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Chapter 6. Elements of Kinetics 

This chapter gives a brief introduction to the basic notions of physical kinetics. Its main focus is on the 
Boltzmann transport equation, especially within the simple relaxation-time approximation (RTA), which 
allows an approximate but reasonable and simple description of transport phenomena (such as the 
electric current and thermoelectric effects) in gases, including electron gases in metals and 
semiconductors. 

 

6.1. The Liouville theorem and the Boltzmann equation 

 Physical kinetics (not to be confused with “kinematics”!) is the branch of statistical physics that 
deals with systems out of thermodynamic equilibrium. Major effects addressed by kinetics include: 

 (i) for autonomous systems (those out of external fields): the transient processes (relaxation), 
that lead from an arbitrary initial state of a system to its thermodynamic equilibrium; 

  (ii) for systems in time-dependent (say, sinusoidal) external fields: the field-induced periodic 
oscillations of the system’s variables; and 

 (iii) for systems in time-independent (“dc”) external fields: dc transport. 

 In the last case, we are dealing with stationary (/t = 0 everywhere), but non-equilibrium 
situations, in which the effect of an external field, continuously driving the system out of equilibrium, is 
partly balanced by its simultaneous relaxation – the trend back to equilibrium. Perhaps the most 
important effect of this class is the dc current in conductors and semiconductors,1 which alone justifies 
the inclusion of the basic notions of kinetics into any set of core physics courses. 

 The reader who has reached this point of the notes already has some taste of physical kinetics 
because the subject of the last part of Chapter 5 was the kinetics of a “Brownian particle”, i.e. of a 
“heavy” system interacting with an environment consisting of many “lighter” components. Indeed, the 
equations discussed in that part – whether the Smoluchowski equation (5.122) or the Fokker-Planck 
equation (5.149) – are valid if the environment is in thermodynamic equilibrium, but the system of our 
interest is not necessarily so. As a result, we could use those equations to discuss such non-equilibrium 
phenomena as the Kramers problem of the metastable state’s lifetime. 

 In contrast, this chapter is devoted to the more traditional subject of kinetics: systems of many 
similar particles – generally, interacting with each other but not too strongly, so the energy of the system 
still may be partitioned into a sum of single-particle components, with the interparticle interactions 
considered as a perturbation. Actually, we have already started the job of describing such a system at the 
beginning of Sec. 5.7. Indeed, in the absence of particle interactions (i.e. when it is unimportant whether 
the particle of our interest is “light” or “heavy”), the probability current densities in the coordinate and 
momentum spaces are given, respectively, by Eq. (5.142) and the first form of Eq. (5.143a), so the 
continuity equation (5.140) takes the form 

                   0



pq  ww
t

w
pq  .    (6.1) 

1 This topic was briefly addressed in EM Chapter 4, avoiding its aspects related to thermal effects. 
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If similar particles do not interact, this equation for the single-particle probability density w(q, p, t) is 
valid for each of them, and the result of its solution may be used to calculate any ensemble-average 
characteristic of the system as a whole. 

 Let us rewrite Eq. (1) in the Cartesian component form, 
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where the index j numbers all degrees of freedom of the particle under consideration, and assume that its 
motion (perhaps in an external, time-dependent field) may be described by a Hamiltonian function H (qj, 

pj, t). Plugging into Eq. (2) the Hamiltonian equations of motion:2 
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we get 

     0















































 

j jjjj q
w

pp
w

qt

w HH
.   (6.4) 

After differentiation of both parentheses by parts, the equal mixed terms w2H/qjpj and w2H/pjqj 
cancel, and using Eq. (3) again, we get the so-called Liouville theorem3 
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 Since the left-hand side of this equation is just the full derivative of the probability density w 
considered as a function of the generalized coordinates qj(t) of a particle, its generalized momenta 
components pj(t), and (possibly) time t,4 the Liouville theorem (5) may be represented in a surprisingly 
simple form: 

      0
),,(


dt

tdw pq
.     (6.6) 

Physically, this means that the elementary probability dW = wd3qd3p to find a Hamiltonian particle in a 
small volume of the coordinate-momentum space [q, p], with its center moving in accordance to the 
deterministic law (3), does not change with time – see Fig. 1.  

 

 

 

 

 

2 See, e.g., CM Sec. 10.1. 
3 Actually, this is just one of several theorems bearing the name of Joseph Liouville (1809-1882). 
4 See, e.g., MA Eq. (4.2).  
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theorem’s interpretation: 
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 At first glance, this fact may not look surprising because according to the fundamental Einstein 
relation (5.78), one needs non-Hamiltonian forces (such as the kinematic friction) to have diffusion. On 
the other hand, it is striking that the Liouville theorem is valid even for (Hamiltonian) systems with 
deterministic chaos,5 in which the deterministic trajectories corresponding to slightly different initial 
conditions become increasingly mixed with time. 

 For an ideal gas of 3D particles, we may use the ordinary Cartesian coordinates rj (with j = 1, 2, 
3) as the generalized coordinates qj, so pj become the Cartesian components mvj of the usual (linear) 
momentum, and the elementary volume is just d3rd3p – see Fig. 1. In this case, Eqs. (3) are just 

           jjj
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p
r F  , ,     (6.7) 

where F  is the force exerted on the particle, so the Liouville theorem may be rewritten as 
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and conveniently represented in the vector form 
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 Of course, the situation becomes much more complex if the particles interact. Generally, a 
system of N similar particles in 3D space has to be described by the probability density being a function 
of (6N + 1) arguments: 3N Cartesian coordinates, plus 3N momentum components, plus time. An 
analytical or numerical solution of any equation describing the time evolution of such a function for a 
typical system of N ~ 1023 particles is evidently a hopeless task. Hence, any theory of realistic systems’ 
kinetics has to rely on making reasonable approximations that would simplify the situation. 

 One of the most useful approximations (sometimes called Stosszahlansatz – German for the 
“collision-number assumption”) was suggested by Ludwig Boltzmann for a gas of particles that move 
freely most of the time but interact during short time intervals, when a particle comes close to either an 
immobile scattering center (say, an impurity in a conductor’s crystal lattice) or to another particle of the 
gas. Such brief scattering events may change the particle’s momentum. Boltzmann argued that they may 
be still approximately described Eq. (9), with the addition of a special term (called the scattering 
integral) to its right-hand side: 
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This is the Boltzmann transport equation, sometimes called just the “Boltzmann equation” for short. As 
will be discussed below, it may give a very reasonable description of not only classical but also quantum 
particles, though it evidently neglects the quantum-mechanical coherence/entanglement effects6 – 
besides those that may be hidden inside the scattering integral. 

5 See, e.g., CM Sec. 9.3. 
6 Indeed, the quantum state coherence is described by off-diagonal elements of the density matrix, while the 
classical probability w represents only the diagonal elements of that matrix. However, at least for the ensembles 
close to thermal equilibrium, this is a reasonable approximation – see the discussion in Sec. 2.1.

Boltzmann 
transport 
equation 
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The concrete form of the scattering integral depends on the type of particle scattering. If the 
scattering centers do not belong to the ensemble under consideration (an example is given, again, by 
impurity atoms in a conductor), then the scattering integral may be expressed as an evident 
generalization of the master equation (4.100):  

        ),,(),,(3
gscatteerin twt'wp'd

t

w
'' prpr pppp  




 ,   (6.11) 

where the physical sense of pp’ is the rate (i.e. the probability per unit time) for the particle to be 
scattered from the state with the momentum p into the state with the momentum p’ – see Fig. 2. 

 

 

 

 

 Most elastic interactions are reciprocal, i.e. obey the following relation (closely related to the 
reversibility of time in Hamiltonian systems): pp’ = p’p, so Eq. (11) may be rewritten as7 
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With such scattering integral, Eq. (10) stays linear in w but becomes an integro-differential equation, 
typically harder to solve analytically than differential equations. 

 The equation becomes even more complex if the scattering is due to the mutual interaction of the 
particle members of the system – see Fig. 3.  

 

 

 

 

 

 In this case, the probability of a scattering event scales as a product of two single-particle 
probabilities, and the simplest reasonable form of the scattering integral is8 

7 One may wonder whether this approximation may work for Fermi particles, such as electrons, for whom the 
Pauli principle forbids scattering into the already occupied state, so for the scattering p  p’, the term w(r, p, t) in 
Eq. (12) has to be multiplied by the probability [1 – w(r, p’, t)] that the final state is available. This is a valid 
argument, but one should notice that if this modification has been done with both terms of Eq. (12), it becomes 
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Opening both square brackets, we see that the probability density products cancel, bringing us back to Eq. (12). 
8 This was the approximation used by L. Boltzmann to prove the famous H-theorem, stating that the entropy of 
the gas described by Eq. (13) may only grow (or stay constant) in time, dS/dt  0. Since the model is very 
approximate, that result does not seem too fundamental nowadays, despite all its historic significance. 
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The integration dimensionality in Eq. (13) takes into account the fact that due to the conservation of the 
total momentum at scattering,  
      '' '' pppp  ,     (6.14) 

one of the momenta is not an independent argument, so the integration in Eq. (13) may be restricted to a 
6D p-space rather than the 9D one. For the reciprocal interaction, Eq. (13) may also be a bit simplified, 
but it still keeps Eq. (10) a nonlinear integro-differential transport equation, excluding such powerful 
solution methods as the Fourier expansion – which hinges on the linear superposition principle. 

 This is why most useful results based on the Boltzmann transport equation depend on its further 
simplifications, most notably the relaxation-time approximation – RTA for short.9 This approximation is 
based on the fact that in the absence of spatial gradients ( = 0), and external forces (F = 0), in the 
thermal equilibrium, Eq. (10) yields 
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so the equilibrium probability distribution w0(r, p, t) has to turn any scattering integral to zero. Hence at 
a small deviation from the equilibrium, 
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the scattering integral should be proportional to the deviation w~ , and its simplest reasonable model is 
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where  is a phenomenological constant (which, according to Eq. (15), has to be positive for the 
system’s stability) called the relaxation time. Its physical meaning will be more clear in the next section.  

 The relaxation-time approximation is quite reasonable if the angular distribution of the scattering 
rate is dominated by small angles between vectors p and p’ – as it is, for example, for the Rutherford 
scattering by a Coulomb center.10 Indeed, in this case the two values of the function w participating in 
Eq. (12) are close to each other for most scattering events, so the loss of the second momentum 
argument (p’) is not too essential. However, using the Boltzmann-RTA equation that results from 
combining Eqs. (10) and (17), 
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we should always remember that this is just a phenomenological model, sometimes giving completely 
wrong results. For example, it prescribes the same time scale () to the relaxation of the net momentum 

9 Sometimes this approximation is called the “BGK model”, after P. Bhatnager, E. Gross, and M. Krook who 
suggested it in 1954. (The same year, a similar model was considered by P. Welander.) 
10 See, e.g., CM Sec. 3.7. 
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of the system, and to its energy relaxation, while in many real systems, the latter process (that results 
from inelastic collisions) may be substantially longer. Naturally, in the following sections, I will 
describe only those applications of the Boltzmann-RTA equation that give a reasonable description of 
physical reality. 

 

6.2. The Ohm law and the Drude formula 

 Despite its shortcomings, Eq. (18) is adequate for quite a few applications. Perhaps the most 
important of them is deriving the Ohm law for dc current in a “nearly-ideal” gas of charged particles, 
whose only important deviation from ideality is the rare scattering effects described by Eq. (17). As a 
result, in equilibrium it is described by the stationary probability w0 of an ideal gas (see Sec. 3.1): 
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where g is the internal degeneracy factor (say, g = 2 for electrons due to their spin), and N() is the 
average occupancy of a quantum state with momentum p, that obeys either the Fermi-Dirac or the Bose-
Einstein distribution: 
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(The following calculations will be valid, up to a point, for both statistics and hence, in the limit /T  
–, for a classical gas as well.)  

 Now let a uniform dc electric field E  be applied to a uniform gas of similar particles with 
electric charge q, exerting the force F = qE on each of them. Then the stationary solution of Eq. (18), 
with /t = 0, should also be stationary and spatially uniform (r = 0), so this equation is reduced to 
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Let us require the electric field to be relatively low, so that the perturbation w~  it produces is relatively 
small, as required by our basic assumption (16).11 Then on the left-hand side of Eq. (21), we can neglect 
that perturbation, by replacing w with w0, because that side already has a small factor (E). As a result, 
this equation yields  
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where the second step implies isotropy of the parameters  and T, i.e. their independence of the 
direction of the particle’s momentum p. But the gradient p is nothing else than the particle’s velocity 

11 Since the scale of the fastest change of w0 in the momentum space is of the order of w0/p = (w0/)(d/dp) ~  
(1/T)v, where v is the particle speed scale, the necessary condition of the linear approximation (22) is eE  << T/v, 
i.e. if eEl << T, where l  v has the meaning of the effective mean free path. Since the left-hand side of the last 
inequality is just the average energy given to the particle by the electric field between two scattering events, the 
condition may be interpreted as the smallness of the gas’ “overheating” by the applied field. However, another 
condition is also necessary – see the last paragraph of this section. 
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v – for a quantum particle, its group velocity.12 (This fact is easy to verify for the isotropic and parabolic 
dispersion law, pertinent to classical particles moving in free space, 
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Indeed, in this case, the jth Cartesian components of the vector p  is 
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so p  = v.) Hence, Eq. (22) may be rewritten as 
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Let us use this result to calculate the electric current density j. The contribution of each particle 
to the current density is qv, so the total density is 
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Since in the equilibrium state (with w = w0), the current has to be zero, the integral of the first term in 
the parentheses has to vanish. For the integral of the second term, plugging in Eq. (25), and then using 
Eq. (19), we get 
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where d2p is the elementary area of the constant energy surface in the momentum space, while dpis the 
momentum differential’s component normal to that surface. The real power of this result13 is that it is 
valid even for particles with an arbitrary dispersion law (p) (which may be rather complicated, for 
example, for particles moving in space-periodic potentials14), and gives, in particular, a fair description 
of conductivity’s anisotropy in crystals.  

 For free particles whose dispersion law is isotropic and parabolic, as in Eq. (23), the constant 
energy surface is a sphere of radius p, so d2p = p2d = p2sindd, while dp = dp. In the spherical 
coordinates, with the polar axis directed along the electric field vector E, we get (Ev) = E vcos. Now 
separating the vector v outside the parentheses into the component vcos directed along the vector E, 
and two perpendicular components, vsincos and vsinsin, we see that the integrals of the last two 
components over the angle   give zero. Hence, as we could expect, in the isotropic case the net current 
is directed along the electric field and obeys the linear Ohm law,  

            ,Ej       (6.28) 

12 See, e.g., QM Sec. 2.1.  
13 It was obtained by Arnold Sommerfeld in 1927. 
14 See, e.g., QM Secs. 2.7, 2.8, and 3.4. (In this case, p should be understood as the quasimomentum rather than 
the genuine momentum.) 
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with a field-independent, scalar15 electric conductivity 
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(Note that  is proportional to q2 and hence does not depend on the particle charge sign.16)  

 Since sind is just –d(cos), the integral over   equals (2/3). The integral over d is of course 
just 2, while that over p may be readily transformed to one over the particle’s energy (p) = p2/2m: p2 = 
2m, v2 = 2/m, p = (2m)1/2, so dp = (m/2)1/2d, and p2dpv2 = (2m)(m/2)1/2d (2/m)  (8m3)1/2d. As 
a result, the conductivity equals 
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Now we may work out the integral in Eq. (30) by parts, first rewriting [-N()/]d as –d[N()]. Due 
to the fast (exponential) decay of the factor N() at   , its product by the factor (8m3)1/2 vanishes 
at both integration limits, and we get 

              
 

    
 

   

  .
2

2

3
8

3

4

2
8

3

4

2

2/1

0
32

2/32

2/1

0

2/1

3

2
2/13

0
3

2













dN
gm

m

q

dNm
gq

mdN
gq















   (6.31) 

But according to Eq. (3.40), the last factor in this expression (following the  sign) is just the particle 
density n  N/V, so Sommerfeld’s result is reduced, for an arbitrary temperature and any particle 
statistics, to the very simple Drude formula,17 
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which should be well familiar to the reader from an undergraduate physics course.  

 As a reminder, here is its simple classical derivation.18 Let  be the average time after the last 
scattering event that has caused particles to lose the deterministic component of their velocity, vdrift, 
provided by the electric field E on the top of the particle’s random thermal motion – which does not 
contribute to the net current. Using the 2nd Newton law to describe the particle’s acceleration by the 

15 As Eq. (27) shows, if the dispersion law (p) is anisotropic, the current density direction may be different from 
that of the electric field. In this case, conductivity should be described by a tensor jj’, rather than a scalar. 
However, in most important conducting materials, the anisotropy is rather small – see, e.g., EM Table 4.1. 
16 This is why the Hall effect, which lacks such ambivalence (see, e.g., QM 3.2), is frequently used to determine 
the dominating type of charge carriers in semiconductors: electrons or holes, see Sec. 4 below. 
17 It was derived in 1900 by Paul Drude. Note that Drude also used the same arguments to derive a very simple 
(and very reasonable) approximation for the complex electric conductivity in the ac field of frequency : () = 
(0)/(1 – i), with (0) given by Eq. (32); sometimes the name “Drude formula” is used for this expression. Let 
me leave its derivation, from the Boltzmann-RTA equation, for the reader’s exercise. 
18 See also EM Sec. 4.2. Note that the frequently met definition of  as the “the average time interval between two 
sequential scattering events” would lead to an extra factor of ½ in the expressions for vdrift and .  

Drude 
formula 
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field, dv/dt = qE/m, we get vdrift = qE/m. Multiplying this result by the particle’s charge q and density 
n  N/V, we get the Ohm law j = E, with  given by Eq. (32). 

 Sommerfeld’s derivation of the Drude formula poses an important conceptual question. The 
structure of Eq. (30) implies that the only quantum states contributing to the electric conductivity are 
those whose derivative [-N()/] is significant. For the Fermi particles such as electrons, in the limit 
T << F, these are the states at the very Fermi surface. On the other hand, Eq. (32) and the whole Drude 
reasoning, involve the density n of all electrons.  So, what exactly electrons are responsible for the 
conductivity: all of them, or only those at the Fermi surface? For the resolution of this paradox, let us 
return to Eq. (22) and analyze the physical meaning of that result. Let us compare it with the following 
model distribution: 

           ),~,(0model tww ppr  ,      (6.33) 

wherep~ is some time-independent, small vector that describes a small shift of the unperturbed 
distribution w0 as a whole, in the momentum space. Performing the Taylor expansion of Eq. (33) in this 
small parameter, and keeping only two leading terms, we get 

           ),,(~~with  ,~),,( 0modelmodel0model twwwtww p prppr  .  (6.34) 

Comparing the last expression with the first form of Eq. (22), we see that they coincide if 

      FE  τqp~ .     (6.35) 

This means that Eq. (22) describes a small shift of the equilibrium distribution of all particles (in the 
momentum space) by qE along the electric field’s direction, justifying the cartoon shown in Fig. 4. 

  

 

 

 

 

 
 
 
 At E = 0, the system is in equilibrium, so the quantum states inside the Fermi sphere (p < pF), are 
occupied, while those outside of it are empty – see Fig. 4a. Electron scattering events may happen only 
between states within a very thin layer ( p2/2m – F  ~ T) at the Fermi surface because only in this layer 
the states are partially occupied, so both components of the product w(r, p, t)[1 – w(r, p’, t)], mentioned 
in Sec. 1, do not vanish. These scattering events, on average, do not change the equilibrium probability 
distribution, because they are uniformly spread over the Fermi surface.  

 Now let the electric field be turned on instantly. Immediately it starts accelerating all electrons in 
its direction, i.e. the whole Fermi sphere starts moving in the momentum space, along the field’s 
direction in the real space. For elastic scattering events (with  p’  =  p ), this creates an addition of 
occupied states at the leading edge of the accelerating sphere and an addition of free states on its trailing 

1p

2p

0
1p

2p

Fp~

EF q

Fig. 6.4. Filling of momentum states by 
a degenerate electron gas: (a) in the 
absence and (b) in the presence of an 
external electric field E. Arrows show 
representative scattering events. 

(a)     (b) 
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edge (Fig. 4b). As a result, now there are more scattering events bringing electrons from the leading 
edge to the trailing edge of the sphere than in the opposite direction. This creates the average backflow 
of the state occupancy in the momentum space. These two trends eventually cancel each other, and the 
Fermi sphere approaches a stationary (though not a thermally-equilibrium!) state, with the shift (35) 
from its equilibrium position. 

 Now Fig. 4b may be used to answer which of the two different interpretations of the Drude 
formula is correct, and the answer is: either. On one hand, we can look at the electric current as a result 
of the shift (35) of all electrons in the momentum space. On the other hand, each filled quantum state 
deep inside the sphere gives exactly the same contribution to the net current density as it did without the 
field. All these internal contributions to the net current cancel each other so the applied field changes the 
situation only at the Fermi surface. Thus it is equally legitimate to say that only the surface states are 
responsible for the non-zero net current.19  

 Let me also mention another paradox related to the Drude formula, which is often misunderstood 
(not only by students :-). As was emphasized above,   is finite even at elastic scattering – that by itself 
does not change the total energy of the gas. The question is how can such scattering be responsible for 
the Ohmic resistivity   1/, and hence for the Joule heat production, with the power density p = jE = 
j2? 20 The answer is that the Drude/Sommerfeld formulas describe just the “bottleneck” of the Joule 
heat formation. In the scattering picture (Fig. 4b) the states filled by elastically scattered electrons are 
located above the (shifted) Fermi surface, and these electrons eventually need to relax onto it via some 
inelastic process, which releases their excessive energy in the form of heat (in a solid, described by 
phonons – see Sec. 2.6). The rate and other features of these inelastic phenomena do not participate in 
the Drude formula directly, but for keeping the theory valid (in particular, holding the probability 
distribution w close to its equilibrium value w0), their intensity has to be sufficient to avoid gas 
overheating by the applied field.21 

 One final comment is that the Sommerfeld theory of Ohmic conductivity, based on the 
Boltzmann-RTA equation (18), works very well for the electron gas in most conductors. The scheme 
shown in Fig. 4 helps to understand why: for degenerate Fermi gases the energies of all particles whose 
scattering contributes to transport properties, are close (  F), and prescribing them all the same 
relaxation time  is very reasonable. In contrast, in classical gases, with their relatively broad 
distribution of , some results given by Eq. (18) are valid only by the order of magnitude. 

 

6.3. Electrochemical potential and the drift-diffusion equation  

 Now let us generalize our calculation to the case when the particle transport takes place in the 
presence of a time-independent spatial gradient of the probability distribution, rw  0, caused for 
example by that of the particle concentration n = N/V (and hence, according to Eq. (3.40), of the 

19 So here, as it frequently happens in physics, formulas (or graphical sketches, such as Fig. 4b) give a clearer 
description of reality than words – the privilege lacked by many “scientific” disciplines that are rich with 
unending, shallow verbal debates. Note also that, as frequently happens in physics, the dual interpretation of  is 
expressed by two different but equal integrals (30) and (31), related by the integration-by-parts rule. 
20 This formula is probably self-evident, but if you need, you may revisit EM Sec. 4.4. 
21 In some poorly conducting materials, charge carrier overheating effects resulting in deviations from the Ohm 
law, i.e. from the linear relation (28) between j and E, may be observed already at practicable electric fields. 
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chemical potential ), while still assuming that the temperature T is constant. For this generalization, we 
should keep the second term on the left-hand side of Eq. (18). If the gradient of w is sufficiently small, 
we can repeat the arguments of the last section and replace w with w0 in this term as well. With the 
applied electric field E  represented as (–),22 where   is the electrostatic potential, Eq. (25) becomes 

      





 



 0
0~ wq

w
w 


 v .     (6.36) 

Since in any of the equilibrium distributions (20), N() is a function of  and  only in the combination 
( – ), it obeys the following relation:  

           
   














 NN
.     (6.37) 

Using it, the gradient of w0  N() may be represented as23 
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so Eq. (36) becomes 
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where the following sum, 
          q'  ,     (6.40) 

is called the electrochemical potential. Now replicating the calculation of the electric current, carried 
out in the last section, we get the following generalization of the Ohm law (28): 

                     E  q' /j ,     (6.41) 

where the effective electric field E is proportional to the gradient of the electrochemical potential, rather 
of the electrostatic potential: 

        
qq

μ' 
 EE .     (6.42) 

 The physics of this extremely important and general result24 may be explained in two ways. 
First, let us have a look at the energy spectrum of a uniform degenerate Fermi gas confined in a volume 
of finite size. To ensure such confinement we need a piecewise-constant potential U(r) – a “hard-wall, 
flat-bottom potential well” – see Fig. 5a. (For conduction electrons in a metal, such profile is provided 

22 Since we will not encounter p in the balance of this chapter, from this point on the subscript of the operator r 
is dropped for the notation brevity. 
23 Since we consider w0 as a function of two independent arguments r and p, taking its gradient, i.e. the 
differentiation of this function over r, does not involve its differentiation over the kinetic energy  – which is a 
function of p only. 
24 Note that Eq. (42) does not include the phenomenological parameter  of the relaxation-time approximation, 
signaling that it is much more general than the RTA. Indeed, this equality is based entirely on the relation between 
the second and third terms on the left-hand side of the general Boltzmann equation (10), rather than on any details 
of the scattering integral on its right-hand side. 
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by the positively charged ions of the crystal lattice, augmented by its screening by the conduction 
electrons.) The well should be of a sufficient depth U0 > F  T = 0 to provide the confinement of the 
overwhelming majority of the particles, with energies below and somewhat above the Fermi level F. 
This means that there should be a substantial energy gap, 

      TU   0 ,     (6.43) 

between the Fermi energy of a particle inside the well, and its potential energy U0 outside the well. (The 
latter value of energy is usually called the vacuum level.) The difference defined by Eq. (43) is called the 
workfunction;25 for most metals, it is between 4 and 5 eV, so the relation  >> T is well fulfilled for 
room temperatures (T ~ 0.025 eV) – and actually for all temperatures below the metal’s evaporation 
point. 

  

 

 

 

 

 

 
 
 Now let us consider two conductors with different values of , separated by a small spatial gap d 
– see Figs. 5b,c. Panel (b) shows the case when the electric field E = – in the free-space gap between 
the conductors equals zero, i.e. their electrostatic potentials  are equal.26 If there is an opportunity for 
particles to cross the gap (e.g., by either the thermally-activated hopping over the potential barrier, 
discussed in Secs. 5.6-5.7, or the quantum-mechanical tunneling through it), there will be an average 
flow of particles from the conductor with the higher Fermi level to that with the lower Fermi level,27 
because the chemical equilibrium requires their equality – see Secs. 1.5 and 2.7. If the particles have an 
electric charge (as electrons do), the equilibrium will be automatically achieved by them recharging the 
effective capacitor formed by the conductors, until the electrostatic energy difference q reaches the 
value reproducing that of the workfunctions (Fig. 5c). So for the equilibrium potential difference28 we 
may write 
                q .     (6.44) 

At this equilibrium, the electric field in the gap between the conductors is  

25 Sometimes it is also called “electron affinity”, though this term is mostly used for atoms and molecules. 
26 In semiconductor physics and engineering, the situation shown in Fig. 5b is called the flat-band condition, 
because any electric field applied normally to a semiconductor’s surface leads to the so-called energy band 
bending – see the next section.   
27 As measured from a common reference value, for example from the vacuum level – rather than from the bottom 
of an individual potential well as in Fig. 5a. 
28 In physics literature, it is usually called the contact potential difference, while in electrochemistry (for which it 
is one of the key notions), the term Volta potential is more common. 

(a)         (b)   (c)

Fig. 6.5. Potential profiles of (a) a single conductor and (b, c) a system of 
two closely located conductors, for two different biasing situations: (b) zero 
electrostatic field (the “flat-band condition”), and (c) zero voltage ’.  
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in Fig. 5c this field is clearly visible as the tilt of the electric potential profile. Comparing Eq. (45) with 
the definition (42) of the effective electric field E, we see that the equilibrium, i.e. the absence of current 
through the potential barrier, is achieved exactly when E = 0, in accordance with Eq. (41). 

 The electric field dichotomy, E  E, raises a natural question: which of these fields we are 
speaking about in everyday and laboratory practice? Upon some contemplation, the reader should agree 
that most of our electric field measurements are done indirectly, by measuring corresponding voltages – 
with voltmeters. A vast majority of these instruments belong to the so-called electrodynamic variety, 
which is based on the measurement of a small current flowing through the voltmeter.29 As Eq. (41) 
shows, such electrodynamic voltmeters measure the electrochemical potential difference ’/q. 
However, there exists a rare breed of electrostatic voltmeters (also called “electrometers”) that measure 
the electrostatic potential difference  between two conductors. One way to implement such an 
instrument is to use an ordinary, electrodynamic voltmeter, but with the reference point set at the flat-
band condition (Fig. 5b) between the conductors. (This condition may be detected by vanishing electric 
charge on the adjacent surfaces of the conductors, and hence by the absence of its modulation in time if 
the distance between the surfaces is periodically modulated.) 

 Now let me return to Eq. (41) and make two very important remarks. First, it says that in the 
presence of an electric field, the current vanishes only if ’ = 0, i.e. that the electrochemical potential 
’, rather than the chemical potential , has to be position-independent in a system in the 
thermodynamic (thermal, chemical, and electric) equilibrium of a conducting system. This result by no 
means contradicts the fundamental thermodynamic relations for  discussed in Sec. 1.5, or the statistical 
relations involving , which were discussed in Sec. 2.7 and beyond. Indeed, according to Eq. (40), ’(r) 
is “merely” the chemical potential measured from the local value of the electrostatic energy q(r), and 
in all previous parts of the course, this energy was assumed to be constant throughout the system. 

 Second, note another interpretation of Eq. (41), which may be achieved by modifying Eq. (38) 
for the particular case of the classical gas. Indeed, the local density n  N/V of the gas obeys Eq. (3.32), 
which may be rewritten as 
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Taking the spatial gradient of both sides of this relation (still at constant T), we get 
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so  = (T/n)n, and Eq. (41), with  given by Eq. (32), may be recast as 
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29 The devices for such measurement may be based on the interaction between the measured current and a 
permanent magnet, as pioneered by A.-M. Ampère in the 1820s – see, e.g., EM Chapter 5. Such devices are 
sometimes called galvanometers, honoring another pioneer of electricity, Luigi Galvani.  
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The second term in the parentheses is a specific manifestation of the general Fick’s law of diffusion jw = 
Dn, already mentioned in Sec.  5.6. Hence the current density may be viewed as consisting of two 
independent parts: one due to particle drift induced by the “usual” electric field E = –, and another 
due to their diffusion – see Eq. (5.118) and its discussion. This is exactly the physics of the “mysterious” 
term  in Eq. (42), though its simple form (48) is valid only in the classical limit.  

 Besides being very useful for applications, Eq. (48) also gives us a pleasant surprise. Namely, 
plugging it into the continuity equation for electric charge,30 
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qn
,     (6.49) 

we get (after the division of all terms by q/m) the so-called drift-diffusion equation:31 
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Comparing it with Eq. (5.122), we see that the drift-diffusion equation is identical to the Smoluchowski 
equation,32 provided that we parallel the ratio /m with the mobility m = 1/ of the Brownian particle. 
Now using Einstein’s relation (5.78), we see that the effective diffusion constant D of the classical gas 
of similar particles is  

            
m

T
D


 .      (6.51a) 

 This important relation is more frequently represented in either of two other forms. First, since 
the rare scattering events we are considering do not change the statistics of the gas in thermal 
equilibrium, we may still use the Maxwell-distribution result (3.9) for the average-square velocity v2, 
to recast Eq. (51a) as  

        2

3

1
vD  .      (6.51b) 

One more popular form of the same relation uses the notion of the mean free path l, which may be 
defined as  the average distance to be passed by a particle before its next scattering: 

          
2/122/12 with  ,

3

1
vlvlD  .    (6.51c) 

In the forms (51b)-(51c), the result for D makes more physical sense, because it may be readily derived 
(admittedly, with some uncertainty of the numerical coefficient) from simple kinematic arguments – the 
task left for the reader’s exercise. 

 Note also that using Eq. (51a), Eq. (48) may be rewritten as an expression for the particle flow 
density jn  njw = j/q: 

          nDqnμn  Emj ,     (6.52) 

30 If this relation is not obvious, please revisit EM Sec. 4.1. 
31 Sometimes this name is used for Eq. (52). One may also run into the term “convection-diffusion equation” for 
Eq. (50) with the replacement (51a). 
32 And hence, at negligible U, identical to the diffusion equation (5.116). 
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with the first term on the right-hand side describing particles’ drift, and the second one, their diffusion. I 
will discuss the application of this equation to the most important case of non-degenerate (“quasi-
classical”) gases of electrons and holes in semiconductors, in the next section. 

 To complete this section, let me emphasize again that the mathematically similar drift-diffusion 
equation (50) and the Smoluchowski equation (5.122) describe different physical situations. Indeed, our 
(or rather Einstein and Smoluchowski’s :-) treatment of the Brownian motion in Chapter 5 was based on 
a strong hierarchy of the system, consisting of a large “Brownian particle” in an environment of many 
smaller particles – “molecules”. On the other hand, in this chapter, we are considering a gas of similar 
particles. Nevertheless, the equations describing the dynamics of their probability distribution, are the 
same – at least within the framework of the Boltzmann transport equation with the relaxation-time 
approximation (17) of the scattering integral. The origin of this similarity is the fact that Eq. (12) is 
clearly applicable to a Brownian particle as well, with each “scattering” event being the particle’s hit by 
a random molecule of its environment. Since, due to the mass hierarchy, the particle momentum change 
at each such event is very small, the scattering integral has to be local, i.e. depend only on w at the same 
momentum p as the left-hand side of the Boltzmann equation, so the relaxation time approximation (17) 
is absolutely natural – indeed, more natural than for our current case of similar particles.  

 

6.4. Charge carriers in semiconductors 

 Now let me demonstrate the application of the concepts discussed in the last section, first of all 
of the electrochemical potential, to understanding the basic kinetic properties of semiconductors and a 
few key semiconductor structures – which are the basis of most modern electronic and optoelectronic 
devices, and hence of all our IT civilization. For that, I will need to take a detour to discuss their 
equilibrium properties first. 

 I will use an approximate but reasonable picture in which the energy of the electron subsystem in 
a solid may be partitioned into the sum of the effective energies  of independent electrons. Quantum 
mechanics says33 that in such periodic structures as crystals, the stationary state energy  of a particle 
interacting with the atomic lattice follows one of the periodic functions n(q) of the quasimomentum q, 
oscillating between two extreme values nmin and nmax. These allowed energy bands are separated with 
bandgaps, of widths n  nmin – n-1max, with no allowed states inside them. Semiconductors and 
insulators (dielectrics) are defined as such crystals that in equilibrium at T = 0, all electron states in 
several energy bands (with the highest of them called the valence band) are completely filled, N(v) = 
1, while those in the upper bands, starting from the lowest, conduction band, are completely empty, 
N(c) = 0.34, 35 Since the electrons follow the Fermi-Dirac statistics (2.115), this means that at T  0, 

33 See, e.g., QM Sec. 2.7 and 3.4, but a thorough knowledge of this material is not necessary for following 
discussions in this section. If the reader is not familiar with the notion of quasimomentum (alternatively called the 
“crystal momentum”), the following interpretation may be useful: q is the result of quantum averaging of the 
genuine electron momentum p over the crystal lattice period. In contrast to p, which is not conserved because of 
the electron’s interaction with the lattice, q is an integral of motion – in the absence of other forces. 
34 This mapping of electrical properties of crystals onto their band structure was pioneered in 1931-32 by Alan H. 
Wilson. 
35 In insulators, the bandgap  is so large (e.g., ~9 eV in SiO2)  that the conduction band remains unpopulated in 
all practical situations, so the following discussion is only relevant for semiconductors, with their moderate 
bandgaps – such as 1.14 eV in the most important case of silicon at room temperature.
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the Fermi energy F  (0) is located somewhere between the valence band’s maximum vmax (usually 
called simply V), and the conduction band’s minimum cmin (called C) – see Fig. 6. 

  

 

 

 

 

   

 Let us calculate the population of both branches n(q), and the chemical potential  in 
equilibrium at T > 0. Since the functions n(q) are typically smooth, near the bandgap edges the 
dispersion laws c(q) and v(q) may be well approximated with quadratic parabolas. For our analysis, let 
us take the parabolas in the simplest, isotropic form, with origins at the same quasimomentum, taking it 
for the reference point:36 
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The positive constants mC and mV are usually called the effective masses of, respectively, electrons and 
holes. (In a typical semiconductor, mC is a few times smaller than the free electron mass me, while mV is 
closer to me.) 

 Due to the similarity between the top line of Eq. (53) and the dispersion law (3.3) of free 
particles, we may reuse Eq. (3.40), with the appropriate particle mass m, the degeneracy factor g, and 
the energy origin, to calculate the full spatial density of the populated states (in semiconductor physics, 
called electrons in the narrow sense of the word): 
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where ~    – C  0. Similarly, the density p of “no-electron” excitations (called holes) in the valence 
band is the number of unfilled states in the band, and hence may be calculated as  
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,  (6.55) 

where in this case, ~   0 is defined as (V – ). If the electrons and holes37 are in the thermal and 
chemical equilibrium, the functions N() in these two relations should follow the Fermi-Dirac 

36 It is easy (and hence is left for the reader’s exercise) to verify that all equilibrium properties of charge carriers 
remain the same (with some effective values of mC and mV) if c(q) and v(q) are arbitrary quadratic forms of the 
Cartesian components of the quasimomentum. A mutual displacement of the branches c(q) and v(q) in the 
quasimomentum space is also unimportant for statistical and most transport properties of the semiconductors, 
though it is very important for their optical properties – which I will not have time to discuss in any detail. 
37 The collective name for them in semiconductor physics is charge carriers – or just “carriers”. 

Fig. 6.6. Calculating  in an 
intrinsic semiconductor. 
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distribution (2.115) with the same temperature T and the same chemical potential . Moreover, in our  
current case of an undoped (intrinsic) semiconductor, these densities have to be equal, 

        inpn  ,      (6.56) 

because if this electroneutrality condition was violated, the volume would acquire a non-zero electric 
charge density  = e(p – n), which would result, in a bulk sample, in an extremely high electric field 
energy. From this condition and Eqs. (54)-(55), we get a system of two equations, 
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whose solution gives both the requested charge carrier density ni and the Fermi level . 

 For an arbitrary ratio /T, this solution may be found only numerically, but in most practical 
cases, this ratio is very large. (Again, for Si at room temperature,   1.14 eV, while T  0.025 eV.) In 
this case, we may use the same classical approximation as in Eq. (3.45), to reduce Eqs. (54) and (55) to 
simple expressions 
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where the temperature-dependent parameters, 
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may be interpreted as the effective numbers of states (per unit volume) available for occupation in, 
respectively, the conduction and valence bands, in thermal equilibrium. For usual semiconductors (with 
gC ~ gV ~ 1, and mC ~ mV ~ me), at room temperature, these numbers are of the order of 31025m-3  
31019cm-3. (Note that all results based on Eqs. (58) are only valid if both n and p are much lower than, 
respectively, nC and nV.) 

 With the substitution of Eqs. (58), the system of equations (56) allows a straightforward solution: 
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Since in all practical materials the logarithms in the first of these expressions are never much larger than 
1,38 it shows that the Fermi level in intrinsic semiconductors never deviates much from the so-called 
midgap value (V +C)/2 – see the (schematic) Fig. 6. In the result for ni, the last (exponential) factor is 
very small, so the equilibrium number of charge carriers is much lower than that of the atoms – for the 
most important case of silicon at room temperature, ni ~ 1010cm-3. The exponential temperature 
dependence of ni (and hence of the electric conductivity   ni) of intrinsic semiconductors is the basis 

of several applications, for example, simple germanium resistance thermometers efficient in the whole 
range from ~0.5K to ~100K. Another useful application of the same fact is the extraction of the bandgap 

38 Note that in the case of simple electron spin degeneracy (gV = gC = 2), the first logarithm vanishes altogether. 
However, in many semiconductors, the degeneracy is factored by the number of similar energy bands (e.g., six 
similar conduction bands in silicon), and the factor ln(gV/gC) may slightly affect quantitative results. 
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of a semiconductor from the experimental measurement of the temperature dependence of   ni – 
frequently, in just two well-separated temperature points.  

 However, most applications require a much higher concentration of carriers. It may be increased quite 
dramatically by planting into a semiconductor a relatively small number of slightly different atoms – either 
donors (e.g., phosphorus atoms for Si) or acceptors (e.g., boron atoms for Si). Let us analyze the first 
opportunity, called n-doping, using the same simple energy band model (53). If the donor atom is only 
slightly different from those in the crystal lattice, it may be easily ionized – giving an additional electron 
to the conduction band and hence becoming a positive ion. This means that the effective ground state 
energy D of the additional electrons is just slightly below the conduction band edge C – see Fig. 7a.39  

 

 

 

 

 
  

 Reviewing the arguments that have led us to Eqs. (58), we see that at relatively low doping, 
when the strong inequalities n << nC and p << nV still hold, these relations are not affected by the 
doping, so the concentrations of electrons and holes given by these equalities still obey a universal 
(doping-independent) relation following from Eqs. (58) and (60):40 

            2
innp  .      (6.61) 

However, for a doped semiconductor, the electroneutrality condition looks differently from Eq. (56) 
because the total density of positive charges in a unit volume is not p, but rather (p + n+), where n+ is the 
density of positively-ionized (“activated”) donor atoms, so the condition becomes 

           npn .      (6.62) 

If virtually all dopants are activated, as it is in most practical cases,41 then we may take n+ =  nD, where 
nD is the total concentration of donor atoms, i.e. their number per unit volume, and Eq. (62) becomes  

            Dnpn  .      (6.63) 

Plugging in Eq. (61) in the form p = ni
2/n, we get a simple quadratic equation for n, with the following 

physically acceptable (positive) solution: 

39 Note that in comparison with Fig. 6, here the (for most purposes, redundant) information on the q-dependence 
of the energies is collapsed, leaving the horizontal axis of such a band-edge diagram free for showing their 
possible spatial dependences – see Figs. 8, 10, and 11 below. 
40 Very similar relations may be met in the theory of chemical reactions (where it is called the law of mass 
action), and other disciplines – including such exotic examples as theoretical ecology. 
41 Let me leave it for the reader’s exercise to prove that this assumption is always valid unless the doping density 
nD becomes comparable to nC, and as a result, the Fermi level  is shifted into a ~T-wide vicinity of D.   
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This result shows that the doping affects n (and hence  = C – Tln(nC/n) and p = ni
2/n) only if the 

dopant concentration nD is comparable with, or higher than the intrinsic carrier density ni given by Eq. 
(60). For most applications, nD is made much higher than ni; in this case Eq. (64) yields 
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Because of the reasons to be discussed very soon, modern electron devices require doping densities 
above 1018cm-3, so the logarithm in Eq. (65) is not much larger than 1. This means that the Fermi level 
rises from the midgap to a position only slightly below the conduction band edge C – see Fig. 7a.  

 The opposite case of purely p-doping, with nA acceptor atoms per unit volume, and a small 
activation (negative ionization) energy A – V  << ,42 may be considered absolutely similarly, using 
the electroneutrality condition in the form 

      pnn   ,      (6.66) 

where n– is the number of activated (and hence negatively charged) acceptors. For the relatively high 
concentration (ni << nA << nV), virtually all acceptors are activated, so n–  nA, Eq. (66) may be 
approximated as n + nA = p, and the analysis gives the results dual to Eq. (65):  
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so in this case, the Fermi level is just slightly above the valence band edge (Fig. 7b), and the number of 
holes far exceeds that of electrons – again, in the narrow sense of the word. Let me leave the analysis of 
the simultaneous n- and p-doping (which enables, in particular, so-called compensated semiconductors 
with the sign-variable difference n – p  nD – nA) for the reader’s exercise. 

 Now let us consider how a sample of a doped semiconductor (say, a p-doped one) responds to a 
static external electrostatic field E applied normally to its surface.43 (In semiconductor integrated 
circuits, such a field is usually created by the voltage applied to a special highly-conducting gate 
electrode separated from the semiconductor surface by a thin insulating layer.) Assuming that the field 
penetrates into the sample by a distance  much larger than the crystal lattice period a (the assumption 
to be verified a posteriori), we may calculate the distribution of the electrostatic potential  using the 
macroscopic version of the Poisson equation.44 Assuming that the semiconductor occupies the semi-
space x > 0 and that E = nxE, the equation reduces to the following 1D form45 

42 For the typical donors (P) and acceptors (B) in silicon, both ionization energies,  (C – D) and (A – V), are 
close to 45 meV, i.e. are indeed much smaller than   1.14 eV.  
43 A simplified version of this analysis was carried out in EM Sec. 2.1. 
44 See, e.g., EM Sec. 3.4.  
45 I am sorry for using, for the SI electric constant 0, the same Greek letter as for single-particle energies, but 
both notations are traditional, and the difference between these uses will be clear from the context. 
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Here  is the dielectric constant of the semiconductor matrix – excluding the dopants and charge 
carriers, which in this approach are treated as explicit (“stand-alone”) charges, with the volumic density 

               nnpe   .     (6.69) 

(As a sanity check, Eqs. (68)-(69) show that if E  –d/dx = 0, then  = 0, bringing us back to the 
electroneutrality condition (66), and hence the “flat” band-edge diagrams shown in Figs. 7b and 8a.)  

  

 

 

 

 

 

 

 

 

 

 
  
 In order to get a closed system of equations for the case E  0, we should take into account that 
the electrostatic potential   0, penetrating into the sample with the field,46 adds the potential 
component q(x) = –e(x) to the energy of each electron, and hence shifts the whole local system of 
single-electron energy levels “vertically” by this amount – down for   > 0, and up for  < 0. As a result, 
the field penetration leads to what is called band bending – see the band-edge diagrams schematically 
shown in Figs. 8b,c for two possible polarities of the applied field, which affects the distribution (x) via 
the boundary condition47 

          E0
dx

d
.      (6.70) 

Note that the electrochemical potential ’ (which, in accordance with the discussion in Sec. 3, replaces 
the chemical potential in presence of the electric field),48 has to stay constant through the system in 
equilibrium, keeping the electric current equal to zero – see Eq. (41). For arbitrary doping parameters, 

46 It is common (though not necessary) to select the energy reference so deep inside the semiconductor,  = 0; in 
what follows I will use this convention. 
47 Here E is the field just inside the semiconductor. The free-space field necessary to create it is  times larger – 
see, e.g., the same EM Sec. 3.4, in particular, Eq. (3.56). 
48 In semiconductor physics literature, the value of ’ is usually called the Fermi level, even in the absence of the 
degenerate Fermi sea typical for metals  – cf. Sec. 3.3. In this section, I will follow this common terminology. 

Fig. 6.8. The band-edge diagrams of the electric field penetration into a uniform p-doped semiconductor: 
(a) E = 0, (b) E < 0, and (c) 0 < Ec < E. Solid red points depict positive charges; solid blue points, negative 
charges; and hatched blue points, possible electrons in the inversion layer – all very schematically. 
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the system of equations (58) (with the replacements V  V – e, and   ’) and (68)-(70), plus the 
relation between n– and nA (describing the acceptor activation), does not allow an analytical solution. 
However, as was discussed above, in the most practical cases nA >> ni, we may use the approximate 
relations n–  nA and n  0 at virtually any values of ’ within the locally shifted bandgap [V – e(x), C 

– e(x)], so the substitution of these relations, and the second of Eqs. (58), with the mentioned 
replacements, into Eq. (69) yields 

            































 








 

 1expexpexp V

A

V
AA

V
V T

e

T

'

n

n
enen

T

'e
en


 .  (6.71) 

The x-independent electrochemical potential (a.k.a. the Fermi level) ’ in this relation should be equal to 
the value of the chemical potential  (x  ) in the semiconductor’s bulk, given by the last of Eqs. (67), 
which turns the expression in the parentheses into 1. With these substitutions, Eq. (68) becomes 
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 This nonlinear differential equation may be solved analytically, but in order to avoid a 
distraction by this (rather bulky) solution, let me first consider the case when the electrostatic potential 
is sufficiently small – either because the external field is small, or because we focus on the distances 
sufficiently far from the surface – see Fig. 8 again. In this case, in the Taylor expansion of the exponent 
in Eq. (72), with respect to small , we may keep only two leading terms, turning it into a linear 
equation: 
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  (6.73) 

with the well-known exponential solution, satisfying also the boundary condition   0 at x  : 
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 The constant D given by the last of Eqs. (73) is called the Debye screening length. It may be 
rather substantial; for example, at TK = 300K, even for the relatively high doping nA  1018cm-3 typical 
for modern silicon (  12) integrated circuits, it is close to 4 nm – still much larger than the crystal 
lattice constant a ~ 0.3 nm, so the above analysis is indeed quantitatively valid. Note also that D does 
not depend on the charge’s sign; hence it should be no large surprise that repeating our analysis for an n-
doped semiconductor, we may find out that  Eqs. (73)-(74) are valid for that case as well, with the only 
replacement nA  nD. 

 If the applied field E is weak, Eq. (74) is valid in the whole sample, and the constant C in it may 
be readily calculated using the boundary condition (70), giving  
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This formula allows us to express the condition of validity of the linear approximation leading to Eq. 
(74), e  << T, in terms of the applied field: 
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in the above example, Emax ~ 60 kV/cm. On the lab scale, such field is not low at all (it is twice higher 
than the threshold of electric breakdown in the air at ambient conditions), but it may be sustained by 
many solid-state materials that are much less prone to breakdown.49 This is why we should be interested 
in what happens if the applied field is higher than this value. 

 The semi-quantitative answer is relatively simple if the field is directed out of the p-doped 
semiconductor (in our nomenclature, E < 0 – see Fig. 8b). As the valence band bends up by a few T, the 
local hole concentration p(x), and hence the charge density (x), grow exponentially – see Eq. (71). 
Hence the effective local length of the nonlinear field’s penetration, ef(x)  -1/2(x), shrinks 
exponentially. A detailed analysis of this effect using Eq. (72) does not make much sense, because as 
soon as ef(0) decreases to ~a, the macroscopic Poisson equation (68) is no longer valid quantitatively. 
For typical semiconductors, this happens at the field that raises the edge V – e(0) of the bent valence 
band at the sample’s surface above the Fermi level ’. In this case, the valence-band electrons near the 
surface form a degenerate Fermi gas, with an “open” Fermi surface – essentially a metal, which a very 
small (atomic-size) Thomas-Fermi screening length:50 
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 The effects taking place at the opposite polarity of the field, E > 0, are much more interesting – 
and more useful for applications. Indeed, in this case, the band bending down leads to an exponential 
decrease of (x) as soon as the valence band edge V – e(x) drops down by just a few T below its 
unperturbed value V. If the applied field is large enough, E > Ec (as it is in the situation shown in Fig. 
8c), it forms, on the left of such point x0 the so-called depletion layer, of a certain width w. Within this 
layer, not only the electron density n but the hole density p as well are negligible, so the only substantial 
contribution to the charge density  is given by the fully ionized acceptors:   –en–  –enA, and Eq. 
(72) becomes very simple: 
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 Let us use this equation to calculate the largest possible width w of the depletion layer, and the 
critical value, Ec, of the applied field necessary for this. (By definition, at E = Ec, the left boundary of the 
layer, where V – e(x) = C, i.e. e(x) = V – A  , just touches the semiconductor surface: x0 – w = 0, 
i.e. x0 = w. (Figure 8c shows the case when E is slightly larger than Ec.) For this, Eq. (78) has to be 
solved with the following boundary conditions: 
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49 Even some amorphous thin-film insulators, such as properly grown silicon and aluminum oxides, can withstand 
fields up to ~10 MV/cm. 
50 As a reminder, the derivation of this formula was the task of Problem 3.14. 
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Note that the first of these conditions is strictly valid only if T << , i.e. at the assumption we have made 
from the very beginning, while the last two conditions are asymptotically correct only if D << w – the 
assumption we should not forget to check after the solution.  

 After all the undergraduate experience with projective motion problems, the reader certainly 
knows by heart that the solution of Eq. (78) is a quadratic parabola, so let me immediately write its final 
form satisfying the boundary conditions (79): 
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Comparing the result for w with Eq. (73), we see that if our basic condition T <<  is fulfilled, then D 
<< w, confirming the qualitative validity of the whole solution (80). For the same particular parameters 
as in the example before (nA  1018cm-3,   10), and   1 eV, Eqs. (80) give w  40 nm and Ec  600 
kV/cm – still a practicable field. (As Fig. 8c shows, to create it, we need a gate voltage only slightly 
larger than /e, i.e. close to 1 V for typical semiconductors.) 

 Figure 8c also shows that if the applied field exceeds this critical value, near the surface of the 
semiconductor the conduction band edge drops below the Fermi level. This is the so-called inversion 
layer, in which electrons with energies below ’ form a highly conductive degenerate Fermi gas. 
However, typical rates of electron tunneling from the bulk through the depletion layer are very low, so 
after the inversion layer has been created (say, by the gate voltage application), it may be only populated 
from another source – hence the hatched blue points in Fig. 8c. This is exactly the fact used in the 
workhorse device of semiconductor integrated circuits – the field-effect transistor (FET) – see Fig. 9.51 

 

 

 

 

 

 

 
 
  

 In the “bulk” variety of this structure (Fig. 9a), a gate electrode overlaps a gap between two 
similar highly-n-doped regions near the surface, called source and drain, formed by n-doping inside a p-
doped semiconductor. It should be more or less obvious (and will be shown in a moment) that in the 
absence of gate voltage, the electrons cannot pass through the p-doped region, so virtually no current 
flows between the source and the drain, even if a modest voltage is applied between these electrodes. 
However, if the gate voltage is positive and large enough to induce the electric field E > Ec at the surface 
of the p-doped semiconductor, it creates the inversion layer as shown in Fig. 8c, and the electron current 

51 This device was invented (by Julius E. Lilienfeld) in 1930 but demonstrated experimentally only in the mid-
1950s. 

Fig. 6.9. Two main species of the n-FET: (a) the bulk FET, and (b) the FinFET. While 
on panel a, the current flow from the source to the drain is parallel to the plane of the 
drawing, on panel b, it is normal to the plane, with the n-doped source and drain 
contacting the thin “fin” from two sides off this plane. 
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between the source and drain electrodes may readily flow through this surface channel. (Very 
unfortunately, in this course I would not have time/space for a detailed analysis of transport properties 
of this keystone electron device and have to refer the reader to special literature.52) 

 Fig. 9a shows that another major (and virtually unavoidable) structure of semiconductor 
integrated circuits is the famous p-n junction – an interface between p- and n-doped regions. Let us 
analyze its simple model, in which the interface is in the plane x = 0, and the doping profiles nD(x) and 
nA(x) are step-like, making an abrupt jump at the interface: 
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(This model is very reasonable for modern integrated circuits where the doping is performed by 
implantation using high-energy ion beams.) 

 To start with, let us assume that no voltage is applied between the p- and n-regions, so the 
system may be in thermodynamic equilibrium. In the equilibrium, the Fermi level ’ should be flat 
through the structure, and at x  – and x  +, where   0, the level structure has to approach the 
positions shown, respectively, on panels (a) and (b) of Fig. 7. In addition, the distribution of the electric 
potential (x), shifting the level structure vertically by –e(x), has to be continuous to avoid unphysical 
infinite electric fields. With that, we inevitably arrive at the band-edge diagram that is (schematically) 
shown in Fig. 10. 

 

 

 

 

 

 

 
  
 
 The diagram shows that the contact of differently doped semiconductors gives rise to a built-in 
electric potential difference , equal to the difference of their values of  in the absence of the contact 
– see Eqs. (65) and (67): 53 
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Teee pn   ,   (6.82) 

52 The classical monograph in this field is S. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley 1981. (The 3rd 
edition, circa 2006, co-authored with K. Ng, is more tilted toward technical details.) I can also recommend a 
detailed textbook by R. Pierret, Semiconductor Device Fundamentals, 2nd ed., Addison Wesley, 1996. 
53 Frequently, Eq. (82) is also rewritten in the form e = T ln(nDnA/ni

2). In view of the second of Eqs. (60), this 
equality is formally correct but may be misleading because the intrinsic carrier density ni is an exponential 
function of temperature and is physically irrelevant to this particular problem. 
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Fig. 6.10. The band-edge diagram of a 
p-n junction in thermodynamic 
equilibrium (T = const, ’ = const). The 
notation is the same as in Figs. 7 and 8. 
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which is usually just slightly smaller than the bandgap. (Qualitatively, this is the same contact potential 
difference that was discussed, for the case of metals, in Sec. 3 – see Fig. 5.) The arising internal 
electrostatic field E = –d/dx induces, in both semiconductors, depletion layers similar to that induced 
by an external field (Fig. 8c). Their widths wp and wn may also be calculated similarly, by solving the 
following boundary problem of electrostatics, mostly similar to that given by Eqs. (78)-(79): 
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also exact only in the limit  << , ni << nD, nA. Its (easy) solution gives a result similar to Eq. (80): 
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with expressions for wp and wn giving the following formula for the full depletion layer width:  

            
DAefDA

DA
ef

2/1

ef

0 111
  i.e.,with  ,

2

nnnnn

nn
n

en
www np 










 



. (6.86) 

 This expression is similar to that given by Eq. (80), so for typical highly doped semiconductors 
(nef ~1018cm-3) it gives for w a similar estimate of a few tens nm.54 Returning to Fig. 9a, we see that this 
scale imposes an essential limit on the reduction of bulk FETs (whose scaling down is at the heart of the 
well-known Moore’s law),55 explaining why such high doping is necessary. In the early 2010s, the 
problems with implementing even higher doping, plus issues with dissipated power management, have 
motivated the transition of advanced silicon integrated circuit technology from the bulk FETs to the 
FinFET  (also called “double-gate”, or “tri-gate”, or “wrap-around-gate”) variety of these devices, 
schematically shown in Fig. 9b, despite their essentially 3D structure and hence a more complex 
fabrication technology. In the FinFETs, the role of p-n junctions is reduced, but these structures remain 
an important feature of semiconductor integrated circuits.  

  Now let us have a look at the p-n junction in equilibrium from the point of view of Eq. (52). In 
the simple model we are considering now (in particular, at T << ), this equation is applicable separately 
to the electron and hole subsystems, because in this model the gases of these charge carriers are classical 
in all parts of the system, and the generation-recombination processes56 coupling these subsystems have 
relatively small rates – see below. Hence, for the electron subsystem, we may rewrite Eq. (52) as 
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Dqnj nn 


 Em ,     (6.87) 

54 Note that such w is again much larger than D – the fact that justifies the first two boundary conditions (84). 
55 Another important limit is quantum-mechanical tunneling through the gate insulator, whose thickness has to be 
scaled down in parallel with lateral dimensions of a FET, including its channel length. 
56 In the semiconductor physics lingo, the “carrier generation” event is the thermal excitation of an electron from 
the valence band to the conduction band, leaving a hole behind, while the reciprocal event of filling such a hole 
by a conduction-band electron is called the “carrier recombination”. 
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where q = –e. Let us discuss how each term of the right-hand of this equality depends on the system’s 
parameters. Because of the n-doping at x > 0, there are many more electrons in this part of the system. 
According to the Boltzmann distribution (58), some number of them, 
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e
n
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exp ,     (6.88) 

have energies above the conduction band edge in the p-doped part (see Fig. 11a) and try to diffuse into 
this part through the depletion layer; this diffusion flow of electrons from the n-side to the p-side of the 
structure (in Fig. 11, from the right to the left) is described by the second term on the right-hand side of 
Eq. (87). On the other hand, the intrinsic electric field E = –/x inside the depletion layer, directed as 
Fig. 11a shows, exerts on the electrons the force F = qE  –eE pushing them in the opposite direction 
(from p to n), is described by the first, “drift” term on the right-hand side of Eq. (87).57 

 

 

 

 

 

 

 

 

 

 

 The explicit calculation of these two flows58 shows, unsurprisingly, that in the equilibrium, they 
are exactly equal and opposite, so jn = 0, and such analysis does not give us any new information. 
However, the picture of two electron counter-flows, given by Eq. (87), enables a prediction of the 
functional dependence of jn on a modest external voltage V, with V   < , applied to the junction. 
Indeed, since the doped semiconductor regions outside the depletion layer are much more conductive 

57 Note that if an external photon with energy  >  generates an electron-hole pair somewhere inside the 
depletion layer, this electric field immediately drives its electron component to the right, and the hole component 
to the left, thus generating a pulse of electric current through the junction. This is the physical basis of the whole 
vast technological field of photovoltaics, currently strongly driven by the demand for renewable electric power. 
Due to the progress of this technology, the cost of solar power systems has dropped from ~$300 per watt in the 
mid-1950s to ~$1 per watt in 2020, and its global generation is now approaching 1015 watt-hours per year – 
though it is still below 2% of the electric power generated by all methods. 
58 I will not try to reproduce this calculation (which may be found in any of the semiconductor physics books 
mentioned above), because getting all its scaling factors right requires using some model of the recombination 
process, and in this course, there is just no time for its quantitative discussion. (However, see Eq. (93) below.) 

(a)              (b)  



np

e

pw

const'

EF e

E

nw

np

 Ve

pw

 x'

nw

nj
ej


Ve

Fig. 6.11. Electrons in the conduction band of a p-n junction at: (a) V = 0, and (b) V > 0. 
For clarity, other charges (of the holes and all ionized dopant atoms) are not shown. 
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than it, virtually all applied voltage (i.e. the difference of values of the electrochemical potential ’) 
drops across this layer, changing the total band edge shift – see Fig. 11b:59 

     VV   eqeμ'ee .   (6.89) 

This change results in an exponential change of the number of electrons able to diffuse into the p-side of 
the junction – cf. Eq. (88): 
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and hence in a proportional change of the diffusion flow jn of electrons from the n-side to the p-side of 
the system, i.e. of the oppositely directed density of the electron current je = –ejn – see Fig. 11b.  

 On the other hand, the drift counter-flow of electrons is not altered too much by the applied 
voltage: though it does change the electrostatic field E = – inside the depletion layer, and also the 
depletion layer width,60 these changes are incremental, not exponential. As a result, the net density of 
the current carried by electrons may be approximately expressed as 
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As was discussed above, at V = 0, the net current has to vanish, so the constant in Eq. (91a) has to equal 
je(0), and we may rewrite this equality as 
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 Now repeating this analysis for the current jh of the holes (the exercise highly recommended to 
the reader), we get a similar expression, with the same sign before eV,61 though with a different scaling 
factor, jh(0) instead of je(0). As a result, the total electric current density obeys the famous Shockley law 
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describing the main p-n junction’s property as an electric diode – a two-terminal device passing the 
current more “readily” in one direction (from the p- to the n-terminal) than in the opposite one.62 

59 In our model, the positive sign of V  ’/q  –’/e corresponds to the additional electric field, –’/q  
’/e, directed in the positive direction of the x-axis (in Fig. 11, from the left to the right), i.e. to the positive 
terminal of the voltage source connected to the p-doped semiconductor – which is the common convention. 
60 This change, schematically shown in Fig. 11b, may be readily calculated by making the replacement (89) in the 
first of Eqs. (86). 
61 This sign invariance may look strange, due to the opposite (positive) electric charge of the holes. However, this 
difference in the charge sign is compensated by the opposite direction of the hole diffusion – see Fig. 10. (Note 
also that the actual charge carriers in the valence band are still electrons, and the effective positive charge of holes 
is just a convenient representation of the specific dispersion law in this energy band, with a negative effective 
mass  – see Fig. 6, the second line of Eq. (53), and a more detailed discussion of this issue in QM Sec. 2.8.)  
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Besides numerous practical applications in electrical and electronic engineering, diodes have very 
interesting statistical properties, in particular performing very non-trivial transformations of the spectra 
of deterministic and random signals. Very unfortunately, I would not have time for their discussion and 
have to refer the interested reader to the special literature.63  

 Still, before proceeding to our next (and last!) topic, let me give for the reader’s reference, 
without proof, the expression for the scaling factor j(0) in Eq. (92), which follows from a simple but 
broadly used model of the recombination process: 
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Here le and lh are the characteristic lengths of diffusion of electrons and holes before their 
recombination, which may be expressed by Eq. (5.113), le = (2Dee)

1/2 and lh = (2Dhh)
1/2, with e and h 

being the characteristic times of recombination of the so-called minority carriers: of electrons in the p-
doped part and of holes in the n-doped part of the structure. Since the recombination is an inelastic 
process, its times are typically rather long – of the order of 10-7s, i.e. much longer than the typical times 
of elastic scattering of the same carriers, which define their diffusion coefficients – see Eq. (51). 

 

6.5. Heat transfer and thermoelectric effects 

 Now let us return to our analysis of kinetic effects using the Boltzmann-RTA equation, and 
extend it even further, to the effects of a non-zero (albeit small) temperature gradient. Again, since for 
any of the statistics (20), the average occupancy N() is a function of just one combination of all its 
arguments,    ( – )/T, its partial derivatives obey not only Eq. (37) but also the following relation:  
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As a result, Eq. (38) is generalized as 
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giving the following generalization of Eq. (39):
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Now, calculating the current density as in Sec. 3, we get the result that is traditionally represented as 
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62 Some metal-semiconductor junctions, called Schottky diodes, have similar rectifying properties (and may be 
better fitted for high-power applications than silicon p-n junctions), but their properties are more complex because 
of the rather involved chemistry and physics of interfaces between different materials. 
63 See, e.g., the monograph by R. Stratonovich cited in Sec. 4.2. 
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where the constant S, called the Seebeck coefficient64 (or the “thermoelectric power”, or just 
“thermopower”) is given by the following relation: 
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 Working out this integral for the most important case of a degenerate Fermi gas, with T << F, 
we have to be careful because the center of the sharp peak of the last factor under the integral coincides 
with the zero point of the previous factor, ( – )/T. This uncertainty may be resolved using the 
Sommerfeld expansion formula (3.59). Indeed, for a smooth function f() obeying Eq. (3.60), so f(0) = 0, 
we may use Eq. (3.61) to rewrite Eq. (3.59) as 
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In particular, for working out the integral (98), we may take f()  (8m3)1/2( – )/T. (For this function, 
the condition f(0) = 0 is evidently satisfied.) Then f() = 0, d2f/d2= = 3(8m)1/2/T  3(8mF)1/2/T, and 
Eq. (98) yields 
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Comparing the result with Eqs. (3.54) and (32), for the constant S  we get a simple expression 

independent of :65 
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where cV  CV/N is the heat capacity of the gas per unit particle, in this case given by Eq. (3.70).  

 In order to understand the physical meaning of the Seebeck coefficient, it is sufficient to consider 
a conductor carrying no current. For this case, Eq. (97) yields  

                0/  Tq' S .     (6.102) 

So, at these conditions, a temperature gradient creates a proportional gradient of the electrochemical 
potential ’, and hence the effective electric field E defined by Eq. (42). This is the Seebeck effect. 
Figure 12 shows the standard way of its measurement, using an ordinary (electrodynamic) voltmeter that 
measures the difference of ’/e at its terminals, and a pair of junctions (in this context, called the 
thermocouple) of two materials with different coefficients S.   

64 Named after Thomas Johann Seebeck who experimentally discovered, in 1822, the effect described by the 
second term in Eq. (97) – and hence by Eq. (103).  
65 Again, such independence hints that Eq. (101) has a broader validity than in our simple model of an isotropic 
gas. This is indeed the case: this result turns out to be valid for any form of the Fermi surface and for any 
dispersion law (p). Note, however, that all calculations of this section are valid for the simplest RTA model in 
that   is an energy-independent parameter; for real metals, a more accurate description of experimental results 
may be obtained by tweaking this model to take this dependence into account – see, e.g., Chapter 13 in the 
monograph by N. Ashcroft and N. D. Mermin, which was cited in Sec. 3.5. 
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 Integrating Eq. (102) around the loop from point A to point B, and neglecting the temperature 
drop across the voltmeter, we get the following simple expression for the thermally-induced difference 
of the electrochemical potential, usually called either the thermoelectric power or the “thermo e.m.f.”: 
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(Note that according to Eq. (103), any attempt to measure such voltage across any two points of a 
uniform conductor would give results depending on the voltmeter wire materials, due to an unintentional 
gradient of temperature in them.) 

 Using thermocouples is a very popular, inexpensive method of temperature measurement – 
especially in the a-few-hundred-C range, where gas- and fluid-based thermometers are not too 
practicable – if a 1C-scale accuracy is sufficient. The temperature responsivity (S1 – S2) of a popular 

thermocouple, chromel-constantan,66 is about 70 V/C. To understand why the typical values of S are 
so small, let us discuss the Seebeck effect’s physics. Superficially, it is very simple: the particles heated 
by an external source, diffuse from it toward the colder parts of the conductor, creating an electric 
current if they are electrically charged. However, this naïve argument neglects the fact that at j = 0, there 
is no total flow of particles. For a more accurate interpretation, note that inside the integral (98), the 
Seebeck effect is described by the factor ( – )/T, which changes its sign at the Fermi surface, i.e. at the 
same energy where the term [-N()/], describing the availability of quantum states for transport 
(due to their intermediate occupancy 0 < N() < 1), reaches its peak. The only reason why that integral 
does not vanish completely, and hence S  0, is the growth of the first factor under the integral (which 

describes the density of available quantum states on the energy scale) with , so the hotter particles 
(with   > ) are more numerous and hence carry more heat than the colder ones carry in the opposite 
direction. 

 The Seebeck effect is not the only result of a temperature gradient; the same diffusion of 
particles also causes the less subtle effect of heat flow from the region of higher T to that with lower T, 
i.e. the effect of thermal conductivity, well-known from our everyday practice. The density of this flow  

66 Both these materials are alloys, i.e. solid solutions: chromel is 10% chromium in 90% nickel, while constantan 
is 45% nickel and 55% copper. 

Fig. 6.12. The Seebeck effect in a thermocouple. 

T'

1S
T"

))(( 21 SS  T"T'V
2S

A
B

'A

"A



Essential Graduate Physics               SM: Statistical Mechanics 

    
Chapter 6            Page 31 of 38 

(i.e. that of thermal energy) may be calculated similarly to that of the electric current – see Eq. (26), 
with the natural replacement of the electric charge q of each particle with its thermal energy ( – ): 

               pwd 3
h vj  .     (6.104) 

(Indeed, we may look at this expression is as at the difference between the total energy flow density, j = 
vwd3p, and the product of the average energy needed to add a particle to the system () by the particle 
flow density, jn = vwd3p  j/q.)67 Again, at equilibrium (w = w0) the heat flow vanishes, so w in Eq. 
(104) may be replaced with its perturbation w~  that already has been calculated – see Eq. (96). The 
substitution of that expression into Eq. (104), and its transformation exactly similar to the one performed 
above for the electric current j, yields 

       T
q

'












 Πhj ,     (6.105) 

with the coefficients  and  given, in our approximation, by the following formulas: 
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 Besides the missing factor T in the denominator, the integral in Eq. (106) is the same as the one 
in Eq. (98), so the constant  (called the Peltier coefficient68), is simply and fundamentally related to the 
Seebeck coefficient: 69 

           TS .      (6.108) 
 

67 An alternative explanation of the factor ( – ) in Eq. (104) is that according to Eqs. (1.37) and (1.56), for a 
uniform system of N particles this factor is just (E – G)/N  (TS – PV)/N. The full differential of the numerator is 
TdS + SdT –PdV – VdP, so in the absence of the mechanical work dW = –PdV, and changes of temperature and 
pressure, it is just TdS  dQ – see Eq. (1.19). 
68 Named after Jean Charles Athanase Peltier who experimentally discovered, in 1834, the effect expressed by the 
first term in Eq. (105) – and hence by Eq. (112). 
69 This extremely simple relation (first discovered experimentally in 1854 by W. Thompson, a.k.a. Lord Kelvin) is 
frequently considered as the most prominent example of the so-called Onsager’s reciprocal relations between 
kinetic coefficients, first suggested by L. Onsager in 1931. Unfortunately, the common derivation of these 
relations, reproduced in even very popular textbooks, assumes without proof that the mutual correlation function 
of statistical averages of thermodynamic variables have the same time-reversal symmetry as that of the underlying 
microscopic variables. As was argued, among others, by R. Zwanzig, J. Chem. Phys. 40, 2527 (1964), this 
assumption may be plausibly justified for the processes that, by their physical nature, lack very fast fluctuations, 
such as the volume fluctuations discussed in Sec. 5.3, but not for those that feature them  – see the discussion of 
pressure fluctuations in the same section, and the solution of Problem 5.15. Unfortunately, I would have no 
time/space for a sufficiently rigorous discussion of this interesting topic, and have to refer the reader to the 
corresponding literature including B. Coleman and C. Truesdell, J. Chem. Phys. 33, 28 (1960), R. Zwanzig, Annu. 
Rev. Phys. Chem. 16, 67 (1965), and U. Geigenmüller et al., Physica A 119, 53 (1983).  
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 On the other hand, the integral in Eq. (107) is different, but may be readily calculated\, for the 
most important case of a degenerate Fermi gas, using the Sommerfeld expansion in the form (99), with 
f()  (8m3)1/2( – )2/T, for which f() = 0 and d2f/d2= = 2(8m3)1/2/T  2(8mF

3)1/2/T, so 
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Comparing the result with Eq. (32), we get the so-called Wiedemann-Franz law70  

       
2

2

3 q

T


 .      (6.110) 

 This relation between the electric conductivity  and the thermal conductivity   is more general 
than our formal derivation might imply. Indeed, it may be shown that the Wiedemann-Franz law is also 
valid for an arbitrary anisotropy (i.e. an arbitrary Fermi surface shape) and, moreover, well beyond the 
relaxation-time approximation. (For example, it is also valid for the scattering integral (12) with an 
arbitrary angular dependence of rate , provided that the scattering is elastic.) Experiments show that 
the law is well obeyed by most metals, but only at relatively low temperatures when the thermal 
conductance due to electrons is well above the one due to lattice vibrations, i.e. phonons – see Sec. 2.6. 
Moreover, in the context of the definition (105) of the coefficient , for a non-degenerate gas, Eq. (107) 
should be treated with the utmost care: for the most practicable measurements of thermal conductivity, it 
has to be modified. (Let me leave this issue for the reader’s analysis.) 

 Now let us discuss the effects described by Eq. (105), starting from the less obvious, first term 
on its right-hand side. It describes the so-called Peltier effect, which may be measured in the loop 
geometry similar to that shown in Fig. 12, but now driven by an external voltage source – see Fig. 13.  

 

 

 

 

 

 

 

 

 

 
 

70 It was named after Gustav Wiedemann and Rudolph Franz who noticed the constancy of ratio / for various 
materials, at the same temperature, as early as 1853. The direct proportionality of the ratio to the absolute 
temperature was noticed by Ludwig Lorenz in 1872. Due to his contribution, the Wiedemann-Franz law is 
frequently represented, in the SI temperature units, as / = LTK, where the constant L  (2/3)kB/e2, called the 
Lorenz number, is close to 2.4510-8WK-2. Theoretically, Eq. (110) was derived in 1928 by A. Sommerfeld.  

Fig. 6.13. The Peltier effect at T = const. 
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 The voltage drives a certain dc current I = jA (where A is the area of the conductor’s cross-
section), necessarily the same in the whole loop. However, according to Eq. (105), if materials 1 and 2 
are different, the power P = jhA of the associated heat flow is different in the two parts of the loop.71 
Indeed, if the whole system is kept at the same temperature (T = 0), the integration of that relation over 
the cross-sections of each part yields 

                        IIjA
q

'
A 2,12,12,12,12,12,1

2,1

2,12,12,12,1 









 
P ,  (6.111) 

where, at the second step, Eq. (41) for the electric current density has been used. This equality means 
that to sustain the constant temperature, the following power difference, 

                I21 P ,     (6.112) 

has to be extracted from one junction of the two materials (in Fig. 13, shown on the top), and inserted 
into the counterpart junction.  
 If a constant temperature is not maintained, the former junction is heated (in excess of the bulk, 
Joule heating), while the latter one is cooled, thus implementing a thermoelectric heat pump/refrigerator. 
Such Peltier refrigerators (also called “thermoelectric coolers”) which require neither moving parts nor 
fluids, are very convenient for modest (by a few tens C) cooling of relatively small components of 
various systems – from sensitive radiation detectors on mobile platforms (including spacecraft), all the 
way to cold drinks in vending machines. It is straightforward (and hence is left for the reader) to use the 
above formulas to show that the practical efficiency of active materials used in such thermoelectric 
refrigerators may be characterized by the following dimensionless figure-of-merit,  

        T


 2

ZT
S

 .     (6.113) 

For the best thermoelectric materials found so far, the values of ZT at room temperature are close to 2, 
providing the COPcooling, defined by Eq. (1.69), of the order of 20% of the Carnot limit (1.70), i.e. a few 
times lower than that of traditional refrigerators using mechanical compressors. The search for 
composite materials (including those with nanoparticles) with higher values of ZT  is an active field of 
applied solid-state physics.72 Another currently explored idea in this field is to reduce  (and hence to 
increase ZT) radically by replacing the electron diffusion with their transfer through vacuum gaps.  

 Finally, let us discuss the second term of Eq. (105), in the absence of ’ (and hence of the 
electric current) giving 

                  ,h Tj       (6.114) 

This equality should be familiar to the reader because it describes the very common effect of thermal 
conductivity. Indeed, this linear relation73 is much more general than the particular expression (107) for 

71 Let me emphasize that here we are discussing the heat transferred through a conductor, not the Joule heat 
generated in it by the current. (The latter effect is quadratic, rather than linear, in current, and hence is much 
smaller at I  0.) 
72 See, e.g., D. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano, CRC Press, 2005. 
73 It was suggested (in 1822) by the same universal scientific genius J.-B. J. Fourier who has not only developed 
such a key mathematical tool as the Fourier series but also discovered what is now called the greenhouse effect! 
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: for sufficiently small temperature gradients it is valid for virtually any medium – for example, for 
insulators. (Table 6.1 gives typical values of  for most common and/or representative materials.) Due 
to its universality and importance, Eq. (114) has deserved its own name – the Fourier law.  

 Acting absolutely similarly to the derivation of other continuity equations, such as Eqs. (5.117) 
for the classical probability, and Eq. (49) for the electric charge,74 let us consider the conservation of the 
aggregate variable corresponding to jh – the internal energy E within a time-independent volume V.  
According to the basic Eq. (1.18), in the absence of media’s expansion (dV = 0 and hence dW = 0), the 
energy change75 has only the thermal component, so its only cause may be the heat flow through its 
boundary surface S: 

                 
S

d
dt

dE
rj 2

h .     (6.115) 

In the simplest case of thermally-independent heat capacity CV, we may integrate Eq. (1.22) over 
temperature to write76 
              rdTcTCE

V

VV
3 ,     (6.116)  

where cV is the volumic specific heat, i.e. the heat capacity per unit volume – see the rightmost column 
in Table 6.1.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74 They are all similar to continuity equations for other quantities – e.g., the mass (see CM Sec. 8.3) and the 
quantum-mechanical probability (see QM Secs. 1.4 and 9.6). 
75 According to Eq. (1.25), in the case of negligible thermal expansion, it does not matter whether we speak about 
the internal energy E or the enthalpy H. 
76 If the dependence of cV on temperature may be ignored only within a limited temperature interval, Eqs. (116) 
and (118) may be still used within that interval, for temperature deviations from some reference value. 

Table 6.1. Approximate values of two major thermal coefficients of some materials at 20C. 

Material  (Wm-1K-1) cV (JK-1m-3) 

Air(a),(b) 0.026 1.2103 

Teflon ([C2F4]n) 0.25 0.6106 

Water(b) 0.60 4.2106 

Amorphous silicon dioxide 1.1–1.4 1.5106 

Undoped silicon 150 1.6106 

Aluminum(c) 235 2.4106 

Copper(c) 400 3.4106 

Diamond 2,200 1.8106 

 (a) At ambient pressure. 
 (b) In fluids (gases and liquids), heat flow may be much enhanced by temperature-gradient-induced 
turbulent circulation – convection, which is highly dependent on the system’s geometry. The given values 
correspond to conditions preventing convection. 
 (c) In the context of the Wiedemann-Franz law (valid for metals only!), the values of  for Al and Cu 
correspond to the Lorenz numbers, respectively, 2.2210-8 WK-2 and 2.3910-8 WK-2, in a pretty 
impressive comparison with the universal theoretical value of 2.4510-8WK-2 given by Eq. (110). 
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  Now applying to the right-hand side of Eq. (115) the divergence theorem,77 and taking into 
account that for a time-independent volume, the full and partial derivatives over time are equivalent, we 
get 

       03 





 





V

hV rd
t

T
c j .     (6.117) 

This equality should hold for any time-independent volume V, which is possible only if the function 
under the integral equals zero at any point. Using Eq. (114), we get the following partial differential 
equation, called the heat conduction equation (or, rather inappropriately, the “heat equation”): 

     0



Τ
t

T
cV  rr  ,     (6.118)

where the spatial arguments of the coefficients cV and  are spelled out to emphasize that this equation is 
valid even for nonuniform media. (Note, however, that Eq. (114) and hence Eq. (118) are valid only if 
the medium is isotropic.) 

 In a uniform medium, the thermal conductivity  may be taken out from the external spatial 
differentiation, and the heat conduction equation becomes mathematically similar to the diffusion 
equation (5.116), and also to the drift-diffusion equation (50) in the absence of drift (U = 0): 
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TT c
DTD
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T 
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


with  ,2 .    (6.119) 

This means, in particular, that the solutions of these equations, discussed earlier in this course (such as 
Eqs. (5.112)-(5.113) for the evolution of the delta-functional initial perturbation) are valid for Eq. (119) 
as well, with the only replacement D  DT. This is why I will leave a few other examples of the 
solution of this equation for the reader’s exercise. 

 Another topic I have to leave for the reader’s exercise is making estimates of the kinetic 
coefficients (such as the , D, and  discussed above, and also the shear viscosity ) of a nearly ideal 
classical gas78 from simple kinematic arguments, and comparing the results with those following from 
the Boltzmann-RTA equation. 

 More generally, let me emphasize again that due to time/space restrictions, in this chapter I was 
able to barely scratch the surface of physical kinetics.79 

 

6.6. Exercise problems 

 6.1. Use the Boltzmann equation in the relaxation-time approximation to derive the Drude 
formula for the complex ac conductivity (). Give a physical interpretation of the result’s trend at high 
frequencies. 

77 I hope the reader knows it by heart by now, but if not – see, e.g., MA Eq. (12.2). 
78 Here the term “nearly ideal gas” means that its mean free path l is so large that particle collisions do not 
significantly affect the basic statistical properties of the gas. 
79 A much more detailed coverage of this important part of physics may be found, for example, in the textbook by 
L. Pitaevskii and E. Lifshitz, Physical Kinetics, Butterworth-Heinemann, 1981. For a discussion of applied 
aspects of kinetics see, e.g., T. Bergman et al., Fundamentals of Heat and Mass Transfer, 7th ed., Wiley, 2011.  
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 6.2. At t = 0, similar particles were uniformly distributed in a plane layer of thickness 2a: 

 


 


           otherwise.  ,0

,for  ,
0, 0 axan

xn  

At t > 0, the particles are allowed to propagate by diffusion through an unlimited uniform medium. Use 
the variable separation method80 to calculate the time evolution of the particle density distribution. 
  
 6.3. Solve the previous problem using an appropriate Green’s function for the 1D version of the 
diffusion equation, and discuss the relative convenience of the results. 
 
 6.4. Particles with the same initial spatial distribution as in the two previous problems are now 
freed at t = 0 to propagate ballistically – without scattering. Calculate the time evolution of their density 
distribution at t > 0, provided that initially, the particles were in thermal equilibrium at temperature T. 
Compare the solution with that of the previous problem. 
 
 6.5.* Calculate the electric conductance of a narrow uniform conducting link between two bulk 
conductors, in the low-voltage and low-temperature limit, neglecting the electron interaction and 
scattering inside the link. 
 
 6.6. Calculate the effective capacitance (per unit area) of a broad plane sheet of a degenerate 2D 
electron gas, separated by an insulating gap of thickness d from a well-conducting ground plane. 
 
 6.7. Give a quantitative description of the dopant atom ionization, which would be consistent 
with the conduction and valence band occupation statistics, using the same simple model of an n-doped 
semiconductor as in Sec. 4 (see Fig. 7a), and taking into account that the ground state of the dopant atom 
is typically doubly degenerate, due to two possible spin orientations of the bound electron. Use the 
results to verify Eq. (65), within the displayed limits of its validity. 
 
 6.8. Generalize the solution of the previous problem to the case when 
the n-doping of a semiconductor by nD donor atoms (per unit volume) is 
complemented with its simultaneous p-doping by nA acceptor atoms whose 
energy A – V of activation, i.e. of accepting an additional electron and hence 
becoming a negative ion, is much lower than the bandgap  – see the figure on 
the right.  
 
 6.9. A nearly ideal classical gas of N particles with mass m was in thermal equilibrium at 
temperature T, in a closed container of volume V. At some moment, an orifice of a very small area A is 
opened in one of the container’s walls, allowing the particles to escape into the surrounding vacuum.81 
In the limit of very low density n  N/V, use simple kinetic arguments to calculate the r.m.s. velocity of 
the escaped particles during the time period when the total number of such particles is still much smaller 
than N. Formulate the limits of validity of your results in terms of V, A, and the mean free path l.    

80 A detailed introduction to this method may be found, for example, in EM Sec. 2.5. 
81 In chemistry-related fields, this process is frequently called effusion. 
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 6.10. For the system analyzed in the previous problem, calculate the rate of particle flow through 
the orifice – the so-called effusion rate. Discuss the limits of validity of your result. 
 
 6.11. Use simple kinematic arguments to estimate: 

 (i) the diffusion coefficient D, 
 (ii) the thermal conductivity , and 
 (iii) the shear viscosity , 

of a nearly ideal classical gas with mean free path l. Compare the result for D with that calculated in 
Sec. 3 from the Boltzmann-RTA equation. 

 Hint: In fluid dynamics, the shear viscosity (frequently called simply "viscosity") is defined as 
the coefficient  in the following relation: 
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F
.  

Here dFj' is the j' th Cartesian component of the elementary tangential force exerted by one part of a 
fluid, separated from its counterpart by an imaginary plane normal to some direction nj (with j  j', and 
hence nj  nj'), dAj is the elementary area of this interface, and v(r) is the fluid velocity’s distribution.82 
 

 6.12. Use simple kinematic arguments to relate the mean free path l in a nearly ideal classical 
gas, to the full cross-section  of mutual scattering of its particles.83 Then use the result to express the 
thermal conductivity and the viscosity coefficient estimates made in the previous problem, in terms of .  
 
 6.13. Use the Boltzmann-RTA equation to calculate the thermal conductivity of a nearly ideal 
classical gas, measured in conditions when the applied thermal gradient does not create a net particle 
flow. Compare the result with that following from the simple kinetic arguments (Problem 11). 
  
 6.14. Use the Boltzmann-RTA equation to calculate the shear viscosity of a nearly ideal gas. 
Spell out the result in the classical limit, and compare it with the estimate made in the solution of 
Problem 11. 
 
 6.15. Use a simple model of a thermoelectric refrigerator (“cooler”) based on the Peltier effect to 
analyze its efficiency. In particular, explain why the fraction ZT given by Eq. (6.113) of the lecture 
notes may be used as the figure-of-merit of materials for such devices. 

 6.16. Use the heat conduction equation (119) to calculate the amplitude of day-periodic 
temperature variations at depth z under the surface of the soil with a temperature-independent specific 
heat cV, thermal conductivity , and negligible thermal expansion. Assume that the incident heat flux is 

82 See, e.g., CM Eq. (8.56). Note the difference between the shear viscosity coefficient  considered in this 
problem and the drag coefficient  whose calculation was the task of Problem 3.2. Despite the similar (traditional) 
notation, and belonging to the same realm (kinematic friction), these coefficients have different definitions and 
even different dimensionalities. 
83 I am sorry for using the same letter for the cross-section as for the electric Ohmic conductivity. (Both notations 
are very traditional.) Let me hope this will not lead to confusion; the conductivity is not discussed in this problem.  
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a sinusoidal function of time, with amplitude j0 per unit area. Estimate the temperature variation 
amplitude, at depth z = 1 m, for a typical dry soil, taking necessary parameters from a reliable source. 
 
 6.17. Use Eq. (119) to calculate the time evolution of temperature in the center of a uniform solid 
sphere of radius R, initially heated to a uniformly distributed temperature Tini, and at t = 0 placed into a 
heat bath that gives the sphere’s surface a constant temperature T0.  
 
 6.18. Suggest a reasonable definition of the entropy production rate (per unit volume), and 
calculate this rate for stationary thermal conduction, assuming that it obeys the Fourier law, in a material 
with negligible thermal expansion. Give a physical interpretation of the result. Does the stationary 
temperature distribution in a sample correspond to the minimum of the total entropy production in it? 
 

 


