e. quantum fluids. Of those 
generalizations, the most famous is the Ginzburg-Landau theory of superconductivity. It was developed 
in 1950, i.e. even before the microscopic-level explanation of this phenomenon by J. Bardeen, L. 
Cooper, and R. Schrieffer in 1956-57. In this theory, the real order parameter  is replaced with the 
modulus of a complex function , physically the wavefunction of the coherent Bose-Einstein 
condensate of Cooper pairs. Since each pair carries the electric charge q = –2e and has zero spin, it 
interacts with the magnetic field in a way different from that described by the Heisenberg or Ising 
models. Namely, as was already discussed in Sec. 3.4, in the magnetic field, the del operator  in Eq. 
(46) has to be amended with the term –i(q/)A, where A is the vector potential of the total magnetic 
field B = A, including not only the external magnetic field H  but also the field induced by the 
supercurrent itself. With the account for the well-known formula for the magnetic field energy, Eq. (46) 
is now replaced with 
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where m is a phenomenological coefficient rather than the actual particle’s mass.  

 The variational minimization of the resulting Gibbs energy density g  f – 0HM  f – 

HB + const28 over the variables   and B (which is suggested for the reader’s exercise) yields two 
differential equations: 
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 The first of these Ginzburg-Landau equations (57a) should be no big surprise for the reader, 
because according to the Maxwell equations, in magnetostatics the left-hand side of Eq. (57a) has to be 
equal to the electric current density, while its right-hand side is the usual quantum-mechanical 
probability current density multiplied by q, i.e. the density j of the electric current of the Cooper pair 
condensate. (Indeed, after plugging   = n1/2exp{i} into that expression, we come back to Eq. (3.84) 
which, as we already know, explains such macroscopic quantum phenomena as the magnetic flux 
quantization and the Meissner-Ochsenfeld effect.)  

28 As an immediate elementary sanity check of this relation, resulting from the analogy of Eqs. (1.1) and (1.3), the 
minimization of g in the absence of superconductivity ( = 0) gives the correct result B = 0H. Note that this 
account of the difference between f and g is necessary here because (unlike Eqs. (21) and (23)), the Ginzburg-
Landau free energy (56) does not take into account the effect of the field on each particle directly. 

GL free  
energy 
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However, Eq. (57b) is new for us – at least for this course.29 Since the last term on its right-hand 
side is the standard wave-mechanical expression for the kinetic energy of a particle in the presence of a 
magnetic field,30 if this term dominates that side of the equation, Eq. (57b) is reduced to the stationary 

Schrödinger equation  HE ˆ , for the ground state of free Cooper pairs, with the energy E = –a t~ > 0. 

However, in contrast to the usual (single-particle) Schrödinger equation, in which   is determined by 
the normalization condition, the Cooper pair condensate density n =  2 is determined by the 
thermodynamic balance of the condensate with the ensemble of “normal” (unpaired) electrons, which 
plays the role of the uncondensed part of the particles in the usual Bose-Einstein condensate – see Sec. 
3.4. In Eq. (57b), such balance is enforced by the first term b 2 on the right-hand side. As we have 
already seen, in the absence of magnetic field and spatial gradients, such term yields     t~ 1/2  (Tc 
– T)1/2 – see Eq. (47).  

 As a parenthetic remark, from the mathematical standpoint, the term b 2, which is nonlinear 
in , makes Eq. (57b) a member of the family of the so-called nonlinear Schrödinger equations. 
Another important member of this family is the Gross-Pitaevskii equation,  

           )(
2

~ 2
2

2
rU

m
bta 


,    (4.58) 

which gives a reasonable (albeit approximate) description of gradient and field effects on Bose-Einstein 
condensates of electrically neutral atoms at T  Tc. The differences between Eqs. (58) and (57) reflect, 
first, the zero electric charge q of the atoms (so Eq. (57a) becomes trivial) and, second, the fact that the 
atoms forming the condensates may be readily placed in external potentials U(r)  const (including the 
time-averaged potentials of optical traps – see EM Chapter 7), while in superconductors such potential 
profiles are much harder to create due to the screening of external electric and optical fields by 
conductors – see, e.g., EM Sec. 2.1. 

 Returning to the discussion of Eq. (57b), it is easy to see that its last term increases as either the 
external magnetic field or the density of current passed through a superconductor are increased, 
increasing the vector potential. In the Ginzburg-Landau equation, this increase is matched by a 
corresponding decrease of  2, i.e. of the condensate density n, until it is completely suppressed. This 
balance describes the well-documented effect of superconductivity suppression by an external magnetic 
field and/or the supercurrent passed through the sample. Moreover, together with Eq. (57a), naturally 
describing the flux quantization (see Sec. 3.4), Eq. (57b) explains the existence of the so-called 
Abrikosov vortices – thin magnetic-field tubes, each carrying one quantum 0 of magnetic flux – see Eq. 
(3.86). At the core of the vortex,  2 is suppressed (down to zero at its central line) by the persistent, 
dissipation-free current of the superconducting condensate that circulates around the core and screens 
the rest of the superconductor from the magnetic field carried by the vortex.31 The penetration of such 
vortices into the so-called type-II superconductors enables them to sustain zero dc resistance up to very 
high magnetic fields of the order of 20 T, and as a result, to be used in very compact magnets – 
including those used for beam bending in particle accelerators. 

29 It is also discussed in EM Sec. 6.5. 
30 See, e.g., QM Sec. 3.1. 
31 See, e.g., EM Sec. 6.5. 
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 Moreover, generalizing Eqs. (57) to the time-dependent case, just as it is done with the usual 
Schrödinger equation, one can describe other fascinating quantum macroscopic phenomena such as the 
Josephson effects, including the generation of oscillations with frequency J = (q/)V by weak links 
between two superconductors, biased by dc voltage V. Unfortunately, time/space restrictions do not 
allow me to discuss these effects in any detail in this course, and I have to refer the reader to special 
literature.32 Let me only note that in the limit T  Tc, and for not extremely pure superconductor 
crystals (in which the so-called non-local transport phenomena may be important), the Ginzburg-Landau 
equations are exact, and may be derived (and their parameters Tc, a, b, q, and m determined) from the 
standard “microscopic” theory of superconductivity, based on the initial work by Bardeen, Cooper, and 
Schrieffer.33 Most importantly, such derivation proves that q = –2e – the electric charge of a single 
Cooper pair. 

 

4.4. Ising model: Weiss’ molecular-field approximation 

The Landau mean-field theory is phenomenological in the sense that even within the range of its 
validity, it tells us nothing about the value of the critical temperature Tc and other parameters (in Eq. 
(46), the coefficients a, b, and c), so they have to be found from a particular “microscopic” model of the 
system under analysis. In this course, we would have time to discuss only the Ising model (23) for 
various dimensionalities d.  

The most simplistic mean-field approach to this model is to assume that all spins are exactly 
equal, sk = , with an additional condition 2  1, ignoring for a minute the fact that in the genuine Ising 
model, sk may equal only +1 or –1. Plugging this relation into Eq. (23), we get34 

              NhNJdF  2 .     (4.59) 

This energy is plotted in Fig. 7a as a function of , for several values of h.  

 

 

 

 

 
  

   

32 See, e.g., M. Tinkham, Introduction to Superconductivity, 2nd ed., McGraw-Hill, 1996. A short discussion of 
the Josephson effects and Abrikosov vortices may be found in QM Sec. 1.6 and EM Sec. 6.5 of this series. 
33 See, e.g., Sec. 45 in E. Lifshitz and L. Pitaevskii, Statistical Physics, Part 2, Pergamon, 1980. 
34 In this naïve approach, we neglect the fluctuations of spin, i.e. their disorder. This full ordering assumption 
implies S = 0, so F  E – TS = E, and we may use either notation for the system’s energy. 

(a)    (b)  

Fig. 4.7. Field dependences 
of (a) the free energy profile 
and (b) the order parameter 
(i.e. magnetization), in the 
crudest mean-field approach 
to the Ising model. 
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 The plots show that at h = 0, the system may be in either of two stable states, with  = 1, 
corresponding to two different spin directions (i.e. two different directions of magnetization), with equal 
energy.35 (Formally, the state with  = 0 is also stationary, because at this point F/ = 0, but it is 
unstable because for the ferromagnetic interaction, J > 0, the second derivative 2F/2 is always 
negative.) As the external field is increased, it tilts the potential profile, and finally at the critical field,  

        Jdhh 2c  ,     (4.60) 

the state with  = –1 becomes unstable, leading to the system’s jump into the only remaining state with 
opposite magnetization,  = +1 – see the arrow in Fig. 7a. Application of the similar external field of the 
opposite polarity leads to the similar switching, back to  = –1, at the field h = –hc, so the full field 
dependence of  follows the hysteretic pattern shown in Fig. 7b.36 

 Such a pattern is the most visible experimental feature of actual ferromagnetic materials, with 
the coercive magnetic field Hc of the order of 103 A/m, and the saturated  (or “remnant”) magnetization 
corresponding to fields B of the order of a few teslas. The most important property of these materials, 
also called permanent magnets, is their stability, i.e. the ability to retain the history-determined direction 
of magnetization in the absence of an external field, for a very long time. In particular, this property is 
the basis of all magnetic systems for data recording, including the ubiquitous hard disk drives with their 
incredible information density approaching 1 Terabit per square inch.37 

 So, already the simplest mean-field approximation (59) does give a (crude) description of the 
ferromagnetic ordering. However, it grossly overestimates the stability of these states with respect to 
thermal fluctuations. Indeed, in this theory, there is no thermally induced randomness at all, until T 
becomes comparable with the height of the energy barrier separating two stable states,  

            NJdFFF  )1()0(  ,    (4.61) 

which is proportional to the number of particles. At N  , this value diverges, and in this sense, the 
critical temperature is infinite, while numerical experiments and more refined theories of the Ising 
model show that actually its ferromagnetic phase is suppressed at T > Tc ~ Jd – see below. 

 The accuracy of this theory may be dramatically improved by even an approximate account for 
thermally induced randomness. In this approach (suggested in 1907 by Pierre-Ernest Weiss), called the 
molecular-field approximation,38  random deviations of individual spin values from the lattice average, 

35 The fact that the stable states always correspond to  = 1, partly justifies the treatment, in this crude 
approximation, of the order parameter  as a continuous variable. 
36 Since these magnetization jumps are accompanied by (negative) jumps of the free energy F, they are sometimes 
called first-order phase transitions. Note, however, that in this simple theory, these transitions are between two 
physically similar fully-ordered phases. 
37 For me, it was always shocking how little my graduate physics students knew about this fascinating (and very 
important) field of modern engineering, which involves so much interesting physics and fantastic 
electromechanical technology. For getting acquainted with it, I may recommend, for example, the monograph by 
C. Mee and E. Daniel, Magnetic Recording Technology, 2nd ed., McGraw-Hill, 1996.  
38 In some texts, this approximation is called the “mean-field theory”. This terminology may lead to confusion, 
because the molecular-field theory belongs to a different, deeper level of the theoretical hierarchy than, say, the 
(more phenomenological) Landau-style mean-field theories. For example, for a given microscopic model, the 
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               kkk sss   with  ,~ ,    (4.62) 

are allowed, but considered small: ks~ . This assumption allows us, after plugging the resulting 

expression kk ss ~  into the first term on the right-hand side of Eq. (23),  
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~~~~~~  , (4.63) 

ignore the last term in the square brackets. Making the replacement (62) in the terms proportional to ks~ , 

we may rewrite the result as 
                 

k
kmm shNJd'EE ef

2 ,    (4.64) 

where hef is defined as the sum 
       Jdhh 2ef  .     (4.65) 

This sum may be interpreted as an effective external field, which (besides the genuine external field h) 
takes into account the effect that would be exerted on spin sk by its 2d next neighbors if they all had non-
fluctuating (but possibly continuous) spin values sk’ = . Such addition to the external field, 

           Jdhhh 2efmol  ,     (4.66) 

is called the molecular field – giving its name to Weiss’ approach.  

 From the point of view of statistical physics, at fixed parameters of the system (including the 
order parameter ), the first term on the right-hand side of Eq. (64) is merely a constant energy offset, 
and hef is just another constant, so  
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Such separability of the energy means that in the molecular-field approximation the fluctuations of 
different spins are independent of each other, and their statistics may be examined individually, using 
the energy spectrum k.  But this is exactly the two-level system that was the subject of Problems 2.2-
2.4. Actually, its statistics is so simple that it is easier to redo it from scratch, rather than to use the 
results of those exercises (which would require changing notation). Indeed, according to the Gibbs 
distribution (2.58)-(2.59), the equilibrium probabilities of the states sk = 1 may be found as 
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From here, we may readily calculate F = –TlnZ and all other thermodynamic variables, but let us 
immediately use Eq. (68) to calculate the statistical average of sj, i.e. the order parameter: 
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 .  (4.69) 

molecular-field approach may be used for the (approximate) calculation of the parameters a, b, and Tc 
participating in Eq. (46) – the starting point of the Landau theory. 

Weiss 
molecular 

field 
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Now comes the punch line of Weiss’ approach: plugging this result back into Eq. (65), we may write the 
condition of self-consistency of the molecular-field approach: 

           
T

h
Jdhh ef

ef tanh2 .     (4.70) 

This is a transcendental equation, which evades an explicit analytical solution, but whose properties may 
be readily analyzed by plotting both its sides as functions of the same argument, so the stationary 
state(s) of the system corresponds to the intersection point(s) of these plots. 

First of all, let us explore the field-free case (h = 0), when hef = hmol  2dJ, so Eq. (70) is 
reduced to 

         





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T

Jd2
tanh ,      (4.71) 

giving one of the patterns sketched in Fig. 8, depending on the dimensionless parameter 2Jd/T.  

 

 

 

 

 

 

If this parameter is small, the right-hand side of Eq. (71) grows slowly with  (see the red line in 
Fig. 8), and there is only one intersection point with the left-hand side plot, at  = 0. This means that the 
spin system has no spontaneous magnetization; this is the so-called paramagnetic phase. However, if 
the parameter 2Jd/T exceeds 1, i.e. if T is decreased below the following critical value, 

          JdT 2c  ,      (4.72) 

the right-hand side of Eq. (71) grows, at small , faster than its left-hand side, so their plots intersect it 
at three points:  = 0 and  = 0 – see the blue line in Fig. 8. It is almost evident that the former 
stationary point is unstable, while the two latter points are stable. (This fact may be readily verified by 
using Eq. (68) to calculate F. Now the condition F/h=0 = 0 returns us to Eq. (71), while calculating 
the second derivative, for T < Tc we get 2F/2  > 0 at  = 0, and 2F/2 < 0  at  = 0). Thus, below 
Tc the system is in the ferromagnetic phase, with one of two possible directions of the average 
spontaneous magnetization, so the critical (Curie39) temperature given by Eq. (72) marks the transition 
between the paramagnetic and ferromagnetic phases. (Since the stable minimum value of the free energy 
F is a continuous function of temperature at T  = Tc, this phase transition is continuous.) 

 Now let us repeat this graphics analysis to examine how each of these phases responds to an 
external magnetic field h  0. According to Eq. (70), the effect of h is just a horizontal shift of the 
straight-line plot of its left-hand side – see Fig. 9. (Note a different, here more convenient, normalization 
of both axes.)  

39 Named after Pierre Curie, rather than his (more famous) wife Marie Skłodowska-Curie. 

Fig. 4.8. The ferromagnetic phase transition 
in Weiss’ molecular-field theory: two sides 
of Eq. (71) sketched as functions of   for 
three different temperatures: above Tc (red), 
below Tc (blue), and equal to Tc (green). 
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 In the paramagnetic case (Fig. 9a) the resulting dependence hef(h) is evidently continuous, but 
the coupling effect (J  > 0) makes it steeper than it would be without spin interaction. This effect may be 
quantified by the calculation of the low-field susceptibility defined by Eq. (29). To calculate it, let us 
notice that for small h, and hence small hef, the function tanh is approximately equal to its argument so 
Eq. (70) is reduced to 
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hh .    (4.73) 

Solving this equation for hef, and then using Eq. (72), we get 
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Recalling Eq. (66), we can rewrite this result for the order parameter: 
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so the low-field susceptibility 
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 .    (4.76) 

This is the famous Curie-Weiss law, which shows that the susceptibility diverges at the approach to the 
Curie temperature Tc. 

 In the ferromagnetic case, the graphical solution (Fig. 9b) of Eq. (70) gives a qualitatively 
different result. A field increase leads, depending on the spontaneous magnetization, either to the further 
saturation of hmol (with the order parameter  gradually approaching 1), or, if the initial  was negative, 
to a jump to positive  at some critical (coercive) field hc. In contrast with the crude approximation (59), 
at T > 0 the coercive field is smaller than that given by Eq. (60), and the magnetization saturation is 
gradual, in a good (semi-quantitative) accordance with experiment.  

 To summarize, the Weiss molecular-field approach gives an approximate but realistic description 
of the ferromagnetic and paramagnetic phases in the Ising model, and a very simple prediction (72) of 
the temperature of the transition between them, for an arbitrary dimensionality d of the cubic lattice. It 
also enables the calculation of other parameters of Landau’s mean-field theory for this model – an 
exercise left for the reader. Moreover, the molecular-field approximation allows one to obtain similarly 
reasonable analytical results for some other models of phase transitions – see, e.g., the exercise 
problems at the end of Sec. 6. 

Fig. 4.9 External field effects on 
(a) a paramagnet (T > Tc), and 
(b) a ferromagnet (T < Tc). 
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4.5. Ising model: Exact and numerical results 

 In order to evaluate the main prediction (72) of the Weiss theory, let us now discuss the exact 
(analytical) and quasi-exact (numerical) results obtained for the Ising model, going from the lowest 
value of dimensionality, d = 0, to its higher values. The zero dimensionality means that the spin has no 
nearest neighbors at all, so the first term of Eq. (23) vanishes. Hence Eq. (64) is exact, with hef = h, and 
so is its solution (69). Now we can simply use Eq. (76), with J = 0, i.e. Tc = 0, reducing this result to the 
so-called Curie law: 

            
T

1
 .      (4.77) 

It shows that the system is paramagnetic at any temperature. One may say that for d = 0 the Weiss 
molecular-field theory is exact – or even trivial. (However, in some sense it is more general than the 
Ising model because as we know from Chapter 2, it gives the exact result for a fully quantum-
mechanical treatment of any two-level system, including spin-½.) Experimentally, the Curie law is 
approximately valid for many so-called paramagnetic materials, i.e. 3D systems of particles with 
spontaneous spins and sufficiently weak interaction between them. 

 The case d = 1 is more complex but has an exact analytical solution. A simple way to obtain it 
for a uniform chain is to use the so-called transfer matrix approach.40 For this, first of all, we may argue 
that most properties of a 1D system of N >> 1 spins (say, put at equal distances on a straight line) should 
not change too much if we bend that line gently into a closed ring (Fig. 10), assuming that spins s1 and 
sN interact exactly as all other next-neighbor pairs. Then the energy (23) becomes 

         NNm hshshssJssJssJsE  ...... 2113221 .  (4.78) 

  

 

 

 

 

 
  
 Let us regroup the terms of this sum in the following way: 
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so the group inside each pair of parentheses depends only on the state of two adjacent spins. The 
corresponding statistical sum, 

40 This approach was developed in 1941 by H. Kramers and G. Wannier. Note that for the field-free case h = 0, an 
even simpler solution of the problem, valid for chains with an arbitrary number N of “spins” and arbitrary 
coefficients Jk, is possible. For that, one needs to calculate the explicit relation between the statistical sums Z for 
systems with N and (N + 1) spins first, and then apply it sequentially to systems starting from Z = 2. I am leaving 
this calculation for the reader’s exercise. 

Fig. 4.10. The closed-ring 
version of the 1D Ising system. 

1s

2s

1Ns

3s

Ns

...

...

Curie 
law 
 



Essential Graduate Physics               SM: Statistical Mechanics 

    
Chapter 4            Page 25 of 36 

 






 







 







  


 T

s
h

T

ss
J

T

s
h

T

s
h

T

ss
J

T

s
h

T

s
h

T

ss
J

T

s
hZ NN

Nk
sk

22
exp...

22
exp

22
exp 113322

,...2,1
for ,1

2211 , (4.80) 

still has 2N terms, each corresponding to a certain combination of signs of N spins. However, each 
operand of the product under the sum may take only four values, corresponding to four different 
combinations of its two arguments: 
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These values do not depend on the site number k,41 and may be represented as the elements Mj,j’ (with j, 
j’ = 1, 2) of the so-called transfer matrix 
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so the whole statistical sum (80) may be recast as a product: 
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 According to the basic rule of matrix multiplication, this sum is just 

         NZ MTr .     (4.84) 

Linear algebra tells us that this trace may be represented just as 

       ,NNZ         (4.85) 

where  are the eigenvalues of the transfer matrix M, i.e. the roots of its characteristic equation, 
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A straightforward solution of this equation yields two roots: 
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 The last simplification comes from the condition N >> 1 – which we need anyway, to make the 
ring model sufficiently close to the infinite linear 1D system. In this limit, even a small difference of the 
exponents, + > -, makes the second term in Eq. (85) negligible, so we finally get 
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41 This is a result of the “translational” (or rather rotational) symmetry of the system, i.e. its invariance to the 
index replacement k  k + 1 in all terms of Eq. (78). 
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From here, we can find the free energy per particle: 
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and then use thermodynamics to calculate such variables as entropy – see the first of Eqs. (1.35).  

 However, we are mostly interested in the order parameter defined by Eq. (25):   sj. The 
conceptually simplest approach to the calculation of this statistical average would be to use the sum 
(2.7), with the Gibbs probabilities Wm = Z-1exp{-Em/T}. However, the number of terms in this sum is 2N, 
so for N >> 1 this approach is completely impracticable. Here the analogy between the canonical pair {–
P, V} and other generalized force-coordinate pairs {F, q}, in particular {0H(rk), mk} for the magnetic 
field, discussed in Secs. 1.1 and 1.4, becomes invaluable – see in particular Eq. (1.3b). (In our 
normalization (22), and for a uniform field, the pair {0H(rk), mk} becomes {h, sk}.) Indeed, in this 
analogy the last term of Eq. (23), i.e. the sum of N products (–hsk) for all spins, with the statistical 
average (–Nh), is similar to the product PV, i.e. the difference between the thermodynamic potentials F 
and G  F + PV in the usual “P-V thermodynamics”. Hence, the free energy F given by Eq. (89) may be 
understood as the Gibbs energy of the Ising system in the external field, and the equilibrium value of the 
order parameter may be found from the last of Eqs. (1.39) with the replacements  –P  h, V  N: 
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Note that this formula is valid for any model of ferromagnetism, of any dimensionality, if it has the same 
form of interaction with the external field as the Ising model. 

 For the 1D Ising ring with N >> 1, Eqs. (89) and (90) yield 
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This result means that the 1D Ising model does not exhibit a phase transition, i.e., in this model Tc = 0. 
However, its susceptibility grows, at T  0, much faster than the Curie law (77). This gives us a hint 
that at low temperatures the system is “virtually ferromagnetic”, i.e. has the ferromagnetic order with 
some rare random violations. (Such violations are commonly called low-temperature excitations.) This 
interpretation may be confirmed by the following approximate calculation. It is almost evident that the 
lowest-energy excitation of the ferromagnetic state of an open-end 1D Ising chain at h = 0 is the reversal 
of signs of all spins in one of its parts – see Fig. 11.  

 

 

 

 Indeed, such an excitation (called either the “magnetic domain wall” or just the Bloch wall42) 
involves the change of sign of just one product sksk’, so according to Eq. (23), its energy EW (defined as 

42 Named after Felix Bloch who was the first one to discuss such excitations. More complex excitations such as 
skyrmions (see, e.g., A. Fert et al., Nature Review Materials 2, 17031 (2017)) have higher energies. 

Fig. 4.11. A Bloch wall in an open-end 
1D Ising chain.  

+ ++ + - - --
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the difference between the values of Em with and without the excitation) equals 2J, regardless of the wall 
position.43 Since in the ferromagnetic Ising model, the parameter J  is positive, EW > 0. If the system 
“tried” to minimize its internal energy, having any wall in the system would be energy-disadvantageous. 
However, thermodynamics tells us that at T  0, the system’s thermal equilibrium corresponds to the 
minimum of the free energy F  E – TS, rather than just energy E.44 Hence, we have to calculate the 
Bloch wall’s contribution FW to the free energy. Since in an open-end linear chain of N >> 1 spins, the 
wall can take (N – 1)  N positions with the same energy EW, we may claim that the entropy SW 
associated with this excitation is lnN, so   

     NTJTSEF WWW ln2  .    (4.92) 

 This result tells us that in the limit N  , and at T  0, the Bloch walls are always free-energy-
beneficial, thus explaining the absence of the perfect ferromagnetic order in the 1D Ising system. Note, 
however, that since the logarithmic function changes extremely slowly at large values of its argument, 
one may argue that a large but finite 1D system should still feature a quasi-critical temperature 

      
N

J
T

ln

2
"" c  ,      (4.93) 

below which it would be in a virtually complete ferromagnetic order. (The exponentially large 
susceptibility (91) is another manifestation of this fact.) 

 Now let us apply a similar approach to estimate Tc of a 2D Ising model, with open borders. Here 
the Bloch wall is a line of a certain total length L – see Fig. 12. (For the example presented in that 
figure, counting from the left to the right, L = 2 + 1 + 4 + 2 + 3 = 12 lattice periods.)  

 

 

 

 

 

 
 
 Evidently, the additional energy associated with such a wall is EW = 2JL, while the wall’s 
entropy SW may be estimated using the following reasoning. A continuous Bloch wall may be thought 
about as the path of a “Manhattan pedestrian” crossing the system between its nodes. At each junction of 
straight segments of the path, the pedestrian may select 3 choices of 4 possible directions (except the 
one that leads backward), so for a path without self-crossings, there are 3(L-1)  3L options for a walk 
starting from a certain point. Now taking into account that the open borders of a square-shaped lattice 
with N spins have a length of the order of N1/2, and the Bloch wall may start from any of them, there are 
approximately M ~ N1/23L different walks between two borders. Again estimating SW as lnM, we get 

43 For the closed-ring model (Fig. 10) such analysis gives an almost similar prediction, with the difference that in 
that system, the Bloch walls may appear only in pairs, so EW = 4J, and SW = ln[N(N – 1)]  2lnN.  
44 This is a very vivid application of one of the core results of thermodynamics. If the reader is still uncomfortable 
with it, they are strongly encouraged to revisit Eq. (1.42) and its discussion. 

Fig. 4.12. A Bloch wall in a 2D Ising system. +
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         NTTJLNTJLTSEF L
WWW ln2/)3ln2(3ln2 2/1  .  (4.94) 

(Actually, since L scales as N1/2 or higher, at N    the last term in Eq. (94) is negligible.) We see that 
the sign of the derivative FW /L depends on whether the temperature is higher or lower than the 
following critical value: 

              J
J

T 82.1
3ln

2
c  .     (4.95) 

At T < Tc, the free energy’s minimum corresponds to L  0, i.e. the Bloch walls are free-energy-
detrimental, and the system is in the purely ferromagnetic phase. 

  So, for d = 2 the simple estimate predicts a non-zero critical temperature of the same order as 
the Weiss theory (according to Eq. (72), in this case Tc = 4J). The major approximation implied in the 
calculation leading to Eq. (95) is disregarding possible self-crossings of the “Manhattan walk”. The 
accurate counting of such self-crossings is rather difficult. It had been carried out in 1944 by L. 
Onsager; since then his calculations have been redone in several easier ways, but even they are rather 
cumbersome, and I will not have time to discuss them.45 The final result, however, is surprisingly 
simple:  

                     ,269.2
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2
c J 

J
T 


      (4.96) 

i.e. showing that the simple estimate (95) is off the mark by only ~20%.  

The Onsager solution, as well as all alternative solutions of the problem that were found later, 
are so “artificial” (2D-specific) that they do not give a clear way towards their generalization to other 
(higher) dimensions. As a result, the 3D Ising problem is still unsolved analytically. Nevertheless, we do 
know Tc for it with extremely high precision – at least to the 6th decimal place. This has been achieved 
by numerical methods; they deserve a discussion because of their importance for the solution of other 
similar problems as well. Conceptually, the task is rather simple: just compute, to the desired precision, 
the statistical sum of the system (23): 
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As soon as this has been done for a sufficient number of values of the dimensionless parameters J/T and 
h/T, everything is easy; in particular, we can compute the dimensionless function 

  ZTF ln/  ,     (4.98)  

and then find the ratio J/Tc as the smallest value of the parameter J/T at which the ratio F/T (as a 
function of h/T) has a minimum at zero field. However, for any system of a reasonable size N, the 
“exact” computation of the statistical sum (97) is impossible, because it contains too many terms for any 
supercomputer to handle. For example, let us take a relatively small 3D lattice with N = 101010 = 103 
spins, which still features substantial boundary artifacts even using the periodic boundary conditions, so 
its phase transition is smeared about Tc by ~ 3%. Still, even for such a crude model, Z would include 

45 For that, the interested reader may be referred to either Sec. 151 in the textbook by Landau and Lifshitz, or 
Chapter 15 in the text by Huang. 

Onsager’s 
exact result 
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21,000  (210)100  (103)100  10300 terms. Let us suppose we are using a modern exaflops-scale 
supercomputer performing 1018 floating-point operations per second, i.e. ~1026 such operations per year. 
With those resources, the computation of just one statistical sum would require  ~10(300-26) = 10274 years. 
To call such a number “astronomic” would be a strong understatement. (As a reminder, the age of our 
Universe is close to 1.41010 years – a very humble number in comparison.) 

 This situation may be improved dramatically by noticing that any statistical sum, 
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is dominated by terms with lower values of Em. To find those lowest-energy states, we may use the 
following powerful approach (belonging to a broad class of numerical Monte-Carlo techniques), which 
essentially mimics one (randomly selected) path of the system’s evolution in time. One could argue that 
for that we would need to know the exact laws of evolution of statistical systems,46 that may differ from 
one system to another, even if their energy spectra Em are the same. This is true, but since the genuine 
value of Z should be independent of these details, it may be evaluated using any reasonable kinetic 
model that satisfies certain general rules. In order to reveal these rules, let us start from a system with 
just two states, with energies Em and Em’  Em +  – see Fig. 13.  

 

 

 

 

In the absence of quantum coherence between the states (see Sec. 2.1), the equations for the time 
evolution of the corresponding probabilities Wm and Wm’ should depend only on the probabilities (plus 
certain constant coefficients). Moreover, since the equations of quantum mechanics are linear, these 
master equations should be also linear. Hence, it is natural to expect them to have the following form, 
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where the coefficients  and  have the physical sense of the rates of the corresponding transitions 
(see Fig. 13); for example, dt is the probability of the system’s transition into the state m’ during an 
infinitesimal time interval dt, provided that at the beginning of that interval it was in the state m with full 
certainty: Wm = 1, Wm’ = 0.47 Since for the system with just two energy levels, the time derivatives of the 
probabilities have to be equal and opposite, Eqs. (100) describe a redistribution of the probabilities 
between the energy levels, while keeping their sum W = Wm + Wm’ constant. According to Eqs. (100), at 
t  , the probabilities settle to their stationary values related as 

    








m

m'

W

W
.      (4.101)  

46 Discussion of such laws in the task of physical kinetics, which will be briefly reviewed in Chapter 6. 
47 The calculation of these rates for several particular cases is described in QM Secs. 6.6, 6.7, and 7.6 – see, e.g., 
QM Eq. (7.196), which is valid for a very general model of a quantum system. 

Master 
equations 
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Now let us require these stationary values to obey the Gibbs distribution (2.58); from it 
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Comparing these two expressions, we see that the rates have to satisfy the following detailed balance 
relation:  
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Now comes the final step: since the rates of transition between two particular states should not depend 
on other states and their occupation, Eq. (103) has to be valid for each pair of states of any multi-state 
system. (By the way, this relation may serve as an important sanity check: the rates calculated using any 
reasonable model of a quantum system have to satisfy it.)  

The detailed balance yields only one equation for two rates  and ; if our only goal is the 
calculation of Z, the choice of the other equation is not too critical. A very simple choice is  
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where  is the energy change resulting from the transition. This model, which evidently satisfies the 
detailed balance relation (103), is very popular (despite the unphysical cusp this function has at  = 0), 
because it enables the following simple Metropolis algorithm (Fig. 14).  

  

 

 

 

 

 

 

 

 

 

 

 The calculation starts by setting a certain initial state of the system. At relatively high 
temperatures, the state may be generated randomly; for example, in the Ising system, the initial state of 
each spin sk may be selected independently, with a 50% probability. At low temperatures, starting the 
calculations from the lowest-energy state (in particular, for the Ising model, from the ferromagnetic state 
sk = sgn(h) = const) may give the fastest convergence. Now one spin is flipped at random, the 

  >    <  

set up an initial state 

- flip a random spin 
- calculate  

- calculate  () 

generate random  
(0    1) 

compare 
   

accept  
spin flip  

reject  
spin flip  

Fig. 4.14. A crude scheme of 
the Metropolis algorithm for 
the Ising model simulation. 

Detailed 
balance 
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corresponding change  of the energy is calculated,48 and plugged into Eq. (104) to calculate (). Next, 
a pseudo-random number generator is used to generate a random number , with the probability density 
being constant on the segment [0, 1]. (Such functions are available in virtually any numerical library.) If 
the resulting   is less than (), the transition is accepted, while if  > (), it is rejected. Physically, 
this means that any transition down the energy spectrum ( < 0) is always accepted, while those up the 
energy profile ( > 0) are accepted with the probability proportional to exp{–/T}.49 After sufficiently 
many such steps, the statistical sum (99) may be calculated approximately as a partial sum over the 
states passed by the system. (It may be better to discard the contributions from a few first steps, to avoid 
the effects of the initial state choice.) 

This algorithm is extremely efficient. Even with the very modest computers available in the 
1980s, it has allowed simulating a 3D Ising system of (128)3 spins to get the following result: J/Tc  
0.221650  0.000005. For all practical purposes, this result is exact  – so perhaps the largest benefit of 
the possible future analytical solution of the infinite 3D Ising problem will be a virtually certain Nobel 
Prize for its author. Table 2 summarizes the values of Tc for the Ising model. Very visible is the fast 
improvement of the prediction accuracy of the molecular-field approximation, because it is 
asymptotically correct at d  . 

 
Table 4.2. The critical temperature Tc (in the units of J) of the Ising model 

of a ferromagnet (J > 0), for several values of dimensionality d 

 

 

 

 
 

Finally, I need to mention the renormalization-group (“RG”) approach,50 despite its low 
efficiency for Ising-type problems. The basic idea of this approach stems from the scaling law (30)-(31): 
at T = Tc the correlation radius rc diverges. Hence, the critical temperature may be found from the 
requirement for the system to be spatially self-similar. Namely, let us form larger and larger groups 
(“blocks”) of adjacent spins, and require that all properties of the resulting system of the blocks 
approach those of the initial system, as T approaches Tc. 

 Let us see how this idea works for the simplest nontrivial (1D) case described by the statistical 
sum (80). Assuming N to be even (which does not matter at N  ), and adding an inconsequential 
constant C to each exponent (for the purpose that will be clear soon), we may rewrite this expression as 

48 Note that a flip of a single spin changes the signs of only (2d + 1) terms in the sum (23), i.e. does not require 
the re-calculation of all (2d +1)N  terms of the sum, so the computation of  takes just a few multiply-and-
accumulate operations even at N >> 1. 
49 The latter step is necessary to avoid the system’s trapping in local minima of its multidimensional energy 
profile Em(s1, s2,…, sN). 
50 Initially developed in the quantum field theory in the 1950s, it was adapted to statistics by L. Kadanoff in 1966, 
with a spectacular solution of the so-called Kubo problem by K. Wilson in 1972, later awarded with a Nobel Prize. 

d Molecular-field approximation – Eq. (72) Exact value Exact value’s source 
0 0 0  Gibbs distribution 
1 2 0 Transfer matrix theory 
2 4 2.269… Onsager’s solution 
3 6 4.513… Numerical simulation 
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Let us group each pair of adjacent exponents to recast this expression as a product over only even 
numbers k, 
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and carry out the summation over two possible states of the internal spin sk explicitly: 

      

 

 

    .2
2

expcosh2

2
22

exp

2
22

exp

1 ,...4,2
1111

1 ,...4,2
1111

1111

 

 

 


 










 







 

























 







 



k

k

s Nk
kkkk

s Nk
kkkk

kkkk

Css
T

h

T

h
ss

T

J

Cs
T

h

T

h
ss

T

J
s

T

h

Cs
T

h

T

h
ss

T

J
s

T

h

Z

  (4.107) 

 Now let us require this statistical sum (and hence all statistical properties of the system of two-
spin blocks) to be identical to that of the Ising system of N/2 spins, numbered by odd k: 
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with some different parameters h’, J’, and C’, for all four possible values of sk-1 = 1 and sk+1 = 1. 
Since the right-hand side of Eq. (107) depends only on the sum (sk-1 + sk+1), this requirement yields only 
three (rather than four) independent equations for finding h’, J’, and C’. Of them, the equations for h’ 
and J’ depend only on h and J (but not on C),51 and may be represented in an especially simple form, 
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if the following notation is used: 
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 Now the grouping procedure may be repeated, with the same result (109)-(110). Hence these 
equations may be considered as recurrence relations describing repeated doubling of the spin block size. 
Figure 15 shows (schematically) the trajectories of this dynamic system on the phase plane [x, y]. (Each 
trajectory is defined by the following property: for each of its points {x, y}, the point {x’, y’} defined by 
the “mapping” Eq. (109) is also on the same trajectory.) For the ferromagnetic coupling (J > 0) and h > 
0, we may limit the analysis to the unit square 0  x, y  1. If this flow diagram had a stable fixed point 
with x’ = x = x  0 (i.e. T/J < ) and y’ = y = 1 (i.e. h = 0), then the first of Eqs. (110) would 
immediately give us the critical temperature of the phase transition in the field-free system: 

51 This might be expected because physically C is just a certain constant addition to the system’s energy. 
However, the introduction of that constant was mathematically necessary, because Eqs. (107) and (108) may be 
reconciled only if C’  C.  
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 However, Fig. 15 shows that the only fixed point of the 1D system is x = y = 0, which (at a finite 
coupling J) should be interpreted as Tc = 0. This is of course in agreement with the exact result of the 
transfer-matrix analysis but does not provide much additional information. 

 

 

 

 

 

 

 

 Unfortunately, for higher dimensionalities, the renormalization-group approach rapidly becomes 
rather cumbersome and requires certain approximations whose accuracy cannot be easily controlled. For 
the 2D Ising system, such approximations lead to the prediction Tc  2.55 J, i.e. to a substantial 
difference from the exact result (96).  

 

4.6. Exercise problems 

 4.1. Calculate the entropy, the internal energy, and the specific heat cV of the van der Waals gas, 
and discuss the results. For the gas with temperature-independent cV, find the relation between V and T 
during an adiabatic process. 
 
 4.2. Use two different approaches to calculate the coefficient (E/V)T for the van der Waals gas 
and the change of temperature of such a gas, with a temperature-independent CV, at its very fast 
expansion.  
 
 4.3. For real gases, the Joule-Thomson coefficient (T/P)H (and hence the gas temperature 
change at its throttling, see Problem 1.11) inverts its sign at crossing the so-called inversion curve 
Tinv(P). Calculate this curve for the van der Waals gas. 
 
 4.4. Calculate the difference CP – CV for the van der Waals gas, and compare the result with that 
for an ideal classical gas. 
 
 4.5. For the van der Waals model, calculate the temperature dependence of the phase-equilibrium 
pressure P0(T) and the latent heat (T), in the low-temperature limit T << Tc. 
  
 4.6. Perform the same tasks as in the previous problem, in the opposite limit: in close vicinity of 
the critical point Tc. 
 

}/4exp{ TJx 0

 Thy /2exp 

1

1

0h

h

T0T
Fig. 4.15. The RG flow 
diagram of the 1D Ising 
system (schematically). 
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 4.7. Calculate CV and CP for the stable gas-liquid system described by the van der Waals 
equation, for V = Vc and 0 < Tc – T << Tc. 
 
 4.8.  Calculate the critical values Pc, Vc, and Tc for the so-called Redlich-Kwong model of the real 
gas, with the following equation of state:52 

  NbV
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TNbVV

a
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
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

2/1
, 

with constant parameters a and b. 

 Hint: Be prepared to solve a cubic equation with particular (numerical) coefficients. 
 
 4.9. Calculate the critical values Pc, Vc, and Tc for the phenomenological Dieterici model, with 
the following equation of state:53 
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with constant parameters a and b. Compare the value of the dimensionless factor PcVc/NTc with those 
given by the van der Waals and Redlich-Kwong models.  
 
 4.10. In the crude sketch shown in Fig. 3b, the derivatives dP/dT of the phase transitions liquid-
gas (“vaporization”) and solid-gas (“sublimation”), at the triple point, are different, with 

tt
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Is this occasional? What relation between these derivatives can be obtained from thermodynamics? 
 
 4.11. Use the Clapeyron-Clausius formula (17) to calculate the latent heat  of the Bose-Einstein 
condensation, and compare the result with that obtained in the solution of Problem 3.21. 
 
 4.12. As was discussed in Sec. 4.1 of the lecture notes, properties  of systems with first-order 
phase transitions (such as the van der Waals gas) change qualitatively at the critical temperature: at T < 
Tc, the system may include two different phases of the same substance. However, since the difference in 
the density of these phases, in equilibrium, is a continuous function of the difference Tc – T, this change 
itself is sometimes considered a continuous phase transition between the purely gaseous phase and the 
mixed gas-liquid “phase”. From this viewpoint, what are the most reasonable analogs of the critical 
exponents , , and , which were defined in  Sec. 4.2, for such a continuous transition? Evaluate these 
exponents for the van der Waals model. 
 
  

52 This equation of state, suggested in 1948, describes most real gases better than not only the original van der 
Waals model, but also other two-parameter alternatives, such as the Berthelot, modified-Berthelot, and Dieterici 
models, though some approximations with more fitting parameters (such as the Soave-Redlich-Kwong model) 
work even better. 
53 For practical applications, this approximation is currently less popular than the Redlich-Kwong model (also 
with two fitting parameters), whose analysis was the task of the previous problem. 
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 4.13.  

 (i) Compose such an effective single-particle Hamiltonian that the corresponding stationary 
Schrödinger equation coincides with the Gross-Pitaevski equation (58).  
 (ii) Use this Gross-Pitaevskii Hamiltonian, with the particular confining potential U(r) = 
m2r2/2, to calculate the ground-state energy E of N >> 1 confined particles, by assuming the natural 
trial solution   exp{–r2/2r0

2}.54  
 (iii) Explore the function E(r0) for positive and negative values of the constant b, and interpret 
the results. 
 (iv) For b < 0 with small  b , estimate the largest number N of particles that may form a 
metastable Bose-Einstein condensate. 
 
 4.14. Superconductivity may be suppressed by a sufficiently strong magnetic field. In the 
simplest case of a bulk, long cylindrical sample of a type-I superconductor, placed into an external 
magnetic field Hext parallel to its axis, this suppression takes a simple form of a simultaneous transition 
of the whole sample from the superconducting state to the “normal” (non-superconducting) state at a 
certain value Hc(T) of the field’s magnitude. This critical field gradually decreases with temperature 
from its maximum value Hc(0) at T  0 to zero at the critical temperature Tc. Assuming that the 
function Hc(T) is known, calculate the latent heat of this phase transition as a function of temperature, 
and spell out its values at T  0 and T = Tc. 

 Hint: In this particular context, “bulk sample” means a sample much larger than the intrinsic 
length scales of the superconductor (such as the London penetration depth L and the coherence length 
).55 For such bulk superconductors, magnetic properties of the superconducting phase may be well 
described as perfect diamagnetism, with B = 0 inside it.  
 
 4.15. In some textbooks, the discussion of thermodynamics of superconductivity is started by 
displaying, as self-evident, the following formula: 
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sn
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where Fs and Fn are the free energy values in the superconducting and non-superconducting (“normal”) 
phases, and Hc(T) is the critical value of the magnetic external field. Is this formula correct, and if not, 
what qualification is necessary to make it valid? Assume that all the conditions of a simultaneous field-
induced phase transition in the whole sample, spelled out in the previous problem, are satisfied. 
 
 4.16. Consider a system of N = 3 Ising “spins” (sk = 1) with similar ferromagnetic coupling J of 
each pair of them, in thermal equilibrium.  

 (i) Calculate the order parameter  and the low-field susceptibility   /hh=0. 
 (ii) Use the low-temperature limit of the result for  to predict it for a similar “ring” with an 
arbitrary N, and verify your prediction by a direct calculation (in this limit). 
 (iii) Discuss the relation between the last result, in the limit N  , and Eq. (91). 

54 This task is essentially the first step of the variational method of quantum mechanics – see, e.g., QM Sec. 2.9. 
55A discussion of these parameters, as well as of the difference between the type-I and type-II superconductivity, 
may be found in EM Secs.  6.4-6.5. However, those details are not needed for the solution of this problem. 
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4.17. Calculate the average energy, entropy, and heat capacity of a uniform three-site ring of 
Ising-type “spins” (sk = 1), with antiferromagnetic coupling (of magnitude J) between the sites, in 
thermal equilibrium at temperature T, with no external magnetic field. Find the asymptotic behavior of 
its heat capacity for low and high temperatures, and give an interpretation of the results. 
 
 4.18. Using the results discussed in Sec. 5 for the infinite 1D Ising model, calculate the average 
energy, free energy, entropy, and heat capacity (all per one “spin”) as functions of temperature T and 
external field h. Sketch the temperature dependence of the heat capacity for various values of the h/J 
ratio, and give a physical interpretation of the result. 
 
 4.19. Calculate the specific heat (per “spin”) for the d-dimensional Ising problem in the absence 
of the external field, in the molecular-field approximation. Sketch the temperature dependence of C and 
compare it with the corresponding plot in the previous problem’s solution. 
 
 4.20. Prove that in the limit T  Tc, the molecular-field approximation, applied to the Ising 
model with a spatially constant order parameter, gives results similar to those of Landau’s mean-field 
theory with certain coefficients a and b. Calculate these coefficients and list the critical exponents 
defined by Eqs. (26), (28), (29), and (32), given by this approximation. 
 
 4.21. Assuming that the statistical sum ZN of a field-free, open-ended 1D Ising system of N 
“spins” with arbitrary coefficients Jk is known, calculate ZN+1. Then use the result to obtain an explicit 
expression for ZN and compare it with Eq. (88). 
 
 4.22. Use the molecular-field approximation to calculate the critical temperature and the low-
field susceptibility of a d-dimensional cubic lattice of spins, described by the so-called classical 
Heisenberg model:56   
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Here, in contrast to the (otherwise, very similar) Ising model (23), the spin of each site is described as a 
classical 3D vector sk = {sxk, syk, szk} of unit length: 2

ks  = 1. 

 
 4.23. Use the molecular-field approximation to calculate the coefficient a in Landau’s expansion 
(46) for a 3D cubic lattice of spins described by the classical Heisenberg model (whose analysis was the 
subject of the previous problem). 
 
 4.24. Use the molecular-field approximation to calculate the critical temperature of the 
ferromagnetic transition for the d-dimensional cubic Heisenberg lattice of arbitrary (either integer or 
half-integer) quantum spins s. 

 Hint: This model is described by Eq. (4.21) of the lecture notes, with σ̂ now meaning the vector 
operator of spin s, in units of Planck’s constant . 

56 This classical model is formally similar to the generalization of the genuine (quantum) Heisenberg model (21) 
to arbitrary spin s, and serves as its infinite-spin limit. 


