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Chapter 5. Fluctuations 

This chapter discusses fluctuations of macroscopic variables, mostly in thermodynamic equilibrium. In 
particular, it describes the intimate connection between fluctuations and dissipation (damping) in 
dynamic systems coupled to multi-particle environments. This connection culminates in the Einstein 
relation between the diffusion coefficient and mobility, the Nyquist formula, and its quantum-
mechanical generalization – the fluctuation-dissipation theorem. An alternative approach to the same 
problem, based on the Smoluchowski and Fokker-Planck equations, is also discussed in brief. 

 

5.1. Characterization of fluctuations 

 At the beginning of Chapter 2, we discussed the notion of averaging a variable f over a statistical 
ensemble – see Eqs. (2.7) and (2.10). Now, the fluctuation of the variable is defined simply as its 
deviation from the average  f : 
                   fff 

~
;      (5.1) 

this deviation is, generally, also a random variable. The most important property of any fluctuation is 
that its average over the same statistical ensemble equals zero; indeed: 

    .0
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As a result, such an average cannot be used to characterize fluctuations’ intensity, and the simplest 
meaningful characteristic of the intensity is the variance (sometimes called “dispersion”): 
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The following simple property of the variance is frequently convenient for its calculation: 
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so, finally: 
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 As the simplest example, consider a variable that takes only two values, 1, with equal 
probabilities Wj = ½. For such a variable, the basic Eq. (2.7) yields 
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The square root of the variance,  
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 is called the root-mean-square (r.m.s.) fluctuation. An advantage of this measure is that it has the same 
dimensionality as the variable itself, so the ratio f/ f  is dimensionless, and is used to characterize the 
relative intensity of fluctuations.  

 As has been mentioned in Chapter 1, all results of thermodynamics are valid only if the 
fluctuations of thermodynamic variables (the internal energy E, entropy S, etc.) are relatively small.1 Let 
us make a simple estimate of the relative intensity of fluctuations, taking as the simplest example a 
system of N independent, similar parts (e.g., particles), and an extensive variable 
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where all single-particle functions fk are similar, besides that each of them depends on the state of only 
“its own” (kth) part. The statistical average of such F  is evidently 
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while the variance of its fluctuations is 
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Now we may use the fact that for two independent variables: 
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indeed, the first of these equalities may be used as the mathematical definition of their independence. 
Hence,  only the terms with k’ = k make nonzero contributions to the right-hand side of Eq. (9): 
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Comparing Eqs. (8) and (11), we see that the relative intensity of fluctuations of the variable F, 
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tends to zero as the system size grows (N  ). It is this fact that justifies the thermodynamic approach 
to typical physical systems, with the number N of particles of the order of the Avogadro number NA ~ 
1024. Nevertheless, in many situations even small fluctuations of variables are important, and in this 
chapter, we will calculate their basic properties, starting with the variance. 

 It should be comforting for the reader to notice that for one very important case, such a 
calculation has already been done in our course. Indeed, for any generalized coordinate q and 
generalized momentum p that give quadratic contributions of the type (2.46) to the system’s 

1 Let me remind the reader that up to this point, the averaging signs … were dropped in most formulas, for the 
sake of notation simplicity. In this chapter, I have to restore these signs to avoid confusion. The only exception 
will be temperature – whose average, following (probably, bad :-) tradition, will be still called just T everywhere, 
besides the last part of Sec. 3, where temperature fluctuations are discussed explicitly. 
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Hamiltonian (as in a harmonic oscillator), we have derived the equipartition theorem (2.48), valid in the 
classical limit. Since the average values of these variables, in the thermodynamic equilibrium, equal 
zero, Eq. (6) immediately yields their r.m.s. fluctuations: 
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The generalization of these classical relations to the quantum-mechanical case (T ~ ) is provided by 
Eqs. (2.78) and (2.81): 
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 However, the intensity of fluctuations in other systems requires special calculations. Moreover, 
only a few cases allow for general, model-independent results. Let us review some of them. 

 

5.2. Energy and the number of particles 

 First of all, note that fluctuations of macroscopic variables depend on particular conditions.2  For 
example, in a mechanically- and thermally-insulated system with a fixed number of particles, i.e. a 
member of a microcanonical ensemble, the internal energy does not fluctuate: E = 0. However, if such 
a system is in thermal contact with the environment, i.e. is a member of a canonical ensemble (Fig. 2.6), 
the situation is different. Indeed, for such a system we may apply the general Eq. (2.7), with Wm given 
by the Gibbs distribution (2.58)-(2.59), not only to E but also to E2. As we already know from Sec. 2.4, 
the former average,  
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yields Eq. (2.61b), which may be rewritten in the form 
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which is more convenient for our current purposes. Let us carry out a similar calculation for E2: 
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It is straightforward to verify, by double differentiation, that the last expression may be rewritten in a 
form similar to Eq. (16): 
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Now it is easy to use Eqs. (4) to calculate the variance of energy fluctuations: 
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2 Unfortunately, even in some renowned textbooks, certain formulas pertaining to fluctuations are either incorrect 
or given without specifying the conditions of their applicability, so the reader’s caution is advised.  
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Since Eqs. (15)-(19) are valid only if the system’s volume V is fixed (because its change may affect the 
energy spectrum Em), it is customary to rewrite this important result as follows: 
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 This is a remarkably simple, fundamental result. As a sanity check, for a system of N similar, 
independent particles,  E  and hence CV are proportional to N, so Eq. (20) yields E  N1/2 and E/E 
 N–1/2, in agreement with Eq. (12). Let me emphasize that the classically-looking Eq. (20) is based on 
the general Gibbs distribution, and hence is valid for any system (either classical or quantum) in thermal 
equilibrium. 

 Some corollaries of this result will be discussed in the next section, and now let us carry out a 
very similar calculation for a system whose number N of particles in a system is not fixed, because they 
may go to, and come from its environment at will. If the chemical potential  of the environment and its 
temperature T are fixed, i.e. we are dealing with the grand canonical ensemble (Fig. 2.13), we may use 
the grand canonical distribution (2.106)-(2.107): 
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Acting exactly as we did above for the internal energy, we get 
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so the particle number’s variance is 
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in full analogy with Eq. (19).3 

 In particular, for an ideal classical gas, we may combine the last result with Eq. (3.32b). (As was 
already emphasized in Sec. 3.2, though that result has been obtained for the canonical ensemble, in 
which the number of particles N is fixed, at N >> 1 the fluctuations of N in the grand canonical ensemble 
should be relatively small, so the same relation should be valid for the average N in that ensemble.) 
Easily solving Eq. (3.32b) for N, we get  
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where “const” means a factor constant at the partial differentiation of  N  over , required by Eq. (24). 
Performing the differentiation and then using Eq. (25) again, 

3 Note, however, that for the grand canonical ensemble, Eq. (19) is generally invalid. 
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we get from Eq. (24) a very simple result: 
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 This relation is so important that I will also show how it may be derived differently. As a by-
product of this new derivation, we will prove that this result is valid for systems with an arbitrary (say, 
small) N, and also get more detailed information about the statistics of fluctuations of that number. Let 
us consider an ideal classical gas of N0 particles in a volume V0, and calculate the probability WN to have 
exactly N  N0 of these particles in its part of volume V  V0 – see Fig. 1. 

 

 

 

 

 

 For one particle, such probability is obviously W = V/V0 = N/N0  1, while the probability of 
having that particle in the remaining part of the volume is W’ = 1 – W = 1 – N/N0. If all particles are 
distinct, the probability of having N  N0 specific particles in volume V and (N – N0) specific particles in 
volume (V – V0) is WNW’(N0–N). However, if we do not want to distinguish the particles, we should 
multiply this probability by the number of possible particle combinations keeping the numbers N and N0 
constant, i.e. by the binomial coefficient N0!/N!(N0 – N)!.4 As a result, the required probability is 
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This is the so-called binomial probability distribution,5 valid for any  N  and N0.  

 Still keeping  N  arbitrary, we can simplify the binomial distribution by assuming that the whole 
volume V0, and hence N0, are very large: 
         NN 0 ,      (5.29) 

where N means any value of interest, including  N . Indeed, in this limit we can neglect N in 
comparison with N0 in the second exponent of Eq. (28), and also approximate the fraction N0!/(N0 – N)!, 
i.e. the product of N terms, (N0 – N + 1) (N0 – N + 2)…(N0 – 1)N0, by just N0

N. As a result, we get 
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4 See, e.g., MA Eq. (2.2). 
5 It was derived by Jacob Bernoulli (1655-1705). 

Fig. 5.1. Deriving the binomial, 
Poisson, and Gaussian distributions. 
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where, as before, W =  N /N0. In the limit (29), W  0, so the factor inside the square brackets tends to 
1/e, the reciprocal of the natural logarithm base.6 Thus, we get an expression independent of N0: 
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 This is the much-celebrated Poisson distribution7 which describes a very broad family of random 
phenomena. Figure 2 shows this distribution for several values of  N  – which, in contrast to N, is not 
necessarily an integer.  

 

 

 

 

 

 

 

 

 

 

 In the limit of very small N, the function WN(N) is close to an exponent, WN ≈ WN   N N, 
while in the opposite limit,  N  >> 1, it rapidly approaches the Gaussian (or “normal”) distribution8 
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(Note that the Gaussian distribution is also valid if both N and N0 are large, regardless of the relation 
between them – see Fig. 3.) 

 

 

 

 

 

6 Indeed, this is just the most popular definition of that major mathematical constant – see, e.g., MA Eq. (1.2a) 
with n = –1/W. 
7 Named after the same Siméon Denis Poisson (1781-1840) who is also responsible for other major mathematical 
results and tools used in this series, including the Poisson equation – see, e.g., Sec. 6.4 below. 
8 Named after Carl Friedrich Gauss (1777-1855), even though Pierre-Simone Laplace (1749-1827) is credited for 
substantial contributions to its development.  

Fig. 5.2. The Poisson distribution for 
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that average, the argument N may take 
only integer values, so the lines in 
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 A major property of the Poisson (and hence of the Gaussian) distribution is that it has the same 
variance as given by Eq. (27): 

         .
~ 22 NNNN       (5.33) 

(This is not true for the general binomial distribution.) For our current purposes, this means that for the 
ideal classical gas, Eq. (27) is valid for any number of particles. 

 

5.3. Volume and temperature 

 What are the r.m.s. fluctuations of other thermodynamic variables – like V, T, etc.? Again, the 
answer depends on specific conditions. For example, if the volume V occupied by a gas is externally 
fixed (say, by rigid walls), it obviously does not fluctuate at all: V = 0. On the other hand, the volume 
may fluctuate in the situation when the average pressure is fixed – see, e.g., Fig. 1.5. A formal 
calculation of these fluctuations, using the approach applied in the last section, is complicated by the 
fact that in most cases of interest, it is physically impracticable to fix its conjugate variable P, i.e. 
suppress its fluctuations. For example, the force F(t) exerted by an ideal classical gas on a container’s 
wall (whose measure the pressure is) is the result of individual, independent hits of the wall by particles 
(Fig. 4), with the time scale c ~ rB/v21/2 ~ rB/(T/m)1/2 ~ 10–16 s, so its spectrum extends to very high 
frequencies, virtually impossible to control.  

 

 

 

 

  
 
However, we can use the following trick, very typical for the theory of fluctuations. It is almost 

evident that the r.m.s. fluctuations of the gas volume are independent of the shape of the container. Let 
us consider a particular situation similar to that shown in Fig. 1.5, with the container of a cylindrical 
shape, with the base area A.9 Then the coordinate of the piston is just q = V/A, while the average force 
exerted by the gas on the cylinder is F  = PA – see Fig. 5. Now if the piston is sufficiently massive, 
the frequency  of its free oscillations near the equilibrium position is low enough to satisfy the 
following three conditions. 

 First, besides balancing the average force F  and thus sustaining the average pressure  P  of 
the gas, the interaction between the heavy piston and the relatively light particles of the gas is weak, 
because of a relatively short duration of the particle hits (Fig. 4).  As a result, the full energy of the 
system may be represented as a sum of those of the particles and the piston, with a quadratic 
contribution to the piston’s potential energy by small deviations from the equilibrium:  

9 As a math reminder, the term “cylinder” does not necessarily mean the “circular cylinder”; the shape of its cross-
section may be arbitrary; it just should not change with height. 
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Fig. 5.4. The force exerted by gas 
particles on a container’s wall, as a 
function of time (schematically). 
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and  is the effective spring constant arising from the finite compressibility of the gas. 

 

 

 

 

 

 

 

 Second, at  = (/M)1/2  0, this spring constant may be calculated just as for constant 
variations of the volume, with the gas remaining in quasi-equilibrium at all times: 
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This partial derivative10 should be calculated at whatever the thermal conditions are, e.g., with S = const 
for adiabatic conditions (i.e., a thermally insulated gas), or with T = const for isothermal conditions 
(including a good thermal contact between the gas and a heat bath), etc. With that constant denoted as X, 
Eqs. (34)-(35) give 
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 Finally, assuming that  is also small in the sense  << T, we may apply, to the piston’s 
fluctuations, the classical equipartition theorem:  Up = T/2, giving11 
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 Since this result is valid for any A and , it should not depend on the system’s geometry and the 
piston’s mass, provided that it is large in comparison with the effective mass of a single system 
component (say, a gas molecule) – the condition that is naturally fulfilled in most experiments. For the 

10 As was already discussed in Sec. 4.1 in the context of the van der Waals equation, for the mechanical stability 
of a gas (or liquid), the derivative P/V has to be negative, so  is positive. 
11 One may meet statements that a similar formula, 
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is valid for pressure fluctuations. However, this equality does not take into account the different physical nature of 
pressure (Fig. 4), with its very broad frequency spectrum. This issue will be discussed later in this chapter. 
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Fig. 5.5. Deriving Eq. (37). 
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particular case of fluctuations at constant temperature (X = T),12 we may use the definition (3.58) of the 
isothermal bulk modulus (reciprocal compressibility) KT of the gas to rewrite Eq. (37a) as  

                  
T

T K

TV
V 2~

.      (5.37b) 

For an ideal classical gas of N particles, with the equation of state V = NT/P, it is easier to use 
directly Eq. (37a), again with X = T, to get 

         
2/1

2

2
2 1

  i.e.,
~

NV

V

N

V

P

NT
TV T

T


















,   (5.38) 

in full agreement with the general trend given by Eq. (12). 

 Now let us proceed to fluctuations of temperature, for simplicity focusing on the case V = const. 
Let us again assume that the sample we are considering is weakly coupled to a heat bath of temperature 
T0, in the sense that the time  of temperature equilibration between the two is much larger than the time 
of the internal equilibration, called thermalization. Then we may assume that, on the former time scale,  
temperature T describes the whole sample, though it may fluctuate: 

      TTT
~ .      (5.39) 

Moreover, due to the (relatively) large , we may use the stationary relation between small fluctuations 
of temperature and the internal energy of the system: 

                
VV C

E
δT

C

E
T


  that  so,

~
~

.     (5.40) 

With those assumptions, Eq. (20) immediately yields the famous expression for the so-called 
thermodynamic fluctuations of temperature: 

               
2/1

VV C

T

C

E
T 

 .     (5.41) 

 The most straightforward application of this result is to analyses of so-called bolometers – 
broadband detectors of electromagnetic radiation in microwave and infrared frequency bands. (In 
particular, they are used for measurements of the CMB radiation, which was discussed in Sec. 2.6.) In 
such a detector (Fig. 6), the incoming radiation is focused on a small sensor (e.g., a small piece of a 
germanium crystal, a superconductor thin film at temperature T  Tc, etc.), which is well isolated 
thermally from the environment. As a result, the absorption of an even small radiation power P  leads to 
a noticeable change T of the sensor’s average temperature T and hence of its electric resistance R, 
which is probed up by low-noise external electronics.13 If the power does not change in time too fast, T 
is a certain function of P, turning to 0 at P = 0. Hence, if  T  is much lower than the environment 
temperature T0, we may keep only the main, linear term in its Taylor expansion in small P: 

12 In this case, we may also use the second of Eqs. (1.39) to rewrite Eq. (37) via the second derivative (2G/P2)T. 
13 Besides low internal electric noise, a good sensor should have a sufficiently large temperature responsivity 
dR/dT, making the noise contribution by the readout electronics insignificant – see below. 

Fluctuations 
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G

P
 0TTT ,     (5.42) 

where the coefficient G  P/T is called the thermal conductance of the (perhaps unintentional but 
unavoidable) thermal coupling between the sensor and the heat bath – see Fig. 6. 

 

 

 

 

 

 
 
 The power may be detected if the electric signal from the sensor, which results from the change 
T, is not drowned in spontaneous fluctuations. In practical systems, these fluctuations are contributed 
by several sources including electronic amplifiers. However, in modern systems, these “technical” 
contributions to noise are successfully suppressed,14 and the dominating noise source is the fundamental 
sensor temperature fluctuations described by Eq. (41). In this case, the so-called noise-equivalent power 
(“NEP”), defined as the level of P  that produces the signal equal to the r.m.s. value of noise, may be 
calculated by equating the expressions (41) (with T = T0) and (42): 

          
2/1

0NEP
VC

T
TT

G
P    .     (5.43) 

This expression shows that to decrease the NEP, i.e. improve the detector’s sensitivity, both the 
environment temperature T0 and the thermal conductance G should be reduced. In modern receivers of 
radiation, their typical values are of the order of 0.1 K and 10-10 W/K, respectively.  

 On the other hand, Eq. (43) implies that to increase the bolometer’s sensitivity, i.e. to reduce the 
NEP, the CV of the sensor, and hence its mass, should be increased. This conclusion is valid only to a 
certain extent, because due to technical reasons (parameter drifts and the so-called 1/f noise of the sensor 
and external electronics), the incoming power has to be modulated with as high a frequency  as 
technically possible (in practical receivers, the cyclic frequency   = /2 of the modulation is between 
10 and 1,000 Hz), so the electrical signal might be picked up from the sensor at that frequency. As a 
result, the CV may be increased only until the thermal relaxation constant of the sensor, 

            
G

VC
  ,      (5.44) 

14 An important modern trend in this progress [see, e.g., P. Day et al., Nature 425, 817 (2003)] is the replacement 
of the resistive temperature sensors R(T) with thin and narrow superconducting strips with temperature-sensitive 
kinetic inductance Lk(T) – see the model solution of EM Problems 6.20-6.21. Such inductive sensors have zero dc 
resistance and hence vanishing Johnson-Nyquist noise at typical signal pickup frequencies of a few kHz – see Eq. 
(81) and its discussion below. A recent example of their application is in the Prime-Cam receiver of the FYST 
submillimeter telescope (see, e.g., https://en.wikipedia.org/wiki/Fred_Young_Submillimeter_Telescope), to see 
first light in 2024. 

Fig. 5.6. The conceptual scheme of a bolometer. 
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becomes close to 1/, because at  >> 1 the useful signal drops faster than noise. So, the lowest (i.e. 
the best) values of the NEP, 
        1~with  ,)NEP( 2/12/1

0min  GT ,    (5.45) 

are reached at    1. (The exact values of the optimal product , and of the numerical constant   ~ 1 
in Eq. (45), depend on the exact law of the power modulation and the readout signal processing 
procedure.) With the parameters cited above, this estimate yields (NEP)min/1/2 ~ 310-17 W/Hz1/2 – a 
very low power indeed.  

 However, perhaps counter-intuitively, the power modulation allows the bolometric (and other 
broadband) receivers to register radiation with power much lower than this NEP! Indeed, picking up the 
sensor signal at the modulation frequency , we can use the subsequent electronics stages to filter out 
all the noise besides its components within a very narrow band, of width  << , around the 
modulation frequency (Fig. 7). This is the idea of a microwave radiometer,15 currently used in all 
sensitive broadband receivers of radiation. 

 

  

 

 

 

 

  

 

 In order to analyze this opportunity, we need to develop theoretical tools for a quantitative 
description of the spectral distribution of fluctuations. Another motivation for that description is a need 
for analysis of variables dominated by fast (high-frequency) components, such as pressure – please have 
one more look at Fig. 4. Finally, during such an analysis, we will run into the fundamental relation 
between fluctuations and dissipation, which is one of the main results of statistical physics as a whole. 

 

5.4. Fluctuations as functions of time 

 In most discussions of the previous three sections, the averaging … of variables was assumed 
to be over an appropriate statistical ensemble of many similar systems. However, as was discussed in 
Sec. 2.1, most physical systems of interest are ergodic. If such a system is also stationary, i.e. the 
statistical averages of its variables do not change with time, the averaging may be also understood as 
that over a sufficiently long time interval. In this case, we may think about fluctuations of any variable f 

as a random process taking place in just one particular system, but developing in time: )(
~~

tff  . 

15 It was pioneered in the 1950s by Robert Henry Dicke, so the device is frequently called the Dicke radiometer. 
Note that the optimal strategy of using similar devices for time- and energy-resolved detection of single high-
energy photons is different – though even it is essentially based on Eq. (41). For a recent brief review of such 
detectors see, e.g., K. Morgan, Phys. Today 71, 29 (Aug. 2018), and references therein. 

input 
power modulation 

frequency  

frequency 0 

noise density 

pick-up 
to output 

Fig. 5.7. The basic idea of the Dicke 
radiometer. 
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 There are two mathematically equivalent approaches to the description of such random functions 
of time, called the time-domain picture and the frequency-domain picture, with their relative 
convenience depending on the particular problem to be solved. In the time domain, we need to 

characterize random fluctuations )(
~

tf by some deterministic function of time. Evidently, the average 

 )(
~

tf  cannot be used for this purpose, because it equals zero – see Eq. (2). Of course, the variance (3) 
is not necessarily equal to zero, but if the system is stationary, that average cannot depend on time 
either. Because of that, let us consider the following average: 

        )(
~

)(
~

t'ftf .      (5.46) 

Generally, this is a function of two arguments. However, in a stationary system, the average (46) may 
depend only on the difference, 
           tt'τ  ,      (5.47) 

between the two observation times. In this case, the average (46) is called the correlation function of the 
variable f: 

          )(
~

)(
~

)(   tftfK f .     (5.48) 

Again, here the averaging may be understood as that either over a statistical ensemble of 
macroscopically similar systems or over a sufficiently long interval of the time argument t, with the 
argument   kept constant.  The correlation function’s name16 catches the idea of this notion very well: 
Kf() characterizes the mutual relation between the fluctuations of the variable f at two times separated 
by the given interval . Let us list the basic properties of this function.17  

 First of all, Kf () has to be an even function of the time delay . Indeed, we may write 

   )(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(   t'ft'ftftftftfK f ,  (5.49) 

with t’  t – . For stationary processes, this average cannot depend on the common shift of two 
observation times t and t’, so the averages (48) and (49) have to be equal: 

                       )()(  ff KK  .     (5.50) 

Second, at   0 the correlation function tends to the variance: 

              0
~

)(
~

)(
~

)0( 2  ftftfK f .    (5.51) 

In the opposite limit, when  is much larger than a certain characteristic correlation time c of the 
system,18 the correlation function has to tend to zero because the fluctuations separated by such time 

16 Another term, the autocorrelation function, is sometimes used for the average (48) to distinguish it from the 
mutual correlation function, f1(t)f2(t + ), of two different stationary processes. 
17 Note that this correlation function is the direct temporal analog of the spatial correlation function briefly 
discussed in Sec. 4.2 – see Eq. (4.30). 
18 Note that the correlation time c is the direct temporal analog of the correlation radius rc that was discussed in 
Sec. 4.2 – see the same Eq. (4.30). 
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interval are virtually independent (uncorrelated) – see Eq. (10). As a result, the correlation function 
typically looks like one of the plots sketched in Fig. 8.  

 

 

 

 

 
  

 

 Note that on a time scale much longer than c, any physically realistic correlation function may 
be well approximated with a delta function of . For example, for a process that is a sum of independent 
very short pulses, e.g., the gas pressure force exerted on the container wall (Fig. 4), this approximation 
is legitimate on time scales much longer than the single pulse duration, e.g., the time of particle’s 
interaction with on the wall at the impact. 

 In the reciprocal, frequency domain, the same process )(
~

tf  is represented as a Fourier integral,19 

            




 
 deftf ti)(

~
,     (5.52) 

with the reciprocal transform being 

          




 dtetff ti
 

)(
~

2

1
.     (5.53) 

If the function )(
~

tf  is random (as it is in the case of fluctuations), with zero average, its Fourier 

transform f is also a random function (now of frequency), also with a vanishing statistical average. 
Indeed, now thinking of the operation … as an ensemble averaging, we may write 

          0)(
~

2

1
)(

~

2

1
 









dtetfdtetff titi 
 

.   (5.54) 

The simplest non-zero average may be formed similarly to Eq. (46), but with due respect to the 
complex-variable character of the Fourier images: 

    
 

)()(
~

)(
~

2

1
2

ωtω't'i*
ω' et'ftfdtdt'ff 










  .   (5.55) 

 It turns out that for a stationary process, the averages (46) and (55) are directly related. Indeed, 
since the integration over t’  in Eq. (55) is in infinite limits, we may replace it with the integration over   
 t’ – t  (at fixed t), also in infinite limits.  Replacing t’ with t +   in the expressions under the integral, 
we see that the average is just the correlation function Kf(), while the time exponent is equal to 
exp{i(’ – )t}exp{i’}. As a result, changing the order of integration, we get 

19 The argument of the function f is represented as its index with the purpose of emphasizing that this function is 

different from )(
~

tf , while (very conveniently) still using the same letter for the same variable. 

Fig. 5.8. The correlation function of 
fluctuations: two typical examples.
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
. (5.56) 

But the last integral is just 2( – ’),20 so we finally get 

      ),()( 'Sff f
*
ω'        (5.57) 

where the real function of frequency, 

         





0

cos)(
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1
)( 





  dKdeKS fff

i ,   (5.58) 

is called the spectral density of fluctuations at frequency . According to Eq. (58), the spectral density is 
just the Fourier image of the correlation function, and hence the reciprocal Fourier transform is:21,22 

            




 

0

cos)(2)()(   dSdeSK fff
i .   (5.59) 

In particular, for the fluctuation variance, Eq. (59) yields 

     





0

2 )(2)()0(
~  dSdSKf fff .   (5.60) 

The last relation shows that the term “spectral density” describes the physical sense of the function Sf() 
very well. Indeed, if a random signal f(t) had been passed through a frequency filter with a small 
bandwidth   <<   of positive cyclic frequencies, the integral in the last form of Eq. (60) could be 
limited to the interval  = 2, i.e. the variance of the filtered signal would become 

           





)(4)(2
~ 2

ff SSf .    (5.61) 

(A popular alternative definition of the spectral density is Sf()  4Sf(), making the average (61) 
equal to just Sf().)  

 To conclude this introductory (mostly mathematical) section, let me note an important particular 
case. If the spectral density of some process is nearly constant within the frequency range of interest, 
Sf() = const = Sf(0),23 Eq. (59) shows that its correlation function may be well approximated with a 
delta function: 

       )()0(2)0()(  
fff SdeSK i  





 .    (5.62) 

20 See, e.g., MA Eq. (14.4). 
21 The second form of Eq. (59) uses the fact that, according to Eq. (58), Sf() is an even function of frequency – 
just as Kf() is an even function of time. 
22 Although Eqs. (58) and (59) look not much more than straightforward corollaries of the Fourier transform, they 
bear a special name of the Wiener-Khinchin theorem – after the mathematicians N. Wiener and A. Khinchin who 
have proved that these relations are valid even for the functions f(t) that are not square-integrable, so from the 
point of view of standard mathematics, their Fourier transforms are not well defined. 
23 Such a process is frequently called white noise, because it consists of all frequency components with equal 
amplitudes, reminding the white light, which consists of many monochromatic components with close amplitudes. 
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From this relation stems another popular name of the white noise, the delta-correlated process. We have 
already seen that this is a very reasonable approximation, for example, for the gas pressure force 
fluctuations (Fig. 4). Of course, for the spectral density of a realistic, limited physical variable the 
approximation of constant spectral density cannot be true for all frequencies (otherwise, for example, 
the integral (60) would diverge, giving an unphysical, infinite value of its variance), and may be valid 
only at frequencies much lower than 1/c. 

 

5.5. Fluctuations and dissipation 

 Now we are equipped mathematically to address a major issue of statistical physics, the relation 
between fluctuations and dissipation This relation is especially simple for the following hierarchical 
situation: a relatively “heavy”, slowly evolving system, weakly interacting with an environment 
consisting of many rapidly moving, “light” components. A popular theoretical term for such a system is 
the Brownian particle, named after botanist Robert Brown who was first to notice (in 1827) the random 
motion of small particles (in his case, pollen grains), caused by their random hits by fluid’s molecules, 
under a microscope. However, the family of such systems is much broader than that of small mechanical 
particles. Just for a few examples, such description is valid for an atom interacting with electromagnetic 
field modes of the surrounding space, a macroscopic mechanical system interacting with molecules of 
air around it, a macroscopic electric current interacting with microscopic charge carriers, etc.24  

 One more important assumption of this theory is that the system’s motion does not violate the 
thermal equilibrium of the environment – well fulfilled in many cases. (Think, for example, about a  
typical mechanical pendulum – its motion does not overheat the air around it to any noticeable extent.) 
In this case, the averaging over a statistical ensemble of similar environments at a fixed, specific motion 
of the system of interest, may be performed assuming their thermal equilibrium.25 I will denote such a 
“primary” averaging by the usual angle brackets …. At a later stage, we may carry out additional, 
“secondary” averaging over an ensemble of many similar systems of interest, coupled to similar 
environments. When we do, such secondary averaging will be denoted by double angle brackets …. 

 Let me start with a simple classical system, a 1D harmonic oscillator whose equation of 
evolution may be represented as  

    0)(with  ),()()()(
~~

detenvdet  tttttqqm FFFFFF ,  (5.63) 

where q is the (generalized) coordinate of the oscillator, Fdet(t) is the deterministic external force, while 
both components of the force Fenv(t) represent the impact of the environment on the oscillator’s motion. 
Again, on the time scale of the fast-moving environmental components, the oscillator’s motion is slow. 
The average component F  of the force exerted by the environment on such a slowly moving object is 
frequently independent of its coordinate q but does depend on its velocityq . For most such systems, the 
Taylor expansion of the force in small velocity starts with a non-zero linear term:  

24 To emphasize this generality, in the forthcoming discussion of the 1D case, I will use the letter q rather than x 
for the system’s displacement. 
25 For a usual (ergodic) environment, the primary averaging may be interpreted as that over relatively short time 
intervals,  c  << t << , where c is the correlation time of the environment, while  is the characteristic time 
scale of motion of our “heavy” system of interest.
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         qF ,      (5.64) 

where the constant  is usually called the drag (or “kinematic friction”, or “damping”) coefficient, so 
Eq. (63) may be rewritten as 

     )()(
~

det ttqqqm FF    .    (5.65) 

 This method of describing the environmental effects on an otherwise Hamiltonian system is 
called the Langevin equation.26 Due to the linearity of the differential equation (65), its general solution 
may be represented as a sum of two independent parts: the deterministic motion of the damped linear 

oscillator due to the external force Fdet(t), and its random fluctuations due to the random force )(
~

tF  
exerted by the environment. The former effects are well-known from classical dynamics,27 so let us 
focus on the latter part by taking Fdet(t) = 0. The remaining term on the right-hand side of Eq. (65) 
describes the fluctuating part of the environmental force; in contrast to the average component (64), its 
intensity (read: its spectral density at relevant frequencies  ~ 0   (/m)1/2) does not vanish at q(t) = 0, 
and hence may be evaluated ignoring the system’s motion.28 

 Plugging into Eq. (65) the representation of both variables in the Fourier form similar to Eq. 
(52), and requiring the coefficients before the same exp{-it} to be equal on both sides of the equation, 
for their Fourier images we get the following relation:  

                 F qqiqm 2 ,    (5.66) 

which immediately gives us q, i.e. the (random) complex amplitude of the coordinate fluctuations: 
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FF
.   (5.67) 

Now multiplying Eq. (67) by its complex conjugate for another frequency (say, ’), averaging both 
parts of the resulting equation, and using the formulas similar to Eq. (57) for each of them,29 we get the 
following relation between the spectral densities of the oscillations and the random force: 30 

26 Named after Paul Langevin, whose 1908 work was the first systematic development of A. Einstein’s ideas on 
the Brownian motion (see below) using this formalism. A detailed discussion of this approach, with numerical 
examples of its application, may be found, e.g., in the monograph by W. Coffey, Yu. Kalmykov, and J. Waldron, 
The Langevin Equation, World Scientific, 1996. 
27 See, e.g., CM Sec. 5.1. Again, here I assume that the variable f(t) is classical, with the discussion of the 
quantum case postponed until the end of the section. 
28 Note that the direct secondary statistical averaging of Eq. (65) with Fdet = 0 yields q = 0! This, perhaps a bit 
counter-intuitive result becomes less puzzling if we recognize that this is the averaging over a large statistical 
ensemble of random sinusoidal oscillations with all values of their phase and that the (equally probable) 
oscillations with opposite phases give mutually canceling contributions to the sum in Eq. (2.6). 
29 At this stage, we restrict our analysis to random, stationary processes q(t), so Eq. (57) is valid for this variable 
as well, provided that the averaging in it is understood in the … sense. 
30 Regardless of the physical sense of such a function of , and of whether its maximum is situated at a finite 
frequency 0 as in Eq. (68) or at  = 0, it is often referred to as the Lorentzian (or “Breit-Wigner”) line. 
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 .    (5.68)  

In the so-called low-damping limit (  << m0), the fraction on the right-hand side of Eq. (68) 
has a sharp peak near the oscillator’s own frequency 0 (describing the well-known effect of high-Q 
resonance), and may be well approximated in that vicinity as 
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.  (5.69) 

In contrast, the spectral density of fluctuations of a typical environment is changing relatively slowly, so 
for the purpose of integration over frequencies near 0, we may replace SF () with SF (0). As a result, 
the variance of the environment-imposed random oscillations may be calculated, using Eq. (60), as31 
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This is a well-known table integral,32 equal to , so, finally:  
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 On the other hand, any weak interaction with the environment should keep the oscillator in 
thermodynamic equilibrium at the same temperature T. Since our analysis has been based on the 
classical Langevin equation (65), we may only use it in the classical limit 0 << T, in which we may 
use the equipartition theorem (2.48). In our current notation, it yields 
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Comparing Eqs. (71) and (72), we see that the spectral density of the random force exerted by the 
environment has to be fundamentally related to the damping it provides: 

       TS

 )( 0F .     (5.73a) 

Now we may argue (rather convincingly :-) that since this relation does not depend on the oscillator’s 
parameters m and , and hence its eigenfrequency 0 = (/m)1/2,33 it should be valid at any relatively low 
frequency (c << 1).  Using Eq. (58) with   0, it may be also rewritten as a formula for the effective 
low-frequency drag coefficient:  

31 Since in this case, the process in the oscillator is entirely due to its environment, its variance should be obtained 
by statistical averaging over an ensemble of many similar (oscillator + environment) systems, and hence, 
following our convention, it is denoted by double angular brackets. 
32 See, e.g. MA Eq. (6.5a). 
33 Moreover, it does not depend on the assumption   << m0, made above only for the sake of calculation 
simplicity. Indeed, for a frequency-independent spectral density SF, such as the one given by Eq.  (73a), the 
integration of both sides of Eq. (68) over all frequencies yields Eq. (71) for any . 



Essential Graduate Physics               SM: Statistical Mechanics 

    
Chapter 5            Page 18 of 44 

          d
T

dK
T 




00

~~
0

11
FFF .    (5.73b) 

 Formulas (73) reveal an intimate, fundamental relation between the fluctuations and the 
dissipation provided by a thermally-equilibrium environment. Parroting the famous political slogan, 
there is “no dissipation without fluctuation”. This means in particular that the phenomenological 
description of dissipation by the drag force alone in classical mechanics34 is (approximately) valid only 
when the energy scale of the considered process is much larger than T. To the best of my knowledge, 
this fact was first recognized in 1905 by A. Einstein,35 for the following particular case.  

 Let us apply our result (73) to a free 1D Brownian particle, by taking Fdet(t) = 0 and   0.  In 
this limit, both relations (71) and (72) lead to infinite coordinate variance. To understand the reason for 
that divergence, let us go back to the Langevin equation (65) with not only  = 0 and Fdet(t) = 0, but also 
m  0 – just for the sake of simplicity. (The latter approximation, frequently called the overdamping 
limit, is quite appropriate, for example, for the motion of small particles in sufficiently viscous fluids – 
such as in R. Brown’s experiments.) In this approximation, Eq. (65) is reduced to a simple equation, 
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which may be readily integrated to give the particle’s displacement during a finite time interval t: 
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 Evidently, at the full statistical averaging of the displacement, the fluctuation effects vanish, but 
this does not mean that the particle does not move – just that it has equal probabilities to be shifted in 
either of two possible directions. To see that, let us calculate the variance of the displacement: 
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As we already know, at times  >> c, the correlation function may be well approximated by the delta 
function – see Eq. (62). In this approximation, with SF(0) expressed by Eq. (73a), we get 
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with  

            

T

D  .      (5.78) 

The final form of Eq. (77) describes the well-known law of diffusion (“random walk”) of a 1D 
system, with the r.m.s. deviation from the point of origin growing as (2Dt)1/2. The coefficient D in this 

34 See, e.g., CM Sec. 5.1. 
35 It was obtained in one of the three papers of Einstein’s celebrated 1905 “triad”. As a reminder, another of the 
papers started the relativity theory, and one more was the quantum description of the photoelectric effect, 
essentially starting quantum mechanics. Not too bad for one year of one young scientist’s life! 
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relation is called the coefficient of diffusion, and Eq. (78) describes the extremely simple and important36  
Einstein’s relation between that coefficient and the drag coefficient. Often this relation is rewritten, in 
the SI units of temperature, as D =  kBTK, where   1/ is the mobility of the particle. The physical 
sense of  becomes clear from the expression for the deterministic velocity (particle’s “drift”), which 
follows from the averaging of both sides of Eq. (74) after the restoration of the term Fdet(t) in it: 
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)( detdetdrift tttqv FF 
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  ,    (5.79) 

so the mobility is just the drift velocity given to the particle by a unit force.37 

 Another famous embodiment of the general Eq. (73) is the thermal (or “Johnson”, or “Johnson-
Nyquist”, or just “Nyquist”) noise in resistive electron devices. Let us consider a lumped,38 two-
terminal, dissipation-free “probe” circuit, playing the role of the harmonic oscillator in the analysis 
carried out above, connected to a resistive device (Fig. 9), playing the role of the probe circuit’s 
environment. (The noise is generated by the thermal motion of numerous electrons, randomly moving 
inside the resistive device.) For this system, one convenient choice of the conjugate variables (the 
generalized coordinate and generalized force) is, respectively, the electric charge Q  I(t)dt that has 
passed through the “probe” circuit by time t, and the voltage V across its terminals, with the polarity 
shown in Fig. 9. (Indeed, the product VdQ is the elementary work dW  done by the environment on the 
probe circuit.) 

 

 

 

 

 Making the corresponding replacements, q  Q and F  V  in Eq. (64), we see that it becomes 

               IQ   V .     (5.80) 

Comparing this relation with Ohm’s law, V = R(-I),39 we see that in this case, the coefficient  has the 
physical sense of the usual Ohmic resistance R of our dissipative device,40 so Eq. (73a) becomes 

      T
R

S


 )(V .      (5.81a) 

36 In particular, in 1908, i.e. very soon after Einstein’s publication, it was used by J. Perrin for an accurate 
determination of the Avogadro number NA. (It was Perrin who graciously suggested naming this constant after A. 
Avogadro, honoring his pioneering studies of gases in the 1810s.) 
37 Note that in solid-state physics and electronics, the charge carrier mobility is usually defined as vdrift/E  = 
evdrift/Fdet  e (where E  is the applied electric field), and is traditionally measured in cm2/Vs.  
38 As a (good :-) student of classical electrodynamics should know, lumped (compact) electric circuits may be 
described by the usual Kirchhoff laws, neglecting the wave propagation effects – see, e.g., EM Sec. 6.6. 
39 The minus sign here is due to the fact that in our notation, the current flowing in the resistor, from the terminal 
assumed to be positive to the negative one, is (-I) – see Fig. 9. 
40 Due to this fact, Eq. (64) is often called the Ohmic model of the environment’s response, even if the physical 
nature of the variables q and F is completely different from the electric charge and voltage. 

TR,I V
Fig. 5.9. A resistive device as a dissipative 
environment of a two-terminal probe circuit.
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Using the last equality in Eq. (61), and expressing temperature in the SI units (T = kBTK), we may bring 
this famous Nyquist formula41 to its most popular form: 
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Note that according to Eq. (65), this result is only valid at a negligible speed of change of the coordinate 
q (in our current case, negligible current I), i.e. Eq. (81) describes the voltage fluctuations as would be 
measured by a virtually ideal voltmeter, with its input resistance much higher than R. On the other hand, 
using a different choice of generalized coordinate and force, q  , F  I (where   V(t)dt is the 
generalized magnetic flux, so dW  = IV(t)dt  Id), we get   1/R, and Eq. (73) yields the thermal 
fluctuations of the current through the resistive device, as would be measured by a virtually ideal 
ammeter, i.e. at V   0: 
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The nature of Eqs. (81) is so fundamental that they may be used, in particular, for the so-called Johnson 
noise thermometry.42  

 Note, however, that these relations are valid for noise in thermal equilibrium only. In electric 
circuits that may be readily driven out of equilibrium by an applied voltage V, other types of noise are 
frequently important, notably the shot noise that arises in short conductors, e.g., tunnel junctions, at 
applied voltages with V  >> T /q, due to the discreteness of charge carriers.43 A straightforward 
analysis (left for the reader’s exercise) shows that this noise may be characterized by current 
fluctuations with the following low-frequency spectral density: 
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where q is the electric charge of a single current carrier. This is the Schottky formula,44 valid for any 
relation between the average I and V. The comparison of Eqs. (81c) and (82) for a device that obeys the 
Ohm law shows that the shot noise has the same intensity as the thermal noise with the effective 
temperature 
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2ef
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.     (5.83) 

This relation may be interpreted as a result of charge carrier overheating by the applied electric field, 
and explains why the Schottky formula (82) is only valid in conductors much shorter than the energy 

41 It is named after Harry Nyquist who derived this formula in 1928 (independently of the prior work by A. 
Einstein, M. Smoluchowski, and P. Langevin) to describe the “Johnson-Nyquist” noise that had been just 
discovered experimentally by his Bell Labs colleague John Bertrand Johnson. The derivation of Eq. (73) and 
hence of Eq. (81) in these notes is essentially a twist of the derivation used by H. Nyquist. 
42 See, e.g., J. Crossno et al., Appl. Phys. Lett. 106, 023121 (2015), and references therein. 
43 Another practically important type of fluctuations in electronic devices is the low-frequency 1/f noise that was 
already mentioned in Sec. 3 above. I will briefly discuss it in Sec. 8.  
44 It was derived by Walter Hans Schottky as early as 1918, i.e. even before Nyquist’s work. 
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relaxation length le of the charge carriers.45 (Another mechanism of shot noise suppression, which may 
become noticeable in highly conductive nanoscale devices, is the Fermi-Dirac statistics of electrons.46) 

 Now let us return for a minute to the bolometric Dicke radiometer (see Figs. 6-7 and their 
discussion in Sec. 4), and use the Langevin formalism to finalize its analysis. For this system, the 
Langevin equation is an extension of the usual equation of heat balance: 

     )()()(
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det0 ttTT
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CV PPG  ,    (5.84) 

where Pdet  P describes the (deterministic) power of the absorbed radiation and P
~

represents the 
effective source of temperature fluctuations. Now we can use Eq. (84) to carry out a calculation of the 
spectral density ST() of temperature fluctuations absolutely similarly to how this was done with Eq. 
(65), assuming that the frequency spectrum of the fluctuation source is much broader than the intrinsic 
bandwidth 1/  = G/CV of the bolometer, so its spectral density at frequencies  ~ 1 may be well 
approximated by its low-frequency value SP(0): 
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Then, requiring the variance of temperature fluctuations, calculated from this formula and Eq. (60), 
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   (5.86)  

to coincide with our earlier “thermodynamic fluctuation” result (41), we get 
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The r.m.s. value of the “power noise” within a bandwidth   << 1/  (see Fig. 7) becomes equal to the 
deterministic signal power Pdet (or more exactly, the main harmonic of its modulation law) at 
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 This result shows that our earlier prediction (45) may be improved by a substantial factor of the 
order of (/)1/2, where the reduction of the output bandwidth is limited only by the signal 
accumulation time t ~ 1/, while the increase of  is limited by the speed of (typically, mechanical) 
devices performing the power modulation. In practical systems this factor may improve the sensitivity 
by a couple of orders of magnitude, enabling observation of extremely weak radiation. Maybe the most 
spectacular example is the recent measurements of the CMB radiation, which corresponds to blackbody 
temperature TK  2.726 K, with accuracy TK ~ 10-6 K, using microwave receivers with the physical 

45 See, e.g., Y. Naveh et al., Phys. Rev. B 58, 15371 (1998). In practically used metals, le is of the order of a few 
nanometers, so the usual “macroscopic” resistors do not exhibit the shot noise. 
46 For a review of this effect see, e.g., Ya. Blanter and M. Büttiker, Phys. Repts. 336, 1 (2000). 
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temperature of all their components much higher than T. The observed weak (~10-5 K) anisotropy of 
the CMB radiation is a major experimental basis of all modern cosmology.47  

Returning to the discussion of our main result, Eq. (73), let me note that it may be readily 
generalized to the case when the environment’s response is different from the Ohmic form (64). This 
opportunity is virtually evident from Eq. (66): by its derivation, the second term on its left-hand side is 
just the Fourier component of the average response of the environment to the system’s displacement: 

  qiF .     (5.89) 

Now let the response be still linear, but have an arbitrary frequency dispersion,  

,)(   qF      (5.90) 

where the function (), called the generalized susceptibility (in our current case, of the environment) 
may be complex, i.e. have both the imaginary and real parts: 
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Then Eq. (73) remains valid with the replacement   ”()/: 48 
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 This fundamental relation49 may be used not only to calculate the fluctuation intensity from the 
known generalized responsibility (i.e. the deterministic response of the system to a small perturbation), 
but also in reverse – to calculate such linear response from the known fluctuations. The latter use is 
especially attractive at numerical simulations of complex systems, e.g., those based on molecular-
dynamics approaches, because it circumvents the need in extracting a weak response to a small 
perturbation out of a noisy background.  

 Now let us discuss what generalization of Eq. (92) is necessary to make that fundamental result 
suitable for arbitrary temperatures, T ~ . The calculations we had performed were based on the 
apparently classical equation of motion, Eq. (63). However, quantum mechanics shows50 that a similar 
equation is valid for the corresponding Heisenberg-picture operators, so by repeating all the arguments 
that have led us to the Langevin equation (65), we may write its quantum-mechanical version  

          FF
~̂

d̂etˆˆˆ  qqqm   .     (5.93) 

47 See, e.g., a concise book by A. Balbi, The Music of the Big Bang, Springer, 2008. 
48 Reviewing the calculations leading to Eq. (73), we may see that the possible real part ’() of the susceptibility 
just adds up to (k – m2) in the denominator of Eq. (67), resulting in a change of the oscillator’s frequency 0. 
This renormalization is insignificant if the oscillator-to-environment coupling is weak, i.e. if the susceptibility 
() is small – as had been assumed at the derivation of Eq. (69) and hence Eq. (73). 
49 It is sometimes called the Green-Kubo (or just “Kubo”) formula. This is hardly fair, because, as the reader 
could see, Eq. (92) is just an elementary generalization of the Nyquist formula (81). Moreover, the corresponding 
works of M. Green and R. Kubo were published, respectively, in 1954 and 1957, i.e. after the 1951 paper by H. 
Callen and T. Welton, where a more general result (98) had been derived. Much more adequately, the 
Green/Kubo names are associated with Eq. (102) below. 
50 See, e.g., QM Sec. 4.6.
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This is the so-called Heisenberg-Langevin (or “quantum Langevin”) equation – in this particular case, 
for a harmonic oscillator. 

 The further operations, however, require certain caution, because the right-hand side of the 
equation is now an operator, and has some nontrivial properties. For example, the “values” of the 
Heisenberg operator, representing the same variable f(t) at different times, do not necessarily commute: 
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As a result, the function defined by Eq. (46) may not be a symmetric function of the time delay    t’ – t 
even for a stationary process, making it inadequate for the representation of the actual correlation 
function – which has to obey Eq. (50). This technical difficulty may be overcome by the introduction of 
the following symmetrized correlation function51 
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(where {…,…} denotes the anticommutator of the two operators), and, similarly, the symmetrical 
spectral density Sf(), defined by the following relation: 
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with Kf() and Sf() still related by the Fourier transform (59).   

 Now we may repeat all the analysis that was carried out for the classical case, and get Eq. (71) 
again, but now this expression has to be compared not with the equipartition theorem, but with its 
quantum-mechanical generalization (14), which, in our current notation, reads 
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As a result, we get the following quantum-mechanical generalization of Eq. (92): 
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This is the much-celebrated fluctuation-dissipation theorem, usually referred to just as the FDT, first 
derived in 1951 by Herbert Bernard Callen and Theodore A. Welton – in a somewhat different way.  

 As natural as it seems, this generalization of the relation between fluctuations and dissipation 
poses a very interesting conceptual dilemma. Let, for the sake of clarity, temperature be relatively low, T 
<< ; then Eq. (98) gives a temperature-independent result 
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51 Here (and to the end of this section) the averaging … should be understood in the general quantum-statistical 
sense – see Eq. (2.12). As was discussed in Sec. 2.1, for the classical-mixture state of the system, this does not 
create any difference in either the mathematical treatment of the averages or their physical interpretation. 
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which describes what is frequently called quantum noise. According to the quantum Langevin equation 

(93), nothing but the random force F
~

exerted by the environment, with the spectral density (99) 
proportional to the imaginary part of susceptibility (i.e. damping), is the source of the ground-state 
“fluctuations” of the coordinate and momentum of a quantum harmonic oscillator, with the r.m.s. values  
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and the total energy 0/2. On the other hand, basic quantum mechanics tells us that exactly these 
formulas describe the ground state of a dissipation-free oscillator, not coupled to any environment, and 
are a direct corollary of the basic commutation relation 

           ipq ˆ,ˆ .      (5.101) 

So, what is the genuine source of the uncertainty described by Eqs. (100)? 

 The best resolution of this paradox I can offer is that either interpretation of Eqs. (100) is 
legitimate, with their relative convenience depending on the particular application. One may say that 
since the right-hand side of the quantum Langevin equation (93) is a quantum-mechanical operator 
rather than a classical force, it “carries the quantum uncertainty relation within itself”. However, this 
(admittedly, opportunistic:-) view leaves the following question open: is the quantum noise (99) of an 
environment observable directly, without any probe oscillator subjected to it? An experimental 
resolution of this dilemma is not quite simple, because usual scientific instruments have their own 
ground-state uncertainty, i.e. their own quantum fluctuations, which may be readily confused with those 
of the system under study. Fortunately, this difficulty may be overcome, for example, by using unique 
frequency-mixing (“down-conversion”) properties of Josephson junctions. Special low-temperature 
experiments using such down-conversion52 have confirmed that the quantum noise (99) is quite real and 
measurable. 

 Finally, let me mention an alternative derivation53 of the fluctuation-dissipation theorem (98) 
from the general quantum mechanics of open systems. This derivation is substantially longer than that 
presented above but gives an interesting sub-product, the Green-Kubo formula 
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where G() is the temporal Green’s function of the environment, defined by the following relation: 
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Plugging the Fourier transforms of all three functions of time participating in Eq. (103) into this relation, 
it is straightforward to check that this Green’s function is just the Fourier image of the complex 
susceptibility () defined by Eq. (90): 
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0
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deiG ;     (5.104) 

52 R. Koch et al., Phys. Rev. B 26, 74 (1982), and references therein. 
53 See, e.g., QM Sec. 7.4. 
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here 0 is used as the lower limit instead of (–) just to emphasize that due to the causality principle, 
Green’s function has to be equal to zero for   < 0.54  

 In order to reveal the real beauty of Eq. (102), we may use the Wiener-Khinchin theorem (59) to 
rewrite the fluctuation-dissipation theorem (98) in a similar time-domain form: 
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where the symmetrized correlation function KF() is most simply described by its Fourier transform, 
which is, according to Eq. (58), equal to SF(), so using the FDT, we get 
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 The comparison of Eqs. (102) and (104), on one hand, and Eqs (105)-(106), on the other hand, 
shows that both the commutation and anticommutation properties of the Heisenberg-Langevin force 
operator at different moments of time are determined by the same generalized susceptibility () of the 
environment. However, the averaged anticommutator also depends on temperature, while the averaged 
commutator does not – at least explicitly. (The complex susceptibility of an environment may be temperature-
dependent as well.) 

 

5.6. The Kramers problem and the Smoluchowski equation 

 Returning to the classical case, it is evident that the Langevin equations of the type (65) provide 
means not only for the analysis of stationary fluctuations but also for the description of the time 
evolution of (classical) systems coupled to their environments – which, again, may provide both 
dissipation and fluctuations. However, this approach to evolution analysis suffers from two major 
handicaps. 

 First, the Langevin equation does enable a straightforward calculation of the statistical average 
of the variable q, and its fluctuation variance – i.e., in the common mathematical terminology, the first 
and second moments of the probability density w(q, t) – as functions of time, but not of the probability 
distribution as such. Admittedly, this is rarely a big problem, because in most cases the distribution is 
Gaussian – see, e.g., Eq. (2.77). 

 The second, more painful drawback of the Langevin approach is that it is instrumental only for 
“linear” systems – i.e., the systems whose dynamics may be described by linear differential equations, 
such as Eq. (65). However, as we know from classical dynamics, many important problems (for 
example, the Kepler problem of planetary motion55) are reduced to motion in potentials Uef(q) that 
substantially differ from quadratic parabolas, giving nonlinear equations of motion. If the energy of 
interaction between the system and its random environment is factorable – i.e. is a product of variables 
belonging to these subsystems (as it is very frequently the case), we may repeat all arguments of the last 
section to derive the following generalized version of the 1D Langevin equation:  

54 See, e.g., CM Sec. 5.1. 
55 See, e.g., CM Secs. 3.4-3.6. 
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valid for an arbitrary, possibly time-dependent potential U(q, t).56 Unfortunately, the solution of this 
equation may be very hard. Indeed, its Fourier analysis carried out in the last section was essentially 
based on the linear superposition principle, which is invalid for nonlinear equations.  

If the fluctuation intensity is low,  q << q, where q(t) is the deterministic solution of Eq. 
(107) in the absence of fluctuations, this equation may be linearized57 with respect to small fluctuations 

qqq ~  to get a linear equation of motion: 
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This equation differs from Eq. (65) only by the time dependence of the effective spring constant (t), 
and may be solved by the Fourier expansion of both the fluctuations and the function (t). Such 
calculations may be more cumbersome than those performed above, but still doable (especially if the 
unperturbed motion q(t) is periodic), and sometimes give useful analytical results.58 

 However, some important problems cannot be solved by linearization. Perhaps, the most 
apparent (and practically very important) example is the so-called Kramers  problem59 of finding the 
lifetime of a metastable state of a 1D classical system in a potential well separated from the region of 
unlimited motion with a potential barrier – see Fig. 10.  

 

 

 

  

 
  
 In the absence of fluctuations, the system, if initially at rest close to the well’s bottom (in Fig. 10, 
at q  q1), would stay there forever. Fluctuations result not only in a finite spread of the probability 
density w(q, t) around that point but also in a gradual decrease of the total probability 

             

bottom
swell'

),()( dqtqwtW      (5.109) 

56 The generalization of Eq. (107) to higher spatial dimensionality is also straightforward, with the scalar variable 
q replaced with a multi-dimensional vector q, and the scalar derivative dU/dq replaced with the vector U, where 
 is the del vector-operator in the q-space. 
57 See, e.g., CM Secs. 3.2, 5.2, and beyond. 
58 See, e.g., QM Problem 7.8, and also Chapters 5 and 6 in the monograph by W. Coffey et al., cited above. 
59 It was named after Hendrik Anthony (“Hans”) Kramers who, besides solving this conceptually important 
problem in 1940, has made several other seminal contributions to physics, including the famous Kramers-Kronig 
dispersion relations (see, e.g., EM Sec. 7.4) and the WKB (Wentzel-Kramers-Brillouin) approximation in 
quantum mechanics – see, e.g., QM Sec. 2.4.  
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1q 2q0 Fig. 5.10. The Kramers problem. 
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to find the system in the well, because of a non-zero rate of its escape from it, over the potential barrier, 
due to thermal activation. What may be immediately expected of the situation is that if the barrier 
height,  
             )()( 120 qUqUU  ,     (5.110) 

is much larger than the temperature T,60 the Boltzmann distribution w  exp{–U(q)/T} should be still 
approximately valid in most of the well, so the probability for the system to overcome the barrier in unit 
time should scale as exp{–U0/T}. From these handwaving arguments, one may reasonably expect that if 
the probability W(t) of the system to remain in the well by time t obeys the usual “decay law” 

          

W

W  ,               (5.111a) 

then the lifetime   has to obey the general Arrhenius law: 
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However, these relations need to be proved, and the pre-exponential coefficient A (usually called the 
attempt time) needs to be calculated. This cannot be done by the linearization of Eq. (107), because this 
approximation is equivalent to a quadratic approximation of the potential U(q), which evidently cannot 
describe the potential well and the potential barrier simultaneously – see Fig. 10 again. 

This and other essentially nonlinear problems may be addressed using an alternative approach to 
fluctuations, dealing directly with the time evolution of the probability density w(q, t). Due to the 
shortage of time/space, I will review this approach using mostly handwaving arguments, and refer the 
interested reader to special literature61 for strict mathematical proofs. Let us start with the diffusion of a 
free classical 1D particle with inertial effects negligible in comparison with damping. It is described by 
the Langevin equation (74) with Fdet = 0. Let us assume that at all times the probability distribution 
stays Gaussian: 
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where q0 is the initial position of the particle, and q(t) is the time-dependent distribution width, whose 
growth in time is described, as we already know, by Eq. (77): 

        2/12)( Dttq  .     (5.113) 

Then it is straightforward to verify, by substitution, that this solution satisfies the following simple 
partial differential equation, 
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,      (5.114) 

with the delta-functional initial condition 

60 If U0 is comparable with T, the system’s behavior also depends substantially on the initial probability 
distribution, i.e., does not follow the simple law (111). 
61 See, e.g., either R. Stratonovich, Topics in the Theory of Random Noise, vol. 1., Gordon and Breach, 1963, or 
Chapter 1 in the monograph by W. Coffey et al., cited above.  
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              )()0,( 0qqqw   .     (5.115) 

The simple and important equation of diffusion (114) may be naturally generalized to the 3D motion:62 

       wD
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w 2

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.      (5.116) 

 Now let us compare this equation with the probability conservation law,63 
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w
j ,              (5.117a) 

where the vector jw has the physical sense of the probability current density. (The validity of this 
relation is evident from its integral form, 
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qj ,             (5.117b) 

resulting from the integration of Eq. (117a) over an arbitrary time-independent volume V limited by 
surface S, and the application of the divergence theorem64 to the second term of the result.)  

 The continuity relation (117a) coincides with Eq. (116), with D given by Eq. (78), if we take 

            w
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wDw 


j .     (5.118) 

The first form of this relation65 allows a simple interpretation: the probability flow is proportional to the 
spatial gradient of the probability density (i.e., in application to N >> 1 similar and independent 
particles, just to the gradient of their concentration n = Nw), with the sign corresponding to the flow 
from the higher to lower concentrations. This flow is the very essence of the effect of diffusion. The 
second form of Eq. (118) is also not very surprising: the diffusion speed scales as temperature and is 
inversely proportional to the viscous drag. 

 The fundamental Eq. (117) has to be satisfied also in the case of a force-driven particle at 
negligible diffusion (D  0); in this case  
           vj ww  ,      (5.119) 

where v is the deterministic velocity of the particle. In the high-damping limit we are considering right 
now, v has to be just the drift velocity: 
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det qv U
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 F ,     (5.120) 

62 As will be discussed in Chapter 6, the equation of diffusion also describes several other physical phenomena – 
in particular, the heat propagation in a uniform, isotropic solid, and in this context is called the heat conduction 
equation or (rather inappropriately) just the “heat equation”.  
63 Both forms of Eq. (117) are similar to the mass conservation law in classical dynamics (see, e.g., CM Sec. 8.2), 
the electric charge conservation law in electrodynamics (see, e.g., EM Sec. 4.1), and the probability conservation 
law in quantum mechanics (see, e.g., QM Sec. 1.4). 
64 See, e.g., MA Eq. (12.2). 
65 In application to systems of many similar, weakly-interacting particles (to be discussed in the next chapter) 
where w is proportional to the particle density n, this expression is sometimes called Fick’s law, after the 
physiologist A. Fick who suggested it in 1855. 

Equation 
of diffusion 
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where Fdet is the deterministic force described by the potential energy U(q).  

 Now that we have descriptions of jw due to both the drift and the diffusion separately, we may 
rationally assume that in the general case when both effects are present, the corresponding components 
(118) and (119) of the probability current just add up, so 

          wTUww  
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j ,     (5.121) 

and Eq. (117a) takes the form 
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This is the Smoluchowski equation (or “Smoluchowski diffusion equation”),66 which is closely related to 
the drift-diffusion equation in multi-particle kinetics – to be discussed in the next chapter.  

 As a sanity check, let us see what the Smoluchowski equation gives in the stationary limit, w/t 
 0 (which evidently may be eventually achieved only if the deterministic potential U is time-
independent.) Then Eq. (117a) yields jw = const, where the constant describes the deterministic motion 
of the system as the whole. If such a motion is absent, jw = 0, then according to Eq. (121), 
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Since the left-hand side of the last relation is just (lnw), it may be easily integrated over q, giving 
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where C is a normalization constant. With both sides multiplied by the number N of similar, independent 
systems, with the spatial density n(q) = Nw(q), this equality becomes the Boltzmann distribution (3.26). 

 As a less trivial example of the Smoluchowski equation’s applications, let us use it to solve the 
1D Kramers problem (Fig. 10) in the corresponding high-damping limit, m << A, where A (still to be 
calculated) is some time scale of the particle’s motion inside the well. It is straightforward to verify that 
the 1D version of Eq. (121), 
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(where Iw is the probability current at point q, rather than its density) is mathematically equivalent to 
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so we may write 
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66 It is named after Marian Smoluchowski, who developed this formalism in 1906. Note that sometimes Eq. (122) 
is referred to as the Fokker-Planck equation, but it is more common to use that name for a more general equation 
discussed in the next section. 

Smoluchowski 
equation 
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As was discussed above, the notion of a metastable state’s lifetime is well-defined only for sufficiently 
low temperatures 
             0UT  .      (5.127) 

when the lifetime is relatively long:  >> A. Since according to Eq. (111a), the first term of the 
continuity equation (117b) has to be of the order of W/, in this limit the term, and hence the gradient of  
Iw, are exponentially small, so the probability current virtually does not depend on q in the potential 
barrier region. Let us use this fact in the integration of both sides of Eq. (126) over that region: 
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where the integration limits q’ and q” (shown schematically in Fig. 10) are selected so that 
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(Obviously, such selection is only possible if condition (127) is satisfied.) In this limit, the contribution 
from the point q” to the right-hand side of Eq. (129) is negligible because the probability density behind 
the barrier is exponentially small. On the other hand, the probability at the point q’ has to be close to the 
value given by its quasi-stationary Boltzmann distribution (124), so 
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and Eq. (128) yields 
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 Patience, my reader, we are almost done. The probability density w(q1) at the well’s bottom may 
be expressed in terms of the total probability W of the particle being in the well by using the 
normalization condition 
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the integration here may be limited to the region where the difference U(q) – U(q1) is much smaller than 
U0 – cf. Eq. (129). According to the Taylor expansion, the shape of virtually any smooth potential U(q) 
near the point q1 of its minimum may be well approximated with a quadratic parabola: 
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With this approximation, Eq. (132) is reduced to the standard Gaussian integral:67 
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67 If necessary, see MA Eq. (6.9b) again. 
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 To complete the calculation, we may use a similar approximation for the barrier top:  
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and work out the remaining integral in Eq. (131), because in the limit (129) it is dominated by the 
contribution from a region very close to the barrier top, where the approximation (135) is asymptotically 
exact. As a result, we get 
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Plugging Eq. (136), and the w(q1) expressed from Eq. (134), into Eq. (131), we finally get 
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 This expression should be compared with the 1D version of Eq. (117b) for the segment [–, q’]. 
Since this interval covers the region near q1 where most of the probability density resides, and Iq(-) = 
0, this equation is merely 
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w .     (5.138) 

In our approximation, Iw(q’) does not depend on the exact position of the point q’, and is given by Eq. 
(137), so plugging it into Eq. (138), we recover the exponential decay law (111a), with the lifetime  
obeying the Arrhenius law (111b), and the following attempt time: 
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Thus the metastable state lifetime is indeed described by the Arrhenius law, with the attempt 
time scaling as the geometric mean of the system’s “relaxation times” near the potential well bottom (1) 
and the potential barrier top (2).68 Let me leave it for the reader’s exercise to prove that if the potential 
profile near the well’s bottom and/or top is sharp, the expression for the attempt time should be 
modified, but the Arrhenius decay law (111) is not affected. 

 

5.7. The Fokker-Planck equation 

 Formula (139) is just a particular, high-damping limit of a more general result obtained by 
Kramers. In order to get all of it (and much more), we need to generalize the Smoluchowski equation to 
arbitrary values of damping . In this case, the probability density w is a function of not only the 
particle’s position q (and time t) but also of its momentum p – see Eq. (2.11). Thus the continuity 
equation (117) needs to be generalized to the 6D phase space {q, p}. Such generalization is very natural: 

68 Actually, 2 describes the characteristic time of the exponential growth of small deviations from the unstable 
fixed point q2 at the barrier top, rather than their decay, as near the stable point q1. 

Kramers 
formula 
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where jq (which was called jw in the last section) is the probability current density in the coordinate 
space, and q (which was denoted as  in that section) is the usual vector operator in the space, while jp 
is the current density in the momentum space, and p is the similar vector operator in that space: 
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 At negligible fluctuations (T  0), jp may be composed using the natural analogy with jq – see 
Eq. (119). In our new notation, that relation reads, 

                
m

wwq

p
qj   ,     (5.142) 

so it is natural to take 
                                 Fwwp  pj  ,                        (5.143a) 

where the (statistical-ensemble) averaged force F includes not only the contribution due to the 
potential’s gradient but also the drag force –v provided by the environment – see Eq. (64) and its 
discussion:  
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As a sanity check, it is straightforward to verify that the diffusion-free equation resulting from the 
combination of Eqs. (140), (142) and (143), 
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allows the following particular solution: 
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where the statistical-averaged coordinate and momentum satisfy the deterministic equations of motion, 
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U
m q

p
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p
q   ,  ,    (5.146) 

describing the particle’s drift, with the usual deterministic initial conditions. 

 In order to understand how the diffusion should be accounted for, let us consider a statistical 
ensemble of free (qU = 0,  = 0) particles that are uniformly distributed in the direct space q (so qw = 
0), but possibly localized in the momentum space. In this case, the right-hand side of Eq. (144) vanishes, 
i.e. the time evolution of the probability density w may be only due to diffusion. In the corresponding 
limit F   0, the Langevin equation (107) for each Cartesian coordinate is reduced to 

      )(  i.e.),(
~~

tptqm jjjj FF   .    (5.147) 
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The last equation is identical to the high-damping 1D equation (74) (with Fdet = 0), with the replacement 
q  pj/, and hence the corresponding contribution to w/t may be described by the last term of Eq. 
(122), with that replacement: 

            wTw
T

wD
t

w
ppp
2222

/diffusion 

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 .   (5.148)  

Now the reasonable assumption that in the arbitrary case, the drift and diffusion contributions to w/t 
just add up immediately leads us to the full Fokker-Planck equation:69   
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 As a sanity check, let us use this equation to calculate the stationary probability distribution of 
the momentum of particles with an arbitrary damping  but otherwise free, in the momentum space, 
assuming (just for simplicity) their uniform distribution in the direct space, q = 0. In this case, Eq. 
(149) is reduced to 
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The first integration over the momentum space yields 
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where jw is a vector constant describing a possible general probability flow in the system. In the absence 
of such flow, jw = 0, we get   
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i.e. the Maxwell distribution (3.5). However, the result (152) is more general than that obtained in Sec. 
3.1, because it shows that the distribution stays the same even at non-zero damping. It is also 
straightforward to verify that in the more general case of an arbitrary stationary potential U(q), Eq. (149) 
is satisfied with the stationary solution (3.24), also giving jw = 0. 

 In the limit where the damping is large, i.e. the inertial effects are relatively small, the solution of 
the Fokker-Planck equation tends, relatively rapidly, to the following product 
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where p0  –(m/)qU, followed by a much slower time evolution of the direct-space distribution w(q, 
t), described by the Smoluchowski equation (122).  

 Another important particular case is that of a quasi-periodic motion of a particle, with low 
damping, in a soft potential well. In this case, the Fokker-Planck equation describes both the diffusion of 

69 It was first derived by Adriaan Fokker in 1913 in his PhD thesis and further elaborated by Max Planck in 1917. 
(Curiously, A. Fokker is more famous for his work on music theory, and the invention and construction of several 
new keyboard instruments, than for this and several other important contributions to theoretical physics.) 

Fokker- 
Planck 

equation 
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the effective phase  of such (generally nonlinear, “anharmonic”) oscillator, and a slow relaxation of its 
energy. If we are only interested in the latter effect, Eq. (149) may be reduced to the so-called energy 
diffusion equation,70 which is much easier to solve. 

 However, in most practically interesting cases, solutions of Eq. (149) are rather complicated. 
(Indeed, the reader should remember that these solutions embody, in the particular case T = 0, all 
classical dynamics of a particle.) Because of this, I will present (rather than derive) only one more of 
them: the Kramers’ solution71 of his problem (Fig. 10) for /m2 ~ 1. In this general case, the 
metastable state’s lifetime turns out to be again given by the Arrhenius formula (111b), with the 
following reciprocal attempt time:  
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where 1,2  (1,2/m)1/2. Thus, in the limit /m2 << 1, Eqs. (111b) and (154) give a very simple result 
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Note, however, that this result is strictly valid only if /m2 >> T/U0 (as a reminder, the latter ratio has 
to be much smaller than 1 in order for the very notion of lifetime  to be meaningful) and at lower 
damping, its pre-exponential factor requires a correction, which may be calculated using the already 
mentioned energy diffusion equation.72 

 The Kramers’ result for the classical thermal activation of a system over a potential barrier may 
be compared with that for its quantum-mechanical tunneling through the barrier.73 The WKB 
approximation for the latter effect gives the expression 
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showing that generally, the classical and quantum lifetimes of a metastable state have different 
dependences on the barrier shape. For example, for a nearly rectangular potential barrier, the exponent 
that determines the classical lifetime (155) depends (linearly) only on the barrier height U0, while that 
defining the quantum lifetime (156) is proportional to the barrier width and to the square root of U0. 
However, in the important case of “soft” potential profiles, which are typical for the case of emerging 
(or nearly disappearing) quantum wells (Fig. 11), the classical and quantum results are closely related. 

 

 

 

 

70 An example of such an equation, for the particular case of a harmonic oscillator, is given by QM Eq. (7.214). 
The Fokker-Planck equation, of course, can give only its classical limit, with n, ne >> 1. 
71 H. Kramers, Physica 7, 284 (1940); see also the model solution of Problem 27. 
72 See, e.g., the review paper by O. Mel’nikov,  Phys. Repts. 209, 1 (1991), and references therein. 
73 See, e.g., QM Secs. 2.4-2.6. 

Fig. 5.11. Cubic-parabolic potential 
profile and its parameters. 
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Indeed, such potential profile U(q) may be well approximated by four leading terms of its Taylor 
expansion, with the highest term proportional to (q – q0)

3, near any point q0 in the vicinity of the well. In 
this approximation, the second derivative d2U/dq2 vanishes at the inflection point q0 = (q1 + q2)/2, 
exactly between the well’s bottom and the barrier’s top (in Fig. 11, q1 and q2). Selecting the origin at 
this point, as this is done in Fig. 11, we may reduce the approximation to just two terms:74 

3

3
)( q

b
aqqU  .      (5.157) 

(For the particle’s escape into the positive direction of the q-axis, we should have a,b > 0.) An easy 
calculation gives all essential parameters of this cubic parabola: the positions of its minimum and 
maximum: 
                 ,/ 2/1

12 baqq       (5.158) 

the barrier height over the well’s bottom: 
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and the effective spring constants at these points: 
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 Hence for this potential profile, Eq. (155) may be rewritten as 
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On the other hand, for the same profile, the WKB approximation (156) (which is accurate when the 
height of the metastable state energy over the well’s bottom, E – U(q1)  0/2, is much lower than the 
barrier height U0) yields75  
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The comparison of the dominating, exponential factors in these two results shows that the 
thermal activation yields a lower lifetime (i.e., dominates the metastable state decay) if the temperature 
is above the crossover value 

          00c 2.7
5

36   T .     (5.163) 

This expression for the cubic-parabolic barrier may be compared with a similar crossover for a 
quadratic-parabolic barrier,76 for which Tc = 2 0  6.28 0. We see that the numerical factors for 

74 As a reminder, a similar approximation arises for the P(V) function, at the analysis of the van der Waals model 
near the critical temperature – see Problem 4.6. 
75 The main, exponential factor in this result may be obtained simply by ignoring the difference between E and 
U(q1), but the correct calculation of the pre-exponential factor requires taking this difference, 0/2, into account 
– see, e.g., the model solution of QM Problem 2.43. 
76 See, e.g., QM Sec. 2.4. 
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the quantum-to-classical crossover temperature for these two different soft potential profiles are close to 
each other – and much larger than 1, which could result from a naïve estimate. 

 

5.8. Back to the correlation function 

 Unfortunately, I will not have time/space to either derive or even review solutions of other 
problems using the Smoluchowski and Fokker-Planck equations, but have to mention one conceptual 
issue. Since it is intuitively clear that the solution w(q, p, t) of the Fokker-Planck equation for a system 
provides full statistical information about it, one may wonder how it may be used to find its temporal 
characteristics that were discussed in Secs. 4-5 using the Langevin formalism.  For any statistical 
average of a function taken at the same time instant, the answer is clear – cf. Eq. (2.11): 

         pqddtwfttf 33),()()()( pq,pq,p,q ,    (5.164) 

but what if the function depends on variables taken at different times, for example as in the correlation 
function Kf() defined by Eq. (48)? 

 To answer this question, let us start from the discrete-variable case when Eq. (164) takes the 
form (2.7), which, for our current purposes, may be rewritten as 

              
m

mm tWftf )( .     (5.165) 

In plain English, this is a sum of all possible values of the function, each multiplied by its probability as 
a function of time. But this implies that the average f(t)f(t’) may be calculated as the sum of all 
possible products fmfm’, multiplied by the joint probability to measure outcome m at moment t, and 
outcome m’ at moment t’. The joint probability may be represented as a product of Wm(t) by the 
conditional probability W(m’, t’ m, t). Since the correlation function is well defined only for stationary 
systems, in the last expression we may take t = 0, i.e. look for the conditional probability as the solution, 
Wm’(), of the equation describing the system’s probability evolution, at time   = t’ – t (rather than t’), 
with the special initial condition 

      mm'm'W ,)0(  .     (5.166) 

On the other hand, since the average f(t)f(t +) of a stationary process should not depend on t, instead 
of Wm(0) we may take the stationary probability distribution Wm(), independent of the initial 
conditions, which may be found as the same special solution, but at time   . As a result, we get 
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 This expression looks simple, but note that this recipe requires solving the time evolution 
equations for each  Wm’() for all possible initial conditions (166). To see how this recipe works in 
practice, let us revisit the simplest two-level system (see, e.g., Fig. 4.13, which is reproduced in Fig. 12 
below in a notation more convenient for our current purposes), and calculate the correlation function of 
its energy fluctuations. 

Correlation 
function: 
discrete 
system 
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The stationary probabilities of the system’s states (i.e. their probabilities for   ) have been 

calculated in problems of Chapter 2, and then again in Sec. 4.4 – see Eq. (4.68). In our current notation 
(Fig. 12), 
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To calculate the conditional probabilities Wm’( ) with the initial conditions (166) (according to Eq. 
(168), we need all four of them, for {m, m’} = {0, 1}), we may use the master equations  (4.100), in our 
current notation reading 

               10
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.     (5.169) 

Since Eq. (169) conserves the total probability, W0 + W1 = 1, only one probability (say, W1) is an 
independent variable, and for it, Eq. (169) gives a simple, linear differential equation  
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which may be readily integrated for an arbitrary initial condition: 
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where W1() is given by the second of Eqs. (168). (It is straightforward to verify that the solution for 
W0() may be represented in a form similar to Eq. (171), with the corresponding replacement of the state 
index.)  

 Now everything is ready to calculate the average E(t)E(t +) using Eq. (167), with fm,m’ = E0,1. 
Thanks to our (smart :-) choice of the energy reference, of the four terms in the double sum (167), all 
three terms that include at least one factor E0 = 0 vanish, and we have only one term left to calculate: 
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From here and the last of Eqs. (168),  the correlation function of energy fluctuations is77 

77 The step from the first line of Eq. (173) to its second line utilizes the fact that our system is stationary, so E(t + 
) = E(t) = E() = const. 

00 E
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 
Fig. 5.12. Dynamics of a two-level system. 
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so its variance, equal to KE(0), does not depend on the transition rates  and . However, since the 
rates have to obey the detailed balance relation (4.103), / = exp{/T}, for this variance we may 
formally write 
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so Eq. (173) may be represented in a simpler form: 
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We see that the correlation function of energy fluctuations decays exponentially with time, with the rate 
. Now using the Wiener-Khinchin theorem (58) to calculate its spectral density, we get 
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 Such Lorentzian dependence on frequency is very typical for discrete-state systems described by 
master equations. It is interesting that the most widely accepted explanation of the 1/f noise (also called 
the “flicker” or “excess” noise), which was mentioned in Sec. 5, is that it is a result of thermally-
activated jumps between states of two-level systems with an exponentially-broad statistical distribution 
of the transition rates . Such a broad distribution follows from the Kramers formula (155), which is 
approximately valid for the lifetimes of both states of systems with double-well potential profiles (Fig. 
13), for a statistical ensemble with a smooth statistical distribution of the energy barrier heights U0. 
Such profiles are typical, in particular, for electrons in disordered (amorphous) solid-state materials, 
which indeed feature high 1/f  noise. 

 

 

 

 

 

 Returning to the Fokker-Planck equation, we may use the following evident generalization of 
Eq. (167) to the continuous-variable case: 
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were both probability densities are particular values of the equation’s solution with the delta-functional 
initial condition 
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Fig. 5.13. Typical double-
well potential profile. 
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For the Smoluchowski equation, valid in the high-damping limit, the expressions are similar, albeit with 
a lower dimensionality: 
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              )()0,( q-qq ''w  .     (5.180) 

To see this formalism in action, let us use it to calculate the correlation function Kq()  of a linear 
relaxator, i.e. an overdamped 1D harmonic oscillator with m0 << . In this limit, as Eq. (65) shows, 
the oscillator’s coordinate averaged over the ensemble of environments obeys a linear equation, 

              0 qq   ,     (5.181) 

which describes its exponential relaxation from the initial position q0 to the equilibrium position q = 0, 
with the reciprocal time constant  = /: 

           teqtq  0)( .     (5.182) 

 The deterministic equation (181) corresponds to the quadratic potential energy U(q) = q2/2, so 
the 1D version of the corresponding Smoluchowski equation (122) takes the form 
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It is straightforward to check, by substitution, that this equation, rewritten for the function w(q’,), with 
the 1D version of the delta-functional initial condition (180), w(q’,0) = (q’ – q), is satisfied with a 
Gaussian function: 
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with its center q() moving in accordance with Eq. (182), and a time-dependent variance 
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(As a sanity check, the last equality coincides with the equipartition theorem’s result.) Finally, the first 
probability under the integral in Eq. (179) may be found from Eq. (184) in the limit    (in which 
q()  0), by replacing q’ with q: 
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 Now all ingredients of the recipe (179) are ready, and we can spell it out, for f (q) = q, as 
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The integral over q’ may be worked out first, by replacing this integration variable with (q” + qe-) and 
hence dq’ with dq”: 
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The internal integral of the first term in the parentheses equals zero (as that of an odd function in 
symmetric integration limits), while that with the second term is the standard Gaussian integral, so: 
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 The last integral78 equals 1/2/2, so taking into account that for this stationary system centered at 
the coordinate origin, q() = 0, we finally get a very simple result:  
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As a sanity check, for   = 0, it yields Kq(0)  q2 = T/, in accordance with Eq. (185). As  is increased 
the correlation function decreases monotonically – see the solid-line sketch in Fig. 8. 

So, the solution of this very simple problem has required straightforward but somewhat bulky 
calculations. On the other hand, the same result may be obtained literally in one line using the Langevin 
formalism –  namely, as the Fourier transform (59) of the spectral density (68) in the corresponding limit 
m << , with SF() given by Eq. (73a):79 
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This example illustrates the fact that for fluctuations in linear systems (and small fluctuations in 
nonlinear systems) the Langevin approach is usually much simpler than the one based on the Fokker-
Planck or Smoluchowski equations. However, again, the latter approach is indispensable for the analysis 
of fluctuations of arbitrary intensity in nonlinear systems. 

  To conclude this chapter, I have to emphasize again that the Fokker-Planck and Smoluchowski 
equations give a quantitative description of the time evolution of nonlinear Brownian systems with 
dissipation in the classical limit. The description of the corresponding properties of such dissipative 
(“open”) and nonlinear quantum systems is more complex,80 and only a few simple problems of their 
theory have been solved analytically so far,81 typically using particular models of the environment, e.g., 
as a large set of harmonic oscillators with various statistical distributions of their parameters, each 
leading to a specific function () for the generalized susceptibility. 

 

78 See, e.g., MA Eq. (6.9c). 
79 The involved table integral may be found, e.g., in MA Eq. (6.11). 
80 See, e.g., QM Sec. 7.6. 
81 See, e.g., the solutions of the 1D Kramers problem for quantum systems with low damping by A. Caldeira and 
A. Leggett, Phys. Rev. Lett. 46, 211 (1981), and with high damping by A. Larkin and Yu. Ovchinnikov, JETP 
Lett. 37, 382 (1983).  
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5.10. Exercise problems 

 5.1. By treating the first 30 digits of number  = 3.1415 as a statistical ensemble of integers k 
(equal to 3, 1, 4, 1, 5,…), calculate the average k and the r.m.s. fluctuation k.  Compare the results 
with those for the ensemble of randomly selected decimal integers 0, 1, 2, 9. 
 
 5.2. An ideal classical gas of N similar particles fills a spherical cavity of radius R. Calculate the 
variance of fluctuations of the position r of its center of mass, in equilibrium. 
 
 5.3. Calculate the variance of fluctuations of a magnetic moment m placed into an external 
magnetic field H, within the same two models as in Problem 2.4: 

 (i) a quantum spin-½ with a gyromagnetic ratio , and 
 (ii) a classical magnetic moment m of a fixed magnitude m0 but an arbitrary orientation, 

both in thermal equilibrium at temperature T. Compare the results.82 

 Hint: Mind all three Cartesian components of the vector m. 
 
5.4. For a field-free two-site Ising system with energy values Em = –Js1s2, in thermal equilibrium 

at temperature T, calculate the variance of energy fluctuations. Explore the low-temperature and high-
temperature limits of the result. 
  
 5.5. In a system in thermodynamic equilibrium with fixed T and , both the number N of 
particles and the internal energy E may fluctuate. Express the mutual correlation factor of these 
fluctuations via the average of E. Spell out the result for an ideal classical gas of N >> 1 particles. 
 
 5.6. As was mentioned in Sec. 2, the variance of energy fluctuations in a system with fixed T and 
 (i.e. a member of a grand canonical ensemble) is generally different from that in a similar system in 
which T and N are fixed, i.e. a member of a canonical ensemble. Calculate and interpret the difference. 
 
 5.7. For a uniform three-site Ising ring with ferromagnetic coupling (and no external field), in 
thermal equilibrium at temperature T, calculate the correlation coefficients Ks  sksk' for both k = k' and 
k  k'. 
 
 5.8.* For a field-free 1D Ising system of N >> 1 “spins”,  in thermal equilibrium at temperature 
T, calculate the correlation coefficient Ks  slsl+n, where l and (l + n) are the numbers of two specific 
spins in the chain. 

 Hint: Consider a mixed partial derivative of the statistical sum calculated in Problem 4.21 for an 
Ising chain with an arbitrary set of Jk, over a part of these parameters. 
 

82 Note that these two cases may be considered as the non-interacting limits of, respectively, the Ising model 
(4.23) and the classical limit of the Heisenberg model (4.21), whose analysis within the Weiss approximation was 
the subject of Problems 4.22 and 4.23. 
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 5.9. Within the framework of the Weiss molecular-field approximation, calculate the variance of 
spin fluctuations in the d-dimensional Ising model. Use the result to derive the conditions of quantitative 
validity of the approximation. 
 
 5.10. Calculate the variance of energy fluctuations in a quantum harmonic oscillator with 
frequency , in thermal equilibrium at temperature T, and express it via the average energy. 
 
 5.11. The spontaneous electromagnetic field inside a closed volume V is in thermal equilibrium 
at temperature T. Assuming that V is sufficiently large, calculate the variance of fluctuations of the total 
energy of the field, and express the result via its average energy and temperature. How large should the 
volume V be for your results to be quantitatively valid? Evaluate this limitation for room temperature. 
 
 5.12. Express the r.m.s. uncertainty of the occupancy Nk of a certain energy level k by non-
interacting: 

 (i) classical particles, 
 (ii) fermions, and 
 (iii) bosons, 

in thermodynamic equilibrium, via the level’s average occupancy Nk, and compare the results. 
 
 5.13. Write a general expression for the variance of the number of particles in the ideal gases of 
bosons and fermions, at fixed V, T, and . Spell out the result for the degenerate Fermi gas.  
 

 5.14. Express the variance of the number of particles,  2~
N V,T,, of a single-phase system in 

equilibrium, via its isothermal compressibility T  –(V/P)T,N/V. 
 
 5.15.* Calculate the low-frequency spectral density of fluctuations of the pressure P of an ideal 
classical gas, in thermal equilibrium at temperature T, and estimate their variance. Compare the former 
result with the solution of Problem 3.2. 

 Hints: You may consider a cylindrically-shaped container of volume 
V = LA (see the figure on the right), and start by using the Maxwell 
distribution of velocities to calculate the spectral density of the force F (t) 
exerted by the confined particles on its plane lid of area A, approximating 
the force with a delta-correlated process. 
  
 5.16. Calculate the low-frequency spectral density of fluctuations of the electric 
current I(t) due to the random passage of charged particles between two conducting 
electrodes – see the figure on the right. Assume that the particles are emitted, at random 
times, by one of the electrodes, and are fully absorbed by the counterpart electrode. Can 
your result be mapped onto some aspect of the electromagnetic blackbody radiation? 

 Hint: For the current I(t), use the same delta-correlated-process approximation as for the force 
F(t) in the previous problem. 
 
 5.17. Perhaps the simplest model of the diffusion is the 1D discrete random walk: each time 
interval , a particle leaps, with equal probability, to any of two adjacent sites of a 1D lattice with a 

q

TN ,
)(tF

L

A



Essential Graduate Physics               SM: Statistical Mechanics 

    
Chapter 5            Page 43 of 44 

spatial period a. Prove that the particle’s displacement during a time interval t >>  obeys Eq. (77), and 
calculate the corresponding diffusion coefficient D.  
 
 5.18.83 A long uniform string, of mass  per unit length, is attached to a 
firm support and stretched with a constant force (“tension”) T – see the figure on 
the right. Calculate the spectral density of the random force F(t) exerted by the 
string on the support point, within the plane normal to its length, in thermal 
equilibrium at temperature T. 

 Hint: You may assume that the string is so long that transverse waves propagating along it from 
the support point never come back. 
 
 5.19.84 Each of the two 3D isotropic harmonic oscillators, with mass m, resonance frequency 0, 
and damping coefficient  > 0, has the electric dipole moment d = qs, where s is the vector of the 
oscillator’s displacement from its equilibrium position. Use the Langevin formalism to calculate the 
average potential of electrostatic interaction (a particular case of the so-called London dispersion force) 
of these oscillators separated by distance r >> (T/m)1/2/0, in thermal equilibrium at temperature T >> 
0. Also, explain why the approach used to solve a very similar Problem 2.18 is not directly applicable 
to this case. 

 Hint: You may like to use the following integral: 
     a
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 5.20.* Within the van der Pol approximation,85 calculate the major statistical properties of small 
fluctuations of classical self-oscillations (including their linewidth), for: 

 (i) a free (“autonomous”) run of the oscillator, and 
 (ii) its phase being locked by an external sinusoidal force,  

assuming that the fluctuations are caused by a noise with a smooth spectral density Sf(). 
  
 5.21. Calculate the correlation function of the coordinate of a 1D harmonic oscillator with low 
damping, in thermal equilibrium. Compare the solution with that of the previous problem. 
 
 5.22. A lumped electric circuit consisting of a capacitor C shortened with an Ohmic resistor R is 
in thermal equilibrium at temperature T. Use two different approaches to calculate the variance of the 
thermal fluctuations of the capacitor’s electric charge Q. Estimate the effect of quantum fluctuations. 
 

83 This problem, conceptually important for the quantum mechanics of open systems, was also given in Chapter 7 
of the QM part of this series.  
84 This system, with an arbitrary temperature, was the subject of QM Problem 7.6, with QM Problem 5.15 serving 
as the background. However, the method used in the model solutions of those problems requires one to prescribe, 
to the oscillators, different frequencies 1 and 2 at first, and only after this more general problem has been 
solved, pursue the limit 1  2, while neglecting dissipation altogether. The goal of this problem is to show that 
the result of that solution is valid even at non-zero damping. 
85 See, e.g., CM Secs. 5.2-5.5. Note that in quantum mechanics, a similar approach is called the rotating-wave 
approximation (RWA) – see, e.g., QM Secs. 6.5, 7.6, 9.2, and 9.4. 
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 5.23. Consider a very long, uniform, two-wire transmission line (see the 
figure on the right) with a wave impedance Z, which allows the propagation of 
TEM electromagnetic waves with negligible attenuation. Calculate the variance 
V2 of spontaneous fluctuations of the voltage V  between the wires within a 
small interval  of cyclic frequencies, in thermal equilibrium at temperature T. 

 Hint: As an E&M reminder,86 in the absence of dispersive materials, TEM waves propagate with 
a frequency-independent velocity, and with the voltage V  and current I (see the figure above) related as 
V (x,t)/I(x,t) = Z, where Z is the line’s wave impedance. 
 
 5.24.  Now consider a similar long transmission line but terminated, at one end, with an 
impedance-matching Ohmic resistor R = Z. Calculate the variance V2 of the voltage across the 
resistor, and discuss the relation between the result and the Nyquist formula (81b), including numerical 
factors. 

 Hint: A termination with resistance R = Z absorbs incident TEM waves without reflection. 
  
 5.25. An overdamped classical 1D particle escapes from a potential well 
with a smooth bottom but a sharp top of the barrier – see the figure on the right. 
Perform the necessary modification of the Kramers formula (139). 
  

 5.26.* Similar particles, whose spontaneous electric dipole moments p have a field-independent 
magnitude p0, are uniformly distributed in space with a density n so low that their mutual interaction is 
negligible. Each particle may rotate without substantial inertia but under a kinematic friction torque 
proportional to its angular velocity. Use the Smoluchowski equation to calculate the complex dielectric 
constant () of such a medium, in thermal equilibrium at temperature T, for a weak, linearly-polarized 
rf electric field. 
 
 5.27.* Prove that for systems with relatively low inertia (i.e. relatively high damping), at not very 
high temperatures, the Fokker-Planck equation (149) reduces to the Smoluchowski equation (122) – in 
the sense described by Eq. (153) and the accompanying statement. 
 
 5.28.* Use the 1D version of the Fokker-Planck equation (149) to prove the solution (156) of the 
Kramers problem. 
 
 5.29. A constant external torque, applied to a 1D mechanical pendulum with mass m and length 
l, has displaced it by angle 0 < /2 from the vertical position. Calculate the average rate of the 
pendulum’s rotation induced by relatively small thermal fluctuations of temperature T. 
 
 5.30. A classical particle may occupy any of N similar sites. Its weak interaction with the 
environment induces random uncorrelated incoherent jumps from the occupied site to any other site, 
with the same time-independent rate . Calculate the correlation function and the spectral density of 
fluctuations of the instant occupancy n(t) (equal to either 1 or 0) of a site. 

86 See, e.g., EM Sec. 7.6. 
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