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Chapter 1. Review of Thermodynamics  

Problem 1.1. Two bodies, with temperature-independent heat capacities C1,2 and initial 
temperatures T1,2 are placed into a weak thermal contact. Calculate the change of the total entropy of the 
system before it reaches thermal equilibrium. 

Solution: Due to the thermal contact’s weakness, the temperature-equilibration process is 
relatively slow, so each body is close to its internal thermal equilibrium at any given time. As a result, 
we may use Eq. (1.19) of the lecture notes to describe the change of the body’s entropy during the 
transfer of an elementary heat dQj to it: 

       2,1with  ,  j
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j .     (*) 

(In this solution, the prime signs mark intermediate, instant temperatures of the bodies, to distinguish 
them from the initial values specified in the assignment.) On the other hand, by the definition of the heat 
capacity, for the same dQj, we may also write 

'dTCdQ jjj  . 

Plugging this expression into Eq. (*) and integrating the result through the whole temperature 
equilibration process, we get 
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where Tfin is the final, common temperature of the system. This temperature may be calculated from the 
energy conservation law: 

0   i.e.,0 221121  'dTC'dTCdQdQ . 

The integration of the last relation through the whole 
process yields 
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so, finally, Eq. (**) yields 
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 Typical results given by this formula are 
shown in the figure on the right. (Notice its log-log 
scale.) An elementary analysis of the result shows that 
if C1,2 > 0, the change of entropy is positive for any 
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parameters of the system – besides the trivial case T1 = T2 when there is no heat flow at all, and hence 
S = 0.  

 

 Problem 1.2. A gas portion has the following properties: 

(i) its heat capacity CV = aT b, and  
(ii) the work W T necessary for its isothermal compression from V2 to V1 equals cTln(V2/V1), 

where a, b, and c are some constants. Find the equation of state of the gas and calculate the temperature 
dependences of its entropy S and thermodynamic potentials E, H, F, G, and .  

 Solution: By plugging condition (ii) of the problem’s assignment into Eq. (1.1) of the lecture 
notes, we get 
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11

1 V

cT

V
VTP T 





W

 

so the equation of state coincides with that of an ideal gas (see Eq. (1.44) of the lecture notes) with N = 
c. Hence we may use Eqs. (1.45)-(1.50), with that substitution, to finalize the solution. In particular, 
comparing Eq. (1.50) and condition (i) of the assignment, we obtain 
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where d and g are some new constants. With that, Eqs. (1.45)-(1.49)  give
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 Note that all thermodynamic potentials (besides ) are still determined up to some arbitrary 
constants. 

 

 Problem 1.3. A volume with an ideal classical gas of similar molecules is separated into two 
parts with a partition so that the number N of molecules in each part is the same but their volumes are 
different. The gas is initially in thermal equilibrium with the environment, and its pressure in one part is 
P1, and in the other part, P2. Calculate the change of entropy resulting from a fast removal of the 
partition. 
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 Solution: Before the removal of the partition, the total entropy (as an extensive parameter) is  the 
sum of entropies of its independent parts, Sini = S1 + S2, so Eq. (1.46) of the lecture notes yields 
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where the last expression is obtained by using the equation of state, V/N = T/P, for each part of the 
volume, and T is the initial temperature of the system. At a fast gas expansion, we may neglect the 
thermal exchange of the gas with its environment. Also, at a fast removal of the partition (say, 
sideways), the gas cannot perform any mechanical work on it. As a result, the gas’ total energy is 
conserved during the removal. According to Eq. (1.47) of the lecture notes, this means that the gas 
temperature T is conserved as well. As a result, the partition removal does not cause any heat flow 
to/from the environment, so this result for temperature is valid for all times after it. In addition, the total 
number of molecules (2N) is also conserved. Because of that, we may use Eq. (1.44) to calculate the  
final pressure of the gas, after the partition’s removal, as 
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Now applying Eq. (1.46) again and then using Eq. (*), we may calculate the final entropy as 
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Hence, its change during the expansion, 
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does not depend on temperature – at least explicitly.  

 As a sanity check, our result shows that if P1 = P2, the entropy does not change. (This is natural 
because, in this case, the partition’s removal has no macroscopic consequences.) For any other relation 
of the initial pressures, the irreversible process caused by the partition removal results in a growth of the 
entropy – as it should. 

Problem 1.4. An ideal classical gas of N particles is initially confined to volume V, and is in 
thermal equilibrium with a heat bath of temperature T. Then the gas is allowed to expand to volume V’ > 
V in one of the following ways: 

(i) The expansion is slow, so due to the sustained thermal contact with the heat bath, the gas 
temperature remains equal to T. 

(ii) The partition separating the volumes V and (V’ –V) is removed very fast, allowing the gas to 
expand rapidly.  

For each case, calculate the changes of pressure, temperature, energy, and entropy of the gas 
during its expansion, and compare the results. 
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 Solutions:  

 (i) The first process is isothermal, at temperature T, so for the initial pressure P of the gas and its 
final pressure P’, the equation of state (see Eq. (1.44) of the lecture notes) gives 
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Since there is no change in temperature, the energy of the gas (which, according to Eq. (1.47), is a 
function of temperature alone) does not change either. However, at the expansion, the gas performs a 
nonvanishing  mechanical work (for example, upon the piston that moderates the expansion speed to 
keep the process isothermal): 
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Since the gas energy does not change, this energy loss has to be exactly compensated by the heat Q = –
W  > 0 transferred from the heat bath. This enables us to calculate the change of the entropy during the 
process by using Eq. (1.20) with T = const: 
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(The same expression follows from Eq. (1.46) because df/dT is a function of T alone and hence does not 
change at the process.) 

 (ii) The fast expansion is irreversible, without time for any heat transfer, so Q = 0, and without 
performing any mechanical work, W  = 0. (At a free expansion, there is no piston to move.) Hence, per 
Eq. (1.18), the internal energy E of the gas cannot change: E = 0. Now using Eq. (1.47) again, we may 
conclude that the gas temperature cannot change either, T = 0.1 On the other hand, according to Eqs. 
(1.44) and (1.46), the gas pressure and its entropy are determined by the current state of the gas rather 
than by the way it has been reached, so their changes are described by the same relations (*) and (**).  

 Note, however, that in contrast to the first (slow and reversible) process, at which the total 
entropy of the system (the gas + the heat bath) does not change, the second, fast process is irreversible, 
with the total entropy of the system rising by the S given by Eq. (**). Note also that since the gas 
temperature does not change in either of these cases, all the above results are valid regardless of whether 
the heat capacity of the gas depends on T or not. 

 

 Problem 1.5. For an ideal classical gas with temperature-independent specific heat, derive the 
relation between P and V at its adiabatic expansion/compression. 

 Solution: Per Eq. (1.50) of the lecture notes, 

T

c

dT

fd V
2

2

. 

1 Note that this result is only valid for an ideal gas, while for real gases (discussed in Chapters 3 and 4 of the 
lecture notes), this process may lead to either heating or cooling – see, e.g., Problem 4.3. 
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where cV  CV/N is the specific heat – namely the heat capacity per unit particle. If CV is temperature-
independent, so is cV, and integrating both sides of the above equation over temperature, we get 

aTc
dT

df
V  ln , 

where a is another temperature-independent constant. As was discussed in Sec. 1.3 of the lecture notes, 
at an adiabatic process, the entropy has to be constant, and hence Eq. (1.46) yields 
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(Here and below, the expressions “const” mean various amounts remaining constant during the adiabatic 
expansion/compression.) So we get the following relation between temperature and volume: 
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. 

Now by using the equation of state (1.44), rewritten as T = PV/N, we get the required relation, 
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 Traditionally, this relation is represented in the form 

const PV , 

where the constant   (cV + 1)/cV, per Eq. (1.51), is the specific heat (and hence heat capacity) ratio: 
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 Please remember that this result is only valid if CV, and hence CP = CV + N, are temperature-
independent. 

 

 Problem 1.6. Calculate the speed and the wave impedance of acoustic waves propagating in an 
ideal classical gas with temperature-independent specific heat, in the limits when the propagation may 
be treated as: 

 (i) an isothermal process, and 
 (ii) an adiabatic process.  

Which of these limits is achieved at higher wave frequencies? 

 Solution: As classical mechanics shows,2 the speed v and the wave impedance Z of a 
longitudinal acoustic wave in a fluid (i.e., a medium with a negligible shear modulus ) are  

  2/1
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2 See, e.g., CM Sec. 7.7, in particular Eq. (7.114), and Eq. (7.120) with  = 0. 
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where   is the volumic mass density of the fluid:   M/V = mN/V (where m is the mass of one particle), 
and K is its bulk modulus (reciprocal compressibility) defined as 
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P
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where X is the parameter remaining constant at the fluid’s expansion/compression. In typical liquids, K 
is very high and does not depend much on what X is; however, in gases the difference is substantial. 

 (i) At an isothermal process, we may take X = T, so using Eq. (1.44) of the lecture notes in the 
form P = NT/V, so 
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where n  N/V is the particle density. Note that v does not depend on the density, and hence on the static 
compression of the gas. Also, as will be discussed in Chapter 2, this v coincides with the r.m.s. velocity 
of the gas particles in any fixed direction. 

 (ii)  As was discussed in the model solution of the previous problem, at an adiabatic process 
(where we may take X = S = const), the pressure depends on volume differently: P = fV–, where   
CP/CV = (cV + 1)/cV, while the factor f does not depend on V, so the differentiation yields 
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 Since  > 1 by definition, these results show that the acoustic wave velocity and impedance in 
the adiabatic case are always larger than those in the isothermal case. Practically, the isothermal limit 
may be reached only at very low frequencies, where the wave’s time period is long enough to enable 
temperature to constantly equilibrate over the whole size of the system. At the usual (say, audible) sound 
frequencies, ambient conditions, and for human-scale gas volumes, only the adiabatic result is realistic. 

 

 Problem 1.7. As will be discussed in Sec. 3.5 of the lecture notes, the so-called “hardball” 
models of classical particle interaction yield the following equation of state of a gas of such particles: 

 nTP  , 

where n = N/V is the particle density, while the function (n) is generally different from that (ideal(n) = 
n) of the ideal gas, but still independent of temperature. For  such a gas, with a temperature-independent 
cV, calculate: 

 (i) the energy of the gas, and  
 (ii) its pressure as a function of n at an adiabatic compression. 

 Solutions: 

 (i) First of all, let us notice that at N = const,  
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Now, just as it was done in Sec. 1.4 of the lecture notes for the ideal gas, we can start with the 
calculation of the free energy: 

         
   2const,const,   where,

n

dnn
nTNfnTNdVnTPdVF TNTN

 , 

and then proceed to the calculation of the entropy and then the internal energy: 
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. 

 (ii) The last relation between E and f(T) is the same as for the ideal gas – see Eq. (1.47) of the 
lecture notes. As a result, cV is also expressed by the same Eq. (1.50), giving 

T
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. 

Since, per the assignment, cV is temperature-independent, the integration of this relation over T yields 
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Now, just as it was done in the solution of Problem 5, the requirement of the entropy’s constancy at the 
adiabatic compression (at constant N) yields 
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Now by using the T expressed from the given equation of state, T = P/(n), we get 
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 As a sanity check, for an ideal gas where (n) = n, so (n) = lnn + const, i.e. exp{(n)}  n, 
the above result is reduced to 
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VNnnnP V    

i. e. to the solution of Problem 5. 

 

Problem 1.8. For an arbitrary thermodynamic system with a fixed number of particles, prove the 
four Maxwell relations (mentioned in Sec. 1.4 of the lecture notes): 
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and also the following formula: 



Essential Graduate Physics               SM: Statistical Mechanics                

Problems with Solutions                  Page 10 

  .:v P
T

P
T

V

E

VT





















 

 Solution: The mixed partial second derivative of the free energy F(T, V) may be represented in 
two equivalent forms: 

VTTV V

F

TT

F

V 









































. 

But according to Eqs. (1.35) of the lecture notes, the internal derivative on the left-hand side of this 
equality is just (–S), while that on the right-hand side is just (–P), thus proving Eq. (i). The remaining 
three Maxwell relations may be proved absolutely similarly, applying similar arguments to the partial 
derivatives of the following thermodynamic potentials: 

  (ii) H(P, S) – see Eqs. (1.31); 

  (iii) G(P, T) – see Eqs. (1.39); and 

  (iv) E(S,V) – see Eqs. (1.9) and (1.15). 

 In order to prove Eq. (v), let us divide all terms of the general Eq. (1.17), 

PdVTdSdE  , 

by dV, and apply it to the particular case when all these elementary changes are performed at a constant 
temperature. The result is 

P
V

S
T

V

E

TT





















. 

Now using Eq. (i), we get Eq. (v) proved. 

 Note that there are quite a few other similar thermodynamic equalities for E and other 
thermodynamic potentials, which may be proved similarly.3 

 Problem 1.9. Express the difference (CP – CV) between the heat capacities difference of a system 
via its equation of state P = P(V, T). 

 Solution: Subtracting the two expressions derived at the end of Section 1.3 of the lecture notes, 
we get 

              




























VP

VP T

S

T

S
TCC ,    (*) 

so we only need to express the right-hand side of this relation via the equation of state. The entropy S of 
a system with a fixed number N of particles is completely determined by its volume V and temperature 
T, and hence may be considered a function of these two independent arguments. Hence its full 
differential may be expressed as 

3 See, e.g., Eqs. (16.6)-(16.8) in L. Landau and E. Lifshitz, Statistical Physics, Part 1, 3rd ed., Pergamon, 1980. 
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     dT
T

S
dV

V

S
dS

VT





















 .     (**) 

On the other hand, the same arguments V and T uniquely determine pressure P via the equation of state. 
Hence we may alternatively consider the entropy as a function of P and T, and represent the same 
differential in another form: 

      dT
T

S
dP

P

S
dS

PT





















 .     (***) 

 The three differentials dV, dP, and dT participating in Eqs. (**) and (***) are not fully 
independent, but are related by the equation of state P = P(V, T), whose differentiation gives 

dT
T

P
dV

V

P
dP

VT





















 . 

Plugging this expression for dP into Eq. (***), and then requiring the dS given by the resulting relation 
to be equal to that given by Eq. (**), we get 

dT
T

S
dT

T

P
dV

V

P

P

S
dT

T

S
dV

V

S

PVTTVT





































































. 

This equality has to be satisfied for arbitrary elementary changes dV and dT of the two independent 
arguments V and T. This requirement yields the following two equalities for the partial derivatives: 

           . ,
PVTVTTT T

S

T

P

P

S

T

S

V

P

P

S

V

S






































































 

Eliminating (S/P)T from the system of these two relations, we get the following expression for the 
difference inside the square brackets in Eq. (*):  

 
 T

V

TVP VP

TP

V

S

T

S

T

S


































/

/
. 

Now using the Maxwell relation whose proof was the first task of the previous problem,  

VT T

P

V

S




















, 

to eliminate the entropy from the right-hand side, we finally get 

          
 
 T

V
VP VP

TP
TCC





/

/ 2

.     (****) 

 As a sanity check: for the ideal classical gas, the equation of state is given by Eq. (1.44) of the 
lecture notes, P = NT/V, and hence  

,,
2V

NT

V

P

V

N

T

P

TV




















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so Eq. (****) is reduced to the same result, 

NCC VP  , 

that was obtained differently in the lecture notes – see Eq. (1.51).  

 More generally, the derivative (P/V)T has to be negative for the mechanical stability of the 
system,4 so Eq. (****) confirms the inequality CP – CV > 0, which was already mentioned in Sec. 1.3 of 
the lecture notes. Note also that according to the same formula, for materials with very low 
compressibility –(V/P)/V, such as most solids and liquids, the difference between the two heat 
capacities is much lower than any of CV and CP, thus justifying the frequent usage of the term “heat 
capacity C”  without specifying the conditions of its measurement – as this was done, for example, in 
Problem 1.1 and will be done on other occasions in this course. 

 Note also that if we represented the equation of state in the alternative form V = V(P, T), and 
then acted absolutely as above, we would get an equivalent expression:5 

 
 T

P
VP PV

TV
TCC





/

/ 2

, 

but conceptually, the equality P = P(V, T) and hence Eq. (****) have a more direct physical sense. 

 Let me finish by challenging the reader to streamline the above derivation of Eq. (****) by using 
the well-known chain rule 

,1





























YXZ X

Z

Z

Y

Y

X
 

which is valid for any three variables X, Y, and Z that are related as f(X, Y, Z) = 0, where f is a 
differentiable function of all its arguments. 

 

 Problem 1.10. Prove that the isothermal compressibility6 of a system of N similar particles, 

NT
T P

V

V ,

1










  

may be expressed in two different ways: 

.
,

22

2

2

2

VTT

T

N

N

VP

N

V

























  

 Solution: By combining Eq. (1.60) of the lecture notes for the grand canonical potential,  = –
PV, and Eq. (1.61) for its full differential, for the case of constant temperature (dT = 0), we get 

  .constfor  ,  TNdPdVPVd   

4 This condition, virtually evident from Fig. 1.4, will be further discussed in Sec. 4.1 of the lecture notes. 
5 The derivative in the numerator of this expression is proportional to the system’s thermal expansion coefficient 
, while that in the denominator, is to its isothermal compressibility T – see the next problem. 
6 Note that the compressibility is just the reciprocal bulk modulus,   = 1/K – see, e.g., CM Sec. 7.3. 
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After spelling out the derivative on the left-hand side and the cancellation of – PdV, we get simply 

     constfor  ,  TNdVdP  .      

This relation7 means that we may write  

         
V

NP

T













 ,     (*)  

regardless of whether the volume V of the system or the number N of particles in it (or maybe some 
combination of the two) is fixed. 

 Now let us use Eq. (*) to transform the second derivative participating in the first equality to be 
proved: 

TTTT
V

NPP












































 2

2

.    (**) 

In the particular case when the number of particles is fixed, we may continue as 

NTNTT

V

V

N

V
N

P

,
2

,
2

2 1


































.    

In a system with fixed T and N, the state of the system (in particular both V and ) is uniquely defined 
by pressure P, we may continue even further as 

2

2

,,
2

,,
22

2 1

V

N

P

V

VV

N

P

V

V

NP

P

V

V

NP

NTNTNTNTT






















































,

where at the second step, Eq. (*) was used again. But the last expression, besides the last fraction, by 
definition, is the isothermal compressibility, thus giving us the first relation we had to prove: 

.
2

2

2

2

T

T

P

N

V














  

 Now let us transform this expression by using Eq. (**) again: 

.
2

2

T
T V

N

N

V














  

Performing the differentiation for the case when the volume rather than the number of particles is fixed, 
we get the second relation in question: 

VT

T

N

N

V

,
2 














 . 

  This formula may be useful, in particular, for a convenient representation of statistical 
fluctuations of the number of particles in systems with fixed T, V, and  – see Chapter 5 below. 

7 It may be also obtained, for dT = 0, from Eq. (1.53c), dG = –SdT + VdP + dN, after using Eq. (1.56), G = N. 



Essential Graduate Physics               SM: Statistical Mechanics                

Problems with Solutions                  Page 14 

 Finally, an additional exercise for the reader: use a calculation similar to that carried out in the 
previous problem’s solution to prove the following relation, 

P
ST C

TV 2  , 

where S is the adiabatic compressibility defined similarly to T: 

NS
S P

V

V ,

1










 , 

and  is the thermal expansion coefficient: 

.
1

,NPT

V

V










  

 

 Problem 1.11. Throttling8 is an expansion of gas by driving it through either a small hole (called 
the throttling valve) or a porous partition, using an externally sustained difference of pressure values on 
two sides of such an obstacle. 

 (i) Prove that in the absence of heat exchange with the environment, the enthalpy of the 
transferred gas does not change. 
 (ii) Express the Joule-Thomson coefficient (T/P)H, which characterizes the gas temperature 
change at throttling, via its thermal expansion coefficient   (V/T)P/V. 

 Solutions:  

 (i) The figure on the right shows a simple system that can 
sustain constant pressure values P1 and P2 < P1 on two sides of a 
throttling valve through the throttling process. (The top panel 
shows the beginning of the process, while the bottom one, its 
end.) The total work performed by the two pistons on the gas 
during the process is obviously  

2211 VPVP W . 

In the absence of heat transfer to/from the gas (dQ = 0), the 
integration of the basic Eq. (1.18) through the process yields 

,2211 VPVPE  W  

so the gas’ enthalpy (1.27) indeed does not change: 

    0112211122212  VPVPEVPEVPEHHH . 

 (ii) For an arbitrary slow process in a system with a fixed 
number of particles, we may use Eq. (1.30) of the lecture notes: 

      .VdPTdSdH       (*) 

8 Sometimes it is called the Joule-Thomson process, though more typically, the latter term refers to the possible 
gas cooling at the throttling. 

2P1P

1V

2V



Essential Graduate Physics               SM: Statistical Mechanics            

Problems with Solutions                  Page 15 

Assuming that entropy S is expressed as a function of pressure P and temperature T, we may continue as 

.dPV
P

S
TdT

T

S
TVdPdT

T

S
dP

P

S
TdH

TPPT

























































  

As was discussed in Sec. 1.3 of the lecture notes, the coefficient before dT in the last expression is just 
the heat capacity at a fixed pressure, so for a process with H = const (i.e. dH = 0), we get 

.
1






























V
P

S
T

CP

T

TPH

 

However, according to the solution of Problem 8(iii), the partial derivative on the right-hand side of this 
result may be expressed via the thermal expansion coefficient : 

 .11
11















































 T

C

V

T

V

V
T

C

V
V

T

V
T

CP

T

PPPPPH

 

 In Chapter 4, this expression will be used for the evaluation of the inversion point (i.e. the point 
where the Joule-Thomson coefficient changes sign) of the van der Waals gas.  

 Note also that the throttling always leads to the entropy’s increase, i.e. is irreversible. Indeed, 
from Eq. (*), we see that at dH = 0, dS = –(V/T)dP, and since the expression in the parentheses is always 
positive, the drop of pressure during this process always leads to dS > 0. 

 

 Problem 1.12. A system with a fixed number of particles is in thermal and mechanical contact 
with its environment of temperature T0 and pressure P0. Assuming that the internal relaxation of the 
system is sufficiently fast, derive the conditions of stability of its equilibrium with the environment with 
respect to small perturbations. 

 Solution: The above assumption means that even if the volume V and energy E of the system 
deviate from their equilibrium values imposed by the environment, its parts are in a virtual mutual 
equilibrium, so we may apply to the system all the results discussed in Chapter 1 of the lecture notes. In 
particular, the system’s equilibrium should correspond to the minimum of the Gibbs energy (1.37), with 
T = T0 and P = P0: 
              VPSTEG 00  .     (*) 

Let us expand G into the Taylor series in small deviations S
~

and V
~

from the equilibrium,9 

...
~

2

1~~~

2

1~~~ 2
2

22
2

2

2






















 V
V

G
VS

VS

G
S

S

G
V

V

G
S

S

G
G  

Besides the borderline cases when the displayed terms give an uncertain result, the higher-order terms of 
the expansion do not affect the stability and may be ignored. Hence, by using Eq. (*), we get  

9 Here, each partial derivative is taken at the condition that the counterpart variable of our set {S, V} is fixed, for 
example, G/S  (G/S)V, etc. For brevity, I will spell out this common notation only in the final result. 
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Here all the derivatives have to be taken at the equilibrium point. According to Eqs. (1.9) and (1.15), at 
this point, both parentheses in the last expression vanish, and we are left with the quadratic form 

        .
~

2

1~~~

2

1~ 2
2

22
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V
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




     (**) 

 For the equilibrium to be stable, this form has to be positive for any S
~

and V
~

, so that in its trend 
to minimize G, the system would “try” to reduce the magnitudes of these deviations.10 Mathematics tells 
us that this is the case if the following three conditions are satisfied:11 
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Now using Eqs. (1.9) and (1.15) again, we may represent these conditions as 

,
11

,0
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,0
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T

VC

T

VV

P

C

T

S

T


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

 

where S  –(V/T)S/V is the adiabatic compressibility and S  –(V/T)S/V is the adiabatic thermal 
expansion coefficient – see also the model solution of the previous problem. 

 As will be shown in Chapter 5 of the lecture notes, at appropriate conditions, the left-hand sides 
of the first two inequalities provide the scales of spontaneous fluctuations of, respectively, the thermal 
energy and the volume of the system. 

 

 Problem 1.13. Derive the analog of the relation for the difference (CP – CV), whose derivation 
was the task of Problem 9, for a fixed-volume sample with a uniform magnetization M parallel to the 
uniform external field H. Spell out this result for a paramagnet that obeys the Curie law M   H/T – the 
relation to be derived and discussed later in this course. 

 Solution: For a fixed-volume system, the contribution of the variables V and P into the 
thermodynamic potentials, and hence to the observable properties, is negligible. Instead, in a magnetic 
material, their roles are played by the Cartesian components of, respectively, the magnetization M and 
the external magnetic field H. For our current case of parallel and space-independent vectors M  and H, 
one of the coordinate axes may be directed along them, so each of these vectors would have just one 
Cartesian component. In this case, according to Eqs. (1.1) and (1.3) of the lecture notes, all formulas of 
thermodynamics are valid with the replacements 

         HM 0,  PVV .    (*) 

10 This condition, similar to that for the potential energy’s minimum in mechanics, is a particular case of what is 
called Le Châtelier’ principle. 
11 These inequalities may be readily derived: it is sufficient to take, in Eq. (**),  S

~
= V

~
, getting G

~
= f() 2~

V , 
and then require the coefficient f() to be positive for all values of . 
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In particular, instead of the difference (CP – CV), we may consider the difference (CH – CM) between the 
heat capacities at fixed magnetization and at fixed field. Making this substitution and also the 
replacements (*) in the last result12 of the model solution of Problem 9: 

 
 T

P
VP PV

TV
TCC





/

/ 2

, 

we get 

         
 
 

2

0

2

0 /

/

H

H M

HM

M
H 















T

T
V

T
TVCC

TT
M 

 ,   (**) 

where the partial derivative 

H

M




  

is called the magnetic susceptibility of the material – in Eq. (**), the one taken at a fixed temperature. 

 In particular, for a Curie-law paramagnet with M  = aH/T with a constant a, we get T = a/T, 
(M/T)H = –aH/T2, and Eq. (**) yields 

2

0 







T
aVCC M

H
H  , 

so CH  CM at either H  0 or T  . 

 

 Problem 1.14. Two bodies have equal temperature-independent heat capacities C but different 
initial temperatures, T1 > T2. Calculate the largest mechanical work obtainable from this system by using 
a heat engine. 

 Solution: The largest work may be extracted by using the bodies as the hot and cold heat baths of 
a Carnot heat engine, with each cycle taking just a small heat portion, dQH << CTH, from the hotter body 
and releasing an even smaller amount of heat, dQL < dQH, into the colder body – while turning the 
difference dQH – dQL into the mechanical work –dW. Each engine cycle cools the former body and heats 
the latter body just a bit: 

C

dQ
dT

C

dQ
dT L

L
H

H ,  . 

Since each such change is small, we may also use Eq. (1.66) of the lecture notes, 

L

H

L

H

T

T

dQ

dQ
 , 

which has been derived for constant TH and TL. Combining these three relations, we see that the 
temperature changes obey the rule 

.
L

H

L

H

T

T

dT

dT
  

12 The magnetic analog of the first of those results, which is given by Eq. (****) of that solution, includes partial 
derivatives at fixed M and is less useful because, in practice, it is easier to fix the external magnetic field rather 
than the material’s magnetization.  
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 Integrating this relation, rewritten as  

     0lnlnln    as i.e.,0 LHLH
L

L

H

H  TTdTTd
T

dT

T

dT
, 

we see that through the process, the product THTL remains constant, so using the initial values of 
temperature, T1 and T2, we get 

.const21LH  TTTT  

 This formula means, in particular, that the temperatures tend to Tfin = (T1T2)
1/2. Note that this 

final temperature is always lower than the T’fin = (T1 + T2)/2 that we would get at direct thermal contact 
of the bodies, with no mechanical work done at all. To find the total work in our case, we may apply 
Carnot’s relation (1.68) to the work on a single cycle: 

H
H

L1 dQ
T

T
d 








 W , 

and then integrate this result through the whole process: 

     22/1
2

2/1
1fin21

fin

1

H2
H

21
fin

ini

H
H

L 211 TTCTTTCCdT
T

TT
dQ

T

T
T

T


















 W . 

The result shows that only in the limit T1/T2  , the work tends to CT1, i.e. to the full initial heat 
contents of the hotter body. 

 Another (shorter but also more formal and hence less transparent) way to derive the same results 
is to note that the heat does not leave the (two bodies + engine) system, so the mechanical work has to 
be equal to the sum of the changes of the thermal energies of the bodies: 

     fin21fin2fin1 2TTTCTTCTTC W , 

and then calculate Tfin from the requirement for the total entropy of the system to remain constant – as it 
has to be at a reversible process such as the Carnot cycle: 

0lnlnln
21

2
fin

2

fin

1

fin
fin

2

fin

1

fin

2

2
fin

1

1
21 








  TT

T
C

T

T

T

T
C

T

dT
C

T

dT
C

T

dQ

T

dQ
SSS

T

T

T

T

T

T

T

T
, 

giving the same Tfin = (T1T2)
1/2, and hence the same final result for W. 

 

 Problem 1.15. Express the efficiency  of a heat engine that 
uses the so-called Joule (or “Brayton”) cycle consisting of two 
adiabatic and two isobaric processes (see the figure on the right), via 
the highest and lowest values of pressure, and compare the result with 
Carnot. Assume an ideal classical working gas with temperature-
independent CP and CV. 

 Solution: Let us number the process junction points as shown 
in the figure above. Since at any adiabatic process (in our case, at the stages 12 and 34 of the 

P

V0

maxP
constS

minP
constS

1

2 3

4
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cycle), Q = 0, the work (–W) performed by the gas at any of these segments equals –E. Since for an 
ideal classical gas of a fixed number of particles, the internal energy is a function of temperature alone 
(see Eq. (1.47) of the lecture notes), we may calculate its change just as 

 
  dTCdT

dT

TdE
E V , 

regardless of the volume change. So, if CV is temperature-independent as in our case, then –W = –E = 
–CVT. Next, the work at any isobaric process, with P = const (such as the stages denoted 23 and 
41 in the figure above) is simply PV. As a result, the total mechanical work performed during the 
cycle is 

)()()()( 41min3423max12 VVPTTCVVPTTC VV W . 

After using the equation of state, PV = NT (which gives, in particular, PmaxV2,3 = NT2,3 and PminV1,4 = 
NT1,4) and applying Eq. (1.51) in the form CV = CP – N, this expression becomes 

 )()( 1423 TTTTCP W . 

 The heat intake QH from the hot bath takes place only at the isobaric process 23 and is equal to 
CP(T3 – T2), so the engine’s efficiency 

             
23

14

H

1
TT

TT

Q 



W

 .     (*) 

 In order to express the efficiency via the given values P1 and P2, we may first combine the result 
of Problem 5 (PV = const) and the equation of state (PV = NT) to get the general relation between 
temperature and pressure at an adiabatic process: 

1

1
  i.e.     ,

1
with  const ,

/)1(





 

V

V

V

V

V

P

c

c

c

c

C

C
PT


 . 

Applying this result to the two adiabatic stages of the Joule cycle  (34 and 12), and using the 
relations P1 = P4 = Pmin and P2 = P3 = Pmax again, we get 

   
.

/1

,

/1

max

min
34

max

min
21

 




















P

P
TT

P

P
TT  

Now plugging these relations into the right-hand side of Eq. (*), we see that the differences (T3 – T2) in 
the numerator and denominator cancel, giving us a very simple final result, 

     
   1//1

max

min

max

min 11

























VV cc

P

P

P

P


 .   (**) 

 In order to compare this formula with Eq. (1.68) for the Carnot cycle, it is better to use the above 
relation between P and T at the adiabatic process again to recast Eq. (**) in two other temperature 
forms: 

  
3

4

2

1 11
T

T

T

T
 .  
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Of the four junction points of the cycle (see the figure above), T3 is the largest one (Tmax), while T1 is the 
lowest one (Tmin), so the fractions in these two formulas are always larger than Tmin/Tmax, and hence 

Carnot
max

min1  
T

T
, 

as it should be for any cycle. 

  

 Problem 1.16. Calculate the efficiency of a heat engine using 
the Otto cycle13 that consists of two adiabatic and two isochoric 
(constant-volume) reversible processes – see the figure on the right. 
Explore how the efficiency depends on the compression ratio r  
Vmax/Vmin, and compare it with the Carnot cycle’s efficiency. Assume 
an ideal classical working gas with temperature-independent heat 
capacity. 

 Solution: Let us number the process junction points as shown 
in the figure above. At the adiabatic stages 34 and 12, there is no heat flow to/from the working 
gas. The thermal exchange takes place only during the isochoric stages 23 and 41, so due to the 
assumed specific heat’s constancy, we may write 

   ., 14L23H TTCQTTCQ VV   

As a result, so for the cycle’s efficiency as a function of junction point temperatures, we immediately get 
the same expression as for the Joule cycle (see the previous problem): 

                   
23

14

H

LH 1
TT

TT

Q

QQ







 .     (*) 

 Now plugging the equation of state of an ideal gas in the form P = NT/V into the result of 
Problem 5 for the adiabatic process, PV = const (where   CP/CV), we get TV( – 1) = const. Applying 
this relation to stages 34 and 12 (with the same volume ratio r), we get similar results for their 
temperature ratios: 

              1
11

,
1

11

0

0

3

4

4

3

0

0

2

1

1

2 








































 






r
V

rV

V

V

T

T
r

V

rV

V

V

T

T
.  (**) 

Using these relations to eliminate T3 and T2 from Eq. (*), we get the following very simple result: 

            
111

1
11

14

14

 



 

rrTrT

TT
.    (***) 

 Since by definition,   > 1, i.e.  – 1 > 0, and r > 1 (see the figure above), the denominator in the 
last form of the result is always positive and larger than one, so the efficiency is between 0 and 1 – as it 
should be. In particular, at r  1 (a very “narrow” cycle) the denominator tends to 1 as well, so   0. 

13 This name stems from the fact that the cycle is an approximate model of operation of the four-stroke internal 
combustion ("petrol") engine, which was improved and made practicable by N. Otto in 1876 – though its idea had 
been conceived earlier (in 1860) by É. Lenoir. 

constS

constS

0V 0rV

P

0

4

1

2

3

V



Essential Graduate Physics               SM: Statistical Mechanics            

Problems with Solutions                  Page 21 

This is natural because the useful work, proportional to the cycle’s area on the [P, V] plane, tends to zero 
in this limit. On the other hand, as r grows, so does the denominator, so   1. 

 In order to understand whether this efficiency increase can make it higher than that of the Carnot 
cycle with the same minimal and maximal temperatures, we may use Eqs. (**) to recast our result in two 
other forms: 

3

4

2

1 11
T

T

T

T
 . 

Since temperature drops at the adiabatic expansion, the figure above shows that T2 < T3 = Tmax and T1 = 
Tmin < T4. As a result, either of these two expressions for  shows that, for any r,  the Otto cycle’s 
efficiency is always lower than Carnot = 1 – Tmax/Tmin. 

 

 Problem 1.17.  The Diesel cycle (an approximate model of the 
Diesel internal combustion engine’s operation) consists of two adiabatic 
processes, one isochoric process, and one isobaric process – see the 
figure on the right. Assuming an ideal working gas with temperature-
independent CV and CP, express the cycle’s efficiency  via its two 
dimensionless parameters: the so-called cutoff ratio   V3/V2 > 1 and 
the compression ratio r  V1/V2 > .  

 Solution: In this cycle, the working gas picks up heat from the hot bath only during the isobaric 
21 stage,14 so QH = CP (T3 – T2), and drains heat to the cold bath only during the isochoric 41 stage, 
so QL = CV (T4 – T1). As a result, the cycle’s efficiency is 

        ,
1

111
23
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








    (*) 

where, as usual,   CP/CV > 1. In order to express this result via the parameters  and r, let us use the 
conservation of the product TV( – 1) at the adiabatic process in an ideal gas – see the previous problem’s 
solution. Applying it to each of the adiabatic stages of the Diesel cycle, we get 
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One more temperature ratio we need follows directly from the equation of state PV = NT, applied to the 
23 stage (where P = const): 
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Combining these ratios, we get 
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14 In practical Diesel engines, this is the stage of fuel combustion inside the engine’s cylinder, and the role of the 
hot bath is played by the hot gas formed as the result. 
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Now, plugging the calculated ratios into Eq. (*), rewritten as 

1/

1/1
1

23
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2

1





TT

TT

T

T


 , 

we bring the result to the requested form: 

1

11
1

1 


  







r
. 

 Since, by definition,  > 1 and  > 1, the last fraction is larger than 1. As a result, at the same 
compression ratio r, the efficiency of the Diesel cycle is lower than not only that of the Carnot 
efficiency but also that of the Otto cycle – see Eq. (***) in the previous problem’s solution. However, in 
practical Diesel engines, a larger compression ratio r (up to 20) may be reached, so their efficiency may 
be higher than that of the typical four-stroke engines (where r ~ 10). 

 

 Problem 1.18. A heat engine’s cycle consists of two isothermal (T = const) and two isochoric (V 
= const) processes – see the figure below.15  

 (i) Assuming that the working gas is an ideal classical gas of N 
particles, calculate the mechanical work performed by the engine 
during one cycle. 
 (ii) Are the specified conditions sufficient to calculate the 
engine’s efficiency? (Justify your answer.) 

 Solutions:  

 (i) In this cycle, mechanical work is performed only at the 
isothermal processes, in which P = NT/V with NT = const, so the total 
work 
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V
 W . 

 (ii) To calculate the cycle’s efficiency   –W/QH, we would need to know also the heat QH 
taken from the hot bath. The heat consists of the isothermal-stage part QT, which may be expressed by 
the first of Eqs. (1.65) of the lecture notes, and the isochoric-stage part QV. Let us assume that during 
the isochoric heating (from TL to TH), the working gas is in brought contact only with the hot bath 
(which is a smart thing to do to avoid the direct transfer of heat between two heat baths); then QV = 
E. Then we may use Eqs. (1.46) and (1.47) to write  

 
H
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2
H
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L
12HH
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)(ln)()(
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T

T
T dT
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V
NTTESSTEQQ T 


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  . 

Hence, the calculation of the efficiency  would require, besides the given assumptions and 
parameters, the function f(T) that characterizes the internal degrees of freedom of the gas, or 

15 The reversed cycle of this type is a reasonable approximation for the operation of the Stirling and Gifford-
McMahon (GM) refrigerators broadly used for cryocooling – for a review, see, e.g., A. de Waele, J. Low Temp. 
Phys. 164, 179 (2011). 

V

T

HT

LT

0
2V1V



Essential Graduate Physics               SM: Statistical Mechanics            

Problems with Solutions                  Page 23 

alternatively, the heat capacity CV(T) – which have not been given in the assignment. The only certain 
fact is that without the second term in the last expression, i.e. at QV = 0,  would be equal to Carnot, but 
in the presence of this term (which is never negative), the actual QH is higher, i.e. the cycle’s efficiency 
is lower than this limit. For example, for the ideal classical gas with no thermally-activated internal 
degrees of freedom, we may borrow Eq. (3.19), to be derived in Sec. 3.1 of the lecture notes, to get 

 ,
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Chapter 2. Principles of Physical Statistics 

 Problem 2.1. A famous example of macroscopic irreversibility was suggested in 1907 by P. 
Ehrenfest. Two dogs share 2N >> 1 fleas. Each flea may jump onto another dog, and the rate  of such 
events (i.e. the probability of jumping per unit time) does not depend either on time or on the location of 
other fleas. Find the time evolution of the average number of fleas on a dog, and of the flea-related part 
of the total dogs’ entropy (at arbitrary initial conditions), and prove that the entropy can only grow.16 

 Solution: Due to the conservation of the total flea 
number 2N, we may represent the number of fleas on 
each dog, averaged over the statistical ensemble of many 
similar two-dog pairs (but not over time!), as N1,2 = N  
n – see the figure on the right.17 Let us consider a time 
interval dt so small that during it, the flea numbers N1,2 

do not change significantly. Subtracting the “flea flows” 
shown in the figure, we get the following expression for 
elementary change of, say, N1: 

          dtndtnNdtnNdtNdtNdnnNddN Γ2Γ)(Γ)(ΓΓ)( 121  ,   

i.e. the following ordinary differential equation for the function n(t): 

                 dtn
dt

dn
Γ2 .       (*) 

The equation may be easily solved for arbitrary initial conditions: 

 tntn Γ2exp)0()(  . 

So, as we could expect, regardless of the initial distribution of the fleas, eventually n(t)  0, i.e. the 
average number of fleas on each dog becomes the same – a typical irreversible process. 

To calculate the entropy, we may apply Eq. (2.29) of the lecture notes to two different positions 
of a flea, with probabilities W1,2 = (N  n)/2N, so the average entropy per flea is 
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 , 

and the entropy of the whole system (i.e. of the set of 2N fleas on both dogs) is 

                constln)(ln  nNnNnNnNS .    

16 This is essentially a simpler (and funnier :-) version of the particle scattering model used by L. Boltzmann to 
prove his famous H-theorem (1872). Besides the historical significance of that theorem, the model used in it (see 
Sec. 6.2 of the lecture notes) is as cartoonish, and hence not more general.  
17 The dog image is adapted from http://home.howstuffworks.com.  

nNN 1 nNN 2

dtnN  )(

dtnN  )(
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 (Another way to get the same result for S is to use the microcanonical distribution (2.24), S = 
lnM, with M being the number of different ways to place N1 = N + n indistinguishable fleas on one dog, 
of 2N total:18 
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
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and then apply the Stirling formula to the last expression.) 

 In order to analyze the entropy’s evolution, we may differentiate the function S[n(t)] over time:, 

dt

dn

nN

nN

dt

dn

dn

dS

dt

dS











 ln , 

and then use Eq. (*) to rewrite this result as 













nN

nN
n

dt

dS
lnΓ2 . 

 Within the meaningful interval n  [–N, +N], the last logarithm is negative at n > 0 and positive 
if n < 0, so in either case, at  > 0, the right-hand side of the last relation is a non-negative function of n. 
Hence the exponential reduction of the average flea imbalance 2n is accompanied by a growth of the 
entropy – i.e. of disorder. 

  

 Problem 2.2. Use the microcanonical distribution to calculate thermodynamic properties 
(including the entropy, all relevant thermodynamic potentials, and the heat capacity) of a two-level 
system in thermodynamic equilibrium with its environment, at a temperature T that is comparable with 
the energy gap . For each variable, sketch its temperature dependence and find its asymptotic values 
(or trends) in the low-temperature and high-temperature limits.  

 Hint: The two-level system is any system with just two different stationary states, whose 
energies (say, E0 and E1) are separated by a gap    E1 – E0. Its popular (but by no means the only!) 
example is the spin-½ of a particle, e.g., an electron, in an external magnetic field.19  

 Solution: Let us consider a microcanonical ensemble consisting of many similar sets of N >> 1 
non-interacting, distinguishable20 two-level systems, taking (just for the notation simplicity) the lowest 
state energy E0 for the energy origin, so E0 = 0 and E1 =   0. Just as in the case of quantum oscillators 
analyzed in Sec. 2.2 of the lecture notes, the number N of states with the total energy of the set below a 
certain value EN increases, with the growth of EN,  by discrete steps at EN  = N’, where N’ = 1, 2,, N. 
The height N  of such a step is equal to the number of different ways to distribute N’ indistinguishable 
energy increments (“excitations”, or “quanta”)  among N distinct systems. This number is equal to the 
number of ways to select N’ similar objects (in combinatorics, traditionally called “balls”) of the total 
number of N, in an arbitrary order, and hence it is just the binomial coefficient21 

18 See MA Eq. (2.2). 
19 See, e.g., QM Secs. 4.6 and 5.1, in particular, Eq. (4.167). 
20 Say, by their fixed spatial positions.  
21 See, e.g., MA Eq. (2.2). 
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 Taking the energy spread E of the microcanonical ensemble equal to  (which is legitimate if 
N, N’, and (N – N’) are much larger than 1, i.e. if N  >> 1 and  E << E), for the average entropy per 
system we get   

      .)!(ln!ln!ln
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lim
ln

lim ',', N'NN'N
NN

S NN
N

NN 


   

The application of the Stirling formula (in its simplest form given by Eq. (2.27) of the lecture notes) 
reduces this relation to22 
     ),1ln()1(ln nnnnS       (*) 

where n  N’/N = EN/N  1 is the average number of the energy quanta  per two-level system, so the 
average energy per system is E = EN/N = n.23  

 Now we can use the definition of temperature, given by Eq. (1.9), to calculate 
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Solving this equation for E, we get the following equilibrium value of the average energy:  

1/ 


  Te

E . 

Plugging this result for n = E/ back into Eq. (*) yields the equilibrium value of the entropy: 
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 Now that we know the energy and the entropy as functions of temperature, we are on the 
thermodynamics autopilot – see Chapter 1: 
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(As in the harmonic-oscillator problem discussed in Sec. 2.2, the notion of volume, and hence of 
pressure P, is not defined for this system, so there are no differences between CV and CP, between E and 
H, and between F and G.)  

22 We will run into a similar expression again in Sec. 2.8 of the lecture notes, at the discussion of ensembles of 
identical Fermi-Dirac particles out of equilibrium – see Eq. (2.123). 
23 Note that this derivation of Eq. (*) has followed the derivation of more general Eq. (2.29) in the lecture notes, 
so alternatively, we might just use that formula with M = 2, W1 = n and W2 = 1 – W1  1 – n. 
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 The figure on the right shows the temperature 
behavior of the calculated thermodynamic variables. In 
the low-temperature limit (T << ), all of them approach 
zero. (For E and F, this value is conditional, but for the 
heat capacity, it is measurable.) On the other hand, in the 
high-temperature limit ( << T), the behavior of each 
variable is specific: E  /2 = const,24 F  –Tln2  –, 
S  ln2 ≈ 0.693 = const, while C  0. It is interesting 
that the heat capacity is vanishing in both low-
temperature and high-temperature limits, and has a 
maximum (Cmax  0.45) at a finite temperature (T  0.43 
). An interpretation of this behavior will become easy 
after the energy level occupancies have been calculated 
using the Gibbs distribution – see the next problem. 

 

 Problem 2.3. Solve the previous problem using the Gibbs distribution. Also, calculate the 
probabilities of the energy level occupation, and give physical interpretations of your results, in both 
temperature limits. 

 Solution: Let us apply the Gibbs distribution to a canonical ensemble of many similar two-level 
systems. Each system has just two energy states, E0 = 0 and E1 = , so the probabilities of finding the  
system in each of them obey the Gibbs distribution (2.58), 
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with the index m taking only two values, m = 0, 1. As a result, the statistical sum (2.59) equals 
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 The figure on the right shows these probabilities as 
functions of temperature. At T → 0, the system is almost 
certainly in its ground state, W0 → 1, while the probability 
of finding the system on the upper energy level is 
exponentially low: W1 → exp{-/T} → 0. On the contrary, 
at high temperatures, T >> , both probabilities are 

24 This fact means that for two-level systems the equipartition theorem (2.48) is not valid even at high 
temperatures. One may say that in contrast to the harmonic oscillators or rotators with their infinite energy 
spectra, two-level (and more generally, any finite-energy-level) systems are never classical! 
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virtually equal, W0  W1  ½. This “equilibration” of the energy level population at T   is typical for 
systems with a finite number of quantized energy levels – but not for systems such as quantum 
oscillators or rotators, whose energy level “ladders” are infinite.25 

Now plugging Eq. (*) into the main formula (2.63) relating the Gibbs distribution with 
thermodynamics, we readily get the free energy (per system) 

 TeT
Z

TF /1ln
1

ln  . 

This formula coincides with the result following from the microcanonical distribution – see the previous 
problem. Now we may use Eq. (1.35), S = –(F/T), to find the entropy, and then Eq. (1.33), rewritten 
as E = F +TS, to find the average energy E.  Alternatively, the energy may be found using Eq. (2.61a): 

1/11100
1,0 


 


Te

WEWEWEWE
m

mm . 

(Note that the parameter n  N’/N = E/N used in the model solution of the previous problem is nothing 
else than W1.) Now we can use Eq. (1.24), C = E/T, to find the heat capacity per system. All these 
results coincide with those obtained from the microcanonical ensemble – see the model solution of the 
previous problem for formulas and plots.  

The above results for W0 and W1 enable an easy interpretation of the temperature behavior of the 
thermodynamic variables. In particular, at low temperatures (T << ), the system is effectively confined 
to the lowest level, so if this energy is taken as the reference, the average E tends to zero. Also, the 
system’s state choice in this limit is virtually certain, so there is almost no disorder, and entropy 
approaches zero as well. In the opposite limit, at T >> , i.e. at W1  W0  ½, the average energy 
naturally tends to the average between levels. Also, in this limit, the choice between two possible states 
of each particular system of the ensemble is random; hence the entropy tends to the value ln2, which 
corresponds to one lost bit of information about the particular choice.  

Finally, by its definition, the heat capacity of a system is substantial only if a small variation of 
temperature causes a noticeable redistribution of the energy level probabilities – and hence of the 
average energy. As the formulas and plots above show, in our current problem, such redistribution takes 
place only at T ~ /2; hence the peak of the function C(T) at these intermediate temperatures. 

 

Problem 2.4. A quantum spin-½ particle with a gyromagnetic ratio  is placed into an external 
magnetic field H = H nz. Neglecting the possible orbital motion of the particle, calculate its average 
magnetization mz as a function H, and in particular its low-field magnetic susceptibility , in thermal 
equilibrium at temperature T. Calculate the same characteristics for a classical magnetic dipole m of a 
fixed magnitude m0, free to change its direction in space, and compare the results. 

Hint: The low-field magnetic susceptibility of a single particle is defined26 as 

25 See, e.g., QM Secs. 5.4 and 5.6. 
26 This “atomic” (or “molecular”) susceptibility  should not be confused with the “volumic” susceptibility m  
Mz/H, where M  is the magnetization, i.e. the magnetic moment of a unit volume of a system – see, e.g., EM 
Eq. (5.111). For a uniform medium with n  N/V non-interacting dipoles per unit volume, m = n. 
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 Solution: According to quantum mechanics,27 the interaction of a magnetic dipole with an 
external magnetic field B is described by the following Hamiltonian operator:28  

      Bm  ˆĤ .      (*) 

If the magnetic moment vector m of a particle is entirely due to its spin (as it is assumed in our 

assignment), then its operator is related to that of the spin as Ŝˆ m , where  is the particle’s 

gyromagnetic ratio. For a spin-½ particle,  σS ˆ2/ˆ  , where  is the Planck’s constant, and σ̂  is the 

vector operator whose Cartesian components, in the standard z-basis, are represented by 22 Pauli 
matrices; in particular, 
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As a result, we may represent the field-aligned z-component mz of the magnetic moment by the diagonal 
matrix 
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(The scalar constant m0 may be classically interpreted as the magnitude of a discrete dipole moment that 
may be directed only either along or against the external field.) The corresponding eigenvalues of the 
Hamiltonian (*) are the eigenenergies, E and E, separated by the energy gap 

BBm   02EE . 

But this is just a particular case of the two-level 
systems that were discussed in two previous 
problems, so we may use their results. In particular, 
the average z-component of the magnetic moment is 
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 This function is shown with the solid blue 
curve in the figure on the right.29 In the high-field 
(low-temperature) limit m0B >> T, it describes the 
magnetic moment’s saturation as its highest 
possible value m0 corresponding to the definite 

27 See, e.g., QM Eqs. (4.105), (4.115)-(4.116), and (4.163). 
28 Let me hope that the operator “hat” above the letter H clearly distinguishes the Hamiltonian from the enthalpy – 
which is not used in this solution. 
29 According to Eq. (**), mz is an odd function of B, so the plot is only shown for B  0. 
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orientation of the dipole along the field – “spin polarization”. In the opposite, low-field limit, the tanh 
function may be well approximated by its argument, so assuming that the dipole is located in free space, 
i.e. (in the SI units) B = 0H, we get 

T
TTz  BmH,
mBm

mm 0

2
0

0
0

0 at   , 

so 

.
2
0

0m T

m
   

This m  1/T dependence of the paramagnetic (positive) magnetic susceptibility is called the Curie law; 
in this course, its limitations and extensions will be discussed in the context of the Ising model of phase 
transitions – see Secs. 4.4-4.5. 

 Now let us consider the classical model outlined in the assignment,30 in which the orientation of 
the magnetic dipole vector m, of a fixed magnitude m0, is arbitrary. The system’s isotropy implies that 
possible dipole orientations (but not their occupations!) are uniformly distributed over all the full solid 
angle  = 4.31 Hence the Gibbs distribution (2.58), applied to a canonical ensemble of such dipoles, 
may be recast into that for the probability density w  dW/d: 
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and the average of mz calculated as 
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The magnetic dipole’s energy in an external magnetic field B is just the classical version of Eq. (*),32 

            BmzE  Bm ,      
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 In the spherical coordinates, with the polar axis directed along the magnetic field, we have mz = 
m0cos, so since d = sin d d, both integrals over the azimuthal angle  are equal to 2 and cancel, 
and we get 
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30 This is an ultimately simple (no-interaction) version of the so-called classical Heisenberg model, which follows 
from quantum mechanics for particles with very large spins, s >> 1. 
31 This (virtually self-evident) assumption is confirmed by the quantum theories of both orbital and spin angular 
momenta, in their classical limits  – see, e.g., QM Secs. 3.6 and 5.6.  
32 See, e.g., EM Eq. (5.100). Note that this formula is valid only if the magnitude m0 of the magnetic moment is 
independent of the applied field, i.e. if the field just orients the dipole rather than induces it. 
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Introducing a convenient dimensionless variable   (m0B/T )cos, so cos = (T/m0B) and sind  = –
(T/m0B)d, we may reduce this formula to a ratio of two simple integrals, of which one (in the 
denominator) is elementary, while the other one may be readily worked out by parts: 
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The red curve in the figure above shows this Langevin function.33 In the high-field limit (m0  B     >> T, 

i.e. at    >> 1), its first term tends to sgn, while the second one is negligible, so the dipole is reliably 
polarized: mz  m0 sgnB. On the other hand, in the low-field limit, we may use the Taylor expansion 
of coth at   0, truncated to two leading terms: coth  cosh /sinh   (1 +  2/2!)/(  + 3/3!)  1/ 
+ /3, to reduce Eq. (***) to 
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so the low-field susceptibility, in this model, is 
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 The comparison of Eqs (**) and (***), illustrated with the blue and red lines in the figure above, 
shows that the field dependence of the average magnetic moment of a quantum spin-½ is qualitatively 
similar to but quantitatively different from that in the classical magnetic dipole. In particular, in terms of 
m0 (which gives the moment’s saturation value in both models), the low-field susceptibility of spin-½ 
particles is three times higher. 

 One more remark: an alternative way to calculate mz (for both models) is to use the analogy 
between the usual pair {–P, V} of the generalized coordinates/forces, participating in Eq. (1.1) of the 
lecture notes and hence in all formulas of Chapter 1, and the pair {0Hz, mz}. Indeed, the expression E = 
–mzB  –mz0H  used above for the potential energy of a dipole means that the elementary work of a 

fixed external magnetic field Hznz on a changing magnetic moment is dW = 0Hzdmz.34 Comparing it 
with Eq. (1.1), dW = –PdV, we see that for the average properties of a particle in the magnetic field 
Hznz, we may use all the thermodynamic equalities discussed in Chapter 1, with the replacements  P  
–0H, V  mz. In particular, the second of Eqs. (1.39) becomes   
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where G is the Gibbs energy per particle. However, since in our approach, the product –0Hzmz (i.e. 
the analog of the product PV) that gives the difference between the thermodynamic potentials G and F 

33 Named after Paul Langevin who was the first to derive Eq. (***) but is much more famous for suggesting the 
Langevin equation – see Sec. 5.5 below. 
34 See also Eq. (1.3b) for the case of just one particle. 
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(see, e.g., the last of Eqs. (1.37) of the lecture notes) is already taken into account in the expression for 
E,35 we may identify G with F, and calculate this thermodynamic potential using Eq. (2.63): 

ZTFG ln . 

 It is straightforward to verify that for both parts of our current problem, this approach yields the 
same results (*)-(***) – see also the solution of Problem 7. 

 

 Problem 2.5.* Calculate the weak-field magnetic susceptibility of a hydrogen atom, at room 
temperature. Is this response to the field paramagnetic or diamagnetic? Compare the result with the 
estimated susceptibility of a hydrogen molecule H2.  

 Solution: The response of the hydrogen atom to a weak magnetic field B includes, first of all, a 
contribution from its electron’s spin-½,36 leading to the splitting of its energy into two levels separated 
by the gap E = 2m0B, where m 0 is the effective magnetic moment, with 
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Plugging this value into the corresponding result of the previous problem for the weak-field 
susceptibility of a spin-½, we get 
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This susceptibility is positive, i.e. this part of the response to the field is paramagnetic. 

 The second, orbital component of the magnetic response is given by the well-known formula37 

           2

e

2

0orbit 6
r

m

e  ,     (**) 

valid for an arbitrary single-electron system. At room temperatures T, which are much lower than the 
Hartree energy unit EH  27 eV (corresponding to TK = EH/kB ~ 3105 K), thermal excitation of the atom 
is negligible, so the r2 participating in Eq. (**) may be calculated directly from the quantum-
mechanical description of the atom's ground state. For the hydrogen atom, such calculation is 
straightforward,38 giving r2 = 3rB

2, where rB  40
2/e2me is the Bohr radius, so Eq. (**) yields 

e

2
B

2

0orbit 2m

re  . 

By using the well-known relation between rB and EH,39  

35 In terms of the discussion in Sec. 1.4, this means that we are using the first option for the description of the 
system of particles in the external field.  
36 The contribution to the response from the spin-½ of the atomic nucleus (proton) is very small, due to its much 
lower gyromagnetic ratio: p/e ~ me/mp ~ 10–3 << 1.  
37 See, e.g., the model solutions of EM Problem 5.18 and QM Problem 6.15. 
38 See, e.g., the model solution of QM Problem 8.2. 
39 See, e.g., QM Eq. (1.13). 
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this result may be rewritten as  

             
H

2
e

22

0orbit
2 Em

e  .     (***) 

 Comparing this formula with Eq. (**), we see that 

Hspin

orbit 2

E

T





. 

For room temperatures, this ratio is of the order of 10–3, so the magnetic susceptibility of the hydrogen 
atom is dominated by the paramagnetic response of its electron's spin.  

 On the contrary, in the ground state of the hydrogen molecule, its two electrons are in the singlet 
spin state with zero total spin,40 so its response to the weak magnetic field is dominated by the orbital 
diamagnetism:  = orbit < 0. Since the effective size r21/2 of this molecule is of the order of rB, this 
susceptibility   is of the order of that given by Eq. (***), i.e. its magnitude is much smaller than the 
paramagnetic susceptibility of a single hydrogen atom. 

 

 Problem 2.6. N similar stiff rods of length l are 
connected with the joints that allow for free 3D rotation, to 
form a chain – see the figure on the right. The chain, in 
thermal equilibrium at temperature T, is stretched with a 
fixed force T. Calculate the spring constant  of the chain 
in the elastic limit T  0. 

 Solution: Since the force F is fixed, 41 the chain’s potential energy U may be expressed as the 
scalar product –FR, where R is the vector connecting its ends.42 Evidently, R may be represented as the 
vector sum of such vectors ln for each rod (all with the same length  ln  = l), so 

  nnn
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n
n

N

n
n lUUU coswith  ,

11

F 


ll FF ,  (*) 

where n is the angle between the nth rod and the direction of the force F (which is shown horizontal in 
the figure above).  

 Due to the unrestricting joints, the system does not impose any relationship between the angles 
n. Thus (a bit counter-intuitively) the energy of each rod does not depend on those of its counterparts, 
so the statistics of its position may be calculated from the above expression for Un, and is similar for 
all rods. Moreover, this statistics is exactly the same as for a classical magnetic dipole in the magnetic 

40 See, e.g., QM Secs. 2.6 and 8.2. 
41 Note that for sufficiently long chains of N >> 1 units, this assumption is not essential because, for each unit, 
other (N – 1) >> 1 units sustain a nearly constant average tension at any boundary conditions at its ends. 
42 In order for the sign in this expression to be correct, the end of the vector R has to be at the point of application 
of the force F. 
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field, which was calculated in the second part of the solution of Problem 4, with the replacement m0B 
 F l. As a result, Eq. (***) of that solution may be immediately used to write  

        .cothcos
l

T

T

l

T

l
Ln

F

FF







     (**) 

 The average full extension of the chain in the direction of the force is Nl cosn, so to calculate 
the spring constant in the elastic limit, we only need the asymptotic form of the Langevin function at T 
 0 (which was also calculated in the solution of Problem 4): 
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 The growth of  with T may be explained as follows: at a fixed tension T, growing thermal 
agitation “tries” to keep the orientation of each unit completely random, and hence to keep its average 
extension along the direction of the force equal to a fixed value (zero). 

 

 Problem 2.7. Calculate the low-field magnetic susceptibility of a particle with an arbitrary (either 
integer or semi-integer) spin s, neglecting its orbital motion. Compare the result with the solution of 
Problem 4. 

 Hint: Quantum mechanics43 tells us that the Cartesian component mz  of the magnetic moment of 
such a particle, in the direction of the applied field, has (2s + 1) stationary values:  

ssssmm ssz  ,1,,1,with  , m , 

where  is the gyromagnetic ratio of the particle, s is its spin, and  is Planck’s constant. 

 Solution: Let us consider a canonical ensemble of many such particles. The spin energy in an 

external magnetic field of magnitude B  is E = –mzB = –msB, so the statistical sum is 
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. 

Since s may be only either an integer or a half-integer, 2s is always an integer, so the last sum is just the 
well-known finite geometric progression,44 and we get a very simple result: 
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 Now we could calculate the average mz just as was done in the model solution of Problem 4,45 
but just for practice, let us use the alternative approach that was discussed but not used at the end of that 
solution: 

43 See, e.g., QM Sec. 5.7, in particular Eq. (5.197). 
44 See, e.g., MA Eq. (2.8a). 
45 Calculating the resulting full dependence of mz on H, frequently called the Brillouin function, is a simple but 
useful additional exercise, highly recommended to the reader. Plotted for the growing values of s, it gives a family 
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For the statistical sum given by Eq. (*), 
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For our purposes, we need only the low-field limit of this expression, at b  0, so we may approximate 
each of the involved sinh functions using only two leading terms of their Taylor expansions: 
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This approximation yields  
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and hence the low-field atomic susceptibility is 
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   With the notation m0  max[mz] = s, compatible with those accepted in both parts of Problem 
4, this result reads 
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showing a gradual transition from the results for the spin-½ model considered in the first part of that 
problem, to those for the classical model analyzed in its second part, at s is increased from ½ to . 

 

 Problem 2.8. Analyze the possibility of using a system of non-interacting spin-½ particles placed 
into a controllable external magnetic field, for refrigeration. 

 Solution: Combining the results of Problem 2 with the relation  = 2m0B = 2(/2)B  B (see 
the solution of Problem 4), we get the following formula for the average entropy per spin: 
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of uneventful saturation curves that gradually bridge those for s = ½ and for the classical magnetic dipole 
(corresponding to s  ) – see, e.g., the plots in the model solution of Problem 4. 
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Note that the entropy depends on only 
one dimensionless combination of 
parameters, T/B, so an increase of the 
applied field just stretches the plot of the 
function S(T) along the horizontal axis – see 
the figure on the right.  These plots imply the 
following possible way to organize the 
Carnot cooling cycle using the spin system as 
a “working gas”.46  

Starting, for example, from point 1 (at 
a negligible magnetic field when the spins 
are in both possible eigenstates with equal 
probability, i.e. completely disordered, so the 
entropy per spin is largest, S/N = ln2), the 
field is slowly increased to some value Bmax 

~ TH/, while keeping the refrigerant in 
contact with the “hot bath” of temperature TH.47 Since during this process, the entropy decreases 
(physically because almost all spins condense onto the lowest energy level, thus decreasing the spin 
disorder to almost zero), heat –QH = THS > 0 is being transferred to the hot bath. Then (at point 2) the 
refrigerant is thermally insulated from both baths and then the external field is decreased. In this 
adiabatic process, the refrigerant’s entropy cannot change, so the product T/B (whose unique function 
S is) cannot change either. This means that the refrigerant’s temperature drops proportionally to the 
decreasing field.48   

At point 3 where T is decreased to the temperature TL of the “cold bath” (practically, the object 
being cooled), the refrigerant is brought into thermal contact with that bath, and then the field’s decrease 
is continued isothermally until point 4, in which the energy level splitting becomes negligible, so the 
spin energy levels get equally populated again, and the entropy per spin approaches its maximum value 
ln2. At this point, the refrigerant is thermally disconnected from the cold bath, and the cycle is 
completed adiabatically using a small field increase until the spin temperature rises to TH again.49 

 Practical cycles of such “adiabatic magnetic refrigeration” somewhat differ from (and hence 
have somewhat lower COPcooling) than the Carnot cycle described above, mostly because of the technical 
difficulty of changing the thermal contacts between the refrigerant and the heat baths fast – typically this 

46 In most practical applications of this concept, the spins are those of atoms in a solid sample of a certain material 
(see below), which is called either more formally, the refrigerant, or in the technical slang, the salt pill. 
47 For a typical application of this technique, with TH corresponding to ~4 K, the term “hot bath” is pretty 
awkward, and practitioners prefer the term “cooling source” – which is of course wrong from the point of view of 
physics.   
48 This stage (2  3) of adiabatic demagnetization renders its name to this refrigeration technique, which is 
alternatively called magnetic refrigeration. It was suggested independently by P. Debye in 1926 and W. Giauque 
in 1927, and implemented experimentally by several research groups in the early 1930s, enabling them, for the 
first time, to reach temperatures well below 1 K in laboratory.  
49 Comparing this cycle with those shown in Fig. 1.9b of the lecture notes, one should take into account that the S 
and T axes are now swapped, so the clockwise circulation of the point representing the system’s state in the figure 
above corresponds to a refrigerator rather than to a heat engine. 
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is done by letting in and pumping out small portions of gaseous helium. The most popular modification 
of the cycle is skipping its isothermal part (34), by allowing a slow heating of the refrigerant together 
with the cooled object in a fixed magnetic field, due to unavoidable unintentional heat leaks – see, for 
example, dashed arrows in the figure above. In carefully designed systems, such heat-up may last for up 
to a week; in such cases, engineers speak about single-shot adiabatic cooling. 

Another difference between experimental implementations of this technique and the simplest 
scheme described above is that in some used materials,50 the applied magnetic field splits energy levels 
of atoms into M > 2 rather than just two sublevels,51 making the maximum entropy per atom (lnM) 
larger than ln2, and hence decreasing the necessary amount of the refrigerant. 

  

 Problem 2.9. A rudimentary “zipper” model of DNA replication is 
a chain of N links that may be either open or closed – see the figure on the 
right. Opening a link increases the system’s energy by  > 0; and a link 
may change its state (either open or closed) only if all links to the left of it 
are open, while all those on the right, are closed. Calculate the average number of open links in thermal 
equilibrium, and analyze its temperature dependence, especially for the case N >> 1. 

 Solution: According to the model described in the assignment, the chain may have only (N + 1) 
different states, each with some number n (0  n  N) of left links open and all other links closed (see 
the figure above), so the total link-related energy is En =  n. Hence the Gibbs distribution (see Eqs. 
(2.58)-(2.59) of the lecture notes) gives the following probability of the state with n open links: 
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From here and the general Eq. (2.7), the average number of open links may be calculated as 
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 The sum in the denominator is the well-known finite geometric progression:52 
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while that in the numerator may be readily calculated via its derivative over the parameter . Indeed,  
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so by using Eq. (*), we get 

50 The initially used materials were paramagnetic salts, such as Mg3N2. The current materials of choice include 
such alloys as Gd5(Si2Ge2) and PrNi5; they allow to reach temperatures below 10–3 K using modest applied fields 
of a few teslas. For more on the adiabatic refrigeration see, e.g., Secs. 8.2-8.5 in G. White and P. Meeson, 
Experimental Techniques in Low-Temperature Physics, 4th ed., Oxford Sci. Publications, 2002. 
51 A quantitative discussion of this Zeeman effect may be found, e.g., in QM Sec. 6.4. 
52 See, e.g., MA Eq. (2.8a). 
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and, finally, 
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 As the figure on the right shows, this result 
is not quite trivial, especially at N >> 1. Let us start 
from the obvious: if the temperature is low,  T << 
, the probability of having even one (the leftmost) 
link open is exponentially low. Indeed, in this limit, 
both exponents participating in Eq. (**), exp{/T} 
and exp{(N+1)/T}, are much larger than 1. 
Moreover, for any N > 1, the latter exponent is 
much larger than the former one. As a result, 
despite the additional multiplier (N + 1), the second 
term in Eq. (**) is negligible in comparison with 
the first one, and the formula is reduced to 

  Ten T for  ,1/ , 

independently of N. (As the figure shows, this 
approximation actually works pretty well all the 
way up to T   .) 

 The opposite, high-temperature limit is also readily predictable. If T is much larger than both  
and (N + 1), both exponents exp{/T} and exp{(N + 1)/T} approach 1, and the denominators in both 
terms of Eq. (**) become small – approximately equal to, respectively, /T and (N + 1)/T, so the 
magnitudes of both terms become large. Due to the additional factor (N + 1) in the numerator of the 
second term, it nearly cancels the first one, with the remaining balance 
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due to the quadratic terms in the Taylor expansions 
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The physics of this result is also pretty simple: at very high temperatures, the energy gain  is 
negligible, and each link has an equal chance to be open or closed. 

 Perhaps less obvious is one more simple behavior of very long chains (N >> 1) within a broad 
range of intermediate temperatures: 
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– see the sloped dashed straight line in the figure above. (Mathematically, it follows from Eq. (**) when 
its first term has already reached its high-temperature limit T/, while the second term is still in its low-
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temperature limit, and hence is negligible.) The physical interpretation of this simple formula is that the 
thermal agitation with the characteristic energy T  >>  is sufficient to open, on average, T/ >> 1 left 
links of the chain, but not more than that. 

 

 Problem 2.10. Use the microcanonical distribution to calculate the average entropy, energy, and 
pressure of a classical 3D particle of mass m, with no internal degrees of freedom, free to move in 
volume V, at temperature T. 

Hint: Try to make a more accurate calculation than has been done in Sec. 2.2 for the system of N 
harmonic oscillators. For that, you would need to know the volume Vd of a d-dimensional hypersphere 
of a unit radius. To avoid being too cruel, I am providing it: 
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where () is the gamma function.53 

 Solution: Let us consider a microcanonical ensemble of many sets of N >> 1 distinct particles.54 
An evident generalization of the quantum state counting rule (see, e.g., Eq. (2.82) of the lecture notes), 
with k = p/, shows that the number of different quantum states of the particle set, with the total energy 
below a certain value EN, is 
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where 1  j  3N, pE  (2mEN)1/2 is the momentum of a particle with energy EN, i.e. the radius of the 
hypersphere in the 3N-dimensional momentum space, containing the states we are counting. Using the 
formula provided in the Hint, with d = 3N, we get 
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In the limit N → ∞, we may apply the Stirling formula to ln[ Γ(3N/2 + 1)]  ln [(3N/2)!], getting 
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53 For its definition and main properties, see, e.g., MA Eqs. (6.6)-(6.9). 
54 Please note that even though a single classical particle has an essentially continuous energy spectrum, the 
application of this method to N = 1 would give substantial errors (in particular, E = T/2 instead of the correct E = 
3T/2) – explain why. 
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 Now we can use the definition (1.9) of temperature to get 
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so the average energy per particle is55  
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Now by expressing EN via T, the entropy S per particle may be recast as a function of T and V:  
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and then used to calculate the free energy (per particle) as a function of these two arguments: 
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 The result (*) is exactly Eq. (1.45) of the lecture notes (derived there from the equation of state 
PV = NT) for the particular case N = 1. This is why all other thermodynamic relations for the particle, 
with this specific form of f(T), coincide with Eqs. (1.44)-(1.51) of the lecture notes, again with N = 1. 
However, Eq. (**) for the function f(T) is new, specific for a particle with no internal degrees of 
freedom; its generalization will be discussed in Sec. 3.1 of the lecture notes – see, in particular Eq. 
(3.16b). 

 

 Problem 2.11. Solve the previous problem using the Gibbs distribution.  

 Solution: Combining Eqs. (2.59) and (2.82) of the lecture notes, we get  
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i.e. we have arrived (much faster) at the same result as using the microcanonical distribution in the 
previous problem. 

55 This result passes a sanity check: for a 3D particle, with its three “half-degrees of freedom”, this equality 
corresponds to the equipartition theorem. 
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 In Sec. 3.1 of the lecture notes, this calculation will be generalized to a classical gas of N 
particles, with a nontrivial difference of the so-called “correct Boltzmann counting”, which does not 
contribute to the equation of state but affects the entropy of the gas. 

  

Problem 2.12. Calculate the average energy, entropy, free energy, and the equation of state of a 
classical 2D particle (without internal degrees of freedom), free to move within area A, at temperature T, 
starting from: 

 (i) the microcanonical distribution, and 
 (ii) the Gibbs distribution. 

Hint: For the equation of state, make the appropriate modification of the notion of pressure. 

 Solutions:  

 (i) Rewriting the solution of Problem 10 with the appropriate replacement of volume V with area 
A, and the change of phase space dimensionality from (3+3)N to (2+2)N (so that 1  j  2N ), we get 
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so the average energy E  EN/N per particle equals T (in agreement with the equipartition theorem for 
two “half-degrees of freedom”), and  
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From here,  
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 In our 2D system, the usual conjugate pair of variables {–P, V} has to be replaced with the pair 
{–, A}, where (–) is the surface “anti-tension”, i.e. the average normal force exerted by the particle 
per unit length of the contour limiting the area A. As a result, the second of Eqs. (1.35) of the lecture 
notes has to be replaced with 
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together with Eq. (*) giving us essentially the same equation of state as in the 3D case:  

TA  . 
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 (ii) Applying the Gibbs distribution to a single classical particle, we have  
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i.e. the same formula as obtained by the first approach. It triggers the thermodynamics autopilot 
enabling us to re-calculate all other results, including the equation of state. 

 

 Problem 2.13. A quantum particle of mass m is confined to free motion along a 1D segment of 
length a. Using any approach you like, calculate the average force the particle exerts on the “walls” 
(ends) of such “1D potential well” in thermal equilibrium, and analyze its temperature dependence, 
focusing on the low-temperature and high-temperature limits. 

 Hint: You may consider the series    

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2exp
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 Solution: The well-known eigenenergies of this problem are57 
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Hence the statistical sum of the Gibbs distribution for this system, in thermal equilibrium at temperature 
T, is 
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where () is the function mentioned in the Hint, so the free energy is 
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 Since the elementary external work dW of slowly moving walls on our 1D system may be 
represented as –Fda, where F  is the average force exerted by the particle on the walls, the usual 
canonical pair of mechanical variables {–P, V} has to be replaced with the pair {–F, a}. Hence the 
second of Eqs. (1.35) of the lecture notes has to be replaced with 
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Combining the above formulas, we get 

56 It may be reduced to the so-called elliptic theta-function 3(z, ) for a particular case z = 0 – see, e.g., Sec. 
16.27 in the Abramowitz-Stegun handbook cited in MA Sec. 16(ii). However, you do not need that (or any other) 
handbook to solve this problem. 
57 See, e.g., QM Sec. 1.4 – or any undergraduate text on quantum mechanics. 
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 Log-log plots of the function () and its asymptotes are shown on the left panel of the figure 
below, while its right panel shows the resulting temperature dependence of the force F, and its high-
temperature asymptote. 

 

 

 

 

 

 

 

 

 

 At   , the series defining the function () is dominated by its first term, so 
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This is exactly the (temperature-independent) result we would get from a purely quantum-mechanical 
analysis of the particle’s ground state – in that it resides at T  0. 

 On the other hand, at   0, the series is converging very slowly and hence may be well 
approximated with a Gaussian integral:58  
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As a result, in this (classical) limit we get 
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 The last result may be also obtained from elementary arguments: according to the equipartition 
theorem, the average energy of a free classical 1D particle, p2/2m = mv2/2, is equal to T/2, so its r.m.s. 
momentum is (mT)1/2, and the r.m.s. velocity is (T/m)1/2. Since each elastic reflection from the wall 
transfers to it twice the momentum of the incident particle, and the time interval t between particle’s 
collisions with the same wall is twice the segment length a divided by the particle’s velocity, we get 
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58 See, e.g., MA Eq. (6.9b). 
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 Note that per the solutions of Problems 10-12, the equation of state of a free classical particle is 
essentially the same for any dimensionality. 

 

 Problem 2.14. Rotational properties of diatomic molecules (such as N2, CO, etc.) may be 
reasonably well described by the so-called dumbbell model: two point particles, of masses m1 and m2, 
with a fixed distance d between them. Ignoring the translational motion of the molecule as a whole, use 
this model to calculate its heat capacity, and spell out the result in the limits of low and high 
temperatures. Is your solution valid for the so-called homonuclear molecules consisting of two similar 
atoms, such as H2, O2, N2, etc.? 

 Solution: As we know from classical mechanics,59 the motion of a two-particle system may be 
considered as a superposition of the translation motion of their center of mass as a point particle of mass 
M = m1 + m2, located at R = (m1r1 + m2r2)/M, and the mutual rotation of particles 1 and 2 about this 
point, equivalent to the rotation of a single particle with the so-called reduced mass  
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about an immobile point. This reduction of two-particle motion to that of a single particle is valid in 
quantum mechanics as well.60 In our case of a fixed distance d, this means that the rotational properties 
of the molecule are equivalent to those of the so-called spherical rotator – a particle free to move on the 
surface of a sphere – in our case, with the radius d.  

 According to quantum mechanics,61 the eigenfunctions of such a rotator are the spherical 
harmonics indexed by two integer quantum numbers: l = 0, 1,, and m with possible values within the 
limits –l  m  +l. In the absence of an external field affecting the rotation, the corresponding 
eigenenergies depend only on the “orbital” quantum number l: 
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where I  md 2 is the effective particle’s moment of inertia. Hence the lth energy level is (2l + 1)-
degenerate, with different stationary wavefunctions corresponding to different values of the “magnetic” 
quantum number m. This means that the Gibbs distribution is 
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From here, the average energy may be found as62 
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59 See, e.g., CM Sec. 3.4. 
60 See, e.g., the model solution of QM Problem 8.11.  
61 See, e.g., QM Secs. 3.6 and 5.6.  
62 The same result may be obtained by using Eq. (2.61b) of the lecture notes: E = (lnZ)/(-), where   1/T. 
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and the heat capacity as C(T) = E/T.  

 In the general case, the sums in Eqs. (*) and (**) 
may be calculated only numerically. The resulting function 
C(T) = dE/dT has a weak maximum, Cmax  1.1 at the 
temperature T  0.8 (2/2I) – see the figure on the right. 
(The physical origin of this maximum is similar to that in 
two-level systems – see the discussion in the model 
solution of Problem 3. However, notice that in our current 
case, C(T) does not vanish at T  , because the energy 
spectrum of the rotator is infinite, so the probability re-
distribution among its values continues even at high 
temperatures – see below.) 

 In the high- and low-temperature limits these results 
may be simplified. In the former (classical) limit, T >> 2/2I, the sum (*) is converging at l >> 1, and 
hence may be well approximated with an integral: 
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and the average energy (**) is 
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giving the heat capacity C  1 – see the figure above again. This result is natural because, in the inertial 
reference frame of the system’s center of mass, the classical rotator's energy may be expressed as 
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with the linear momentum vector p having two Cartesian components p1,2 – in any two directions 
perpendicular to each other and the sphere’s radius. According to the equipartition theorem discussed in 
Sec. 2.2 (and valid in this classical limit), the average energy of each of these two “half-degrees of 
freedom” is T/2. 

 In the opposite, low-temperature limit T << 2/2I, the terms of the statistical sum (*) drop fast 
(exponentially) with l, and we may keep only two first terms – with l = 0 and l = 1: 
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where   1/T. From here and Eq. (2.61b), the average energy becomes63 
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63 Alternatively, this result may be obtained either from Eq. (**) or as E  W0E0 + 3E1W1  3E1exp{-E1/T}. 
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and the heat capacity 

        
I

T
ITITT

E
C

2222

for  ,1exp3
























 .   (***) 

 Hence, at T  0, the heat capacity is exponentially small – the property common for all systems 
with a finite energy gap between the ground state and the lowest excited state(s). Note also that the 
degeneracy of the excited states of the system does affect its thermodynamic properties, in particular 
being responsible for the front numerical factor in the last result. (This 3 is just 2l + 1 for l = 1.) 

 However, this solution may need revision in the case when two atoms of the molecule are 
similar, i.e. for homonuclear molecules, because if such atoms are in the similar quantum states of their 
internal degrees of freedom (including electronic, vibrational, and nuclear-spin ones), they are 
indistinguishable and have to satisfy specific permutation rules of quantum mechanics.64 A discussion of 
such revision is the task of the next problem. 

 

Problem 2.15.* Modify the solution of the previous problem for homonuclear molecules. 
Specifically, consider the cases of molecules H2, D2, and N2. For the first of them, compute the 
equilibrium ratio of the number of the  ortho- and parahydrogen molecules as a function of temperature. 

Hint: Use the value of d that gives the experimentally observed difference of 1.455 kJ/mol 
between the ground state energies of these two hydrogen species (“spin isomers”). 

 Solution: At ambient conditions, two atoms of most homonuclear molecules are in the same 
(ground) quantum state of their electronic and vibrational degrees of freedom, because the energies of 
their excitation are well above T (~ 26 meV at TK = 300K). As a result, their rotational quantum state 
may be either symmetric or antisymmetric with respect to the nuclei permutation, depending on the 
nuclear spin state of their system.  

 In particular, if the state is antisymmetric, with zero total spin, as it is in the singlet spin state of 
the hydrogen molecule (in this case, it is common to speak about parahydrogen), its rotational 
wavefunction has to be symmetric with respect to the permutation of such fermions as the hydrogen 
nuclei.65 But such a nuclear swap is equivalent to the replacement r  –r, and the spherical harmonics 
with odd values of l are antisymmetric with respect to this replacement.66 As a result, only the rotational 
states with even values l = 2p (with p = 0, 1, 2,…) are permitted, and we have to review the calculations 
in the previous problem’s solution by keeping only contributions from these states: 
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In the low-temperature limit, this formula yields 
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64 See, e.g., QM Sec. 8.1. 
65 See, e.g., QM  Eqs. (8.15) and (8.18). 
66 See, e.g., QM Eqs. (3.168) and (3.171), and/or Fig. 3.20 of that course. 
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so at T  0, Es  E0 = 0. Note that in this limit, the heat capacity is much lower than that calculated in 
the previous problem: 
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 (At T  0, the change of the exponent is much more important than that of the pre-exponential factor.)  

 Superficially, it may look like the quantum ban on the population of each other level (with odd 
values of l) should affect even the high-temperature results. However, this is not so; indeed, because of 
this level decimation, the statistical sum becomes twice smaller: 
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but since this constant factor changes lnZs only by an additive constant, it does not affect the average 
energy and heat capacity: Es  T, so Cs  1.  

 On the contrary, in the orthohydrogen molecules, that are in the triplet spin state of their nuclear 
spins (with the total spin equal to ), and hence are symmetric with respect to nuclear swap, the 
fermionic permutation rule permits only antisymmetric rotational wavefunctions, i.e. only the odd values 
l = 2p +1. For these states, Eq. (*) should be replaced with 
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where the front factor of 3 is due to the nuclear spin degeneracy of the triplet state. In the low-
temperature limit, this gives an even lower heat capacity: 
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Note that in this limit, Ea tends to the non-zero value E1,67 so there is a final energy gap between the 
ground state energies of the hydrogen spin isomers: 
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(In the high-temperature limit, E and C are again not affected by the quantum symmetry effects.) 

67 Note that rather counter-intuitively, this means that the ground state of such molecule, with l = 1, corresponds 
to its nonvanishing rotation, with the energy El = E1 = 2/I. Even more amazingly, this rotation is imposed on the 
molecule by its nuclear spin system, whose coupling with other degrees of freedom of the molecule is much 
weaker than E1!  
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 Another readily measurable characteristic of the H2 gas is the ratio of the numbers Na and Ns of 
its ortho- and parahydrogen molecules. If they are in equilibrium,68 it is helpful to merge Eqs. (*) and 
(**) into the total statistical sum Zs + Za, and use the above selection rules to write 
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where the front factor of 3 in the expression for Na again represents the triplet state’s spin degeneracy. 

 The figure on the right shows the ratio Na/Ns calculated 
numerically from these expressions, by using the values m1 = 
m2 = 1.67210-27 kg ( mp) and d = 74 pm. (The latter value 
makes the energy gap (***) between the ground states of the 
ortho- and parahydrogen isomers close to its experimental 
value of 1.455 kJ/mol  15 meV.) The figure shows that at low 
temperatures, the parahydrogen, with its lower ground state 
energy Es, dominates. However, as the temperature is 
increased, the higher ground state energy becomes less 
important than its three-fold spin degeneracy in the 
orthohydrogen, so above ~80 K this isomer dominates the 
mixture, and at room temperature, the ratio Na/Ns is already 
very close to its high-temperature limit of 3. 

 The deuterium molecule D2 and the nitrogen molecule N2 (with atoms of the prevailing 14N 
isotope) are also examples of spin isomers – however, with a major difference. The net nuclear spin of 
their atoms equals 1, so the nucleus is a boson, and as a result, the total quantum state of their molecules 
has to be symmetric with respect to the permutation of its nuclei, equivalent to the coordinate inversion r 
 –r.  Since the ground electronic and vibrational states of these covalent-bound molecules are 
symmetric with respect to this inversion, its rotational wavefunction has to be symmetric for the 
symmetric nuclear spin state, and vice versa. 

 According to the quantum rules of spin addition,69 the system of two spins-1 may be in any of six 
symmetric states (with the net spin equal to either 0 or 2) and three antisymmetric states (with the net 
spin equal to 1). As a result, at T << 2/I, the total statistical sum Z = Zs + Za is dominated by that of the 
symmetric states (more particularly, by the ground-state: Zs  1), so the molecules are predominantly in 
that state. On the other hand, at high temperatures T >> 2/I, Zs  Za,70 and the ratio of probabilities for a 
molecule to be in the symmetric/antisymmetric orbital state is determined by the relative number of the 
corresponding nuclear spin states: 

68 Note that because of the extreme weakness of nuclear spin interactions, the time of such equilibration may be as 
long as a few days, though it may be sped up using certain catalysts. 
69 See, e.g., QM Sec. 8.1 and the model solutions of Problems 8.10 and 8.14 of that course. 
70 Due to higher vales of d  110 pm, and especially of m1,2  14 mp in comparison with hydrogen, the transition 
to this limit for nitrogen takes place well below the room temperature. 
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 Just as in the case of hydrogen, in this limit, Cs  Ca  1, so this composition of the molecular 
ensemble does not affect its total heat capacity. However, the ratio Ns/Na still may be experimentally 
measured because the rotational symmetry of the wavefunctions affects the probability of externally 
induced quantum transitions from different initial states to a higher excited state. In the late 1920s, i.e. 
before the experimental discovery of neutrons in 1932, measurements of such probabilities of the N2 
molecules (carried out by L. Ornstein) have helped to establish the fact that the spin of the nucleus 14N is 
indeed equal to 1, and hence to discard the then-plausible model in that the nucleus would consist of 14 
protons and 7 electrons, giving it the observed values of the mass: m  14mp, and of the net electric 
charge Q = 7e. (In that model, the ground-state value of the nuclear spin had to be semi-integer rather 
than integer, so it would be a fermion rather than the boson.) 

 

 Problem 2.16. Calculate the heat capacity of a heteronuclear diatomic molecule by using the 
simple model described in Problem 14, but now assuming that the rotation is confined to one plane.71 

Solution: Repeating the arguments given in the model solution of the previous problem, the 
system’s Hamiltonian may be reduced to that of the so-called planar rotator – a particle with the 
reduced mass m, free to move on a plane circle of the radius equal to d. The Hamiltonian consists only 
of the 1D kinetic energy, 

,
2

ˆ

2

ˆˆ
2

22

d

Lp
H z

mm
  

where pdLz ˆˆ   is the angular momentum’s component normal to the rotation plane. Quantum mechanics 

tells us72 that the eigenvalues Lz of this system are equal to m, where m is an integer (the “magnetic 
quantum number”). As a result, the rotator’s energy levels are described by the relation 
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 This spectrum is similar to that studied in Problem 13. However, in contrast to that problem, the 
rotator’s ground state corresponds to m = 0 (and has the energy E0 = 0), while all its excited energy 
levels (with m  0) are doubly degenerate – corresponding to two possible signs of m, because the 
rotator’s stationary functions,  
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corresponding to these signs, are different. As a result, the statistical sum of the system is 
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71 This is an approximate but reasonable model of the constraints imposed on small atomic groups (e.g., ligands) 
by their atomic environment inside some large molecules. 
72 See, e.g., QM Sec. 3.5. 
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where () is the same function, 
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as was discussed (and plotted) in the model solution of Problem 13. For the average energy of the 
particle, from this expression and Eq. (2.61b) of the lecture notes, we get 
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so its heat capacity 
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 In the low-temperature limit (T /E1  0), the largest contribution to C is provided by the first 
term of the sum (): 
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so the heat capacity is exponentially low. In the opposite (essentially, classical) limit of high 
temperatures, E1 << 1, the function (E1) is reduced to a standard Gaussian integral: 
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 This result is natural because, at T >> E1, the system is 
essentially classical, with its Hamiltonian function being a 
quadratic function of one “half-degree of freedom”, so the 
classical equipartition theorem predicts that E = T/2. As a plot 
of Eq. (*) shows (see the figure on the right), between these 
two limits, the heat capacity as a function of temperature has a 
maximum at T  0.4 E1, whose origin is similar to that for 
two-level systems – see the discussions in the model solution 
of Problem 3. 

 

 Problem 2.17. A classical, rigid, strongly elongated body (such as a thin needle) is free to rotate 
about its center of mass and is in thermal equilibrium with its environment. Are the angular velocity 
vector  and the angular momentum vector L, on average, directed along the elongation axis of the 
body, or normal to it? 
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 Solution: According to classical mechanics,73 the energy of free rotation of a rigid body may be 
expressed as 
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where Ij are the principal moments of inertia, and j are the Cartesian components of the angular 
velocity vector  along the corresponding principal axes. Each j may be considered as a generalized 
velocity, i.e. a “half-degree of freedom”, giving a quadratic contribution to the energy (*). Hence, 
according to the equipartition theorem, the statistical average of each quadratic component of E is equal 
to T/2, so 
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 In a strongly elongated body, one of the moments Ij (say, I3), corresponding to the rotation along 
the elongation axis, is much smaller than two other ones (I1,2), so 
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This means that the axis of the random thermally agitated rotations of the body is, on average, very close 
to the elongation axis. 

 On the other hand, when rewritten for the Cartesian components Lj = Ijj of the angular 
momentum vector L, Eq. (**) takes the form 
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so these components are in the opposite relation: 
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i.e. the vector L is, on average, directed almost normally to the elongation axis. 

 Note that the generalization of these results to the low-temperature (essentially quantum) case 
requires caution, because classical mechanics does not have the notion of particle indistinguishability, 
and the above formulas follow from an implicit assumption that the turn of the body by any angle is 
distinguishable. This is not true, for example, for diatomic molecules, whose rotation about the axis 
passing through the atomic nuclei is (at all realistic temperatures) purely quantum; this is the reason why 
their rotational dynamics is different – see the solutions of Problems 14-16.    

 

 Problem 2.18. Two similar classical electric dipoles, of a fixed magnitude d, are separated by a 
fixed distance r. Assuming that each dipole moment vector d may point in any direction and that the 
system is in thermal equilibrium, write general expressions for its statistical sum Z, average interaction 
energy E, heat capacity C, and entropy S, and calculate them explicitly in the high-temperature limit.  

73 See, e.g., CM Sec. 4.2, in particular Eq. (4.25). 
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 Solution: According to the basic electrostatics,74 the energy of interaction of two independent 
dipoles is 
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where in the last expression, the z-axis is directed along the vector r connecting the dipoles. Plugging 
the expressions for Cartesian components of dipole moments via the polar and azimuthal angles of their 
orientation, 
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into the last form of U, we may rewrite it as 
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 At T << a, when thermal effects are very small, the system stays very close to one of its potential 
energy minima. According to Eq. (*), there are two of them;75 in both cases, the dipole moments d are 
aligned with each other and with the line connecting them:   
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The negative sign of the energy and the growth of its magnitude at r  0 indicate that the dipoles, in a 
stable equilibrium, attract each other.  

 Since each dipole is free to take any direction, possible states of its orientation are uniformly 
distributed over the full solid angle j = 4. (If necessary, please revisit the discussion of this point in 
the model solution of Problem 4.) As a result, the probability density w  dW/d1d2 to find the system 
at a certain point {1, 1; 2, 2} may be calculated using the Gibbs distribution in the form 
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where   1/T is the reciprocal temperature, and Z is the following statistical sum: 
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74 See, e.g., EM Eq. (3.16), with the notation replacement p1,2  d1,2. 
75 If an explanation of this point is needed, see, e.g., the model solution of EM Problem 3.5. 
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 As we know from Eq. (2.61b) of the lecture notes, the average interaction energy may be 
calculated from this Z as  
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From these Z and E, two other variables of our interest may be readily calculated using the general 
relations (1.22) and (2.62):  
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 Thus, we need to calculate only one integral, namely 
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Due to the 2-periodicity of the function under the integral with respect to both arguments j, the 
integral would not change if we replace the integration interval [0, 2] for one of these angles, say 1, 
with any 2-long interval, for example [2, 2 +2]. Now in this integral, to be worked out at fixed 2, 
we may write d1 = d, where   1 – 2. Since, according to Eq. (*), the function under the integral 
depends only on  but not on 2, we may first take the integral over 2, giving us the factor 2, so the 
general expression for Z is reduced to 
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 This is as far as we can go analytically for arbitrary temperatures, so let us explore the high- and 
low-temperature limits. Since  f   ~ 1, in the high-temperature limit T >> a, i.e. a << 1, the argument of 
the exponent in the expression for Z is small for any dipole orientations, and we may expand it into the 
Taylor series in this parameter, keeping only three leading terms: 
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The integration of the first term yields a -independent contribution, (4)2, into Z. The second term, 
proportional to f,  has two parts. The integral of the part proportional to cos vanishes because of the 
integral over , while that of  the remaining part is a  product of two similar integrals of the type  
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This is exactly why we needed to keep the last, quadratic term in the above Taylor expansion: it does 
give the largest nonvanishing -dependent contribution to Z. Indeed, in this approximation 
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Opening the parentheses, we see that the mixed term proportional to cos gives no contribution to the 
integral over , so we may continue as follows: 
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Introducing the variables j  cosj again, we get 
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so, finally, 
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 This high-temperature approximation is valid only if a << 1, so we may take  
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With that result, we get  
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Now we may use this expression to calculate 
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where, in the last expression, “const” means a term independent of the dipole-dipole interaction. 

 These results show that in the high-temperature limit, all effects of dipole interaction are 
relatively small – proportional to a2/T2 << 1. This is natural because in this case, the probability density 
w is almost uniformly distributed over all dipole orientations, thus nearly averaging out the interaction 
energy. In particular, Eq. (**) shows that while the dipoles still attract each other even in this limit, the 
attraction is much weaker than at low temperatures, and drops much faster with distance:  
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. 

Note that such distance dependence is typical for one of molecular (“van der Waals”) forces – 
the so-called London dispersion force, which dominates the long-range interaction of electroneutral 
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atoms and molecules.76 This similarity is natural because the London force is also due to the statistically 
averaged interaction of electric dipoles. However, in contrast to the fixed-magnitude dipole model that 
was the subject of this problem, the London dispersion force between most molecules (having no such 
spontaneous electric dipole moments) is due to the weak mutual induction of randomly fluctuating 
dipoles. These fluctuations have not only the classical but also a quantum contribution, so the force has 
the same dependence on r even at T  0, while becoming temperature–independent in that limit.77 

 

 Problem 2.19. A classical 1D particle of mass m, residing in the potential well 

  0with  ,   
xxU , 

is in thermal equilibrium with its environment, at temperature T.  Calculate the average values of its 
potential energy U and the full energy E:  

 (i) directly from the Gibbs distribution, and 
 (ii) by using the virial theorem of classical mechanics78 and the equipartition theorem. 

 Solutions: 

 (i) The continuous-spectrum version of the Gibbs distribution (2.58) for such a particle is  
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where E is the particle's full energy: 
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so the exponent participating in the expressions for w and Z may be represented as a product: 

   

























T

xU

mT

p

T

pxE
exp

2
exp

,
exp

2

. 

Due to such factoring, the integrals over p, participating in Z and in Eq. (2.11) applied to U,  
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are exactly the same and cancel.79 Also, due to the symmetry of the given function U(x), both integrals 
over x may be limited to x > 0, so we may write 

76 Note that the traditional form, 1/r12, of the second term in the van der Waals formula, describing 
molecular/atomic repulsion at small distances, does not have a similarly quantitative physical foundation – see its 
discussion in Sec. 4.1 of the lecture notes. 
77 See, e.g., the solutions of QM Problems 3.20, 5.20, and 7.6, and also of Problem 5.19 in this course. 
78 See, e.g., CM Problem 1.12. 
79 A similar cancellation will lead us, in Sec. 3.1 of the lecture notes, to a more general result, the so-called 
Boltzmann distribution – see Eq. (3.26).  
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 The integral in the denominator, for our particular form of the function U(x), may be worked out 
by its reduction to the usual definition of the gamma function80 by the following variable replacement:  
 x/T , giving x = (T/)1/,  and hence dx = (T/)1/ 1/ – 1d/: 
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where   1/T  is the reciprocal temperature. Now the integral in the numerator of Eq. (*) may be 
calculated by differentiation of the above expression over : 
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so Eq. (*), after the cancellation of common factors (including the gamma function), yields a very 
simple result independent of the coefficient , i.e. of the potential’s scale: 
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 For the kinetic energy, the partition function’s factoring yields the same result as for a free 
particle (see Eq. (2.48) of the lecture notes): 
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so the average total energy is 
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 (ii) Applied to a single particle, the virial theorem reads 

22

2 rF 


m

p
, 

relating the temporal (time) averages of its kinetic energy and the scalar force-by-position product. 
Since we may represent the thermalization of the particle as the eventual result of its very weak 
interaction with a heat bath, not perturbing each motion period noticeably, the statistical averages of 
both sides of this relation are also equal: 
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2
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
m

p
.      

80 See, e.g., MA Eq. (6.7a). 
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 From Eq. (***) (or just from the equipartition theorem), in thermal equilibrium, the left-hand 
side of this relation equals T/2, while the scalar product on the right-hand side is just Fx = (–U/x) x, so 

T
x

U
x 

 . 

For our (time-independent) potential, 
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So we got, in a much simpler way, the same results as were obtained by the first, direct approach – see  
Eqs. (**) and (****). 

 For the particular case  = 2, i.e. for the quadratic confining potential U =   x 2  x2, when the 
particle is just a harmonic oscillator, this result returns us to Eq. (2.48). However, it shows that 
generally, E  T;  for example, for very soft confining potentials (  0), the average energy may be 
much larger than T. This fact sheds additional light on the reasons why the general notion of temperature 
has to be defined differently than the average energy per particle and gives a good pretext to have one 
more thoughtful look at Eq. (1.9).  

    

 Problem 2.20. For a slightly anharmonic classical 1D oscillator with mass m and potential energy  

  32

2
xxxU 

  

with a small coefficient , in thermal equilibrium with its environment, calculate: 

 (i) the statistical average of the coordinate x, and 
 (ii) the deviation of the heat capacity from its basic value C =1, 

in the first (linear) approximation in low temperature T. 

 Solution: According to the basic Eq. (2.11) of the lecture notes, for this 1D system 
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where w(x, p) is the probability density. In thermal equilibrium (i.e. for the canonical ensemble), this 
density may be calculated from the continuous-spectrum version of the Gibbs distribution (2.58): 
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where E is the oscillator’s full energy: 

81 Since in this Hamiltonian system, the total energy E is conserved, the time averaging sign over it may be either 
dropped or added at will. 
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Due to this factoring of the exponent, the integrals over p in the expressions for x, U, and Z are 
exactly the same and cancel, so (similarly to Eq. (*) in the solution of the previous problem):    
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 According to the equipartition theorem (2.48), in a classical harmonic oscillator, the 
characteristic scale of x is x21/2  = (T/)1/2, so at low temperatures, we may treat the ratio x3/T ~ 
T1/2/3/2 as a dimensionless small parameter, and Taylor-expand the exponent participating in Eqs. (*) 
as 
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The second term of this expansion is an odd function of x, and hence gives no contribution to the 
integral in the denominator of Eqs. (*), so in our approximation, we get 
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where the last step used the values of two standard Gaussian integrals.82  

 At the integration in the numerator of Eq. (*) for  x, the first and the third terms of the 
expansion (**), which are even functions of x, give no contributions, while the second one yields 
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where, at the last step, one more Gaussian integral83 has been used. Since this factor is already 
proportional to our small parameter, we may keep only the leading term of the expansion (***) in the 
denominator of Eq. (*) for x, finally getting84 
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 .   (****) 

82 See, e.g., MA Eq. (6.9b) and the second of MA Eqs. (6.9d). 
83 See, e.g., the first of MA Eqs. (6.9d) 

Eqs. (***) and (****) are quantitatively only if the calculated  x  is much smaller than x21/2 ~ (T/)1/2. 
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 The last result conceptually explains the fact of thermal expansion of most liquids and solids, 
because at interatomic interactions, the effective coefficient  is typically negative – see, e.g., Fig. 3.7 of 
the lecture notes. However, for a quantitative comparison with experiment, the theory has to be duly 
generalized to phonon modes – see, e.g.,  the discussion in Sec. 2.6(ii). 

 In order to calculate U from the second of Eqs. (*), we could use the expansion (**) in both 
integrals. However, it is easier to notice that this average may be calculated by directly using Eq. 
(***):85 
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The contribution of this potential energy to the heat capacity of the oscillator is 
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 . 

On the other hand, the kinetic energy of the system is a quadratic form of the momentum p, so according 
to the equipartition theorem, its contribution to the heat capacity is not affected by the weak 
anharmonicity and still equals ½. Hence its deviation from the base value is 

1
15

1
3

2



 T

C , 

explaining a posteriori why we needed to keep the third term, proportional to 2, in the expansion (**). 

  

 Problem 2.21. A small conductor (in this context, usually 
called the single-electron island) is placed between two conducting 
electrodes, with voltage V applied between them. The gap between 
one of the electrodes and the island is so narrow that electrons may 
tunnel quantum-mechanically through this gap (the “weak tunnel 
junction”) – see the figure on the right. Calculate the average 
charge of the island as a function of V at temperature T. 

 Hint: The quantum-mechanical tunneling of an electron electrons through a weak junction86 
between two macroscopic conductors and its subsequent energy relaxation may be treated as a single 
inelastic (energy-dissipating) event, so the only energy essential for the thermal equilibrium of the 
system is its electrostatic potential energy. 

 Solution: The calculation of the relevant electrostatic energy of this system U as a function of the 
net charge Q = –ne of the island (where n, the difference between the total numbers of electrons and 

85 This is exactly the same as what Eq. (2.61b) of the lecture notes does for the full energy. 
86 In this particular context, the adjective “weak” denotes a junction with a tunneling transparency so low that the 
tunneling electron’s wavefunction loses its quantum-mechanical coherence before the electron has a chance to 
tunnel back. In a typical junction of a macroscopic area this condition is fulfilled if its effective resistance is much 
higher than the quantum unit of resistance (see, e.g., QM Sec. 3.2), RQ  /2e2  6.5 k. 

V

0C

C

junction
tunnel

-neQ 
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protons in the island, may take only integer values) is elementary – see, e.g., the solution of EM 
Problem 2.32. Its result is 

                 
const,

2
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2

2
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2
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neQ
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QQ
nU      

where Qext  CV is the effective polarization charge of the island (87), and C  C + C0 is its total 
capacitance. Applying the Gibbs distribution (2.58)-(2.59) to this system, we get 
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so introducing the dimensionless external charge next  Qext/e  CV/e and the normalized temperature   
T/(e2/C), we get88 
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. 

 This result is plotted in the figure on the 
right for several values of the normalized 
temperature. At T << e2/C, the dependence of Q 
on Qext  (i.e. on the applied voltage V) follows the 
vertical-step Coulomb staircase pattern – for a 
discussion of its physics, see, e.g., the model 
solution of EM Problem 2.32. However, non-zero 
temperatures even as low as ~0.3e2/C result in 
almost complete smearing of the pattern. Because of 
a similar smearing, most single-electron devices 
(such as single-electron transistors, single-electron 
traps, etc.89) also require temperatures to be lower 
than ~ 0.03e2/C for their proper operation. This requirement presents one of two major challenges90 for 
the development of digital single-electronics, because for their operation at room temperature (T ~ 25 
meV), it demands e2/C to be of the order of 1 eV, corresponding to single-electron islands of just a few 
nanometers in size.  

 

87 Note that since the applied voltage V is a continuous variable, the values of Qext, in contrast to those of Q  –ne, 
are not limited to the multiples of the fundamental charge e. If this important conceptual point is not clear, please 
review its discussion in EM Sec. 2.6. 
88 Let me emphasize again that the validity of this Gibbs distribution is not affected by the fact that electrons obey 
the Fermi-Dirac statistics, because here we deal with the energy U of the whole system, rather than one of its 
(indistinguishable) components. 
89 For a review, see, e.g., K. Likharev, Proc. IEEE 87, 606 (1999). 
90 The second major challenge is the randomness of the so-called background (or “offset”) charges – see the just-
cited review paper. 
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 Problem 2.22. A lumped LC circuit (see the figure on the right) is in 
thermodynamic equilibrium with its environment. Calculate the r.m.s. 
fluctuation V  V 21/2 of the voltage across it, for an arbitrary ratio T/, 
where  = (LC)–1/2 is the resonance frequency of this “tank circuit”. 

  Solution: The expression for the classical energy of the LC circuit is 
well known from undergraduate physics, but we want the result that would describe its quantum 
properties as well, so let us derive its Hamiltonian carefully, first using the basic notions of classical 
analytical mechanics.91 At negligible energy losses, the circuit may be described by a Lagrangian 
function L, which is the difference between the kinetic and potential energies of the system. For 
example, we may write  

C

QLI

22

22

L , 

where the electric charge Q of the capacitor and the current I = Q  through the inductive coil may be 
considered, respectively, a generalized coordinate and the corresponding generalized velocity of the 
system. The corresponding generalized momentum is 





 LI
Q

pQ 
L

. 

(Physically,  = LI is the total magnetic flux through the inductive coil.) Hence the Hamiltonian 
function of the system is 

C

Q

L
IpQ 22

Φ 22

 LH . 

 Now we may perform the transfer to quantum mechanics just by the replacement of I and Q with 
the operators representing these observables.92 The resulting Hamiltonian operator,  

C

Q

L 2

ˆ

2

Φ̂ 22

ˆ H , 

is similar to that of a mechanical harmonic oscillator – see, e.g., Eq. (2.46) of the lecture notes, with the 
following replacements: q  Q, p  pQ = , m  L,   1/C (giving, in particular, 2 = /m  1/LC 
– a well-known result). With these replacements, Eq. (2.78) of the lecture notes yields 
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2
coth

2
2  
 . 

The voltage we are interested in is just V  = Q/C, so 

TCC

Q
V

2
coth

22

2

2  
 , 

and the r.m.s. fluctuation V is just the square root of this expression. The physics of this result and its 
implications will be discussed in detail in Chapter 5 of the lecture notes. 

91 See, e.g., CM Secs. 2.1 and 2.3. 
92 See, e.g., CM Sec. 10.1 and/or QM Sec. 1.2. 

L V C 



Essential Graduate Physics               SM: Statistical Mechanics                

Problems with Solutions                  Page 62 

 Problem 2.23. Derive Eq. (2.92) of the lecture notes from simplistic arguments, by representing 
the blackbody radiation as an ideal gas of photons treated as classical ultra-relativistic particles. What do 
similar arguments give for an ideal gas of classical but non-relativistic particles?  

 Solution: Let us consider a rectilinear cavity of volume V = LxLyLz, containing N photons 
being elastically reflected from the walls, but otherwise empty. Each reflection from the wall that is 
perpendicular to the x-axis transfers the momentum px = 2px to it. For a free ultra-relativistic particle, 
the full momentum magnitude p and the energy  are related as  = cp, 
where c is the speed of light,93 so the transferred momentum may be 
expressed as 

    
cos

2
2

c
pp xx  ,   (*) 

where  is the incidence angle – see the figure on the right. Since 
photons in free space move with velocity c, the reflected photon will 
return to the same wall again (after being reflected by the opposite 
wall) after the ballistic flight time 
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so the (time-) average force exerted by this particular photon on the wall is 
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corresponding to its average pressure 
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 Now summing up the pressure contributions by all N photons, we get 
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where E is the sum of all , i.e. the full energy of the photon gas, and cos2 is averaged over the 
statistical ensemble of random directions of photon propagation: 
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As a result, we get Eq. (2.92) of the lecture notes: 
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1
 .      (***) 

 Now let us make a similar calculation for a non-relativistic gas, with just one (but significant!) 
change. Namely, the momentum of such a particle is p = mv, so instead of Eq. (*) we should write 

xxx mvpp 22  . 

93 If this relation is not evident, please see, for example, EM Sec. 9.3, in particular Eq. (9.79). 
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Using the middle form of Eq. (**) for the time interval, tx = 2Lx/vx, we get 
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Again, summing the pressure contributions by all particles, while assuming the gas’ isotropy (so vx
2 = 

vy
2 = vz

2 = v2/3 = (2/3) /m),94 we get a result, 
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which differs from Eq. (***) by a factor of 2 – as was already discussed in Sec. 2.6 of the lecture notes. 

  Now note that while the above derivations of Eqs. (***) and (****) had required the assumption 
of the isotropy of particle flight directions, they did not require the gas to be in full thermal equilibrium. 
If this condition is added, we may use the equipartition theorem (2.48), valid for non-relativistic 
particles only, to recast Eq. (****) as  
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thus recovering the equation of state of the ideal classical gas, Eq. (1.44) – which will be derived in a 
different, more general way in Sec. 3.1. 

 

 Problem 2.24. Calculate the enthalpy, the entropy, and the Gibbs energy of blackbody 
electromagnetic radiation in thermal equilibrium with temperature T inside volume V, and then use these 
results to find the law of temperature and pressure drop at an adiabatic expansion. 

 Solution: Plugging Eq. (2.88) of the lecture notes for the energy, Eq. (2.91) for the free energy, 
and Eq. (2.92) for the PV product of the blackbody radiation, 
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into the general thermodynamic relations (1.27), (1.33), and (1.37), we readily get 
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 Actually, the last result was already given (in a different form) in the lecture notes – see Eq. 
(2.93). Its simplest physical interpretation is that the thermally-equilibrium radiation may be considered 
as a gas of ultra-relativistic, massless particles (photons), which may be created “from nothing”, i.e. may 
be formally considered as coming from (and going to) some external source with a vanishing chemical 
potential   G. 

 As was discussed in Sec. 1.3 of the lecture notes (and mentioned several times after that), at an 
adiabatic expansion of a system, its entropy stays constant, so the above expression for S yields 

94 Here  is generally the kinetic energy of the particle and may be associated with its total energy only if its 
internal degrees of freedom are in some fixed (e.g., ground) states – see Sec. 3.1 for more discussion of this point. 
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TVT  ,     (**) 

i.e. at an isotropic expansion, the radiation temperature is inversely proportional to the linear size of the 
region it occupies. Next, according to Eqs. (*), the radiation’s pressure, 
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is independent of V, so plugging the reciprocal relation, T  P1/4, into Eq. (**), we get 

3/4

1

V
P  . 

 This relation may be rewritten in a form similar to that for the adiabatic expansion of the “usual” 
(non-relativistic) ideal gas:95 

const,PV  

if we take  = 4/3. Note, however, that in our current case of the photon (and any ultra-relativistic) gas, 
the coefficient  cannot be interpreted as the CP/CV ratio, because, according to Eq. (1.23) of the lecture 
notes, the notion of CP is undefined if the pressure is a unique function of T, as it is in this case – see Eq. 
(***) again. 

 

 Problem 2.25. As was mentioned in Sec. 2.6(i) of the lecture notes, the relation between the 
temperature T of the visible Sun’s surface and that (To) of the Earth’s surface follows from the balance 
of the thermal radiation they emit. Prove that the experimentally observed relation indeed follows, with 
good precision, from a simple model in which the surfaces radiate as perfect black bodies with constant 
temperatures. 

 Hint: You may pick up the experimental values you need from any reliable source.  

 Solution: According to the Stefan radiation law (see Eq. (2.89) of the lecture notes), the full 
radiation power of the Sun, within this model, is 

      424   TR P ,     (*) 

where R is the Sun’s radius. At the Earth’s distance ro from the Sun, this radiation is uniformly 
distributed over a spherical surface with the area 

2
o4 rA  , 

so the Earth, visible from the Sun as a plane round disk of the radius Ro << ro, absorbs power 
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If the power radiated by the Earth’s surface to space is expressed similarly to Eq. (*): 

4
o

2
oout 4 TR P , 

95 See, e.g., the solution of Problem 1.5. 



Essential Graduate Physics               SM: Statistical Mechanics            

Problems with Solutions                  Page 65 

Then, from the radiation balance Pin = Pout, we get the following result: 
2/1
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 r

R
TT , 

independent of both the Earth radius Ro and the Stefan-Boltzmann constant  – and hence of the Planck 
constant and the speed of light – see Eq. (2.89b) of the lecture notes.  

 Plugging in the experimental values T  5,778 K, R  0.6958106 km, and ro  149.6106 km, 
for the temperature of Earth’s surface, we get the number To  278.6 K (i.e. ~6C), which differs from 
the average actual temperature of 288 K by just ~3%. This surprisingly good agreement is due to the 
high values of emissivity (see the next problem),  ~ 99%, of both the Sun’s photosphere and the Earth’s 
oceans (covering most of our planet’s surface), at the relevant radiation frequencies. 

 

 Problem 2.26. If the surface of a body is not perfectly radiation-absorbing (“black”), the power 
of its thermal radiation differs from the value given by the Planck radiation law by a factor   < 1, called 
emissivity. Prove that such a surface reflects the (1 – ) fraction of the incident radiation.    

 Solution: Consider a surface in thermal equilibrium with a large surrounding volume, at some 
temperature T. According to the discussion in Sec. 2.6(i) of the lecture notes, the power incident on the 
surface from the volume is described by Planck’s law: Pin = PPlanck. However, in thermal equilibrium, 
the total power flowing from the surface,  

inradout PPP r , 

where r is the reflection coefficient we need to find, has to equal Pin, because at thermal equilibrium, 
there should be no net heat flow into the interior of the body – if it is not transparent. This balance, using 
the definition of  given in the assignment: Prad = PPlanck, yields  

PlanckPlanckPlanck PPP r  , 

i.e. proves the stated result for the reflection coefficient:  

 1r . 

 This simple relation is sometimes called the Kirchhoff law of radiation. (Such a long name is 
probably justified to avoid confusion with the famous two laws, or “rules”,96 governing lumped electric 
circuits, that were formulated by the same Gustav Robert Kirchhoff.) This law looks less elementary 
when it is applied to frequency-dependent () and r(). (Please review the above solution to get 
convinced that it is valid even in this case, for each radiation frequency .) In particular, in application 
to discrete spectral lines, it says that if any body/material absorbs strongly on the frequencies where it 
emits intensively – as it does at quantum transitions between energy levels – see, e.g., QM Sec. 9.3. This 
fact explains, in particular, the so-called dark lines (also called “Fraunhofer lines”) of light absorption 
by relatively cold gases, first discovered in the solar light spectrum in the early 19th century. 

96 See, e.g., EM Secs. 4.1 and 6.6. 
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 Note also that in this solution,  was treated as an angle-averaged parameter, hiding, in 
particular, the (sometimes essential) dependence of the so-called directional emissivity  on the 
radiation’s direction. 

 

 Problem 2.27. If two black surfaces, facing each other, have 
different temperatures (see the figure on the right), then according to the 
Stefan radiation law (2.89), there is a net flow of thermal radiation from 
the hotter surface to the colder one: 

 4
2

4
1

net TT
A

 
P

. 

For many applications, notably including most low-temperature experiments, this flow is detrimental. 
One way to suppress it is to reduce the emissivity  (for its definition, see the previous problem) of both 
surfaces – say by covering them with shiny metallic films. An alternative way toward the same goal is to 
place, between the surfaces, a thin layer (usually called the thermal shield), with a low emissivity of 
both surfaces – see the dashed line in the figure above. Assuming that the emissivity is the same in both 
cases and neglecting its possible dependence on the angle and frequency, find out which way is more 
efficient. 

 Solution: If  < 1, the power Prad of radiation by a surface is lower than the value P(T)  T4 
following from the Stefan law: Prad = P(T), but the total power flowing from it also includes that of the 
reflected wave: Pref = rPin, where Pin is the power incident on this surface from outside, and r is the 
reflectivity. As was proved in the solution of the previous problem, the reflectivity r is related to the 
emissivity   of the same surface by the Kirchhoff radiation law: 

 1r . 

 Applying these arguments to the power P1 flowing from surface 1 to 
surface 2, and to its counterpart P2, for the first approach discussed in the 
assignment (see the figure on the right), we may write two similar relations: 
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Solving this simple system of two linear equations, we get 
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so the net power flow from surface 1 to surface 2 is 
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As a sanity check, in the limit   0 (perfectly reflecting surfaces) the net power tends to zero, while for 
 = 1 (perfectly absorbing surfaces) we get the blackbody formula quoted in the assignment. 
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 For the second method described in the assignment (see the figure on 
the right), the powers radiated by surfaces 1 and 2, which are considered 
perfectly black, follow the unmodified Stefan law, but we need to write 
equations similar to Eqs. (*) for the powers flowing from each surface of the 
thermal shield, assigning to it some (so far, unknown) temperature Ts: 

     
     .1

,1
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TT

s

s

PPP

PPP








 

Since the shield is not connected directly to any external objects, in thermal equilibrium, the net  
radiation power Pnet flowing from the left to the right should be the same on the left and the right sides 
of the shield: 
              2ss1 T'T PPPP  .    

Solving this system of four equations, we get, in particular, 
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 Comparing the last result with Eq. (**), we see that both methods are very efficient, with the 
second method yielding a somewhat better result, i.e. a lower net power flow. However, for typical well-
reflecting surfaces, with  of the order of 1%, this difference is minor. Still, the thermal shield method is 
more convenient practically and may be further improved by using several thin layers, separated by gaps 
from each other and both surfaces.97 (Calculating Pnet for such a system, with N similar shields, is an 
additional exercise, highly recommended to the reader.)  

 

 Problem 2.28. Two perfectly reflecting parallel plates of area A are separated by a free-space gap 
of a constant thickness t << A1/2. Calculate the energy of the thermally-induced electromagnetic field 
inside the gap in thermal equilibrium, with temperature T in the range 

      
t

c
T

A

c 


2/1
. 

Does the field push the plates apart? 

 Solution: Electrodynamics tells us that within a broad frequency range, 

   2/1
2/1

22
in which  , A

c

k
t

t

c

A

c



 ,     

97 Perhaps the most impressive recent example is the huge (~2515m2) sunshield of NASA’s James Webb Space 
Telescope launched in 2021, with 5 layers of plastic (polyimide) thin film, each only 25 microns thick, with 50-
nm silicon and 100-nm aluminum coatings. 
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such a system supports transverse electromagnetic (TEM) waves of speed c.98 Hence if the temperature 
is within the range specified in the assignment, we may just reproduce the calculations carried in Sec. 
2.6(i) of the lecture notes, by replacing the 3D density of states in Eqs. (2.82)-(2.83) with the 2D 
density, and the degeneracy factor g = 2 with g = 1: 

   
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d
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2 2
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22
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With this replacement, Eq. (2.84) becomes 
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so the total energy of the radiation in the gap is99 
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 Note that the energy scales as T 3, rather than as T 4 in the Stefan law, because of a different 
dimensionality of the system. (If T is increased beyond ~c/t, some non-TEM modes may be excited in 
the gap as well,100 and we may expect a gradual crossover to the Stephan law.)  

 Next, since the calculated average energy E of the spontaneous radiation, and hence its free 
energy F, are independent of the gap thickness t, it does not apply any normal pressure to the conducting 
plates. This (perhaps, rather counterintuitive) result is due to the fact that the wave vectors k (and hence 
the photon momenta p = k) of these waves are parallel to the plate surfaces.101 (Note that an account of 
the ground-state energy of the TEM modes would not change the situation.) Moreover, since the 
pressure of the unavoidable 3D (non-TEM) electromagnetic waves outside of the plates is not 
compensated, at the frequencies  < c/t, by the TEM waves between them, the plates are effectively 
attracted to each other, even at T  0 – the so-called Casimir effect.102  

 On the other hand, our calculation shows that the energy of the TEM waves inside the gap is 
proportional to the system area A, just as in the 3D case it is proportional to the containing volume V – 
see Eq. (2.88) of the lecture notes. As a result, the thermally-induced TEM radiation between the plates 
does apply outward stress to the system’s edges, “trying” to stretch the plates. This effect may be 
interpreted as a result of the reflection of the just discussed photons, with the momenta p = k, from the 
plate border. 

98 See, e.g., EM Sec. 7.6. In the TEM waves, the electric field E  is normal to the plate surfaces, while the 
magnetic field B is normal to both E and the wave vector k, i.e. is parallel to the plate surfaces. 
99 For the last two steps of this calculation, we may use MA Eq. (6.8b) with s = 3, and then MA Eqs. (2.7b) and 
(6.7c). 
100 According to electrodynamics, all such modes have frequencies exceeding the critical value c = c/t. 
101 In the electromagnetic field language, due to the universal relation B = E/c  (00)

1/2E  between the electric 
and magnetic field magnitudes in the TEM waves, the attraction force Fe/A = –0E

2/2 due to the electric field 
normal to the plate surfaces, is exactly compensated by the repulsive force Fm/A = B2/20 due to the magnetic 
field parallel to the surfaces – see, e.g., EM Sec. 9.8, in particular Eqs. (9.240) and (9.242). 
102 For its discussion, see, e.g., QM Sec. 9.1.  
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 Problem 2.29. Use the Debye theory to estimate the specific heat of aluminum at room 
temperature (say, 300 K) and express the result in the following popular units: 

 (i) eV/K per atom, 
 (ii) J/K per mole, and 
 (iii) J/K per gram. 

Compare the last number with the experimental value (from a reliable source). 

 Solution: As was mentioned in Sec. 2.6(ii) of the lecture notes, the Debye temperature of 
aluminum is close to 430 K (with an uncertainty smaller than 1%), so at room temperatures, T/TD  
300/430  0.700. Using Eqs. (2.97)-(2.98), or just reading out the value from one of the plots in Fig. 
2.11, we get103 

               71.2
N

C

nV

C
.     (*) 

 This result is valid literally only if the specific heat is defined by Eq. (1.22), C  Q/T, with 
temperature T expressed in energy units – say, joules. With the temperature expressed in kelvins, TK  
T/kB, the specific heat becomes 
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so Eq. (*) yields 
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 Now let us express this number in the requested units: 
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where   26.98  27.0 is the average atomic weight of the natural aluminum (dominated by the 27Al 
isotope), i.e. the average mass (expressed in grams) of its mole. 

 For the last of the values, a linear interpolation of the experimental values given in the classical 
tables by Kaye and Laby104 (0.880 J/Kg for 273 K and 0.937 J/Kg for 373 K) to 300 K gives 0.895 
J/Kg. Another respectable source105 gives just a ~1% higher value, 0.904 J/Kg, for the same 300 K. 
Finally, Wikipedia’s article Aluminium (the metal’s name in British English) lists, without an explicit 

103 As was mentioned in Sec. 2.6, for solids (like aluminum at room temperature), with their very small expansion 
coefficient, the difference between CV and CP is negligible, so the index “V” in Eq. (2.97) may be dropped. 
104 G. Kaye and T. Laby, Tables of Physical and Chemical Constants, 16th ed., Longman, 1995. 
105 R. Hultgren et al., Selected Values of Thermodynamic Properties of the Elements, ASM, 1973. 
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reference and temperature specification, the number 24.20 J/Kmole, equivalent to 0.897 J/Kg, i.e. just 
in-between these two references. So, the average experimental value is ~7.5% higher than our estimate. 
This deviation demonstrates a limited accuracy of the Debye theory but is still surprisingly small for 
such a simple and universal model.  

 

 Problem 2.30. Low-temperature specific heat of some solids has a considerable contribution 
from the thermal excitation of spin waves, whose dispersion law.106 Neglecting anisotropy, calculate the 
temperature dependence of this contribution to CV at low temperatures, and discuss conditions of its 
experimental observation. 

 Hint: Just as the photons and phonons discussed in Sec. 2.6 of the lecture notes, the quantum 
excitations of spin waves (called magnons) may be considered non-interacting bosonic quasiparticles 
with zero chemical potential, whose statistics obeys Eq. (2.72). 

 Solution: Acting exactly as in Sec. 2.6(ii), for isotropic 3D waves of any kind, we may calculate 
the number of different modes within a small interval d of frequencies as 
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Since the wave excitation statistics obeys Eq. (2.72), we may calculate the corresponding energy as 
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so the total energy of the excitations at temperature T is 
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giving the following contribution to the heat capacity: 
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 At sufficiently low temperatures, T << , the second fraction under the last integral tends to 
exp{–/T}, so for any plausible dispersion relation (k), the integral converges at frequencies max ~ 
T/. Hence, for such temperatures, we may use the low-frequency approximation for the dispersion law 
k(); in the specific case of spin waves, k2 = , where  is a constant, so dk/d = (/)–1/2/2. With 
these substitutions, Eq. (*) becomes  
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where   /T. The last integral is just a dimensionless constant, and does not affect the temperature 
dependence of the heat capacity: 

106 Note that the same dispersion law is typical for bending waves in thin elastic rods – see, e.g., CM Sec. 7.8. 
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      2/3const TCV  .     (**) 

As Eq. (2.99) of the lecture notes shows, the phonon contribution to CV at low temperatures is 
proportional to T 3, i.e. drops, at T  0,  much faster than Eq. (**) predicts. On the other hand, as will be 
shown in Sec. 3.3 of the lecture notes, the free-electron contribution to specific heat in conductors is 
proportional to T, i.e. decreases much slower than that by magnons. Hence, there is a chance to observe 
the full specific heat being proportional to T 3/2 in insulators with atomic spin ordering at low 
temperatures. (The spin waves are collective deviations of the magnetic moments from such an ordered 
state.) Indeed, a classical example of a material with such behavior of CV is europium oxide (EuO); the 
very substantial (~7B) spontaneous magnetic moments of its Eu atoms lead to their ferromagnetic 
ordering below the Curie temperature TC  69 K.   

More generally, reviewing the above solution for any excitations with the dispersion law   kn, 
we may conclude that in a 3D continuum, they provide a low-temperature specific heat contribution 
scaling as T 3/n. 

 

 Problem 2.31. Derive a general expression for the specific heat of a 
very long straight chain of similar particles of mass m, confined to move 
only in the direction of the chain and elastically interacting with effective 
spring constants  – see the figure on the right. Spell out the result in the 
limits of very low and very high temperatures. Would using the Debye approximation change these 
results? 

 Hint: You may like to use the following integral:107 
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. 

 Solution: According to classical mechanics,108 small longitudinal oscillations in this system may 
be represented as a sum of N independent standing waves with frequencies  
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where kn are equidistant wave numbers separated by intervals kn+1 – kn  k = /l = /Nd. Here N is the 
number of the particles in the chain, and d is its spatial period, so l = Nd is the total length of the chain. 
In both classical and quantum mechanics, each of these standing waves may be treated as an 
independent harmonic oscillator, so per Eq. (2.75) of the lecture notes, the total heat capacity of the 
chain is 
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where the summation has to be limited to N physically distinguishable wave modes.  

 If N >> 1 (as the assignment implies), the summation may be replaced with integration:  

107 It may be reduced, via integration by parts, to the table integral MA Eq. (6.8d) with n = 1. 
108 See, e.g., CM Sec. 6.3, in particular Eq. (6.30). 
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so the requested general expression for the heat capacity per particle is 
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with n given by Eq. (*). 

 The function under the integral drops very fast (exponentially) as soon as n becomes 
substantially larger than T, so at temperatures much lower than (/m)1/2, i.e. than max, the integral is 
cut off at frequencies much smaller than max. For these frequencies, Eq. (*) may be simplified,109 
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and Eq. (***) is reduced to 
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where   n/2T. This is exactly the integral mentioned in the Hint, so we get 
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Note that in the 1D system, the specific heat increases with T much faster than in similar 3D systems – 
cf. Eq. (2.99) of the lecture notes.110 

 In the opposite limit, when the temperature is much higher than max, according to Eq. (**), Cn 
= 1 for each of the N elementary oscillators of the system, so 

maxfor  ,1  T
N

C
, 

in agreement with the classical equipartition theorem – which in this limit should be applied to each of 
the N oscillation modes. 

 As was discussed in Sec. 2.6(ii) of the lecture notes, the Debye approximation replaces the 
genuine dispersion law, in our current case given by Eq. (*), with its acoustic asymptote, in our case Eq. 
(****), for all N oscillation modes of the system. In order to keep this number intact, the 
summation/integration over the modes should be carried out up to a frequency D different from max: 
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109 Physically this means that at such temperatures, only acoustic waves give a substantial contribution to heat 
capacity. 
110 Historically, the 1D character of atomic motion in some organic materials was revealed exactly by 
experimental observations of this temperature dependence. 
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so D = (/2)max. Since Eq. (****) describing this approximation yields dn = maxd(knd/2) = 
(/2)max(dn/N), i.e. dn = (2/)Ndn/max, instead of Eq. (***), we have to write 
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 The figure on the right shows the result of a 
numerical calculation using this formula (blue 
line), as well as that using the exact Eq. (***). It 
shows that the Debye approximation slightly (by 
~10%) affects the results at intermediate 
temperatures T ~ max, but does not change them 
in the limits explored above. Indeed, in the high-
temperature limit, only the total number of 
oscillation modes is important (and the Debye 
approximation always counts them correctly), 
while in the low-temperature case, the acoustic 
approximation (****) may be accepted for all 
thermally-activated modes even at the virtually exact numerical integration of Eq. (***). 

 So, if the dispersion law of elastic oscillations is as simple as Eq. (*), there is no real motivation 
to use the Debye approximation. Still, the above exercise is very useful because it gives a good idea of 
the approximation’s accuracy. By the way, the plots above show that at T/TD  T/D  0.7, i.e. T/max 
 0.7(/2)  1.1, the Debye theory underestimates the specific heat by ~7% – the number very close to 
the deviation (for a 3D model) discussed in the solution of Problem 19. 

 

 Problem 2.32. Use the Debye approximation to obtain a general expression for the longitudinal 
phonon contribution to the specific heat of a stand-alone monatomic layer of an elastic material (such as 
graphene). Find its explicit temperature dependence at T  0. 

  Solution: According to the general wave theory, in an isotropic 2D continuum, Eq. (2.82) of the 
lecture notes for the number of oscillation modes has to be modified as111  

    
   
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dN



 2

2
22 2

2
2

 ,    (*) 

where A is the layer’s area. Here g is the degeneracy factor, i.e. the number of different wave types with 
the same wave vector k; in this problem, we are asked to account for longitudinal waves only,112 so we 
may take g = 1. The Debye approximation assumes that their dispersion relation is linear, k = /vl, for 

111 In most monatomic layers, the longitudinal waves are only slightly anisotropic, so the isotropy assumed by the 
last form of Eq. (*) is very reasonable. 
112 Transverse elastic waves in monatomic layers are highly anisotropic and their properties depend on many 
factors including the layer placement (suspended or substrate-supported) and its background tension (see, e.g., 
CM Sec. 7.8). As a result, in contrast with 3D solids, the transverse wave treatment on the same footing as the 
longitudinal waves makes little sense. 
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all frequencies below certain D that has to be calculated from the equality of the total number of modes 
calculated from Eq. (*), 

2

2
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, 

to the universal number N = An of the 1D oscillation modes in a layer with n atoms per unit area. From 
this relation, 
        lvn 2/1

D 2   . 

 Each of these modes may be treated as an independent 1D harmonic oscillator whose heat 
capacity C is given by Eq. (2.75) of the lecture notes. As a result, we get the following general 
expression for the total contribution of longitudinal phonons to the heat capacity of the layer: 
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where   /2T and  D  D/2T.  

 In the low-temperature limit T << D, i.e. D >> 1, while the last (dimensionless) integral 
converges at  ~ 1, due to the exponentially growing denominator. As a result, this integral becomes 
independent of its upper limit  D, and hence of T, so the specific heat (per unit atom) is113 

8031.1
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. 

 Thus, for this 2D system, the low-temperature specific heat is proportional to T 2 – the result we 
could expect from Eq. (2.99) of the lecture notes for a 3D continuum and from the solution of the 
previous problem for a 1D system. 

 

 Problem 2.33. Calculate the r.m.s. thermal fluctuation of an arbitrary point of a uniform guitar 
string of length l, stretched by force T, at temperature T. Evaluate your result for l = 0.7 m, T = 103 N, 
and room temperature. 

 Hint: You may like to use the following series: 
 

 
 

2

1sin

1
2

2 

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



n n

n
, for 0    1. 

 Solution: Basic classical mechanics tells us114 that a small transverse displacement q(z, t) of a 
thin (flexible) string stretched along the z-axis gives it the following energy per unit length: 

         ,
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t

q

dz

dE T
    (*) 

and obeys the usual 1D wave equation 

113 Just for the reader’s reference, I = (3/2)(3), where (s) is the Riemann zeta function – see MA Eq. (2.7). 
114 See, e.g., CM Sec. 6.3 and the solution of Problem 6.10 of that course. 
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


T ,      

where  is the string’s linear density, i.e. its mass per unit length, while T is its tension’s magnitude 
(equal to the stretching force). This equation, together with the boundary conditions at the string’s ends, 

              0),(),0(  tlqtq ,     (**) 

is satisfied with the sum of variable-separated terms, each describing a standing-wave mode: 
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Here Zn(z) are the sinusoidal standing-wave profiles that comply with the boundary conditions (**),  
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l
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
 

and each function Tn(t) obeys the same ordinary differential equation as the usual harmonic oscillator, 
but with the mode-specific frequency n: 
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with the well-known solution 
 nnnn tAT   cos . 

 The fact that each of these standing waves obeys its individual equation of motion, i.e. is 
uncoupled from other oscillation modes, means that its energy En is conserved. Since, with time, the 
energy is periodically and fully “re-pumped” between its potential and kinetic forms, we may calculate 
it, for example, as the maximum value of the potential energy, given by the second term of Eq. (*): 
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Now we may use either the equipartition theorem (2.48) or Eq. (2.80) in the thermal limit (T >> n), to 
write 
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 From this, we can calculate the variance of fluctuations at an arbitrary point z as follows: 
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Due to the randomicity of the mode phases n, the averages of all cross-terms vanish, so  
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where   z/l. Using the series provided in the Hint, we finally get 

    .  i.e.,
2/1

2





  zlz

l

T
qzlz

l

T
q

TT
  

 Note that the calculated variance formally does not depend on , though in practice, the string’s 
mass affects the result because usually its tension T is adjusted to obtain the desired value of the 
fundamental mode frequency, 1 =  (/l)(T/)1/2 – see Eq. (***). 

Now plugging in the (quite realistic) parameters given in the assignment, in particular, T = kBTK 
 (1.3810-23300) J, for the r.m.s. fluctuation of the middle point (z = l/2), we get q  0.8510–12 m. 
On the human scale, such displacements are not too large, but they still may be readily measured even 
with inexpensive lab equipment – for example, a simple capacitive sensor followed by a low-noise 
electronic amplifier. (Sensors of gravitational wave observatories, such as the now-famous LIGO, can 
measure displacements about eight orders of magnitude smaller, though at frequencies much lower than 
the typical guitar tune.) 

 

Problem 2.34. Use the general Eq. (2.123) of the lecture notes to re-derive the Fermi-Dirac 
distribution (2.115) for a system in equilibrium. 

Solution: As discussed in Sec. 2.8 of the lecture notes, Eq. (2.123), 

       ,1ln1ln kkkkk NNNNS      (*) 

expresses the entropy related to the kth quantum state of Fermi particles as a function of its average 
occupancy Nk, and is valid even out of equilibrium. For the thermal and chemical equilibrium, we may 
require the total entropy, 
         

k
kSS ,  

of a system of N particles with a fixed total energy E, considered as a function of all Nk, to reach its 
maximum, with two constraints: 
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 As was discussed in Sec. 2.2, this requirement demands all conditional derivatives to vanish: 
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The system of such equations for all k, as well as the first of the conditions (**), may be satisfied by 
taking S/Nk =  = const. However, this form would leave the second of the conditions (**) 
unsatisfied, so we may try to look for the solution in a more general form: 

                k
k

'
N

S  



,     (****) 

with the Lagrange multipliers  and ’ independent of k. Plugging this form into the right-hand part of 
Eq. (***), we get 
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so with the additional conditions (**), the conditional derivatives indeed vanish, thus satisfying the 
system of equations (***). In the particular case (*) of the fermionic entropy, Eq. (***) gives 

                kkk λ'NN   )1(lnln .     

Solving this equation for the average occupancy, we get 
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1
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.      

 In order to express the Lagrange multipliers  and ’ participating in this result via the standard 
thermodynamic notions, let us use our intermediate result (****) to spell out the change of S at a small, 
reversible variation of the system’s parameters, which changes the average occupancies Nk but keeps 
the system’s volume (and hence the particles’ energy spectrum k) intact: 
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Comparing this expression with the corresponding changes of N and E given by Eq. (**), 

,,  
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k NddENddN   

we see that they are related as 
'dEdNdS   . 

Now comparing this equality with the thermodynamics relation (1.52) with dV = 0,  

T

dE
dN

T
dSdNTdSdE 

   i.e., , 

we get  = –/T, ’ = 1/T, so the above result for Nk indeed coincides with Eq. (2.115). 

 Absolutely similarly, the general Eq. (2.126) may be used for an alternative calculation of the 
Bose-Einstein distribution (2.118) valid in equilibrium. 

 

 Problem 2.35. Each of two identical particles, not interacting directly, may be in any of two 
quantum states, with the single-particle energies  equal to 0 and . Write down the statistical sum Z of 
the system, and use it to calculate its average total energy E at temperature T, for the cases when the 
particles are: 

 (i) distinguishable (say, by their spatial positions); 
 (ii) indistinguishable fermions; 
 (iii) indistinguishable bosons. 

Analyze and interpret the temperature dependence of E for each case, assuming that  > 0. 
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 Solutions: Let us denote the possible states of the system by a set of two arrows that code the 
single-particle states:  for the state of energy 0, and  for the state of energy . Then the possible states 
and their total energies are as follows: 

                  2:;:;:;0: EEEE .  (*) 

Now we are ready to address the problem’s tasks. 

 (i) For distinguishable particles, all states (*) are possible and different, so 
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(As a useful detour: note that this expression may be rewritten as 

                 2/1 TeZ  ,     (**) 

and derived, in this form, from the following general arguments:115 since for a system of two non-
interacting particles, the energy is E = 1 + 2, then if all its states are different, we may write 
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For distinguishable particles, the possible states of each particle are independent, and we get 
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But each of these partial sums is just the partial statistical sum of a single particle, so we get a very 
simple result: 

21ZZZ  , 

which is reduced to an even simpler form, Z = Z1
2, if the partial sums are equal, for our simple system 

immediately giving Eq. (**) – the end of the detour.) 

 Now returning to Eq. (**) and plugging it, in the form 
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into Eq. (2.61b) of the lecture notes, 
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we readily get 
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 According to this expression, the average energy tends to 2exp{–/T}  0 at T/  0, and to 
 at T/  . Both asymptotic behaviors are natural because at T << , each of the particles resides on 

115 These arguments will be used in Sec. 3.1 of the lecture notes for an analysis of an ideal gas of N particles. 
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the lower single-particle energy level with an almost 100% probability, while at T >> , they have an 
equal probability to be on the lower and the higher energy levels, each giving an average contribution of 
/2 to the total energy of the system. 

 (ii) In the case of indistinguishable fermions, the first and the last states of the list (*) are 
impossible due to the Pauli principle, while the remaining two combinations,  and , are possible 
only as entangled components of one antisymmetric state, the singlet, with energy E = . (In the 
standard quantum shorthand notation, the normalized ket-vector of the state is116  

  
2

exp i
a , 

where  is an arbitrary real phase.) This means that Z is reduced to just one term: 
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so Eq. (***) immediately yields a very natural result, 

E , 

for any temperature. (Note that due to the entangled nature of the singlet state, it is incorrect to prescribe 
this energy to any particular particle.) 

 (iii) In the case of indistinguishable bosons, all states (*) are possible but, again, the middle two 
combinations  exist only as entangled components of one quantum state – now a symmetric one, 
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with the same energy E = . As a result, the statistical sum is 
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and Eq. (***) yields 
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 Besides the loss of the factor of two (reflecting the only state available for low-energy 
excitations) in the low-temperature limit, these asymptotes and their interpretations are the same as in 
case (i) for distinguishable particles. 

  
 Problem 2.36. Each of N >> 1 indistinguishable fermions has two non-degenerate energy levels 
separated by gap . Calculate the chemical potential of their system in thermal equilibrium at 
temperature T, if the direct interaction of the particles is negligible.

116 See, e.g., QM Sec. 8.1, in particular Eq. (8.11). 
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 Solution: If we dealt with the grand canonical ensemble, i.e. if the chemical potential  was 
exactly fixed, we could readily calculate the exact average numbers of particles on the lower level 
(whose energy 0 we may take for 0) and on the higher level (of energy 1 = ) by applying, to each 
level, the Fermi-Dirac distribution (2.115): 

11
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 Now we may use the very common trick, which was discussed in Sec. 2.8 of the lecture notes. 117 
If the total number of particles is so large that N0,1 >> 1, the relative fluctuations of these numbers are 
negligibly small, and we may use the above formulas even for the canonical (Gibbs) ensemble, in whose 
member systems, the total number N = N0 + N1 of particles is exactly fixed: 
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to calculate the average value of the chemical potential, whose relative fluctuations, at N >> 1, are very 
small. The last equation may be easily solved, giving 

2/ . 

 Note that this result may be used as a toy model of the electron/hole statistics in undoped 
(“intrinsic”) semiconductors, to be discussed in Sec. 6.4 of the lecture notes – cf. Fig. 6.6 and Eq. (6.60).  

 

 

117 This way of calculation of the (average) chemical potential will be repeatedly used, for other systems, in 
Chapters 3 and 6 of this course. 
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Chapter 3. Ideal and Not-So-Ideal Gases 

 Problem 3.1. Use the Maxwell distribution for an alternative (statistical) calculation of the 
mechanical work performed by the Szilard engine discussed in Sec. 2.3 of the lecture notes. 

 Hint: You may assume the simplest geometry of the engine – see Fig. 2.4. 

 Solution: Let us assume that initially, the partition with a door in 
it was in the middle of the cylinder (in the figure on the right, at x = l/2) 
and that the information provided by the Maxwell demon has enabled us 
to close the door when the molecule was in the left part of the cylinder. 
Then the repeated hits by the molecule provide an average force pushing 
the partition to the right. The momentum transferred from the particle to 
the partition at a single elastic hit is 2px, where px is the momentum’s 
component normal to the partition. Time-averaging the 2nd Newton law (or rather its x-component), 

x
x

dt

dp
F , 

over the interval  between the hits, we see that the average force xF acting on the partition is equal to 

the ratio 2px/. At an arbitrary position x of the partition (with l/2  x  l), the interval  equals 2x/vx, 
where vx = px/m  is the x-component of the particle’s velocity. Thus,  

x

mv

vx

mvp x

x

xx
x

2

/2

22



F . 

 To average this result over a statistical ensemble of similar experiments, we may use the 
Maxwell distribution (or alternatively the equipartition theorem) giving mvx

2/2 = T/2, so  

x

T
x F . 

Now we can calculate the work done by the molecule during a slow motion of the partition from xini = 
l/2 to xfin = l, at a constant temperature: 

.2ln
2/2/

Tdx
x

T
dx

l

l

l

l

x   FW  

This is exactly the work that was calculated in Sec. 2.3 from the thermodynamic relation dQ = TdS. 

 One more way to get the same result is to use the equation of state of the ideal classical gas with 
just one molecule, PV = T, and calculate the same work by integration over an isothermal two-fold 
expansion of the containing volume V: 

  .2ln
2/2/

T'dV
V'

T
dV'V'P

V

V
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 W  
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0 xl
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 Problem 3.2. Use the Maxwell distribution to calculate the drag 

coefficient   –F/u, where F is the force exerted by an ideal 
classical gas on a piston moving with a low velocity u, in the simplest 
geometry shown in the figure on the right, assuming that collisions of the 
gas particles with the piston are elastic. 

 Solution:  This problem is essentially a refinement of the previous 
one: now we have to take into account a low but nonvanishing velocity u 
of the piston. Let us first consider a particle with an initial velocity with a positive horizontal component 
vx (in the cylinder’s reference frame) – see the figure above. In the piston’s reference frame, this 
component equals (vx – u). Since the collision is elastic, in the piston’s frame, the component’s modulus 
is conserved, so after the collision, it equals –(vx – u)  –vx + u, so in the cylinder’s frame, it is vx’ = (–vx 

+ u) + u  –vx + 2u. Hence the momentum transferred to the piston is –(mvx) = –m[(–vx + 2u) – vx] = 
2m (vx – u)  2mvx (1 – u/vx). This momentum should be attributed to the appropriate time interval t 
around the hit moment t, namely, to the sum of the intervals t– = x/vx and t+ = x/ vx’  between that 
moment and the instances of the previous and the next reflections of the particle from the opposite 
(immobile) end of the cylinder – see the figure above: 

 
 
 xx
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Hence the time-averaged force exerted on the piston by one particle is 
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(As the simplest sanity check: at u = 0, this expression is reduced to the one derived in the solution of 
the previous problem.) Since a particle moving initially in the opposite direction but with the same 
velocity, much higher than u, exerts on the piston an equal average force, we can generalize this formula 
as 

xxxx vuvuv
x

m
 for  ),2( 2F . 

 Now this force should be averaged over the 1D Maxwell distribution of the velocity component 
vx, following from Eqs. (3.5)-(3.8) of the lecture notes: 
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The resulting average force exerted by N molecules on the piston is 

         u
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where A is the piston area, V = Ax is the current volume occupied by the gas (see the figure above), and  
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 The largest, first term on the right-hand side of Eq. (*) is the usual static pressure force of the 
ideal classical gas, while the second one is the linear approximation for the drag (viscous-friction) force 
Fdrag = –u, always directed against the body’s velocity, and hence dissipating its mechanical energy.118

The particular expression (**) for the drag coefficient  will be used in Chapter 5 to illustrate 
the fundamental relation between fluctuations and dissipation. 

 

 Problem 3.3. Derive the equation of state of an ideal classical gas from the grand canonical 
distribution. 

 Solution: According to Eq. (2.109) of the lecture notes, in the grand canonical ensemble, i.e. in 
the statistical ensemble with fixed temperature T and chemical potential  but variable number N of 
particles (see Fig. 2.13 and its discussion), the grand thermodynamic potential  equals 

           
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.  (*) 

However, per Eq. (2.59), the last sum is just the partition function ZN of the canonical (Gibbs) 
distribution, for a particular value of N. As was discussed in detail in Sec. 3.1, for the ideal classical gas 
of indistinguishable particles, this function is given by Eq. (3.15): 
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so the last form of Eq. (*) reduces to 
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According to the Taylor expansion of the exponential function at the origin, 

  kk

k
k

k

k kd

ed

k
e 

 


 











0

0
0 !

1

!

1
, 

the sum in the last form of Eq. (**) is just the exponent of the product in the square brackets, so we get 
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Now we can calculate the average number of particles in the gas, by using the last of Eqs. (1.62):119 
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118 For a discussion of various effects of this force, see, e.g., CM Chapters 5 and 8. 
119 Note that with the replacements N  N and    (justified for N >> 1), this expression coincides with Eq. 
(3.32) of the lecture notes, which was derived there from the Gibbs distribution. 
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Plugging this relation, read backward, back to Eq. (***), we get a very simple result, 

NT , 

so the thermodynamic relation (1.60),  = –PV, immediately yields the equation of state of the gas, 

TNPV  . 

 In the thermodynamic limit N  , when the difference between N and N is negligible, this 
expression coincides with Eq. (3.18), which was derived in Sec. 3.1 of the lecture notes from the Gibbs 
(canonical) distribution – valid for a statistical ensemble with fixed T and N rather than . 

  

 Problem 3.4. Prove that Eq. (3.22) of the lecture notes, 

2
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21
1 lnln
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 , 

derived for the change of entropy at the mixing of two ideal classical gases of completely 
distinguishable particles (that initially had equal densities N/V and temperatures T), is also valid if the 
particles in each of the gases are indistinguishable from each other but different from those in the 
counterpart gas. For simplicity, you may assume that the masses and internal degeneracy factors of all 
the particles are equal. 

 Solution: For each of the gases before mixing, we may use Eq. (3.20) of the lecture notes,  
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which results from Eq. (3.12) with the correct Boltzmann counting. (Due to the equality of m and g of 
all particles, their function f(T) is the same, so it does not need an index.) For the gas after mixing, we 
have to modify the counting in the following way: 

,exp
!!

1
21

21

NN

k

k

TNN
Z


















  

 

in order to account for the internal indistinguishability of particles of each type. Now carrying out the 
calculations similar to those done in Sec. 3.1, for the entropy of the mixed gas we get 
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From here, we see that the mixing entropy, 
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is indeed described by the same expression as for all-distinguishable particles. This result is natural 
because the mixing does not change the internal disorder (i.e. the entropy) of each component of the gas. 
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 Problem 3.5. A round cylinder of radius R and length L, containing an ideal classical gas of N >> 
1 particles of mass m each, is rotated about its symmetry axis with an angular velocity . Assuming that 
the gas as a whole rotates with the cylinder, and is in thermal equilibrium at temperature T,  

 (i) calculate the gas pressure distribution along the cylinder’s radius, and  
 (ii) neglecting the internal degrees of freedom of the particles, calculate the total energy of the 

gas and its heat capacity. 

Analyze the results in the high- and low-temperature limits. 

 Solutions:  

 (i) From classical mechanics120 we know that in the non-inertial reference frame rotating with the 
cylinder (in which the gas as a whole rests), we have to add, to all real forces exerted on a particle, the 
centrifugal “inertial force”  

  ,2
lcentrifuga ρrωω mm F  

where  is the radius vector’s component in the plane normal to the rotation axis. This force may be 
represented as –U, where U is the effective potential energy 

  const
2

22


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U r . 

With this specification, Eq. (3.26) of the lecture notes yields the following gas density (the number of its 
particles per unit volume): 
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The constant n0 (physically, the particle density at  = 0, i.e. on the cylinder’s axis) may be calculated 
from the condition that the total number of particles in the cylinder is equal to the given N: 
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This condition yields 
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 Now applying the equation of state of an ideal gas locally, in the form P(r) = n(r)T, we get121 

120 See, e.g., CM Sec. 4.6. Note that the other (Coriolis) “inertial force” due to rotation with a constant angular 
velocity, FCoriolis = –2mv, is perpendicular to particle’s velocity v and hence cannot do any work on the particle, 
so it does not contribute to the effective potential energy. True, that force does contribute to the canonical moment 
and hence the total energy of each particle (see, e.g., CM Eqs. (4.98) and (4.100)), but these contributions are 
linear in v and hence are averaged out at the statistical averaging over all particles. 
121 Note that according to Eq. (*), P(R)/P(0) = exp{m2R2/2T}, so at m2R2 >> T, even a minor difference in the 
mass m of the particle may lead to a considerable difference of this pressure ratio. This is exactly the effect 
employed for the separation of isotopes (in particular, of 238U from 235U, in the form of the hexafluoride gas UF6) 
in centrifuges used in the nuclear fuel enrichment technology.  
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 If the temperature T is relatively high (and/or the rotation is relatively slow), then both exponents 
in this expression may be Taylor-expanded, with only leading terms kept. The result gives only a minor 
correction to the static value P = NT/V: 
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. 

 In the opposite, low-temperature/high- limit, T << m2R2, the exponent in the denominator of 
Eq. (*) is much larger than 1, and the formula is reduced to the following relation: 
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showing that all the gas is compressed into a layer, of thickness ~0 << R, at the cylinder’s wall and that 
the pressure at the very wall (at  = R) is temperature-independent, determined just by the rotation. 

 (ii) In the lab reference frame, the particle’s velocity v is the vector sum of the velocity vrel of its 
thermal motion in the rotating reference frame, and the average local rotation velocity vrot = r, so its 
total kinetic energy is 
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Since the thermal velocity vrel is random, with the isotropic distribution of its directions, the statistical 
average of the second term vanishes, while the average of the first term (according to the equipartition 
theorem) is 3T/2. As a result, the total energy of the gas122 may be calculated as 
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 In the high-temperature limit, T >> m2R2, the Taylor expansion of the exponents, with only two 
leading terms kept, yields the usual thermal energy (3/2)NT plus a small correction describing the 
kinetic energy of rotation of the gas (which, in this limit, is distributed virtually uniformly over the 
cylinder’s bulk) as the whole: 

122 Note that in the inertial lab frame, the centrifugal “inertial force” and the associated effective potential U(r) do 
not exist, so the full energy of the gas is just the sum of the kinetic energies mv2/2 of its particles. 
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and M  mN is the total mass of the gas, so I1 is the usual moment of inertia of a uniform round cylinder 
of mass M. Since this rotation-related correction is temperature-independent, it does not affect the heat 
capacity of the gas, C  dE/dT = 3N/2. 

 In the opposite, low-temperature limit, the exponents in the numerator and denominator in the 
final form of Eq. (***) are much larger than 1. As a result, they cancel and we get a result very similar 
in form: 
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However, here the first, temperature-independent term, which describes the kinetic energy of rotation of 
the gas as a whole (now compressed to the cylinder’s wall, and hence having a larger moment of inertia, 
I2 = 2I1), is much larger than the second, temperature-dependent term. Moreover, somewhat counter-
intuitively, the second term is three times smaller than that of a stationary gas, so the heat capacity of the 
system is also three times lower: C = N/2. As the full result (***) shows, this reduction is due to the 
increase, with growing temperature, of the thickness scale 0 of the gas layer near the wall – see Eq. 
(**).  This increase, pushing the gas a bit farther from the cylinder’s wall, reduces the kinetic energy of 
its rotation, and thus slows the growth of the full energy of the gas.   

  

 Problem 3.6. N >> 1 classical, non-interacting, indistinguishable particles of mass m are confined 
in a parabolic, spherically-symmetric 3D potential well U(r) = r2/2. Use two different approaches to 
calculate all major thermodynamic characteristics of the system, including its heat capacity, in thermal 
equilibrium at temperature T. Which of the results should be changed if the particles are distinguishable? 

 Hint: Suggest a replacement of the notions of volume and pressure, appropriate for this system. 

 Solution: First of all, let us calculate the characteristics that do not require the notions of volume 
and pressure, starting from the statistical sum. The sum may be calculated in (at least :-) two different 
ways. 

 Approach 1 is to rely on the system’s classicity from the very beginning. This makes the 
Cartesian coordinates and momenta independent arguments, and allows us to use Eq. (3.24) of the 
lecture notes, which may be rewritten as a product: 
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Since the first of these operands is the probability density of a free particle, we may generalize Eq. 
(3.14) (valid for indistinguishable particles) as follows: 
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where the momentum-related factor zp is the same as for a free-particle gas and may be calculated by 
Gaussian integration – exactly as this was done at the derivation of Eq. (3.15): 
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The coordinate factor in Eq. (*), for our quadratic potential, may be also represented as a product of 
three similar, simple Gaussian integrals, which may be calculated similarly:  
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so, finally,  
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 Now we may calculate the free energy by using Eq. (2.63) and the given condition N >> 1, 
which enables the application of the Stirling formula to simplify ln(N!):  
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The reason why N is grouped with 3/2 under the first logarithm (just as it is grouped with 1/V at the 
usual, rigid confinement within volume V – see Eq. (3.16a) of the lecture notes) is that our current soft-
well system does not have any clearly defined volume, and the only parameter that characterizes the 
confinement is the effective spring constant . The comparison with Eq. (3.16) shows that in this case, 
the closest analog of the fixed volume V is the following fixed parameter: 

2/3

1


V , 

despite its different dimensionality (m3/J3/2). In this notation, the expression for the free energy becomes 
formally similar to Eq. (3.16a) for the rigidly confined gas, 
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so the remaining calculations are similar until we need to spell out the function f(T) – which is now 
different. In particular, using Eq. (1.35) to calculate the system’s entropy, at fixed V, we get 

 
dT

Tdf
N

N
N

T

F
S 















VV

ln , 

so, according to Eq. (1.47), the internal energy of the system is 
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Mercifully, E is again strictly proportional to N, so we may readily calculate the average energy per 
particle, E/N = 3T, and the heat capacity per particle, also at a fixed “volume” V, i.e., at fixed potential’s 
profile: 
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This simple result is in agreement with the equipartition theorem (2.48) because, in contrast with the 
rigidly confined gas, each of the three degrees of freedom of each particle provides it with not only a 
quadratic kinetic energy but also a quadratic potential energy. Finally, from the analogy of Eq. (***) and 
Eq. (3.16) for the “usual” (rigidly confined) ideal classical gas, it is clear that if we introduce the 
corresponding analog of pressure using the second of Eqs. (1.35), the resulting equation of state is also 
the same: 
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 At this point, we have to notice that the effective volume of the well’s part occupied by the 
particles may be defined by the natural relation 
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where n(r) is the particle density at the point r. Since, according to Eq. (3.26), the density n(r) is equal 
to n(0)exp{–U(r)/T}, the necessary integral has been essentially calculated above, giving 
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 As this result shows, the effective volume Vef (which, in contrast to V, has the usual physical 
dimensionality, m3), depends on temperature, and hence cannot be employed in the basic relations of 
thermodynamics without modification. 

 Approach 2. Let us notice that Eq. (**) may be rewritten as  
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where   (/m)1/2 has the physical sense of the frequency of oscillations of a single particle of the gas 
in our harmonic potential. This unsolicited appearance of the oscillation frequency shows that this 
expression may be also obtained differently. In this, more quantum-mechanics-based approach, let us 
first treat each gas particle as a 3D harmonic oscillator, and use the well-known result for its energy 
spectrum:123 
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so, with the inconsequential temperature-independent shift of the particle energy reference to the 
ground-state energy (3/2), Eq. (3.12) of the lecture notes becomes 
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123 See, e.g., QM Sec. 3.5, in particular, Eq. (3.124). 
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This sum is just the geometric progression and may be spelled out exactly (see Eqs. (2.67)-(2.68) of the 
lecture notes), but for our current purposes, we may use just its classical limit valid at  << T: 
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immediately returning us to Eq. (**) and all the following results obtained by Approach 1. Moreover, 
we may obtain some of these results directly from Eqs. (2.73)-(2.75) in the classical limit, with proper 
multiplications by the factor of 3 to acknowledge the 3D nature of our current problem. 

 Finally, the above results show that just as in the “usual” gas, the distinguishability of the 
particles, which kills the “correct Boltzmann counting” factor 1/N! in Eq. (**), does not affect the 
equation of state of the system and its energy and heat capacity, but does affect its free energy and 
entropy – just as in the rigidly confined gas – as was discussed in Sec. 3.1 of the lecture notes. 

 

 Problem 3.7. In the simplest model of thermodynamic equilibrium between the liquid and gas 
phases of the same molecules, temperature and pressure do not affect the molecule's condensation 
energy . Calculate the density and pressure of such saturated vapor, assuming that it behaves as an 
ideal gas of classical particles. 

 Solution: In this model, from the point of view of the gas/vapor, the liquid is an unlimited source 
of molecules with energy (–), i.e. an environment with a constant chemical potential, just as in the 
grand canonical ensemble – see Sec. 2.7 of the lecture notes. Referring the molecule’s energy to that at 
rest in the gaseous phase, we may write  = –. Hence we may apply to this phase all the formulas 
derived from the grand canonical distribution; in particular, for non-interacting classical particles, we 
may use Eq. (3.32) of the lecture notes. For the molecule density n  N/V in the gaseous phase, it 
immediately yields 
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 Since the gas itself remains classical, it obeys the Maxwell distribution (3.5) and hence the 
equation of state (3.18) in its last form: 

nTP  . 

Note, however, that since now the number of gas particles is not fixed (they may go to, and come from 
the liquid as necessary for the chemical and thermal equilibrium), in this model, the pressure is a 
function of temperature only and is independent of the volume: 
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As will be discussed in Chapter 4, such nearly – exponential dependence (dominated by the Arrhenius 
factor exp{–/T}) is a common feature of most phenomenological models of real gases – including the 
famous van der Waals model, though it is frequently not immediately apparent from the equation of 
state of the gaseous phase alone. 
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 Finally, just for the reader’s reference: Eq. (*) with the particular value   0.7110-19 J  
0.44eV (corresponding to /kB  5,130K) gives a surprisingly reasonable approximation for the 
temperature dependence of the partial pressure of the saturated water vapor at all temperatures not too 
close to water's critical point of 647 K – see the same Chapter 4. With the water molecule’s mass of m  
3.0010-26 kg, this value of  is in good agreement with the water's experimentally measured latent heat 
of vaporization  (~2.27 MJ/kg at ambient conditions). Note also a simple mnemonic rule valid near the 
room temperature: the partial pressure of the saturated water vapor nearly doubles at the temperature’s 
increase by every 10 K. This rule enables a simple if approximate calculation of the air’s relative 
humidity from its temperature and the dew point (the temperature at which the vapor, of the given 
density, saturates). 

 

 Problem 3.8. An ideal classical gas of N >> 1 particles is confined in a container of volume V 
and wall surface area A. The particles may condense on the walls, releasing energy  per particle and 
forming an ideal 2D gas on their surfaces. Calculate the number of condensed particles and the gas 
pressure, and discuss their temperature dependences, in thermodynamic equilibrium. 

 Solution: Since the surface condensate and the volume gas may exchange particles at will, their 
chemical potentials  have to be equal. To calculate  of the gaseous phase, we may use Eq. (3.32) of 
the lecture notes, with N replaced with (N – N0), where N0 is the number of condensed particles:124 
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 On the other hand, since the surface condensate is an ideal 2D gas, we need to review the 
calculations of Sec. 3.1 using the 2D density of states. Using the evident modification of Eq. (3.13),125 
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for an isotropic surface (with d2p = 2pdp, and d = d(p2/2m)  pdp/m), we get  
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(Note that in contrast to the 3D density of states given by Eq. (3.43) of the lecture notes, g3()  1/2,  
the function g2() is actually a constant.) One more necessary modification is that in accordance with the 
problem assignment, all energies of particles on the surface, including , should be shifted down by the 
energy . Taking into account also that the degeneracy gS of surface states may be different from that, 
gV, of the gaseous states, we get126 

124 As evident from this expression, NV(T) has the physical meaning of the effective number of states available for 
occupation in the gaseous phase at the given temperature. Similar notions are used in the discussion of electrons 
and holes in semiconductors – see, e.g., Sec. 6.4. 
125 If in doubt, please consult QM Secs. 1.7-1.8, in particular Eq. (1.99). For the particular case of electromagnetic 
waves, this expression was already used in the solution of Problem 2.28. 
126 Similarly to NV, the NA introduced this way has the physical sense of the effective number of the surface states 
available for occupation at temperature T.  
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 Equating these two expressions for  to describe the chemical equilibrium between the two 
phases, we get the following equation:  

   TN

N
T

TN

NN
T

S

0

V

0 lnln 


, 

which readily yields 
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Hence the number of particles in the gaseous phase is 
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and since they obey the ideal-gas equation of state, their pressure is 
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 This result, plotted in the figure on 
the right for several values of the 
dimensionless constant  (which is typically 
very large127) shows that the temperature 
dependence of P is very much different at 
temperatures below and above some value 
Tc that has to be calculated from the 
transcendental equation 
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(In the typical cases when  >> 1, the 
temperature Tc is somewhat lower than , 
but for all reasonable values of that 
parameter, it is not much lower.)  

 In particular, if the temperature is well below Tc, virtually all particles are condensed at the 
surface: N0  N, so the pressure provided by the few particles remaining in the gaseous phase is 
exponentially low: 

127 Indeed, according to Eq. (**), the parameter  is of the order of V/Arc() where rc(T) is the temperature-
dependent correlation length that was discussed in Sec. 3.2 of the lecture notes – see Eq. (3.37). As it follows 
from the estimates made during that discussion, rc is microscopic even at very low temperatures, while the ratio 
V/A is of the order of the linear size of the container, so for all “macroscopic” (human-scale) containers,  is very 
large. 
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This function P(T), which also includes the Arrhenius factor exp{–/T}, is close to, but still different 
from the one obtained in the solution of the previous problem – which is closer to experiment for typical 
liquids. On the other hand, for some systems, our current model of the liquid/vapor equilibrium is more 
realistic in that it does describe the condensate’s full evaporation at temperatures well above Tc, when N0 
<< N, and the pressure in the gaseous phase obeys the equation of state of the usual ideal gas, P = NT/V. 

 Note also that in contrast to genuine phase transitions (to be discussed in Chapter 4), the 
temperature dependences of all variables at T ~ Tc are smooth even at N  . Such smooth temperature 
borderlines are frequently called crossovers; they are typical for systems whose particles (or other 
elementary components) do not interact.128 

  

 Problem 3.9. The inner surfaces of the walls of a closed container of volume V, filled with N >> 
1 particles, have NS >> 1 similar particle traps (small potential wells). Each trap can hold only one 
particle, at a potential energy – < 0 relative to that in the volume. Assuming that the gas of the particles 
in the volume is ideal and classical, derive an equation for the chemical potential  of the system in 
equilibrium, and use it to calculate this potential and the gas pressure in the limits of small and large 
values of the N/NS ratio.  

 Solution: The total number of particles, N, is the sum of some number N0 of the particles 
condensed on the surface (localized at the surface traps), and the number (N – N0) of the particles 
thermally activated into the gas phase. Due to the given conditions that the gas is classical and that the 
number (N – N0) of these particles is large, it may be calculated (just as was done in the solutions of two 
previous problems) from Eq. (3.32) of the lecture notes:  
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 In order to obtain one more relation between the unknown variables  and N0, we may consider a 
statistical ensemble of single traps, and apply to it the grand canonical distribution with (1 + gS) 
different states: one empty-trap state, of a certain (inconsequential) energy 0, and gS different possible 
states with one trapped molecule, each with the energy (0 – ). As a result, Eqs. (2.106)-(2.107) yield 
the following probabilities of these states:  
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so the average number of filled traps (with the trapped molecule in any of gS possible states) is 

128 Such smooth transitions are also common for virtually all systems with a finite number of particles –see, for 
example, the solution of Problem 26 below and also the discussion of this issue in Sec. 4.5 of the lecture notes. 
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where in the thermodynamic equilibrium,  and T have to be the same as in Eq. (*). Combining these 
expressions, we get 
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 Unfortunately, for this model of the condensate/gas equilibrium (which is more realistic than 
those discussed in the two previous problems), Eq. (**) for   defies an exact analytical solution for 
arbitrary parameters. However, it may be readily solved in the limits of low and high values of the N/NS  
ratio. Indeed, since N0 cannot be larger than NS, in the limit N >> NS, most particles have to be in the 
gaseous phase, so in the 0th approximation, the second term in Eq. (**) may be ignored, and this 
equation is reduced to Eq. (3.32) of the ideal classical gas of N particles, giving 

        
 

S
V for  ,,ln NNT

V

NT
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TN
T  . 

Now we may use this value of  to calculate, in the 1st approximation, the (relatively small) number of 
condensed particles: 

                N
TNgTN

N
N

V





1/exp/ S

S
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According to Eq. (*) and Eq. (3.35) of the lecture notes, the ratio NV(T)/N in the denominator is close to 
(T/T0)

3/2 and has to be much larger than 1 to keep the gas classical. However, since the exponent is such 
a steep function at large values of its argument, the ratio N0/NS depends mostly on the condensation 
energy : if it is much larger than the crossover value129 
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S

V
c ln ,     (****) 

the first term in the denominator of Eq. (***) is negligibly small, and N0  NS. In the opposite limit,  
<< c, the ratio N0/NS is exponentially small.  

 In the opposite limit of a relatively large number of traps, N << NS, Eq. (**) may be satisfied 
only if the fraction in its second term is much smaller than 1, i.e. if exp{–( + )/T} >> gS ~ 1, so the 
equation is reduced to  
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and may be readily solved for : 
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With this, Eq. (*) gives a result functionally almost similar to Eq. (***) of the previous problem: 

129 See the discussion of this notion in the solution of the previous problem. 
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just with a different pre-exponential coefficient in the denominator. 

 Again, the ratio NV(T)/N is of the order of (T/T0)
3/2 and has to be large for the gas to stay 

classical. However, since in our  limit, the ratio NS/N is also large, and the exp{/T} is a very steep 
function, the gas pressure depends mostly on the condensation energy . If this energy is much larger 
than the crossover value c given by Eq. (****), the number of particles in the gas phase is 
exponentially small, 
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(virtually all particles are condensed on the surface traps), and so is its pressure: 
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 As in the results of the two previous problems, the pressure in this limit is dominated by the 
Arrhenius activation factor exp{–/T}. Note also a very natural trend, P  1/NS, though the condition NS 
>> N used for the derivation of this result does not allow us to use it for following up the no-trap limit 
NS  0. In the opposite limit of a low condensation energy  << c, our result is again reduced to the 
pressure of an ideal classical gas of N particles, P = NT/V. This is natural because, in this limit, virtually 
all particles are thermally activated into the gas phase. 

 To summarize the above analysis, the particle condensation on the surface affects the gas 
properties substantially only if the number NS of traps is of the order of N (or higher) and the 
condensation energy is larger than the temperature-dependent crossover value (****).130 

   

 Problem 3.10. Calculate the magnetic response (the Pauli paramagnetism) of a degenerate ideal 
gas of spin-½ particles to a weak external magnetic field, due to a partial spin alignment with the field. 

 Solution: According to basic quantum mechanics,131 a spin-½ particle placed into magnetic field 
B may have only two stationary spin states, with energies  

          Bm00  Bm ,    (*) 

where m0 is the effective magnetic moment associated with the spin.132 Hence, we may represent the 
Fermi gas of non-interacting particles as two independent gases with different particle spin orientations, 
with shifted particle energies 

130 Note also that the solved problem maps very closely onto the statistics of charge carriers in doped 
semiconductors – see Sec. 6.4 of the lecture notes and the associated problems. 
131 See, e.g., QM Secs. 4.4-4.6 and 5.1. 
132 As was already discussed in the solution of Problem 2.4, m0 = /2, where  is the gyromagnetic ratio of the 
particle. 
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Bm0

2

2
 m

p . 

(Let me hope that different fonts leave a very little chance of confusion 
between the particle’s mass m and its magnetic moment m0). 

 If B = 0, the number of particles in each partial gas is the same, 
but after the field has been applied, the spins of some particles flip to 
align with the field to reduce their energies, i.e. transfer from one 
partial gas to another. Such a transfer continues until the chemical 
potentials  of both partial gases become equal – see the schematic 
figure on the right. As this scheme shows, at relatively small fields and 
temperatures (m0B, T << F), the number of transferred particles, in 
the linear approximation in the field, is 

               
 

Bm0
3

2

g
N  ,     (**) 

where g3()  g is the density of states given by Eq. (3.43) of the lecture notes, which counts particles of 
all spin states,133  while in Eq. (**) we need to count only one of them – hence the extra factor ½.  

 Superficially, it may look that this result is valid only at extremely low temperatures, T << m0B, 
when the thermal smearing of the Fermi surface (see Fig. 3.2a of the lecture notes and its discussion) is 
much smaller than the energy shift caused by the applied field – as pictured, for the sake of simplicity, 
in the figure above. However, this is not so. Indeed, we might derive Eq. (**) by subtracting two Eqs. 
(3.65) of the lecture notes, with the appropriate substitution g()  g3()/2, written for two values of  
that differ by m0B, and keeping only the leading term, linear in m0B. Since Eq. (3.65), by its derivation, 
is valid for any chemical potential shifts and temperatures much lower than F, so is Eq. (**). 

 Each flipped spin changes the total magnetic moment of the gas by 2m0, so the net magnetization 
(the magnetic moment of a unit volume) becomes 

 
Bm

m
M

V

g

V

N 32
0

02



 , 

with the vector M directed along the vector B and hence describing a paramagnetic response of the gas 
to the applied field. As the figure above shows, in this linear approximation in B, we may take g3() = 
g3()B=0  g3(F), so the magnetization is proportional to the field, and hence may be characterized by 
the following positive magnetic susceptibility:134  
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M
 .    (***)  

 The result in this form is convenient for applications because it is to some extent stable with 
respect to deviations of the Fermi surface from the spherical shape, typical for conduction electrons in 

133 In our case of spin-½  particles, the spin degeneracy g = 2s + 1 = 2.  
134 See, e.g., EM Eq. (5.111). Note that such a simple transfer from H to B is only valid at m  << 1. 

Bm0

pp 0

Bm0







00 Bm 00 Bm

0B



Essential Graduate Physics               SM: Statistical Mechanics            

Problems with Solutions                  Page 97 

most metals.135 If these deviations are negligible, and the Fermi surface is indeed virtually spherical (as 
it is, e.g., in alkali metals), we may use Eq. (3.55b) of the lecture notes to recast it in another form: 
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m
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 ,     

where n  N/V is the particle density. Comparing this expression with that for a similar but non-
degenerate gas, following from the solution of Problem 2.4, 

T

n 2
0

0m

m
  , 

we may conclude that cooling of an ideal Fermi gas results in the Curie-law growth of its paramagnetic 
susceptibility only until it saturates at T ~ F, i.e. at the onset of the gas’ degeneracy. 

 For the particular case of electrons, we may use the expression m0 = B = e/2me. Together  with 

the general relation F = 2kF
2/2me and Eq. (3.54) in the form n = 2(4/3)kF

3/(2)3, it enables us to 
rewrite our result in its more common form: 
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  .      

 In order to facilitate a comparison of Eq. (***) for the Pauli paramagnetism with the Landau 
diamagnetism resulting from the orbital motion of particles of the same degenerate Fermi gas (whose 
calculation will be the subject of the next problem), let us re-derive the same result in a slightly different 
way. According to Eq. (*), the reversal of the magnetic moment m of one particle, from the direction 
against the field to the direction along it, changes its energy by (B) = –2m0B. Hence the transfer  of 
N >> 1 particles, caused by a gradually growing field (see the arrow in the figure above), results in the 
following magnetic energy change:136 
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   (****) 

But, according to basic magnetostatics,137 the magnetization-related part of the total magnetic field 
energy VB2/2 in volume V of a weakly polarizable linear medium (with m << 1) is 
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Comparing this expression with Eq. (****), we arrive at Eq. (***) again. 

135 These deviations are due, mostly, to the interaction of the electrons with the crystal lattice – see, e.g., QM 
Secs. 2.7 and 3.4. 
136 Note that the simple multiplication of (B) = –2m0B by the N given by Eq. (**) would not give the correct 
factor ½, which reflects the induced character of the magnetization, proportional to the field. (If this issue is not 
absolutely clear, you may like to review the derivation of Eq. (1.60) in EM Sec. 1.3.) 
137 See, e.g., EM Secs. 5.5 and 6.2. 
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 Problem 3.11. Calculate the magnetic response (the Landau diamagnetism) of a degenerate ideal 
gas of electrically charged fermions to a weak external magnetic field, due to their orbital motion. 

 Solution: According to basic quantum mechanics,138 an external magnetic field causes the 
quantization of the motion of a free particle of mass m and electric charge q, in the plane normal to the 
field. The spectrum of the corresponding component  of its orbital energy is a set of Landau levels: 

         ,...2,1,0,  where,
2

1
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The orbital degeneracy of each level, on a plane of area A, is g2/c, where g2 is the of 2D density states 
in the absence of the field,139 so the magnetic field does not affect the state density averaged over the 
Landau levels. The magnetic field does not affect the motion of the particle along its direction, including 
its energy  = p

2/2m; as a result, the total energy of the particle is  
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with the average 3D density of states g3() the same as at B = 0 – see Sec. 3.3 of the lecture notes. 

 If the N >> 1 fermions confined in volume V do not directly interact, the above expressions 
enable the calculation of the magnetic response of the system, using (at least :-) three different 
approaches. The first, most general approach140 is to sum up the contributions (2.114) from all quantum 
states of the system to calculate the total grand canonical potential  of the system as a function of , T, 
and B. This expression naturally includes a sum over all Landau levels (i.e. over the index n), which 
may be explicitly calculated in the limit B  0 using the Euler-Maclaurin formula.141 The resulting 
expression for  may then be used to calculate the magnetic response using the second of Eqs. (1.62), 
and the analogy between the canonical pairs of variables {–P, V} and {0Hj, Mj}, discussed in Sec. 1.1. 
The advantage of this approach is that its full form (i.e. before following the limit B  0) is valid for 

arbitrary temperatures and fields, in particular at c ~ F where its results describe the so-called de 
Haas-van Alphen effect – periodic oscillations of the magnetization 
as a function of 1/B, as the Landau levels (*) sequentially cross the 
Fermi surface.142 

 For our limited goal of analysis of a degenerate Fermi gas 
with T/F  0, this general approach is, however, somewhat 
excessive because, in this limit, the susceptibility m tends to a 
finite value, which may be more readily calculated by taking T = 0 
from the very beginning. In this case, the level-filling diagram 
shown in the figure on the right may be readily used to calculate 

138 See, e.g., QM Sec. 3.2. 
139 See, e.g., Eq. (*) in the model solution of Problem 8. 
140 It is followed, for example, in Sec. 59 of L. Landau and L. Lifshitz, Statistical Physics, Part 1, 3rd ed., 
Pergamon, 1980. 
141 See, e.g., MA Eq. (2.12a). 
142 These oscillations are closely related to the Shubnikov-de Haas effect – the accompanying oscillations of the 
electric conductivity, and its extreme 2D form – the quantum Hall effect (see QM Sec. 3.2).   
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 the total energy E of the system as a function of the magnetic field and the Fermi energy F, i.e. the 
largest value of the single-particle energy (**).143 From this function, we may calculate the difference 
E  E(B) – E(0)  B2  0 and use it to find m, exactly as this was done at the end of the previous 
problem’s solution. This approach is quite straightforward and is highly recommended to the reader as 
an additional exercise.  

 However, here I would like to describe an even shorter, very 
elegant alternative calculation, which partly re-uses the previous 
problem’s solution.144 Let us consider the systems of Landau levels 
in fields B and B/2 – see the figure on the right. Since we are only 
pursuing the limit B  0, we may consider the level splitting on a 

scale c that is much smaller than T (which is in turn much lower 
than F), so the full number of states on adjacent Landau levels is 
virtually the same. The diagram shows that at the field’s increase 
from B/2 to B, the energy of states on each other level, and hence of 

half of all states of the system, goes up the energy by c/4, while 
another half goes down by the same amount. But this is exactly the 
effect analyzed in the previous problem (see, in particular, the figure in its solution), with the 
replacement  
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Hence the expression for the energy change E due to the resulting redistribution of particles over the 
energy levels with  close to F, derived in that solution, becomes 
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Now reproducing this result for the series of sequential two-fold increases of the field, we get 
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The last sum is just the geometric series,145 equal to 4/3, so we finally get 
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143 This intermediate result also describes the de Haas-van Alphen oscillations, which at T = 0 are very sharp. 
144 To the best of my knowledge, this trick was invented only recently – see E. Batyev, Physics-Uspekhi 52, 1245 
(2009). 
145 See, e.g., MA Eq. (2.8b), with  = ¼ .  
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 This expression, for q = –e and m = me, differs only by the factor (–1/3) from Eq. (****) of the 
solution of the previous problem, provided that in the latter formula, we take m0 = e/2me – as we have 
to do for electrons. Hence for this (practically, most important) case, we may write 

spinmorbitalm 3

1   , 

i.e. for a free degenerate electron gas, the Landau diamagnetism is exactly three times weaker than the 
Pauli paramagnetism.146 Note, however, that this ratio is sensitive to several effects common to real 
metals; for example, it is affected by the difference between the effective mass of electrons147 and me. 
Note also that for dilute (non-degenerate) gases of atoms with uncompensated spins, the spin 
paramagnetism is much stronger than the orbital diamagnetism – see, e.g., EM Problem 5.18 and QM 
Problem 6.15. 

 

 Problem 3.12.* Explore the Thomas-Fermi model of a heavy atom, with nuclear charge Q = Ze 
>> e, in which the electrons are treated as a degenerate Fermi gas, interacting with each other only via 
their contribution to the common electrostatic potential (r). In particular, derive the ordinary 
differential equation obeyed by the radial distribution of the potential, and use it to estimate the effective 
radius of the atom.148 

 Solution: Due to the condition Z >> 1, we may expect the characteristic radius rTF(Z) of the 
neutral atom (i.e. of the electron cloud surrounding the point-like nucleus) to be much larger than the 
linear scale r0 of the single electron’s motion in the Coulomb field of the bare nucleus of charge Q = Ze. 
Indeed, quantum mechanics tells us149 that r0 is defined by the equality of the scales of the quantum-
kinetic and potential energies of the electron in such a hydrogen-like “atom” – actually, of the ion with 
the net charge (Z – 1)e >> e: 
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,    

where rB is the Bohr radius. (This assumption, rTF >> r0, will be confirmed by our solution.) Due to this 
relation, which means that the electron’s electrostatic potential energy U(r) = –e(r) changes in space 
slowly on the r0-scale, we may calculate the electron density n(r)  dN/d3r in a small local volume (with 
r0 << dr << rTF) by neglecting the gradient of U(r), i.e. considering the electrons as free particles with 
the full energy150  

146 Note that by modifying Eq. (*) to include the contribution of the particle’s spin (as is done, e.g., in the solution 
of QM Problem 5.50), it is possible to calculate the net magnetic response arising from both the Pauli 
paramagnetism and the Landau diamagnetism, in one shot. 
147 See, e.g., QM Sec. 2.8. 
148 Since this problem and the next one are important for atomic physics and, at their solution, thermal effects may 
be ignored, they were given in Chapter 8 of the QM part of this series as well, for the benefit of the readers who 
would not take this SM course. Note, however, that the argumentation in their solutions may be streamlined by 
using the notion of the chemical potential , which was introduced only in this course. 
149 See, e.g., QM Eq. (1.13). 
150 Let me hope that the difference between the electron’s energy  and the electrostatic constant 0 is absolutely 
clear from the context. 
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where the second term is treated as a local constant. As a result, we may apply to this small local volume 
of this degenerate gas the analysis carried out at the beginning of Sec. 3.3 of the lecture notes, in 
particular, Eq. (3.54) with N/V = n(r) and the spin degeneracy g = 2 pertinent to electrons, to write  
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 Next, if we accept the free electron energy at r   as the reference, the chemical potential  of 
the atom’s electrons in this model has to be zero because they have to be in the chemical equilibrium 
with free electrons in the environment.151 (One may say that the ionization energy of the Thomas-Fermi 
atom equals zero; in reality, the ionization energy of heavy atoms is different from zero but is much 
lower than EH.) Hence, for negligible temperatures,152 the largest value of the total energy  has to equal 
zero for any r, so, according to Eq. (*), the maximum value pF

2/2me of the local kinetic energy p2/2me 
has to be equal to –q(r)  e(r). Together with Eq. (**), this equality yields 
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 The second relation between the functions n(r) and (r) is given by the Poisson equation of 
electrostatics,153 
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where the spelled-up two parts of the electric charge density (r) represent, respectively, the point-like 
positive charge Q = Ze of the nucleus at the origin and the space-distributed negative charge of the 
electron cloud, with the density –en(r). Plugging  n(r) from Eq. (***), and spelling out the Laplace 
operator for our spherically-symmetric problem,154 we get the following Thomas-Fermi equation for the 
radial distribution of the electrostatic potential : 
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 This ordinary differential equation has to be solved with the following boundary conditions. As 
the above Poisson equation shows, at r  0, the potential has to approach that of the atomic nucleus: 

151 The reader who has already run into the solution of this problem in the QM part of this series might notice that 
in that course I had to use somewhat awkward reasoning to make this point without using the notion of the 
chemical potential. 
152 The apparent scale of temperatures at which this assumption becomes invalid is given by the Hartree energy 
EH = (me/

2)(e2/40)
2  27.2 eV (see, e.g., QM Eq. (1.9) and its discussion), corresponding to TK = EH/kB ~ 3105 

K – about thousand times higher than the standard room temperature of 300 K. Actually, the solution of the next 
problem will show that the real validity threshold for T is even ~Z4/3 >> 1 times higher than this estimate. 
153 See, e.g., EM Eq. (1.41).  
154 See, e.g., MA Eq. (10.9) with / = / = 0. 
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On the other hand, due to the atom’s neutrality, at large distances, its electrostatic potential should not 
only tend to zero but also do this faster than that of any nonvanishing net charge:155 

   rrr at  ,0 . 

 It is convenient to recast this boundary problem by introducing a dimensionless distance   from 
the origin, defined as 

                    8853.0
4

3

2

1
  and,with  ,

3/2

0
3/2

01/3
B

TF
TF








 brZbr

Z

r
bZr

Zr

r
, (****) 

and also a dimensionless function () defined by the following equality: 
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With these replacements, the Thomas-Fermi boundary problem becomes free of any parameters, in 
particular, independent of the atomic number Z: 
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 Unfortunately, this nonlinear differential equation may be solved only numerically, but this is 
not a big loss: the solution shows that as the argument  is increased, the function () goes down from 
unity at  = 0 to zero at    monotonically (and very uneventfully), at distances  ~ 1. (For example, 
(1)  0.4.) This is why, even without the exact solution, we may conclude that Eq. (****) gives a fair 
scale of the effective atom’s size. This relation shows that the effective radius rTF(Z) decreases with the 
atomic number Z very slowly, as rB/Z1/3, and hence, at Z >> 1, is much larger than r0  rB/Z, thus 
confirming our initial assumption. For atoms with Z >> 1, this result is in good agreement with those 
given by more accurate models – in particular those describing their quantized energy spectra.  

 

 Problem 3.13.* Use the Thomas-Fermi model that was explored in the previous problem to 
calculate the total binding energy of a heavy atom. Compare the result with that of the simpler model, in 
that the Coulomb electron-electron interaction is completely ignored. 

 Solution: The binding energy of the atom may be found, for example, as 
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155 A useful sanity check of the self-consistency of the Thomas-Fermi model may be done by using the above 
relations to prove that in this model, the total number of electrons, calculated as 
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 r , 

equals exactly Z – a simple exercise, highly recommended to the reader. 
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where W(Z’) is the work necessary to decrease the atomic number by one, from Z’ to (Z’ – 1). To 
calculate W(Z’), let us note that the process of decreasing the atomic number by one may be 
decomposed into two steps: first taking one electron out of the electron cloud, and then taking one 
proton, of charge +e, out of the nucleus. Since the chemical potential of the electrons in the Thomas-
Fermi model is zero, the first step of this process requires no work, while the second step requires work 
W(Z’) = –ee(0), where e(r) is the part of the potential (r), which is due to electrons only.156 Using the 
above relations, with the notation replacement Z  Z’, we get 
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Since (0) – 1 = 0 by construction, at r  0, the last fraction tends to (d/dr)r=0, and we get  
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Due to the properties of the universal function (), which were discussed in the model solution of the 
previous problem, we may expect the derivative d/d to be negative, with its modulus of the order of 1 
at  = 0. Indeed, the numerical solution of the boundary problem for this function yields 
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so W(Z’) > 0 for any Z’. As a result, the total binding energy Eb given by Eq. (*) is positive as well. 
(This means that the atom’s components, after they have been brought far apart, have higher total energy 
than the initial atom). Due to the condition Z >> 1, the sum (*) may be calculated as an integral: 
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But the last fraction is just the Hartree energy EH,157 so we finally get 
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Note the very non-trivial scaling of the energy with the atomic number Z. 

 Now let us consider a simpler model,158 in which the direct electron-electron interaction is 
completely ignored, so (r) is just the unscreened electrostatic potential of the nucleus: 

156 Of course, in reality, each proton also interacts (and very strongly) with other protons of the nucleus. 
However, our goal is to calculate the electron binding energy, i.e. difference between the sum of energies of the 
“assembled” nucleus and individual electrons, far apart from it and each other, and that of the whole “assembled” 
atom. In the calculation of this difference, the change of the intrinsic energy of the nucleus has to be ignored. 
157 See, e.g., a footnote in the model solution of the previous problem.  
158 Very unfortunately, this model is sometimes called “statistical” – as if its counterpart, the Thomas-Fermi 
model, is not statistical. 
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for all r. Here we still may use Eqs. (**) of the model solution of the previous problem,159 
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but since in this model, the chemical potential  is not known in advance, the local value of the 
maximum momentum, pF(r), should be found from Eq. (*) of the previous problem, with   = : 
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In order to have the electrons localized near the nucleus,   cannot be positive (relative to the electron 
energy at r  ), so pF, and hence the electron density as well, have to turn to zero at some finite radius 
ref defined as 
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in this model, playing the role of the atom’s radius. With this notation, Eqs. (**) and (***) yield 
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 Now we may calculate ref (and hence the chemical potential) by requiring the atom to be neutral, 
i.e. the number of electrons to be equal to Z:160 
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Carrying out the integration, we get 
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The last (dimensionless) integral may be recast into a sum of elementary integrals using the substitution 
  sin2 and then worked out using MA Eqs. (3.3d) and (3.4). The result is /16, so the electron 
number balance becomes 

        ,
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     (****) 

159 Just as in that problem, we assume the electron gas to be degenerate, with T  << . 
160 Evidently, in contrast to the Thomas-Fermi model, this rudimentary model is not self-consistent, because it 
implies that (ref) = Ze/40ref   0, while the exact electrostatic potential of a neutral, spherically-symmetrical 
system of charges should vanish at its effective surface. 
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giving 
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 So, this rudimentary model gives the same order of magnitude of rTF as the Thomas-Fermi 
model, though with a significantly larger numerical coefficient.161 

 Now let us calculate the binding energy (*) within this simple model. To avoid the calculation of 
the electron potential e(0) felt by the nuclear charges, the partial work W(Z’) may be found differently 
than for the Thomas-Fermi model. Namely, let us calculate the radius ref(Z’) and the chemical potential 
(Z’) of an ion with Z’ electrons but with the nuclear charge Q still equal to Ze. Reviewing the above 
calculations, we see that this may be done merely by replacing Z on the right-hand side of Eq. (****) 
with Z’:  
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Now we may calculate the chemical potential as 
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The work W(Z’) necessary for the removal of an additional electron from the ion to infinity is –(Z’), 
so, replacing the sum (*) with the corresponding integral, we get 
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 Very naturally, this value is higher than that calculated in the Thomas-Fermi model because in 
the simple model, each electron is attracted to the nucleus by the Coulomb field unscreened by other 
electrons, making their interaction stronger. Note, however, that the difference is not too large – just 
about 50%.  This relative insignificance of the Coulomb interaction of electrons in atoms echoes that in 
the degenerate electron gas in metals – see Table 3.1 and its discussion in section 3.3 of the lecture 
notes. 

 

 Problem 3.14. Calculate the characteristic Thomas-Fermi length TF of weak electric field’s 
screening by conduction electrons in a metal, by modeling their ensemble as an isotropic degenerate 
Fermi gas, with the electrons’ interaction limited (as in the two previous problems) by their contribution 
to the common electrostatic potential. 

 Hint: Assume that TF is much larger than the Bohr radius rB. 

161 To be fair, the ref  is the largest electron distance from the nuclei, while the average distance, defined as   

  rdnr
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r 31
r , 

is closer to rTF. (A good additional exercise for the reader: calculate this distance.) 
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 Solution: As was argued in the model solution of Problem 12, the relation TF >> rB allows us to 
consider, in the electron’s energy 
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the potential-energy term as a (local) constant. As a result, the conduction electrons (fermions with F 
>> T) fill, at point r, all states with the kinetic energies p2/2me  satisfying the condition p < pF(r), where 
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Since, as our solution will show, the screened field does not reach far into the conductor’s bulk, the 
chemical potential  has to be equal to its field-unperturbed value F.162 As a result, the local value pF(r) 
of the Fermi momentum, and hence the local electron density n(r) (see Eq. (3.54) of the lecture notes, 
with N/V  n) become functions of the local value of the electrostatic potential: 
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The second relation between the functions n(r) and (r) is given by the Poisson equation,163 
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where  is the dielectric constant of the conductor’s ion lattice, and n0 is the equilibrium density of the 
electrons in the absence of the field, i.e., in an electrically neutral conductor. Let us consider the 
simplest geometry when the applied electric field E0 is normal to the plane surface of the conductor.164 
Then both n and  are functions of just one Cartesian coordinate (say, x) normal to the surface, and the 
Poisson equation is reduced to 
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 Since the left-hand side of Eq. (*) is a nonlinear function of n, the system of differential 
equations (*) and (**) generally cannot be solved analytically. However, if the external field is 
relatively weak, 

TF
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e

E , 

then even the largest change of   it causes (at the conductor’s surface) is still much smaller than F/e. In 
this case, we may linearize Eq. (*) with respect to small density variation 

        nxnnxnxn 0
~ , 

162 This value is lower than the energy of electrons in free space by a material-dependent constant called the 
workfunction , for most metals between 4 and 5 eV – see, e.g., Sec. 6.3 of this course, and also EM Sec. 2.6 and 
QM Sec. 1.1. Note, however, that the value of   does not participate directly in the solution of this problem. 
163 See, e.g., EM Eq. (1.41) and Sec. 3.4.  
164 Indeed, in genuine electrostatics, i.e. at no current flowing in the conductor, the electric field at the surface has 
to be normal to it – see, e.g., EM Sec. 2.1.
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where x   corresponds to the conductor’s bulk. The linearization yields 

         ,~  i.e.,~
2 F3

2
F

0 xegxnxexn
m

p

dn

d  







  

where g3(F) is the volume-normalized density of states, dn/d, at the Femi surface of a free Fermi gas  – 
see Eq. (3.55b) of the lecture notes: 
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 Plugging this expression into the right-hand side of Eq. (**), we may rewrite the resulting equation as 
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 This linear differential equation, solved with the boundary conditions  
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where x = 0 at the conductor’s surface, describes the Thomas-Fermi screening – an exponential decrease 
of the electrostatic potential and of the electric field, both being proportional to exp{–x/TF}. Hence, the 
above expression for TF gives the solution of the posed problem.165 

 In good metals, the density of states on the Fermi surface is of the order of  1022 eV-1cm-3  1028 

eV-1m-3, and the dielectric constant  ranges approximately from 3 to 10. as a result, TF is of the order 
of a few tenths of a nanometer, i.e. is only marginally larger than rB  0.05 nm, making the Thomas-
Fermi theory of screening applicable only semi-quantitatively. However, the theory is quantitatively 
valid for many degenerate semiconductors, with a smaller n0 and hence larger TF, but still with F >> T. 

 

 Problem 3.15. For a degenerate ideal 3D Fermi gas of N particles confined in a rigid-wall box of 
volume V, calculate the temperature effects on its pressure P and the heat capacity difference (CP – CV), 
in the leading approximation in T << F. Compare the results with those for the ideal classical gas. 

 Hint: You may like to use the solution of Problem 1.9. 

 Solution: According to the universal (statistics-independent) relation for any non-relativistic 
ideal gas, given by Eq. (3.48) of the lecture notes,  
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we may use the temperature dependence of E given by Eq. (3.68), and then Eq. (3.55b) for the 3D 
density of states, to write 
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165 Actually, the problem was solved, if only semi-quantitatively, in EM Sec. 2.1. 
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A comparison of this result with Eq. (1.44), P = NT/V, shows that the pressure (*) grows with 
temperature much slower than that of the classical gas of the same density N/V. This is very natural 
because, at low temperatures, only a minor fraction ~ T/F of the occupied particle states are in such 
close vicinity to the Fermi surface that they may be thermally excited – see Fig. 3.2 of the lecture notes. 

 Proceeding to the difference (CP – CV), perhaps the easiest way to calculate it is to use Eq. 
(****) of the model solution of Problem 1.9: 
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where K  –V(P/V)T is the bulk modulus (reciprocal compressibility) of the gas. Using Eq. (*) to 
calculate the involved derivative, 
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we see that at T/F << 1, Eq. (**) gives us the leading term ( T 3) of the temperature dependence of the 
difference (CP – CV) even if we ignore the (weak) temperature dependence of the bulk modulus. Hence 
we may use its zero-temperature value given by Eq. (3.58) of the lecture notes: 
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 Thus the difference between the two heat capacities of a degenerate Fermi gas is much smaller 
than the capacities as such (see Eq. (3.70) of the lecture notes): CV, CP ~ (T/F)N, and also than the 
difference CP – CV = N  of the ideal classical gas.    

 

 Problem 3.16. How would the Fermi statistics of an ideal gas affect the barometric formula 
(3.28)? 

 Solution: Let us start with calculating the particle density n(r), i.e. the number of all particles in a 
unit volume at a certain point r, regardless of their kinetic energy. This may be done, for example, by 
using Eq. (3.39) of the lecture notes (with the upper sign that corresponds to the Fermi-Dirac statistics), 
for a small volume d3r at point r, by including the potential energy U(r) of a particle into its energy : 
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For high temperatures, when  is strongly negative (see Fig. 3.1 of the lecture notes), we may ignore the 
last term in the denominator of the fraction, to get 
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This integral may be readily worked out in Cartesian coordinates (see Sec. 3.1), but even regardless of 
it: if the temperature throughout the gas is constant, the integral does not depend on r, so the above 
expression already gives the explicit dependence n(r), 
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T

U
nn
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r exp0 , 

where r = 0 is the point accepted for the potential energy reference: U(0) = 0. Now using the equation of 
state of the ideal classical gas in its local form P(r) = n(r)T, for an isothermal atmosphere with U(r) = 
mgh, we get the classical barometric formula (3.28): 
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 These results were already obtained in Sec. 3.1 of the lecture notes from the Maxwell 
distribution; the advantage of our current approach is that it may be readily generalized to describe non-
classical statistical effects as well. In particular, for a degenerate Fermi gas (T << ), the fraction in Eq. 
(*) is a step function equal to 1 if p2/2m + U(r) <   and zero otherwise, so this relation yields 
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The first expression coincides with Eq. (3.54) of the lecture notes, which was derived for U = 0, so the 
"only" role of the external potential U(r) is to offset the local Fermi energy F(r).166 This is why we may 
use the second form of Eq. (3.57) to express the gas pressure via F(r) and n(r) and then via U(r): 
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For U(r) = mgh, this expression gives a barometric formula very much different from the classical one: 
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 The formula shows that at T = 0, the pressure of the gas sharply vanishes at h = hmax = /mg 
because the quantum states with energies above  are completely unpopulated, so at h > hmax, there are 
no particles at all. The value of  may be readily calculated, for example, if the number of particles per 
area A of the gas layer, 

 
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
0

dhhn
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N
, 

is known. 

 A nonvanishing but low (T << ) temperature smears this sharp threshold, creating a smooth 
transitional layer of thickness h ~ h0  T/mg << hmax. 

166 Actually, a particular form of this relation was already used for the analysis of the Thomas-Fermi model of 
heavy atoms in the model solutions of Problems 3.12-3.13. 
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 Problem 3.17. Derive general expressions for the energy E and the chemical potential  of a 
uniform Fermi gas of N >> 1 non-interacting, indistinguishable, ultra-relativistic particles.167 Calculate E 
and also the gas pressure P explicitly in the degenerate gas limit T  0. In particular, is Eq. (3.48) of the 
lecture notes, PV = (2/3)E, valid in this case? 

 Solution: The energy  of an ultra-relativistic free particle (with  >> mc2, where m is its rest 
mass) is related to its momentum p as (p) = cp.168 In this case, Eq. (3.39) of the lecture notes (with the 
upper sign, which corresponds to the Fermi-Dirac statistics) yields 
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while Eq. (3.52), also with the upper sign, becomes 
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As was repeatedly discussed in the lecture notes, in the limit N >> 1, these two relations, which are 
strictly valid for a grand canonical ensemble with given , may be also used as two equations for the 
calculation of  and E in a canonical ensemble with given N. 

 The calculations are much simplified in the degenerate limit T  0 when the Fermi-Dirac  
distribution tends to a step function (see Fig. 3.2 and its discussion), so the integrals in the above 
relations may be easily worked out: 
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where pF is the Fermi momentum defined by the equality (pF)  cpF = . The first of these relations, 
identical to Eq. (3.54) for a non-relativistic gas, yields 
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Plugging the last equality into the last expression for E, we get 
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Now, by using the fact that according to the basic Eq. (1.33), F  E at T  0, we may calculate the gas 
pressure from Eq. (1.35) (with the implied condition N = const) as 
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167 This is, for example, an approximate but reasonable model for electrons in a white dwarf star. (Their Coulomb 
interaction is mostly compensated by the electric charges of nuclei of fully ionized helium atoms.) 
168 See, e.g., EM Eq. (9.79). 
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 Comparing the last expressions for P and E, we see that 

             
V

E
P

3

1
 .       

This formula coincides with Eq. (2.92b) of the lecture notes for the electromagnetic field (which may be 
considered as a gas of ultra-relativistic Bose particles – photons) but differs by a factor of 2 from Eq. 
(3.48) for non-relativistic particles. As we will be shown in the solution of the next problem, this 
relation is valid for any temperature. 

 

 Problem 3.18. Use Eq. (3.49) of the lecture notes to calculate the pressure of an ideal gas of 
ultra-relativistic, indistinguishable quantum particles, for an arbitrary temperature, as a function of the 
total energy E of the gas and its volume V. Compare the result with the corresponding relations for the 
electromagnetic blackbody radiation and for an ideal gas of non-relativistic particles. 

 Solution: According to Eq. (3.49), the grand thermodynamic potential of a single-particle state 
with energy  is 
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where the upper sign corresponds to fermions, and the lower one, to bosons. The potential of the whole 
gas may be calculated as 
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where g() is the density of quantum states: g()  dN()/d, with N() being the number of states with 
energies below . For an isotropic 3D gas, the general rule (3.4) of quantum state counting,169 with the 
account of the particle’s spin degeneracy g, yields 
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where p is the magnitude of the particle’s momentum corresponding to the energy . As was shown in 
Sec. 3.2 of the lecture notes, for non-relativistic particles, with  = p2/2m, these expressions immediately 
lead to Eq. (3.48), 
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 Now, according to the relativity theory,170 for ultra-relativistic particles, we may take  = pc, so p 

= /c, and Eq. (*) yields 
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As a result, for these particles, 

169 See, e.g., QM Eq. (1.90). 
170 See, e.g., either the solution of the previous problem or EM Eq. (9.79). 
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This integral is similar to the one in Eq. (2.90), and its integration by parts gives a similar result: 
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where f() is either the Fermi-Dirac or the Bose-Einstein distribution: 
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But the last expression for  is just (–1/3) of the gas’ energy 
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so  = –E/3. Since, according to Eq. (1.60), for an arbitrary system,  = –PV, we immediately get 
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(In the previous problem this result was proved, by simpler means, for the particular case of fermions at 
T  0; see also the solution of Problem 2.23.)  

 The result (***) coincides with Eq. (2.92) for the electromagnetic blackbody radiation (which 
may be also considered as a gas of ultra-relativistic particles – photons), but differs, by a factor of ½, 
from Eq. (**) for an ideal gas of non-relativistic particles. (Strictly speaking, E in Eq. (**) does not 
include the rest-energy contribution, Nmc2, while E in Eq. (***) does, but in our ultra-relativistic case, 
this contribution is negligibly small in comparison with the total energy of the gas.) 

 

 Problem 3.19.* Calculate the speed of sound in an ideal gas of ultra-relativistic fermions of 
density n, at negligible temperature. 

 Solution: As we know from classical mechanics,171 the sound propagation velocity may be 
calculated as 
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Using the solution of Problem 17, in the form 
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171 See, e.g., CM Eq. (7.114). As was discussed in the model solution of Problem 1.6, generally we have to 
distinguish the isothermal (T = const) and adiabatic (S = const) compressibility, with the former one relevant only 
at extremely low frequencies. However, at T  0, the entropy of an ideal gas is constant, so these notions 
coincide. 
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where  
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is the particle density of the gas, and pF  1/V1/3 is its Fermi momentum, we readily get 
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 The calculation of the mass density  of the gas is a bit more tricky. Indeed, it would be wrong to 
take it equal to nm, where m is the rest mass of the particle because for ultra-relativistic particles, with p 
>> mc, this mass does not affect any property of the gas. Rather,  has to be calculated as nmef, where 
mef is a measure of the gas’ inertia at the application of a small external force F to each of its particles. 
In non-relativistic mechanics, we may take 

dt

d
m

v
Fef  

– exactly the definition used at the derivation of Eq. (*). However, in relativistic mechanics, the 2nd 
Newton law is only valid in the form172 

F
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where p is the relativistic momentum. For the degenerate Fermi 
gas, which, in the absence of the force, occupies all states inside 
the Fermi sphere p  pF, this means that under the effect of the 
force during a short time interval dt, the whole sphere shifts by a 
small interval Fdt in the direction of the force – in the figure on 
the right, along the z-axis. As a result, even though each particle 
still moves with the same speed  v  = c as before the force 
application, the number of particles at the Fermi surface, with the 
z-component of v in the direction of the force, increases, while 
that of the particles moving in the opposite direction, decreases. 
(The effects of other Cartesian components of v are averaged out 
at the summation over the particles.) This change may be evaluated as 
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where the first fraction is the density dN/d3p of states in the momentum space,  is the angle between the 
vectors pF and F (see the figure above), and dp is an elementary solid angle in the momentum space. 
The z-component of the particle’s velocity v in each state is c cos, so the average velocity change under 
the effect of the impulse Fdt is 
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172 See, e.g., EM Sec. 9.6, in particular, Eq. (9.144). 
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After an easy integration, 
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and the expression of N = nV from Eq. (*), we get a very simple result: 
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(As a sanity check, a similar calculation for the non-relativistic Fermi gas, with the replacement c  vF 
 pF/m, immediately yields mef = m and  = nm.)  

 With these K and , Eq. (*) yields the sound velocity 
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Remarkably, this result does not depend on the density n (and also the spin degeneracy g) of the 
particles. (Actually, this is true for the ideal classical gas as well – see the solution of Problem 1.6.) 

 

 Problem 3.20. Calculate basic thermodynamic characteristics, including all relevant 
thermodynamic potentials, specific heat, and the surface tension of a non-relativistic 2D electron gas 
with a constant areal density n  N/A: 

  (i) at T = 0, and  
  (ii) at low temperatures (in the lowest nonvanishing order in T/F << 1), 

neglecting the Coulomb interaction effects.173 

 Solution: At the stated conditions, the electrons may be treated as an ideal Fermi gas, so the 
average value of any thermodynamic variable f() is the sum of its values in all quantum states, weighed 
with the Fermi distribution. In the 2D case, 
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where  = p2/2m is the kinetic energy of a single particle (so d = pdp/m), the factor g = 2 describes the 
double spin degeneracy of each orbital state, N() is the Fermi-Dirac distribution,  
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and g2() is the 2D density of states. As was discussed in the model solution of Problem 8, this density 
turns out to be energy-independent: 

173 This condition may be approached reasonably well, for example, in 2D electron gases formed in 
semiconductor heterostructures (see, e.g., the discussion in QM Sec. 1.8, and the solution of Problem 3.2 of that 
course), due to not only the electron field’s compensation by background ionized atoms, but also by its screening 
by the highly doped semiconductor’s bulk. 
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 Let us apply Eq. (*) to the key variables. As usual, the chemical potential  participating in the 
Fermi distribution may be found from the formal calculation of the average number of particles N >> 1 – 
which is, actually, given. Taking f() = 1 (as appropriate for particle counting), we get 
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where   ( – )/T. This is a table integral,174 giving 
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However, for some other variables, for example, the total energy 
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integrals (*) cannot be worked out analytically (more exactly, expressed via the elementary and special 
functions discussed in this series) for arbitrary temperatures. This is why let us proceed to the limiting 
cases specified in the assignment. 

 (i) T = 0. In this case, the second term in the last form of Eq. (**) vanishes, and it yields N = 
(mA/2), so   
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Next, since at T = 0, N( ) is a step function (see Eq. (3.53) and Fig. 3.2a in the lecture notes), Eq. 
(***) gives 
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so the average energy per particle175 
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 Concerning other thermodynamic potentials, by definition, F(0) = E(0), while H(0) = G(0). The 
last potential may be found using Eq. (1.56): 

),0(2)0()0( F ENNTG    

so the grand potential, defined by the first of Eqs. (1.60), is (0)  F(0) – G(0) = –E(0).176  In the 3D 
case,  is equal to –PV – see Eq. (1.60) again. As was repeatedly discussed above, in the 2D case, the 

174 See, e.g., MA Eq. (6.4a). 
175 The resulting expression E = (1/2)FN may be compared with the 3D formula (3.56): E = (3/5) FN. 
176 As a reminder, in the 3D case, the coefficient in such relation is different,  = –(2/3)E – see Eq. (3.52). 
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volume’s analog is the area A, so the analog of the pressure P  –(∂F/∂V)T,N  is the surface “anti-
tension”177    –(∂F/∂A)T,N, i.e.   = –A. For T = 0, we get 
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Finally, to calculate the specific heat, we need to consider the case of finite temperatures. 

 (ii) T << F, i.e. T << . In this limit, the second term in Eq. (**) gives only an exponentially 
small correction to . For such a non-analytical function of T, the second term in the Sommerfeld 
expansion (3.59) vanishes, so we may still use for  the same relation as at T = 0: 
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From here 
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 For the energy, we may use the Sommerfeld expansion (3.59), which does not depend on the 
system’s dimensionality: 
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Taking () = g2 = (mA/2) (so d()/d = mA/2 = const), we get the following temperature 
dependence: 
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so the specific heat cA (the heat capacity per particle at a fixed area) is small in comparison with that of 
the classical gas, and linear in temperature: 
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Just as in the 3D case discussed in the model solution of Problem 15, the difference between the low-
temperature values of the specific heats at constant area (cA) and at constant tension (c) is proportional 
to (T/F)3 and is much smaller than the (virtually equal) cA and c, which scale as T/F. 

 Now let us calculate the effect of temperature on the grand potential : 
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Integrating by parts, we get 
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177 A discussion of the mechanical effects of the surface tension in liquids may be found in CM Sec. 8.2. 
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This result enables a ready completion of our calculations: 
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 Problem 3.21. Calculate the differential latent heat  ≡ –N(Q/N0)N,V of evaporation of a 
spatially uniform Bose-Einstein condensate as a function of temperature T. Here Q is the heat absorbed 
by the (condensate + gas) system of N >> 1 particles as a whole, while N0 is the number of particles in 
the condensate alone. 

 Solution: For a slow process, we can use the fundamental Eq. (1.17) of the lecture notes, in the 
form dE = dQ – PdV, to represent the differential latent heat  as 
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For the number N0 of condensed particles in a spatially uniform system, we had Eq. (3.74a): 
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where Tc is the critical temperature. Solving this equation for T, we get 
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On the other hand, for the system’s energy below Tc, we had (3.78): 
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where E(Tc) may be expressed via N and Tc by comparing Eqs. (3.73) and Eq. (3.75),178 
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Combining the last three formulas, we get a convenient relation between E and N0,  
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whose differentiation yields 

178 The second step uses MA Eq. (6.7b) with s = 3/2. 
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Now we can use Eq. (*) again to rewrite this expression as  
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 This is a pretty curious result, showing that the effective latent heat of the system does not 
depend on Tc, and hence on the system’s volume. On the other hand, it is completely natural that   0 
at T  0: in this limit, the average energy of particles in the gaseous phase tends to zero, so less and less 
heat is needed to evaporate the condensed particles with their  = 0. 

  

 Problem 3.22.* For a spatially uniform ideal Bose gas, calculate the law of the chemical 
potential’s disappearance at T  Tc and use the result to prove that at the critical point T = Tc, the heat 
capacity CV is a continuous function of temperature. 

 Solution: Let us consider a small increase dT = T – Tc << Tc of temperature above its critical 
value. If, at this increase, the number N of particles is kept constant, the direct effect of dT on the pre-
integral factor in Eq. (3.44) of the lecture notes has to be compensated by the change of the integral, due 
to the appearance of a small positive parameter a2  –/T << 1: 

             00)0(
2

3

2
3/2

c
1/2

c32

2/3








  IaITIdTT

gVm
dN


,   (*) 

where 

     
2/1

0
22

2

0
2

2/1

   where,
1exp

2
1exp














 



a

d

a

d
aI , 

so the (small) difference between the integrals participating in Eq. (*), is  
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Since at a  0, the main contribution to this expression comes from the region of small , we may 
expand the denominators of both fractions in the Taylor series in both a2 and 2, getting 
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This is a table integral equal to /2a,179 so I(a) – I(0) = –a, and with the value I(0) = (3/2)(3/2) (see 
Eq. (3.71) of the lecture notes), Eq. (*) yields 
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179 See, e.g., MA Eq. (6.5a). 
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So, the small negative chemical potential arising above Tc is proportional to the temperature increase 
squared. This is fully consistent with the plot shown with the blue line in Fig. 3.1 of the lecture notes. 
(On the log-log plot of Fig. 3.3a, this relation is less obvious.) 

 For the heat capacity calculation, it is convenient to use Eq. (3.52), with the appropriate negative 
sign, to define the notion of the energy E0(T) that the gas would have at T  Tc if the chemical potential 
retained the value  = 0:  
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By this definition, the difference between the actual energy E and E0 at the same temperature T > Tc is 
only due to the change of the chemical potential, so at dT << Tc, we may write 
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Now we may use Eq. (3.48), then Eq. (1.60), and then the last of Eqs. (1.62) to write 
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where the constancy of volume is also implied. Combined with Eq. (**) for , these formulas yield 
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 Now notice that since the above definition of E0 coincides with Eq. (3.78), which is valid for the 
actual energy at T  Tc, the temperature derivative of the difference E – E0 (at constant volume), taken at 
T = Tc, gives the difference of the limiting values of the heat capacity: 
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Hence, the heat capacity is indeed a continuous function of temperature. However, its temperature 
derivative is not: 
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This “cusp” is clearly visible in the (numerically calculated) plot shown in Fig. 3.5 of the lecture notes. 

 

 Problem 3.23. In Chapter 1 of the lecture notes, several thermodynamic relations involving 
entropy have been discussed, including the first of Eqs. (1.39): 
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If we combine this expression with the fundamental relation (1.56), G = N, it looks like that, for the 
Bose-Einstein condensate, the entropy should vanish because its chemical potential  equals zero for all 
temperatures below the critical point Tc. On the other hand, by dividing both parts of Eq. (1.19) by dT, 
and assuming that at this temperature change the volume is kept constant, we get 
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(This equality was also mentioned in Chapter 1.) If the CV is known as a function of temperature, the last 
relation may be integrated over T to calculate S: 
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According to Eq. (3.80), the specific heat for the Bose-Einstein condensate is proportional to T 3/2, so the 
integration gives a nonvanishing entropy S  T 3/2. Resolve this apparent contradiction, and calculate the 
value of the genuine entropy at T = Tc. 

 Solution:  Eqs. (1.39) of the lecture notes have been derived for uniform systems with a fixed 
number of particles and (as Eq. (1.53c) shows), in the general case, it should be rewritten as 

.
,NPT

G
S 










  

We know, however, that below Tc, the Bose-Einstein condensate is essentially a two-phase system, in 
which the disordered gas coexists with the completely ordered (and hence entropy-free) condensate and 
the change of temperature results in the change of the number of the gaseous-phase particles, 
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even if the total number N of particles in the system does not change. Moreover, any temperature 
variation leads to a variation of pressure P(T) as well – see Eq. (3.79), so it cannot be kept constant. As a 
result, the arguments based on Eq. (1.39) are not valid for this system, and we may indeed calculate the 
entropy (at 0  T  Tc) by using Eq. (3.80): 
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Hence, the entropy of the system180 is indeed proportional to T 3/2 and (if we reasonably, though not 
compulsory, take S(0) = 0), then at T  Tc, it reaches the value 
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 It is straightforward (and highly recommended to the reader as an additional exercise) to check 
that the entropy of the gas reaches the same value at an approach to Tc from the higher temperature side 
where   0 and all N bosons are in the gas phase. Here, S may be indeed calculated by differentiation – 
either from the first of Eqs. (1.39) with G = N, or even simpler, from the first of Eqs. (1.62), 

180 Essentially, of its uncondensed fraction of N’ particles. 
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with the potential  given by the first form of Eq. (3.51), with the appropriate (lower) sign.  

 

 Problem 3.24.  The standard analysis of the Bose-Einstein condensation, outlined in Sec. 3.4 of 
the lecture notes, may seem to ignore the energy quantization of the particles confined in volume V. Use 
the particular case of a cubic confining volume V = aaa with rigid walls to analyze whether the main 
conclusions of the standard theory, in particular Eq. (3.71) for the critical temperature of the system of N 
>> 1 particles, are affected by such quantization. 

 Solution: An elementary quantum-mechanical analysis of a single particle placed in such a 
box181 yields the following energy spectrum:  
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where the quantum numbers nx, ny, and nz may take independent positive integer values starting from 1. 
Let us use the Bose-Einstein distribution (2.118) to calculate the average number of independent 
particles in the case when the box is in full thermodynamic equilibrium with an environment with 
temperature T and chemical potential :  
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where g = 2s + 1 is the spin degeneracy. Generally, as we know from Sec. 2.8 of the lecture notes, this 
expression is only valid for the grand canonical ensemble, in which the number N of particles in the box 
is not exactly fixed. However, as was repeatedly discussed in the lecture notes and earlier problem 
solutions, in the canonical ensemble of systems with the number N of particles in the box fixed but very 
large, we may use it, with the replacement N  N, for the calculation of the relation between the 
average values of N and , neglecting their small fluctuations whose relative r.m.s. values scale as 1/N1/2 

<< 1. In particular, in accordance with the discussion in Sec. 3.4, in order to calculate Tc, we have to 
take   equal to the lowest value of the single-particle energy  (in this case, the ground state energy is 
30 – not exactly zero!), i.e. solve the following equation: 
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 This sum converges as soon as the magnitude of the argument under the exponent becomes much 
larger than 1, i.e. at n  (nx

2 +ny
2 + nz

2)1/2 ~ nmax  (Tc/0)
1/2. Since the first, most significant terms of the 

sum are of the order of 1, the sum itself may be estimated as n3
max, so, by the order of magnitude, Eq. 

(**) gives  

181 If needed, see, e.g., QM Sec. 1.7, in particular Eq. (1.86). 
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But since N >> 1, while g ~ 1, this means that Tc is much larger than 0, which is the scale of the 
distance between the adjacent energy levels (which differ by a unit change of one of the quantum 
numbers). Hence at T ~ Tc, many lower levels are populated, so in the sum in Eq. (**), the term (–3) 
may be neglected, and the sum as a whole may be approximated by an integral. As a result, the equation 
for Tc takes the form 
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where n  {nx, ny, nz}, so n2 = nx
2 +ny

2 + nz
2, and the factor (1/8) before the last integral compensates for 

the dropped condition nx, ny, nz > 0. Now using the spherical coordinates in the space of vectors n, we 
get  
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But this equation, with the integration variable replacement   0n
2/Tc and with the account of Eq. (*) 

for 0, exactly coincides with Eq. (3.73) for Tc and hence yields the same result (3.71).  

 In hindsight, this is not surprising, because the arguments used in this solution essentially 
reproduce, for a particular system, the reasoning that has led us to the general quantum state counting 
rule (3.13) and eventually to Eq. (3.71). Nevertheless, the solution was not a vain exercise: it shows very 
clearly that the theory outlined in Sec. 3.4 of the lecture notes (and in Problems 21-23 above) is only 
valid for spatially uniform systems, in particular, only if the particle confinement is stiff – in the sense 
that the wall volume into which the wavefunctions of the particles partly penetrate is much smaller than 
the volume V of their free motion. In the opposite case of soft confinement, for example at the bottom of 
a quadratic-parabolic potential well, the value of Tc is rather different – see Eq. (3.74b) and its 
discussion in the lecture notes, and the next problem – to which this solution gives a good preparation. 

 

 Problem 3.25.* N >> 1 non-interacting bosons are confined in a spherically symmetric potential 
well U(r) = m2r2/2. Develop the theory of the Bose-Einstein condensation in this system; in particular, 
prove Eq. (3.74b) of the lecture notes and calculate the critical temperature Tc

*. Looking at the solution, 
what is the most straightforward way to detect the condensation in experiment? 

 Solution: A well-known quantum-mechanical analysis182 of single particle’s motion in such a 
potential well (frequently called the 3D harmonic oscillator) has the following energy spectrum:  

         





 

2

3
,, zyxzyx

nnnnnn   ,      

where the quantum numbers nx, ny, and nz may take independent non-negative integer values starting 
from 0. Just as it was done in the solution of the previous problem, we may use the Bose-Einstein 

182 See, e.g., QM Sec. 3.5, in particular Eq. (3.124) with d = 3. 
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distribution (2.118), with this spectrum, to calculate the average number of particles in the case when 
the gas is in equilibrium with an environment with temperature T and chemical potential :  
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where g is the spin degeneracy of each “orbital” state. Using the standard arguments for the transfer 
from the grand canonical to the canonical ensemble, quantitatively correct in the limit N >> 1, and 
taking the chemical potential  equal to the ground-state single-particle energy g (in our current case, 
equal to 0,0,0 = (3/2) ), we get the following equation for the critical temperature Tc

*: 
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 This sum converges as soon as the magnitude of the argument under the exponent becomes much 
larger than 1, i.e. at n  nx + ny + nz ~ nmax  Tc

*/. Since the first, most significant terms of the sum are 
of the order of 1, the sum as a whole may be estimated as n3

max, so Eq. (*) gives the following estimate: 
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But since N >> 1 and g ~ 1, (N/g)1/3 is much larger than 1 as well. This means that Tc
* is much larger 

than , i.e. the distance between the adjacent energy levels (which differ by a unit change of one of the 
quantum numbers). Hence at T ~ Tc

*, many lower levels are populated, so the sum (*) may be well 
approximated by an integral. 

 As a result of this approximation, the equation for the critical temperature takes the form 
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where d 3n  dnxdnydnz is an elementary volume of the state number space 
{nx, ny, nz}. Since the function under the integral depends only on one 
linear combination, n  nx + ny + nz, of the Cartesian coordinates of this 
space, it is convenient to select the differential d 3n in the form183 
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(see the figure on the right), so our 3D integral reduces to a 1D one: 
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183 This calculation is similar to the one in Sec. 2.2 of the lecture notes – see Fig. 2.3c and also Eq. (2.40) with N 
= 3. 
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With the integration variable replacement   (/Tc
*)n, this equation takes the form  

          .
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This table integral184 equals (3)(3)  2(3)  2.404, so, finally, we get 
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in agreement with our initial estimate (**). 

 A comparison of this expression with Eqs. (3.35) and (3.71) of the lecture notes (which are valid 
for the hard-confinement case) shows that the dependence of the critical temperature on the number of 
particles at the soft confinement is substantially weaker: Tc

*  N1/3 vs. Tc  N2/3. This is natural because 
the effective radius R of the confined gas cloud, which may be estimated from the relation 

      
2

~
2

~
22 TRm

U
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,     (****) 

and hence its effective volume Vef ~ R3, now grows with temperature, and hence (at T ~ Tc*) with N.  

 The difference between the two confinement types also manifests itself in a different dependence 
of the condensed particle number N0 on the temperature at T  Tc

*. Indeed, using the same 
argumentation as was used for the spatially uniform system (i.e. for the ultimately rigid particle 
confinement) in Sec. 3.4 of the lecture notes,185 we may get this dependence from Eq. (***) by the 
replacements N  (N – N0) and Tc

*  T: 

     *
c

0

23

0 at  ,
12

TT
e

dTg
NN 








 







.     

Now combining this expression with Eq. (***), we get Eq. (3.74b) of the lecture notes (which was 
presented there without proof): 
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 The reader is encouraged to explore other differences between BEC features at the soft and rigid 
confinement, but I will limit this solution to answering the last question of the assignment. According to 
the estimate (****), the optically visible area of all the gas cloud above but close to Tc

*, and hence of its 
uncondensed fraction just below the critical temperature, is of the order of 
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184 See, e.g., MA Eq. (6.8b) with s = 3, and then Eqs. (2.7b) and  (6.7c). 
185 In particular, see Eqs. (3.72) and (3.73).  
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However, all particles of the condensed fraction of the gas, at T < Tc
*, are in their ground state, with 

energy g  0,0,0 = (3/2), so the radius Rc of their cloud should be estimated not from Eq. (****), but 
from the relation 

2

3
~

2
~ g

2
c

2

c


 


Rm

U , 

giving the visible area 
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 As a result, the most direct manifestation of 
the Bose-Einstein condensation, at soft confinement, 
is the appearance, at T < Tc

*, of a small, dense “blob” 
on the optical image of the gas, on the background of 
a larger cloud of the still uncondensed gas – see, 
e.g., the figure on the right, taken from the 
pioneering paper by  M. Anderson et al., Science, 
269, 198 (1995).186  

 

 Problem 3.26. Calculate the chemical potential of a uniform ideal 2D gas of spin-0 Bose particles 
as a function of its areal density n (the number of particles per unit area), and find out whether such gas 
can condense at low temperatures. Review your result for the case of a large (N >> 1) but finite number 
of particles. 

 Solution: As was already discussed in the solutions of Problems 8 and 20, the density g2() of 2D 
quantum states is independent of the particle energy : 
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where g = 2s +1 is the spin degeneracy factor, which is equal to 1 in our current case of spin-0 particles. 
Hence the number of particles inside area A may be calculated as 
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where   ( –  )/T. This is a table integral,187 giving 
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so the chemical potential is 
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186 Adopted from https://en.wikipedia.org/wiki/Bose-Einstein_condensate as a public-domain material. 
187 See, e.g., MA Eq. (6.4b). 
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 Since the exponential function in this expression is between 0 and 1 for any gas density n and 
temperature T, the argument of the logarithm is always below 1, so the logarithm is negative, and hence 
the chemical potential is negative for all T > 0. Hence the Bose-Einstein condensation (which requires  
= 0) is impossible in a uniform 2D gas. This fact might be evident already from the very beginning 
because, at  = 0, the integral (*) diverges at its lower limit. (This argument does not hold in 3D where 
the different dependence of the density of states on the particle energy, g3(), provides an extra factor of 
1/2 in the numerator of the function under the integral, preventing its divergence at  = 0, and hence 
making compatible with the 3D Bose-Einstein condensation.) 

 Note, however, that this conclusion (Tc = 0) is strictly valid only in the limit N   (and hence A 
 ) because the divergence of the integral (*) at the lower limit at  = 0 is very weak (logarithmic), 
and may be cut off by virtually any factor. In particular, a large but finite area A of the gas-confining 
box keeps the particle energy quantized on a fine scale min ~ 22/2mA, corresponding to min ~ 
22/2mATc << 1. With this modification, Eq. (*) gives for Tc the following transcendental equation 

22
c

2
c 2

ln
2  

mATmAT
N  , 

where the argument of the logarithm is approximate. (What approximation is used for it does not make 
much difference because the logarithm’s argument is very large, and the log function of a large 
argument is extremely insensitive to its modest change.) An approximate (with the so-called logarithmic 
accuracy) solution of this equation is  

Nm

n
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ln

12 2

c


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So,  at a fixed density n  N/A, Tc indeed tends to zero at N   but extremely slowly. 

 In this context, note that the very notion of the Bose-Einstein condensation (and, more generally, 
of any phase transition) makes full sense only in the limit N  . Indeed, as the solutions of the last 
three problems indicate very clearly, if the number of particles in a system is finite, the reduction of 
temperature leads “merely” to their gradual accumulation in some low-entropy state – in the BEC case, 
on the lowest, ground-state energy level.  The whole idea of a phase transition (more exactly, of a 
continuous phase transition – see Chapter 4 for discussion) is that at N >> 1, most of this accumulation 
happens within a very narrow temperature interval near some temperature called Tc. At any finite N, this 
interval is always nonvanishing and gradually broadens with the reduction of N.  

  

 Problem 3.27. Can the Bose-Einstein condensation be achieved in a 2D system of N >> 1 non-
interacting bosons placed into the axially symmetric potential well U() = m22/2, where  is the 2D 
radius vector in the particle confinement plane? If yes, calculate the critical temperature of the 
condensation. 

 Solution: With the natural change from 3D to 2D, Eq. (*) of the model solution of Problem 25 
for the critical temperature Tc

* of the gas becomes 
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where g is the particle spin degeneracy. Such a sum converges as soon as the magnitude of the argument 
under the exponent becomes much larger than 1, i.e. at n  nx + ny ~ nmax  Tc

*/. Since the first, most 
significant terms of the sum are of the order of 1, the sum itself may be estimated as 2

maxn , so Eq. (*) 

gives the following estimate: 
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 In order to calculate Tc* quantitatively, we may again use the strong inequality N >> 1 to justify 
the transition from the sum (*) to the integral 
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where d2n  dnxdny is an elementary area on the plane of quantum numbers {nx, ny}. Since the function 
under the integral depends only on one linear combination, n  nx + ny, of the Cartesian coordinates of 
this space, we may select the differential d2n in the form,188 
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(see the figure on the right), so our 2D integral reduces to a 1D one: 
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With the integration variable replacement   (/Tc
*) n, this equation takes the form  
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This table integral189 equals (2)(2)  2/6, so, finally, we get 
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in agreement with the estimate (**).  

 This expression shows that just as in a similar 3D system (see Problem 25), if the frequency  of 
the effective 2D harmonic oscillator formed by each particle in the quadratic potential is nonvanishing, 
the critical temperature is different from zero as well. This fact does not contradict the solution of the 
previous problem, because the free (uniform) 2D gas analyzed there may be considered as the ultimate 
limit of the soft confinement with   0 and hence with Tc

* 0. 

 

188 This is essentially the same calculation that had been done in Sec. 2.2 of the lecture notes – see Fig. 2.3b, and 
also Eq. (2.40) with N = 2. 
189 See, e.g., MA Eq. (6.8b) with s = 2, and then Eq. (2.7b). 
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 Problem 3.28. Use Eqs. (3.115) and (3.120) of the lecture notes to calculate the third virial 
coefficient C(T) for the hardball model of particle interactions. 

 Solution: According to Eq. (3.120), 
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where, per Eq. (3.115), 
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and the letters r denote the interparticle displacement vectors shown in Fig. 3.6b of the lecture notes – 
see also two figures below. (Note that r’’’  r’ – r” is not an independent argument.) 

 For the hardball model, the integral J2 is contributed only by the spatial region r < 2r0, in which 
two spheres outlining the hardballs overlap, and essentially was calculated in the lecture notes – see the 
derivation of Eq. (3.96): 

        ,8 0
2 V

V
J   

where V0 = (4/3) r0
3 is the particle’s volume. Similarly, the integral J3 is contributed only by those 

regions of the 6D space d3r’d3r” in that all three spheres overlap. (Indeed, if just two of them overlap, 
for example, if r’ < 2r0 but r”, r’’’ > 2r0, then U(r’, r”) = U(r’) = , while U(r”) = U(r’’’) = 0, so F  = 
0 – 0 – 1 – 1 + 2 = 0.)  There are two options here:  

 (i) Two pairs of the three spheres overlap but the third pair does not, for 
example 

,2,2, 00 rr'''rr"r'   

for example, as shown in the top figure on the right. In this region, whose 6D 
volume will be called Wi, U(r’, r”) = U(r’) = U(r”) = , while U(r’’’) = 0, so F  = 
0 + 0  + 0 – 1 + 2 = 1, and the region’s contribution to J3 equals Wi/V

2. Since there 
are three similar regions like this (which differ by the choice of the pair of spheres 
that do not overlap), their total contribution to J3 is 3Wi/V

2.  

 (ii) All three spheres overlap, for example as shown in the bottom figure on 
the right: 

02,, rr'''r"r'  . 

Here all potentials U are infinite, and F  = 0 + 0 + 0 + 0 + 2 = 2, so this 6D volume 
(Wii) contributes to J3 with the coefficient 2.  

 As a result, the total integral 
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and we need only to calculate two 6D volumes: Wi and Wii.  
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 First of all, let us exploit the spherical symmetry of the problem with 
respect to the rotation of one of the displacement vectors (say, r’), provided 
that the second vector is rotated together with it: 
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so the internal integrals Vi and Vii may be worked out considering the direction 
of the vector r’ fixed – say, vertical. The top figure on the right shows the 
geometrical sense of these integrals: Vi is just the volume shown in gray, while 
Vii is its complement to the volume 8V0 of the sphere of radius 2r0: Vi + Vii = 8V0. 

 Thus the problem is reduced to a bit bulky but elementary 3D 
geometry: as shown in the bottom figure on the right, Vii/2 is just the volume of 
a spherical sector with the polar angle 0 = cos–1 (r’/4r0), which may be 
calculated as the difference between the volumes of the spherical cone,  
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where   r’/4r0 = cos0, and the flat-base cone with the same polar angle and 
the height h = r’/2: 
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As a result, we get 
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Now we can complete the calculation of the 6D integral J3, 
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and hence of the third virial coefficient: 
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 In the hardball model, this coefficient is (quite naturally) temperature-independent.190 Just for the 
reader’s reference, the 4th virial coefficient (calculated analytically by L. Boltzmann) is approximately 
18.36 V0

3, the 5th one (calculated only numerically) is close to 28.2 V0
4, etc., with the numerical factors 

before V0
k – 1 growing rather slowly with the coefficient number k. 

  

 Problem 3.29. Assuming the hardball model, with volume V0 per molecule, for the liquid phase, 
describe how the results of Problem 7 change if the liquid forms spherical drops of radius R >> V0

1/3. 
Briefly discuss the implications of the result for water cloud formation in the atmosphere. 

 Hint: Surface effects in a macroscopic volume of a liquid may be well described by attributing 
an additional energy  (equal to the surface tension) to the unit surface area.191  

 Solution: In the limit R >> V0
1/3, when the number N of molecules in each drop is large, its radius 

may be calculated from the relation 
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In the same limit, the drop surface area is 
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Adding one molecule to the drop increases its area by 
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plugging into this expression the N from the first of Eqs. (*), we get A = 2V0/R. Due to the surface 
increase, and the resulting increase of the surface energy A, the total difference of molecular energy 
between the liquid and gaseous phases is now not just – as was assumed in Problem 7 (and it is as at R 
  in our current model), but rather 
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A' 02

  .    (**) 

Now by repeating the arguments given in the model solution of Problem 7 but with this modification, 
we see that the saturated pressure P(T) calculated there has to be multiplied by the additional factor 
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 . 

  Though this result is quantitatively valid only for R >> V0
1/3, qualitatively it works even for few-

molecule droplets (“clusters”), enabling a semi-quantitative discussion of cloud formation dynamics. As 
an air mass with a certain concentration n of water molecules rises up in the atmosphere and as a result, 
is cooled down, the saturated pressure value P(T) as calculated in Problem 7, which is a nearly 
exponential function of temperature, drops down to the actual partial pressure of the water vapor, still 

190 As a reminder, so is the 2nd virial coefficient, B(T) = –(J2/2J1)V = 4V0 – see Eq. (3.96) of the lecture notes. 
191 See, e.g., CM Sec. 8.2. 
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behaving almost as an ideal gas, P  nT. However, since the mass lacks the liquid phase, in the absence 
of other condensation centers, the water liquefaction cannot start. Only when the temperature is 
decreased to the level when the product (R)P(T), of the order of (V0

1/3)P(T), approaches nT, the first 
random droplets form. Since, according to Eq. (**), the energy gain ’ at the condensation is largest for 
larger drops, they start to accumulate more molecules, thus growing in size and suppressing the average 
effective pressure (R)P(T), so smaller droplets start to evaporate. In the absence of gravity, this 
competition would result in the formation of one gigantic liquid “drop” with negligible curvature. 
However, gravity forces larger drops, as soon as they have been formed, to go down. (This fall does not 
necessarily result in rain/snow because after reaching the lower, warmer atmosphere layers, the drops 
may evaporate again, leading to the formation of a dynamically equilibrium cloud.) 

 

 Problem 3.30. A 1D Tonks’ gas is a set of N classical hard rods of length l, confined to a segment 
of length L > Nl but otherwise free to move along it, in thermal equilibrium at temperature T. 

 (i) Calculate the system’s average internal energy, entropy, both heat capacities, and the average 
force F exerted by the rods on the “walls” confining them to the segment L. 
 (ii) Expand the calculated equation of state F(L,T) into the Taylor series in the linear density N/L 
of the rods, find all virial coefficients, and compare the 2nd of them with the result following from the 
1D version of Eq. (3.93) of the lecture notes. 

 Solutions: 

 (i) Just as was done in Eq. (3.88), we may factor the statistical sum of the system into a kinetic-
energy multiplier (which is the same as for a free 1D ballistic motion of each rod192) 
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and a potential-energy multiplier, in our current 1D case: 
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Here xk is the coordinate of a certain point of the kth rod (for example, the distance of its left end from 
the left “wall” of the segment) and U is the hard rod interaction energy similar to that given by Eq. 
(3.97): 
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As a result, the expression for ZN reduces to 
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192 This is just the 1D version of Eq. (3.15), with g = 1 and without the “correct Boltzmann counting” term 1/N! 
(In our 1D classical case, it is natural to assume that the rods keep their initial order, i.e. are distinguishable even 
if they are identical.) 
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 In order to calculate the N-dimensional volume described by the last integral, let us start with the 
simplest case N = 1 – see the figure below. 

 

 

 

The figure shows that in this case, the above conditions for xk are reduced to 0 < x1 < L – l, so the 1D 
volume contributing to Z1 equals L – l: 
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 Next, for N = 2, the conditions may be conveniently 
represented on the [x1, x2]-plane – see the figure on the right. 
The shaded region, where the above conditions (which are 
now reduced to 0 < x1 < L – 2l; x1 + l < x2 < L – l) are satisfied 
is a right triangle with both short sides equal to (L – 2l), so its 
area is (L – 2l)2/2. This result may be readily confirmed by an 
explicit integration: 
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From these two particular results, ZN may be already guessed, but to make the result even more clear, we 
may explicitly calculate 
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From here, it should be obvious that  
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– which is just the volume of an N-dimensional right pyramid with the side (L – Nl).193 By multiplying 
this result by the kinetic-energy factor, we get the full statistical sum of the system (or rather of its part 
related due to the rod motion and collisions): 
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 Now, the key formula (2.63) immediately gives the free energy of the system: 
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From here and the 1D version of the second of Eqs. (1.35), the average force exerted by the rods on the 
“walls” limiting the interval [0, L] is194 

193 Cf. the derivation of Eq. (2.40) in Sec. 2.2 of the lecture notes. 
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Note that this equation of state is exact (within this model) and valid not only for any (not necessarily 
large!) integer number N of rods but also for an arbitrary value of the difference L – Nl > 0. In the limit 
Nl << L, when the rod interaction effects vanish, it reduces to the 1D version of Eq. (3.18) for an ideal 
classical gas: 
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Rewriting the general Eq. (**) in terms of the linear density N/L of the rods,  
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and expanding it into the Taylor series in the dimensionless parameter l (N/L), we get 
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Comparing this expansion with the definition (3.100) of the virial coefficients, adjusted for the 1D case, 
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we see that B(T) = l, and C(T) = l2, etc. 

 Now reviewing the derivation of Eq. (3.93) in Sec. 3.5, we see that its 1D version is 
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where x is the distance between the centers of the two adjacent rods, and U(x) is the potential of their 
interaction. In the hard-rod model explored in our current problem, 
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With this substitution, Eq. (****) yields  
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in agreement with the general expansion (***). 

 In order to complete our assignments, we may use Eq. (*), together with the first of Eqs. (1.35), 
to calculate the system’s entropy 

194 Due to the absence of the acceleration of the system as a whole, this F is also the average force of repulsion of 
any two adjacent rods. 
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From here, Eq. (1.33) gives a very simple result for the average internal energy of the system: 
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and hence for its heat capacity at constant L: 
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This means that (as we could expect from the discussion at the very end of Sec. 3.5 of the lecture notes) 
the hard-rod interactions do not contribute to the average energy, so it obeys the equipartition theorem 
for the kinetic energy alone. 

 Finally, to calculate the heat capacity at constant F, we need to find the enthalpy and express it 
via the average force F  and temperature T, by using Eq. (**) to eliminate L: 
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Hence the difference CV – CP = N is not affected by the reduced dimensionality of the system. 

 To summarize, the 1D version of the hard-core gas problem allows a simple and exact analytical 
solution – in contrast with its 3D sibling discussed in Sec. 3.5 of the lecture notes. As the solution 
shows, the reason is the relatively simple topology of the phase space of the rod system (more 
specifically, of its N-dimensional coordinate sub-space), which, in particular, does not allow the 
classical rods to exchange their positions. 

 



Essential Graduate Physics               SM: Statistical Mechanics            

Problems with Solutions                  Page 135 

    

Chapter 4. Phase Transitions 

 Problem 4.1. Calculate the entropy, the internal energy, and the specific heat cv of the van der 
Waals gas, and discuss the results. For the gas with a temperature-independent cV, find the relation 
between V and T during an adiabatic process. 

 Solution: Acting just as in Sec. 1.4 of the lecture notes for the ideal classical gas, we get the free 
energy 
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In order to simplify further calculations, let us recall that at a = b = 0, the van der Waals model describes 
the ideal gas, so by adding and subtracting the expression NTln(V/N) to/from the right-hand side of Eq. 
(*), we may recast it into the following form: 
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Now, the remaining calculations are simple: 
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
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 , 

where Sideal and Eideal are given by Eqs. (1.46)-(1.47) of the lecture notes. 

 Note that the coefficient b, describing the short-range repulsion of the particles, does not give 
any correction to the internal energy of the gas, at fixed N, V, and T. This could be expected: we know 
that the internal energy of an ideal gas does not depend on its volume, so losing some volume (Nb) to 
collisions does not affect it either.1 Note that though in the van der Waals gas with a  0, the energy 
acquires some dependence on V, this contribution to E does not affect the specific heat per unit particle: 

 
.0  so,
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c  

 Moreover, note that the long-range interaction constant a, while contributing to E, does not 
affect the entropy of the gas. This independence extends to the adiabatic process equation. Indeed, by 
rewriting our result for S as 

 NbVNVNSS  lnlnideal , 

we see that its only difference with the ideal-gas entropy is the replacement of V with (V –Nb). Now 
reviewing the derivation of the relation  

1 For the hardball model of the classical gas, which is conceptually similar to the van der Waals gas with a = 0, 
the same conclusion was made at the very end of Sec. 3.5 of the lecture notes, while in the solution of Problem 
3.30, the same fact was proved for a similar 1D model. 
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constVc
T

N

V
 

for an adiabatic process (S = const) for an ideal gas with a temperature-independent cV,2 we see that this 
is the only replacement to be done here as well, so for the van der Waal gas, the requested relation is 

const.for  const, 


V
V c

c
T

N

NbV
 

 Note that all these results (as well as those of the next three solutions) are only valid for a 
uniform (single-phase) state of the van der Waals “gas”, and need to be reviewed for its two-phase state.  

 

 Problem 4.2. Use two different approaches to calculate the coefficient (E/V)T for the van der 
Waals gas and the change of temperature of such a gas, with a temperature-independent CV, at its very 
fast expansion. 

 Solution:  

 Approach 1 is to use one of the results of the previous problem’s solution: 

       
V

aN
TEE

2

ideal  .     (*) 

Since the ideal gas’ energy depends on temperature only (see, e.g., Eq. (1.47) of the lecture notes), the 
partial derivative of E over V, at fixed T, is contributed by the second term alone: 

                 
2
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N
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








.     (**) 

 According to this result, this coefficient does not depend on the constant b, i.e. is not contributed 
by hard-core interaction between the particles, and is determined only by their long-range interaction 
characterized by the parameter a. (As was discussed in Sec. 3.5 of the lecture notes, for most neutral 
atomic and molecular gases, this coefficient is positive due to the long-range attraction of the particles.) 

 Now let us use Eq. (**) to analyze the rapid gas expansion into free space.3 At such an 
expansion, the gas does not have time to exchange heat with the environment and is given no chance to 
perform any mechanical work, so its internal energy E has to stay constant. Applying this condition to 
Eq. (*) written for the initial (index 1) and the final (index 2) points of gas expansion, we get 

   
2

2

2ideal
1

2

1ideal V

aN
TE

V

aN
TE  . 

If CV is temperature-independent, then Eideal(T2) – Eideal(T1) = CV T, where T  T2 – T1 is the 
temperature change, and we get 











21

2 11

VVC

aN
T

V

. 

2 See, e.g., the solution of Problem 1.5. 
3 Note that this process is different from the relatively slow throttling that was the subject of Problem 1.11, 
though both processes (and their close siblings) are used for gas cooling and liquefaction. 
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Since for expansion (V2 > V1), the expression in the parentheses is positive, for a typical gas with 
positive a, the change of temperature is negative. 

 Approach 2. Let us start with the thermodynamic relation whose proof was the last task of 
Problem 1.8: 

          P
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.     (***) 

For the van der Waal equation of state, 

            2

2

V

N
a

NbV

NT
P 


 , 

it immediately gives Eq. (**) again.   

 Our second task may be also performed differently. Since the internal energy of any gas, with a 
fixed number N of particles, is uniquely determined by its temperature and volume, it may be described 
by a certain function E(V, T). The general differential of this function of two independent arguments is 
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V

E
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By definition, the first of these derivatives is just CV, so 

        dV
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T
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








 . 

 Per the above discussion of the fast expansion, for this process, we may take dE = 0, so, for a gas 
with constant CV, the last differential relation gives 
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C
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and its integral is  
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Now using Eq. (**), and carrying out an easy integration, we get 
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
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i.e. the same result as in the first approach. 

 

 Problem 4.3. For real gases, the Joule-Thomson coefficient (T/P)H (and hence the gas 
temperature change at its throttling, see Problem 1.11) inverts its sign at crossing the so-called inversion 
curve Tinv(P). Calculate this curve for the van der Waals gas.  

 Solution: Per the solution of Problem 1.11, the Joule-Thomson coefficient may be expressed as 
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. 
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Since in all stable systems, the heat capacity CP is positive, the coefficient inverts its sign at 

          .at  ,  i.e., invTT
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   (*) 

Solving the van der Waals equation (4.2) for temperature: 
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we may plug this relation into the right-hand side of Eq. (*), while its derivative over V at constant P, 
into its left-hand side, and in the result, use the van der Waals equation again to eliminate the 
combination (P + N2/V2). The final result is 
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 It is more common to express the inversion temperature via pressure rather than volume. By 
solving Eq. (**) for V and then plugging the result into the van der Waals equation, we get the following 
relation between P and Tinv:  

2
inv

2/1
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
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 , 

which may be more conveniently represented in the normalized variables p  P/Pc and t  T/Tc, where Pc 
and Tc are the critical values of pressure and temperature – see Eq. (4.3) of the lecture notes: 

       2712324 inv
1/2
inv  ttp .       (***) 

 This relation is a readily solvable quadratic equation for 
tinv

1/2, but it is even simpler to plot and discuss it in its current 
form – see the figure on the right. The Joule-Thomson 
coefficient is positive (and hence the pressure reduction at 
throttling leads to the gas cooling, i.e. to the Joule-Thomson 
effect) only in the region enveloped by the inversion curve. As 
the plot shows, the corresponding temperature range exists if the 
gas pressure is lower than the rightmost point of the curve: Pmax 
= 9Pc  a/3b2, which is reached at temperature T = 3Tc  (8/9) 

a/b. At higher pressures (i.e. on the right of the inversion curve) 
the coefficient is negative, and hence the gas’ expansion results 
in its heating. Hence, in order to use the throttling for refrigeration, the gas has to be pre-cooled at least 
below Tmax  Tinv(P = 0). Per Eq. (***), Tmax = (27/4) Tc  6.75 Tc. (Note that the fast expansion to 
vacuum, which was analyzed in the previous problem, does not have this handicap, but is less 
convenient in practice.) 

 As with nearly all predictions of the van der Waals model, this inversion curve describes 
experimental results for most gases reasonably well. For example, for N2, i.e. the main component of our 
air, Pmax is close to 400 bar and is reached at the temperature 289 K (which is close to the room one), 
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while Tmax is close to 621 K,4 so the ratio of these two temperatures is close to 2.15, instead of the value 
9/4  2.25 following from Eq. (***). 

 

 Problem 4.4. Calculate the difference CP – CV for the van der Waals gas, and compare the result 
with that for an ideal classical gas. 

 Solution: If the gas is uniform, with N = const, we may use the thermodynamic relation  

          
 
 T

V
VP VP

TP
TCC





/

/ 2
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whose derivation was the task of Problem 1.9. By calculating the involved partial derivatives from the 
equation of state of the van der Waals gas: 
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we get 
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so, finally, 
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 Since this model can give physically meaningful values of P only for a  0 and V > Nb (see, e.g., 
Fig. 4.1 of the lecture notes), the last term in the denominator of Eq. (**) cannot be negative. Hence CP 
– CV  N, with the equality reached only either at a negligibly small long-range attraction between the 
particles (a  0) or in the ideal-gas limit (say, at T   with fixed N and V).  

 Moreover, the denominator tends to zero (and hence CP diverges) at an approach not only to the 
critical point Vc = 3Nb, Tc = 8a/27b (see Eq. (4.3) of the lecture notes), but to any point at the border of 
the single-phase instability region (shaded in Fig. 4.1). This is natural because at the border, the 
system’s isotherms become horizontal, i.e. the derivative  (P/V)T in the denominator of Eq. (*) 
diverges. As was discussed in Sec. 4.1, inside this region, the system may be in stable equilibrium only 
if it has two distinct phases (see the horizontal line 1-2 in Fig. 4.2). In this case, Eq. (**) is invalid –
formally because the number of particles in each phase is not fixed, as was assumed at its derivation. 
The calculation of the specific heat of the two-phase system, which is possible to perform analytically in 
the limits T/Tc  1 and T/Tc  0, is a good additional exercise, highly recommended to the reader.  

 

 Problem 4.5. For the van der Waals model, calculate the temperature dependence of the phase-
equilibrium pressure P0(T) and the latent heat (T), in the low-temperature limit T << Tc. 

 Solution: Plugging the van der Waals expression for P, 

4 Another example, which is important for low-temperature experiment, is helium with Tmax  34 K, so before 
throttling, it is usually pre-cooled with liquid hydrogen. 
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 into the Maxwell rule given by Eq. (4.11) of the lecture notes, performing the integration, and dividing 
the result by (V2 – V1), we get the following relation: 
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Since P0(T) has to satisfy the single-phase equation of state (*) at points 1 and 2 (see Fig. 4.2 of the 
lecture notes), Eqs. (*) and (**) give us the following system of two equations for finding V1 and V2: 
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 For arbitrary temperatures, this system of transcendental equations does not have an analytical 
solution, so let us proceed to the limit T  0 specified in the assignment. In this limit, in order to satisfy 
the Maxwell rule Au = Ad (see Fig. 4.2 again), P0(T) should tend to zero very fast – see, e.g., the 
numerical plot of the equation of state for T/Tc = 0.5 below. (For really low values of T/Tc, the trend is 
too strong to show it on such a linear scale.) 

 

 

 

 

 

 

 

 

 As a result, the gas-phase volume V2 is much larger than not only the liquid-phase volume V1 ~ 
Nb but also the unstable-equilibrium volume V0 ~ aN/T ~ (Tc/T)Vc > Vc.5 Hence for finding V2, we may 
drop both corrections to the ideal gas law and take 

)(0
2 TP

NT
V  . 

Also, the volume V1 is close to the divergence point Nb of the right-hand side of Eq. (*), so we can take 
V1 = Nb in all expressions besides the difference V1 – Nb. This difference may be evaluated from the van 
der Waals equation with P = 0 and with V1 = Nb in the a-term: 
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5 This crude estimate for V0 may be obtained by requiring that at V = V0, both contributions to P in Eq. (*) are 
comparable; the numerical plot above confirms this estimate for the particular value Tc/T = 2. 

0 2 4 6 8 10

4

2

0

cP

P

c/VV

uA
dA

)(0 TP

1V 0V c2 40VV 

show) to 
far (way too



Essential Graduate Physics               SM: Statistical Mechanics            

Problems with Solutions                  Page 141 

 Plugging these approximations for V1,2 into Eq. (**), and canceling common factors, we get a 
simple equation for P0(T): 

,ln1
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0 bT
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bP
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  

which yields Eq. (4.12) of the lecture notes (there, given without proof):  
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(As a sanity check, this result gives  
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thus confirming the above assumptions.)  

 Note that this temperature dependence of P0(T) is just the Arrhenius exponent,6 with the 
activation energy  = a/b  (27/8)Tc per molecule, in accordance with the physical picture of 
evaporation as the thermal activation of the molecules from the condensed phase. However, its 
comparison with Eq. (*) of the model solution of Problem 3.7 shows that the (phenomenological) van 
der Waals model falls short of describing the pre-exponential factor  T5/2 given by the microscopic 
model of vapor/liquid equilibrium; at T << Tc, this deficiency is not important for most applications. 

 Now, using the Clapeyron-Clausius law (4.17), for the latent heat of evaporation, we get a 
temperature-independent value: 
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This independence is completely consistent with the thermal-activation picture of evaporation. Note that 
this approximation is only valid if T << , i.e. if  >> NT. 

 

 Problem 4.6. Perform the same tasks as in the previous problem, in the opposite limit: in close 
vicinity of the critical point Tc. 

  Solution: At T  Tc (and T  Tc), the phase equilibrium region is small and located near critical 
point {Pc, Vc, Tc} – see Eq. (4.3) of the lecture notes. Let us introduce normalized deviations from the 
point as follows: 
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Plugging these relations into the normalized van der Waals equation (4.4), in the limit tvp ~ ,~,~  0, we 
get 

            .~
2

3~~6~4~ 3vvttp       (*) 

6 Again, it is amazing how well is this exponential law hidden inside the van der Waals equation of state! 
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 Note that in this expression, only the terms linear in 
tp ~  and  ~  are kept, but both the linear and cubic terms in v~  are 

retained because this is necessary to describe the non-
monotonic shape of the system’s isotherm, and hence the 
coexistence of its condensed and gaseous phases at T < Tc  – see 
the figure on the right. 

 Formula (*) shows that in this limit, the difference 
tp ~4~   is an antisymmetric function of v~  

tvptvp ~4)~(~~4)~(~  . 

According to the Maxwell rule (4.11), this means that the phase equilibrium line P = P0(T) passes 
through the point v~ = 0 (i.e. V = Vc), so 
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Because of the same asymmetry, the endpoints V1,2 of the segment are at an equal distance from Vc: 
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where, per Eq. (*), 
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 Now from the Clapeyron-Clausius formula (4.17), for the latent heat we get 
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This expression may be simplified by noting that according to Eqs. (4.3), PcVc = (1/9)aN/b = (3/8)NTc, 
so 
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(This approximation is only valid if 0  Tc – T << T, i.e. if  << NT.)  

 As could be expected, the latent heat turns into zero at T = Tc, because above this temperature, 
the system may be only in one (gaseous) phase. 

 

 Problem 4.7. Calculate CV and CP for the stable gas-liquid system described by the van der 
Waals equation, for V = Vc and 0 < Tc – T << Tc. 

P0(T) 

V

P 
V1 V2 Vc 
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 Solution: As was shown in the solution of the previous problem, at a temperature just below the 
critical value Tc = (8/27)a/b, the stable solutions of the Waals equation of state, which correspond to the 
condensed (“liquid”) and gaseous states of the system, are 
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where v~ and t~ are normalized deviations from, respectively, Vc and Tc:  
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At each of these stable points, the system is uniform (single-phase), so for them, we may use the 
expressions derived in the solutions of Problems 2 and 5: 
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 Since, as Eq. (*) shows, the deviations of V1,2 from Vc are equal and opposite, the concentrations 
of these two phases in the stable state at V = Vc are equal,7 and we may use Eq. (**) to calculate the 
internal energy of this system as 
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Since, per the same Eq. (**), CV = CVideal at T > Tc, this result means that at the critical point T = Tc, the 
heat capacity performs a finite jump 

   
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00
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 This discontinuity reminds the one for Ch, given by Eq. (4.49) that was derived for the 
continuous phase transition described by Landau’s mean-field theory. However, this analogy is false 
because according to the discussion in Sec. 1.1 of the lecture notes, the genuine analog of Ch in 
mechanical systems is CP rather than CV,9 and as Eq. (***) shows, the former heat capacity diverges as 

7 As a reminder, there is also a single-phase state corresponding to this point, but it is mechanically unstable – see, 
e.g., either Fig. 4.2 in the lecture notes or the figure in the previous problem’s solution. 
8 Note that the change of the sub-volumes V1,2 with temperature is compatible with the requirement V = const 
imposed on this partial differentiation, because this requirement applies only to the total volume V = (V1 + V2)/2 = 
Vc = const. A more complete expansion of the van der Waals equation near Tc, describing a small asymmetry of V1 
and V2 with respect to Vc, leads to a small correction (proportional to t~  0) to the above result for CV. 
9 This point will be further discussed in the model solution of Problem 12. 
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the temperature approaches Tc from either side. Indeed, since that formula, derived for single-phase 
states of the van der Waals system, gives the same results for the sub-volumes V1 and V2, it is applicable 
to the 50/50 mix of the liquid and gaseous components of the two-phase system with volume V = Vc as 
well: 

  cc2
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0at  ,
2

1
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1

4/~3~
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c
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





. 

 Since we have already seen that the function Cv(T) is not singular at T = Tc, all this singularity 
may be attributed to CP, so since Eq. (***) is valid at T > Tc with 2~v = 0, we may write 
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c
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with CP > 0 in both cases. 

 

 Problem 4.8.  Calculate the critical values Pc, Vc, and Tc for the so-called Redlich-Kwong model 
of the real gas, with the following equation of state:10 

  NbV

NT

TNbVV

a
P







2/1
, 

with constant parameters a and b. 

 Hint: Be prepared to solve a cubic equation with particular (numerical) coefficients. 

 Solution: Just as the van der Waals model, the Redlich-Kwong equation of state gives an explicit 
expression of pressure as a function of volume and temperature:  
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(where the last form uses the dimensionless parameter   V/Nb), making the calculations rather 
straightforward. Indeed, by using Eq. (*), the critical point conditions, 
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may be readily spelled out: 

  
       

0
1

133

1

1
,0

1

12

1

1
33

2

3

3/2
c

2

222

3/2
c

2














 






 a

bTN

a

bTN
. (**) 

 Eliminating the leftmost fraction from the system of these two equations, we get a simple cubic 
equation for the dimensionless critical volume:  

10 This equation of state, suggested in 1949, describes most real gases better than not only the older van der Waals 
model but also other two-parameter alternatives, such as the Berthelot, modified-Berthelot, and Dieterici models, 
though some approximations with more fitting parameters (such as the Soave-Redlich-Kwong model) work even 
better. 
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0133 23   . 

As the figure below (whose two panels differ just by the ranges of the argument’s variation) shows, this 
equation has just one positive (i.e. physically sensible) root:11 

NbNbV 84732.3 that  so,84732.3 ccc    

(cf. Vc = 3Nb for the van der Waals model – see Eq. (4.3) of the lecture notes). 

 

 

 

 

 

 

 

 

 
  
 Now plugging this value into any of Eqs. (**), we may calculate the critical temperature: 
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while Eq. (*) yields the following result for critical pressure: 
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(The results for Pc and Tc are functionally different from Eqs. (4.3) for the van der Waals gas, because of 
a different definition of the coefficient a.)  

 Note that in literature, these results are frequently represented backward, as expressions for the 
coefficients a and b via the critical values of temperature and pressure:12 
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11 Actually, using the bulky (“quasi-analytical”) Tartaglia-Cardano formulas, it is possible to show that this value 
is just (22/3 + 21/3 + 1). However, for the solution of parameter-free algebraic equations, the numerical method 
demonstrated here is faster, more general, and perfectly suitable for most applications.  
12 From the “analytical” value of c, mentioned in the previous footnote, it is straightforward to show that the 
numerical coefficients in these two relations are /5/2 = 1/9(21/3 – 1) and / = (21/3 – 1)/3. 
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 Problem 4.9. Calculate the critical values Pc, Vc, and Tc for the phenomenological Dieterici 
model, with the following equation of state:13 












NTV

a

bV

NT
P exp , 

with constant parameters a and b. Compare the value of the dimensionless factor PcVc/NTc with those 
given by the van der Waals and Redlich-Kwong models.  

 Solution: According to the discussion in Sec. 4.1 of the lecture notes (see, e.g., Fig. 4.1), in the 
critical point, the following two conditions should be fulfilled: 
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Let us calculate these two derivatives, so far for arbitrary V and T: 
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 The second expression looks bulky, but we need to evaluate it only at the critical point {Vc, Tc}, 
where the first derivative of P, and hence the expression in the square brackets in Eq. (*), equal zero: 
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Hence the similar expression in the first square brackets in Eq. (**) has to equal zero as well, so the 
requirement of having the second derivative equal to zero is reduced to the condition that the second 
square bracket in that expression also vanishes: 
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Requiring the two obtained expressions for NTc to coincide and canceling the common factor a(Vc – 
b)/Vc

2, we get an elementary equation for Vc:  
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From this result and the last of Eqs. (***), we may readily calculate the critical temperature,  

13 For practical applications, this approximation is currently less popular than the Redlich-Kwong model (also 
with two fitting parameters), whose analysis was the task of the previous problem. 
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and now the pressure at the critical point may be calculated from the equation of state: 
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 Note that according to these results, the dimensionless combination PcVc/NTc, which may be 
conveniently used to characterize the deviation from the ideal classical gas (for which PV/NT = 1 at any 
point), does not depend on the fitting parameters a and b, and is just a fixed number: 
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The same is true for the van der Waals model (see Eqs. (4.3) of the lecture notes), and the Redlich-
Kwong model (see the previous problem), but for them, the numbers are somewhat different:  

333.0,375.0
8

3 c

c

cc

c

cc
Kwong-Redlichder Waalsvan 




NT

VP

NT

VP
. 

 For comparison, the experimental value of this parameter for water is close to 0.23, while for the 
diethyl ether (see its discussion in Sec. 4.1 of the lecture notes) it is close to 0.27. This difference shows 
that it is impossible to design a two-parameter model (with a parameter-independent ratio PcVc/NTc) that 
would fit all real substances very closely. 

 

 Problem 4.10. In the crude sketch shown in Fig. 4.3b of the 
lecture notes (partly reproduced on the right), the derivatives dP/dT of 
the phase transitions liquid-gas (“vaporization”) and solid-gas 
(“sublimation”), at the triple point, are different, with 
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Is this occasional? What relation between these derivatives can be obtained from thermodynamics? 

 Solution: The by-product (4.16) of the Clapeyron-Clausius relation’s derivation (in Sec. 4.1 of 
the lecture notes) may be rewritten as 
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where the indices 1 and 2 number the phases separated, on the phase diagram, by the critical line P0(T). 
For most materials, the gaseous phase volume (of a fixed number of particles) is much larger than those 
in the liquid and solid phases, at the same pressure, so Eq. (*), applied to the vaporization and 
sublimation transitions, may be well approximated as 

gas

solidgass

gas

liquidgasv ,
V

SS

dT

dP

V

SS

dT

dP 



 . 

P

0 T
tT

sP gas

liquid

solid vP
fP



Essential Graduate Physics               SM: Statistical Mechanics                

Problems with Solutions                  Page 148 

But the solid phase is more ordered than the liquid phase, so its entropy is lower, i.e. the difference (Sgas 
– Ssolid)  has to be larger than the difference (Sgas – Sliquid), at the same temperature. Since the only 
temperature where both these transitions take place is Tt, the relation given in the assignment is indeed 
valid for all usual materials with Vgas >> Vliquid, Vsolid.  

 However, for some materials, notably including the usual water H2O, the difference between 
these derivatives is very small, implying in particular that the water ice is not much more ordered than 
the liquid water. This is indeed the case: near the triple point (273.16 K, i.e. 0.01C), the ice is a mixture 
of 16 different “packing geometries” – essentially, different phases, though one of them (called Ih) is 
prevalent. 

 A related peculiar feature of water at T  Tt is that the ice is slightly less dense than the liquid 
water (Vliquid < Vsolid),14 so the same Eq. (*), applied to the “fusion” (or “melting”) transition water-ice, 
yields 

0
solidliquid

solidliquidf 





VV

SS

dT

dP
. 

This means that the slope of the curve Pf(T) for water is negative at this point, i.e. opposite to that shown 
in the figure above – which is typical for most common materials. 

 

 Problem 4.11. Use the Clapeyron-Clausius formula (4.17) to calculate the latent heat  of the 
Bose-Einstein condensation, and compare the result with that obtained in the solution of Problem 3.21. 

 Solution: Per the discussion in Sec. 3.4 of the lecture 
notes, an isotherm of an ideal, uniform Bose-Einstein gas looks 
as sketched in the figure on the right, where the critical volume 
Vc may be found from the critical transition condition (3.73), 
taking into account the involved integral’s value (3/2)(3/2): 
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This plot, when compared with Fig. 4.2, shows that for this 
particular phase transition, the volume V1 corresponding to the pure “liquid” (condensed) phase is 
formally equal to zero, while V2 = Vc(T), so the Clapeyron-Clausius formula is reduced to 
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c )( . 

 The equilibrium pressure P0(T), which corresponds to V  Vc(T), i.e. to the Bose-Einstein 
condensation region, may be calculated from Eqs. (3.76) and (3.79): 
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14 This is of course very fortunate: if the ice was denser than the water, then most lakes, rivers, and even some 
seas would freeze to the bottom in winter, and life on the Earth might be possible only in the tropics. 
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where Tc should now be understood as a function of V. (It may be obtained from the same critical 
condition  (*) by moving the subscript “c” from V to T.15) These relations may also be used in the 
ultimate, critical point V = Vc, where Tc = T, so we finally get  

 
   

 
  .284.1

2/3

2/5

2

5

2/3

2/5

2

5
)( 2/3

3/2c NTNTT
TTV

N
TTV

c








 

 This is the same result as was obtained in the solution of Problem 3.21 by using a completely 
different approach. 

  

 Problem 4.12. As was discussed in Sec. 4.1 of the lecture notes, properties of systems with first-
order phase transitions (such as the van der Waals gas) change qualitatively at the critical temperature: 
at T < Tc, the system may include two different phases of the same substance. However, since the 
difference in the density of these phases, in equilibrium, is a continuous function of the difference Tc – T, 
this change itself is sometimes considered a continuous phase transition between the purely gaseous 
phase and the mixed gas-liquid “phase”. From this viewpoint, what are the most reasonable analogs of 
the critical exponents , , and , which were defined in  Sec. 4.2, for such a continuous transition? 
Evaluate these exponents for the van der Waals model. 

 Solution: The critical exponents in question are usually defined, by Eqs. (4.26), (4.29), and 
(4.32) of the lecture notes, for a ferromagnetic phase transition, and thus have to be re-defined for 
“mechanical” (gas-liquid) systems. As was repeatedly discussed earlier in this course, starting for Sec. 
1.1, for such systems, the most adequate thermodynamic analog of such generalized force as the external 
magnetic field is pressure P, and that of the magnetization (which, in magnetic systems, is taken for the 
order parameter ) is volume V. However, since the “continuous phase transition” we are discussing 
takes place at the critical point {Pc, Vc, Tc} of the background (first-order) phase transition, more 
adequate generalized force and coordinate are not P and V as such, but their deviations from, 
respectively, Pc and Vc. Hence, the critical exponents in question may be defined as follows: 
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where t~ is defined by Eq. (4.27): 
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 In the solution of Problem 6, the van der Waals equation was reduced to the following form:  

           ,~
2

3~~6~4~ 3vvttp       (*) 

valid in a close vicinity of the critical point, i.e. if the moduli of the normalized deviations from it, 

15 Since, according to that formula, Tc
3/2  1/V, the function P0(T) given by the first of Eqs. (**) does not depend 

on V, just as it should be – see the figure above. 
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are much smaller than 1. For the equilibrium volumes V1,2 of the two phases at t~ < 0, i.e. T < Tc (see Fig. 
4.2), Eq. (*) yields 
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so the comparison with the above definition yields  = ½. Next, according to the same equation, 
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so  = 1. Finally, at 0~ t (or at 0~ t but for a relatively strong “field” p~ ), Eq. (*) yields  

3/13 ~~  i.e.,~
2

3~ pvvp  , 

meaning that  = 3. 

 So, the critical exponents , , and  defined above have the same values as in Landau’s theory – 
see Sec. 4.3 (in particular, Table 4.1) of the lecture notes. This is hardly a big surprise because as the 
above solution shows, these values result from a very natural Taylor expansion (*) of the equation of 
state near the critical point, and do not depend on the particular coefficients in this expansion. This is 
not in contradiction with the solution of Problem 7, which implies that one more major critical exponent, 
the  defined by Eq. (4.28) with ch  cP, equals 1 and hence differs from the Landau-theory result  = 
0. Indeed, the “continuous phase transition” discussed in this solution takes place on the background of 
the primary first-order transition, and the result  = 0 is valid for another (“differential”) definition of 
dH and hence cP – the task left for the reader’s additional exercise. 

 

 Problem 4.13.  

 (i) Compose such an effective single-particle Hamiltonian that the corresponding stationary 
Schrödinger equation coincides with the Gross-Pitaevski equation (58).  
 (ii) Use this Gross-Pitaevskii Hamiltonian, with the particular confining potential U(r) = 
m2r2/2, to calculate the ground-state energy E of N >> 1 confined particles, by assuming the natural 
trial solution   exp{–r2/2r0

2}.16  
 (iii) Explore the function E(r0) for positive and negative values of the constant b, and interpret 
the results. 
 (iv) For b < 0 with small  b , estimate the largest number N of particles that may form a 
metastable Bose-Einstein condensate. 

 Solutions: 

 (i) The only difference between Eq. (4.58) and the usual (linear) stationary Schrödinger equation, 

   EU
m

 r2
2

2


, 

16 This task is essentially the first step of the variational method of quantum mechanics – see, e.g., QM Sec. 2.9. 
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is the term b2 added to U(r), so the requested (Gross-Pitaevskii) Hamiltonian17 is 
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m

H  22
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. 

 (ii) For the quadratic-parabolic potential specified in the assignment, the Hamiltonian becomes 
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b
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
, 

i.e. is different from the usual Hamiltonian of an isotropic 3D harmonic oscillator only by the last term. 
To find the stationary energy E corresponding to the suggested trial wavefunction (r), we need to 
calculate the expectation value of the corresponding operator, i.e. of the Hamiltonian: 
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with the normalization condition  

       rdrdN 323* rrr  . 

 For our factorable trial function, 
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(where the normalization constant C may be always taken real) and coordinate-separable operators 
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the simplest way to work out all the involved integrals is to factor them into Cartesian coordinate 
components: 
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17 Note that the Gross-Pitaevskii Hamiltonian should be used with care because this phenomenological construct 
does not belong to the family of linear operators, for which the standard formalism of quantum mechanics is 
strictly valid. 
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where at the last steps of all four calculations, the well-known dimensionless Gaussian integrals18 have 
been used. As a result, we get  
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 (iii) If the product of the coefficient b (characterizing the interaction between the particles) by 
their number N is negligible, then the energy (*) is just a sum of N similar energies,  
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, 

of single particles placed into the quadratic-parabolic 3D potential well, i.e. of N 3D harmonic 
oscillators.19 Following the variational method, the ground-state energy of such an oscillator may be 
found by minimizing   (and hence E = N) over the fitting parameter r0: 
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(Due to the “smart” choice of the trial function, in this limit, the variational method gives exact results 
for the ground-state energy and the wavefunction’ spread scale r0.) 

18 See, e.g., MA Eqs. (6.9b) and (6.9c). 
19 See, e.g., QM Sec. 3.6. 
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 Formula (*) shows that if the constant 
b is positive, describing a weak particle 
repulsion, and the product bN is small, it 
does not affect the function E(r0) given by 
Eq. (*), quantitatively – see the red lines in 
the figure on the right, where  is the 
dimensionless interaction parameter 
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(At larger b > 0, the increase of the number N 
of particles leads to a faster growth of the 
critical temperature Tc* of the condensation 
than at b = 0 – see the solution of Problem 
3.25. The reader is challenged to combine 
these two solutions to calculate Tc* as a 
function of N for b > 0.) 

 However, if the coefficient b is negative, describing a mutual attraction of the particles, then for 
any N >>1, the energy E becomes infinitely negative at r0  0 – see the blue lines in the same figure. 
This trend describes a possible freeze-out of the particles into an “ice blob” – the essentially classical 
effect, very much different from the Bose-Einstein condensation, and in practice, preventing its 
implementation for systems with a large number of particles. (The Gross-Pitaevskii equation with b < 0, 
which does not describe short-range repulsion of the particles, is insufficient to calculate the size of that 
“blob”.) 

 (iv) The largest number Nmax of attracting particles, for that the Bose-Einstein condensation still 
may be implemented (at T  0) may be estimated by requiring the function E(r0) to retain a minimum 
corresponding to the condensation. This means that at N = Nmax, this function has a horizontal inflection 
point (r0)inf, where 

0and0
2

0

2

0









r

E

r

E
 

– see the dashed blue curve in the figure above. With Eq. (*), these two conditions become 
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A bit counter-intuitively, this system of two nonlinear equations may be readily solved (say, by a brute-
force elimination of the term proportional to bN), giving 

     

1

2675.0
1

5

2
,6687.0

5

1
4/5maxopt0opt04/1inf0  Nrrr . 

 For typical parameters of experiments with weakly attracting atoms (a historic example is 7Li), 
this result yields Nmax ~ 103, in a semi-quantitative agreement with experimental data.  Note again that if 
 < 0, then even at N < Nmax, the minimum of the function E(r0) at r0  0, in which the Bose-Einstein 
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condensate may form at sufficiently low temperatures, is local rather than global, so such condensate is 
always metastable, with a certain finite lifetime with respect to the “ice blob” formation. 

 

 Problem 4.14. Superconductivity may be suppressed by a sufficiently strong magnetic field. In 
the simplest case of a bulk, long cylindrical sample of a type-I superconductor placed into an external 
magnetic field Hext parallel to its axis, this suppression takes a simple form of a simultaneous transition 
of the whole sample from the superconducting state to the “normal” (non-superconducting) state at a 
certain value Hc(T) of the field’s magnitude. This critical field gradually decreases with temperature 
from its maximum value Hc(0) at T  0 to zero at the critical temperature Tc. Assuming that the 
function Hc(T) is known, calculate the latent heat of this phase transition as a function of temperature, 
and spell out its values at T  0 and T = Tc. 

 Hint: In this particular context, “bulk sample” means a sample much larger than the intrinsic 
length scales of the superconductor, such as the London penetration depth L and the coherence length 
.20 For such bulk superconductors, magnetic properties of the superconducting phase may be well 
described as perfect diamagnetism, with B = 0 inside it. 

 Solution: In this simple geometry (only!), the state of the sample cannot affect the magnetic field 
outside it, so at any external point, including those close to the sample surface, Hout = Hext. This field is 
parallel to the sample surface, and according to the basic electrodynamics, should be continuous at the 
border.21 So, inside the sample, Hint = Hout = Hext, i.e. the field does not depend on whether the sample 
is superconducting or not. On the other hand, in the ideal-diamagnetism (coarse-grain) approximation,   
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Since the field H is defined by the relation H = B/0 – M, where M is the magnetization of the 
medium,22 Eq. (*) may be rewritten as 
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int
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 As was discussed in Sec. 1.1 of the lecture notes, the effect of the external magnetic field on the 
energy of a magnetic material is similar to the external pressure. In particular, the comparison of Eqs. 
(1.1) and (1.3a) shows that we may describe the effect by replacing, in all formulas of the traditional 
thermodynamics, the usual mechanical pair {–P, V} of the generalized force and coordinate with the set 
of magnetic pairs {0Hj, Mj} for each Cartesian component j = 1, 2, 3 of the corresponding vectors. For 
our  simple geometry, there is only one such component, parallel to the applied field (and hence to the 

20A discussion of these parameters, as well as of the difference between the type-I and type-II superconductivity, 
may be found in EM Secs.  6.4-6.5. However, those details are not needed for the solution of this problem. 
21 See, e.g., EM Eq. (5.117). Note that in superconductors, this condition is only valid within the so-called coarse-
grain model that sidesteps an explicit description of the field-induced supercurrents flowing in a surface layer of 
thickness ~L. However, the perfect diamagnetism mentioned in the Hint implies using exactly this model. (For 
more on that model, see EM Sec. 6.4.) 
22 If you need a reminder, you may have a look at EM Eq. (5.108) and its discussion. 
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sample’s surface), so the necessary replacements are just –P  0H, and V  M. With these 
replacements, the Clapeyron-Clausius relation (4.17) for the latent heat per unit volume becomes 

   
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μd
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V
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sn

H
MM


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
 , 

where the indices “n” and “s” denote, respectively, the normal and superconducting phases. Now using 
Eq. (**), we get23 

              
dT

d
Tμ c

c0

H
H .     (***) 

 Since the critical field drops with temperature, dHc/dT < 0, this expression yields positive latent 
heat, as it should. (A superconductor needs to be heated to make it normal.) In particular, Eq. (***) 
shows that the latent heat vanishes both at T = 0 and T = Tc – in the latter case because Hc(Tc) = 0. The 
last fact shows that in the absence of the external magnetic field, the thermally induced phase transition 
from the superconducting to the normal state at T = Tc may be considered a continuous one – see Secs. 
4.2-4.3 of the lecture notes.  

  

 Problem 4.15. In some textbooks, the discussion of thermodynamics of superconductivity is 
started by displaying, as self-evident, the following formula: 
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T
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2
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sn

H
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where Fs and Fn are the free energy values in the superconducting and non-superconducting (“normal”) 
phases, and Hc(T) is the critical value of the external magnetic field. Is this formula correct, and if not, 
what qualification is necessary to make it valid? Assume that all the conditions of a simultaneous field-
induced phase transition in the whole sample, spelled out in the previous problem, are satisfied. 

 Solution: With the replacements –P  0H and V  M, which were discussed in Sec. 1.1 of the 
lecture notes (and in the solution of the previous problem), the usual relation G = F + PV between the 
free energy and the Gibbs energy (per unit volume) becomes24 

      intint0 MH  
V
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G
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As was discussed in the solution of the previous problem, in the bulk cylindrical geometry, Hint = Hext 
in any phase, while  
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23 Note that according to Eq. (4.14) of the lecture notes, the factor after T also gives the difference of entropies in 
the superconducting state and the normal state. 
24 Note again that (as was discussed in Sec. 1.4 of the lecture notes), this relation is only true if the effect of the 
field H  is not included in the energy of each particle of the medium,  as it is done, for example, in the Ising-type 
problems – see, e.g., the last terms in Eqs. (4.21) and (4.23). In the latter case, there is no difference between the 
thermodynamic potentials G and F – unless the usual pressure P (or any other generalized force but H) interferes. 
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so Eq. (*) yields 
                 VTFTFTGTG 2

ext0snsn H .   (**) 

 Next, by using the same analogy –P  0H and repeating the arguments of Sec. 1.4, we may 
conclude that the thermodynamic equilibrium of a magnetic system with fixed Hext and T corresponds to 
the minimum of the Gibbs energy – see Eq. (1.43) and its discussion. Hence, as the magnetic field 
reaches the critical value Hc(T), the difference of G in the superconducting and normal phases has to 
vanish, and Eq. (**) yields the result 

           VTTFTF 2
c0sn H ,     (***) 

which differs from the relation cited in the assignment by a factor of two.  

 However, let us consider the relationship between the free energies Fn
(0) and Fs

(0) of these phases 
at the same temperature T but in the absence of magnetic field. Due to the free energy’s definition F  E 
– TS, in the normal phase, it includes the same additional magnetic field energy B2/20 as the internal 
energy E:25 
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while in the superconducting phase, with B = 0, there is no such additional contribution:  

     TFTF 0
ss  . 

Plugging these relations, taken at the field Hext(T) = Hc(T), into Eq. (***), we see that one-half of its 
right-hand side cancels with the field energy term, and we get 
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 Hence the relation cited in the problem’s assignment is valid only for the field-free values of the 
free energy – while for its values in the field, Eq. (***) is valid. Fortunately, this qualification is made in 
more competent texts. 

 

 Problem 4.16. Consider a system of N = 3 Ising “spins” (sk = 1) with similar ferromagnetic 
coupling J  of each pair of them, in thermal equilibrium.  

 (i) Calculate the order parameter  and the low-field susceptibility   /hh=0. 
 (ii) Use the low-temperature limit of the result for  to predict it for a similar “ring” with an 
arbitrary N, and verify your prediction by a direct calculation (in this limit). 
 (iii) Discuss the relation between the last result, in the limit N  , and Eq. (4.91) of the lecture 
notes. 

  Solutions:  

 (i) The energy of each state of the system may be expressed by Eq. (4.78) of the lecture notes, 
with N = 3: 

25 I am sure the reader knows this formula – but if not, please see EM Sec. 5.3 and 6.2, in particular Eq. (5.57). 
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   321133221 ssshssssssJEm  . 

In one of the 23 = 8 possible states of the system, in which all spins are aligned with the field, the 
system’s energy is the lowest and equal to (–3J – 3h). In one more state, with all spins directed against 
the field, the energy is (–3J + 3h). In the six remaining states, one of the spins has a direction opposite to 
the other two, so the net coupling energy is –J + 2J  +J, while the energy of interaction with the field is 
h, depending on the orientation of the two similar spins, with three states in each group. Hence 
system’s statistical sum is 
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From here and the basic Eq. (2.63), the free energy of the system is 
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Now using Eq. (4.90) of the lecture notes, we get 
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 For low fields, h/T  0, both sinh functions in the last expression tend to the values of their 
arguments, while both cosh functions tend to 1, so 
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Note that for this system (and for any system with a finite N, for any reasonable physical model), 
all average variables are continuous functions of temperature, so we cannot speak about a definite phase 
transition temperature, and even about the phase transition as such – this is just a (very useful!) 
abstraction strictly valid only in the limit N  . 

 (ii) In the low-temperature limit (T/J  0), the exponent in the last displayed expression is 
negligible, and the result is reduced to  

           JT
T

 for  ,
3 . 

Comparing this result with Eq. (4.77) for a single spin, we may guess that for the Ising ring of N spins,  

         JT
T

N
 for  , .     (**) 

Indeed, reviewing the above exact calculation for N = 3, we may see that the low-temperature limit 
corresponds to a negligible effect of the contribution from exp{–4J/T} in Eq. (*). But this exponent is 
just the Gibbs factor describing the effect of a single thermal excitation of the system, whose energy (in 
a negligibly low field) is the additional energy of flipping one spin, i.e. increasing the coupling energy 
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of each of its two bonds with the neighbors by 2J, so E = 4J.26 Hence, Eq. (**) may be derived by 
ignoring such excitations, i.e. by taking into account only two states of the system (of all 2N possible!): 
both with all spins aligned – either along the field or against it, with energies E = –N(J + h) and E = –
N(J – h): 
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so 
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 The field-dependent part of this expression is absolutely similar to that of a single “spin”,27 with 
the only difference that the field’s effect is N times larger, so in the low-field limit, 

         TNh  .      (***) 

it immediately yields Eq. (**). This result should not be surprising, because firmly aligned spins behave 
as a single one, just with the magnetic moment N times larger. 

 (iii) In the limit N  , Eq. (**) yields   , i.e. a result different from the finite (if 
exponentially large) value (4.91), given by the exact theory described in Sec. 4.5 of the lecture notes. 
The reason for this discrepancy is that for such an infinite system, the limit (***) cannot be followed. 
This paradox emphasizes again that the notion of an “infinite system” should be taken with the same 
grain of salt as that of the “phase transition”, especially in systems of low dimensionality – see also Eq. 
(4.93) and its discussion. 

 

Problem 4.17. Calculate the average energy, entropy, and heat capacity of a uniform three-site 
ring of Ising-type “spins” (sk = 1), with antiferromagnetic coupling (of magnitude J) between the sites, 
in thermal equilibrium at temperature T, with no external magnetic field. Find the asymptotic behavior 
of its heat capacity for low and high temperatures, and give an interpretation of the results. 

 Solution: The internal energy of this system may be represented similarly to that in the previous 
problem (see also Eq. (4.78) of the lecture notes), but with the opposite sign of the coupling energy: 

  0with  ,133221  JssssssJEm . 

In two of the 23 = 8 possible states of the system, all spins are aligned, and the system’s energy equals 
+3J, while in all other 6 states, one of the spins has a direction opposite to its two counterparts, so the 
energy equals J – 2J  –J. Hence the system’s statistical sum is 
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From here, we may readily calculate the free energy of the system, 

26 Note that for an open Ising chain, the lowest excitation has twice lower energy – see Fig. 4.11 and its 
discussion in Sec. 4.5. However, this difference does not affect the validity of Eq. (**).   
27 See, e.g., Eq. (4.68) of the lecture notes, for the particular case hef = h. 
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its average energy, 
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and the heat capacity: 
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 At low temperatures, T << J, the second exponent in the denominator is negligible, so the heat 
capacity is exponentially low: 
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This result is very natural because the system stays mostly in one of its six lowest-energy, “almost-
antiferromagnetic” states (with energy E = –J), separated from the two higher-energy states (with energy 
E = +3J) by the energy gap  = 4J. 

 In the opposite limit T   , both factors exp{2J/T} in Eq. (*) approach 1, and  
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Such a gradual decrease of the heat capacity with temperature is also natural because at high 
temperatures, all eight states of the system are almost equally populated, and the remaining low heat 
capacity is due to the gradual decrease of the small remaining imbalance of these populations with 
temperature. 

   

 Problem 4.18. Using the results discussed in Sec. 4.5 of the lecture notes for the infinite 1D Ising 
model, calculate the average energy, free energy, entropy, and heat capacity (all per one “spin”) as 
functions of temperature T and external field h. Sketch the temperature dependence of the heat capacity 
for various values of the h/J ratio and give a physical interpretation of the result. 

 Solution: From Eq. (4.88) of the lecture notes, rewritten as  

     JJhhZ N  exp4expsinhcoshwith  ,
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where   1/T, we can readily calculate the free energy: 
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the average energy: 
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and then use thermodynamic relations to calculate the entropy and the heat capacity (all per “spin”): 
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 The figure on the right shows the 
log-log plots of this specific heat as a 
function of temperature, for several values 
of the ratio h/J.  

 At negligible magnetic field (h << J, 
T), the results simplify: 
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This behavior of the heat capacity28 is 
similar to that of the usual two-level system 
(formally corresponding to the 0D Ising 
model) – see, e.g., the model solution of 
Problem 2.2, with the substitution  = 2J. 
This fact may be interpreted as the dominant effect, on the thermodynamics of the field-free system, of 
independent lowest-energy excitations, namely of the Bloch walls with the energy EW = 2J – see their 
discussion in Sec. 4.5 of the lecture notes. 

 In the opposite limit when the energy h of the spin interaction with the field is much higher than 
the energy J of the coupling between them but still may be comparable with the thermal energy scale T, 
the general formula for + reduces to 

ThJ
T

h
,for  ,cosh2  , 

showing that all characteristics of the system become dependent only on the h/T ratio. (This trend is 
clearly visible in the figure above as a rigid horizontal shift of the plot along the axis of T/J as the ratio 
h/J is increased well above 1.) Moreover, this expression for +, and hence those for all other 
thermodynamic variables including the heat capacity, are similar to those for the low-field limit, but 
with the replacement J  h. So, the temperature dependence of C is again similar to that obtained in the 
solution of Problem 2.2, but now with the substitution  = 2h. This behavior is readily explainable: at 
negligible coupling J, the system is just a set of N independent Ising “spins” (i.e. two-level systems), 
with the energy difference  = 2h between their possible orientations in the field. 

28 The formulas for F/N and E/N are functionally different from those in the solution of Problem 2.2 only because 
of the shift of their reference level by –J. (This temperature-independent shift does not affect the heat capacity C  
E/T.) 
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 As the figure above shows, in between these two limits, i.e. at h ~ J, the temperature dependence 
of the specific heat is quantitatively different but qualitatively similar: C  vanishes both at T  0 and at 
T  , with a maximum Cmax ~ N at T ~ h. 

 

 Problem 4.19. Calculate the specific heat (per “spin”) for the d-dimensional Ising problem in the 
absence of the external field, in the molecular-field approximation. Sketch the temperature dependence 
of C and compare it with the corresponding plot in the previous problem’s solution. 

 Solution: By performing the statistical averaging of both sides of Eq. (4.64) of the lecture notes, 
and then using Eq. (4.62), Eq. (4.66) with h = 0, and Eq. (4.72), we get the following expression for the 
average energy E: 
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where the order parameter   sk is the solution of Eq. (4.71): 
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In order to calculate the heat capacity, we may differentiate Eq. (*) over temperature: 
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and then calculate the needed derivative /T by differentiating both sides of Eq. (**): 
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and solving this simple (linear) equation: 
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so, finally,  
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 All these results may be visualized without solving the transcendental equation (**) for  – 
simply by plotting E/N and C/N vs the normalized temperature 
T/Tc, using  as the parameter in Eqs. (*), (***), and in the 
relation resulting from solving Eq. (**) for the ratio T/Tc:  




1
c tanh 

T

T
 

– see the figure on the right. As the temperature is increased, the 
gradually growing thermal fluctuations suppress the order 
parameter from 1 (full order) at T = 0 to zero (no order) at T = 
Tc. Correspondingly, the average interaction energy is increased 
from (–Tc/2) to zero – see Eq. (*) again.  
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 The heat capacity (***) requires a slightly more careful analysis. At T  0,   1, so 
cosh(Tc/T)  ½ exp{Tc/T}  , the unity in the denominator of Eq. (***) is negligible, and we get 

c
c
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On the other hand, at T  Tc, the order parameter  tends to zero, but to obtain a more exact asymptotic 
expression, we need to use the Taylor expansion tanh  (1 – 2/3) at  << 1. Applying it to Eq. (**), 
we get29  
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Plugging this expression into Eq. (***), and using the expansion cosh   1 + 2/2 at  << 1, we get 

cfor  ,
2

3
TTNC  . 

This trend is clearly visible in the figure above.  

 Note that for all temperatures above Tc, the molecular-field approach gives  = 0, E = 0, and 
hence C  E/T = 0, so a more “global” plot of the function C(T) would have a sawtooth-like form with 
a vertical drop at T = Tc  2Jd. Comparing this result with the exact solution of the 1D Ising problem  
(see the leftmost plot, for h/J = 0, in the model solution of the previous problem), we see that the results 
are qualitatively similar: in both cases, the functions C(T) tend to zero at T  0 and T  , having a 
peak with Cmax ~ N at temperature T ~ Jd. The quantitative difference of these results should not be too 
surprising: as a reminder, for the systems with next-neighbor interactions, the molecular-field 
approximation works much better for higher dimensionalities – see, e.g., Table 4.2 in the lecture notes. 
Indeed, the exact and quasi-exact (numerical) solutions of the Ising problem for d = 2 and d = 3 show 
that for them, the functions C(T) have singularities at T = Tc. 

  

 Problem 4.20. Prove that in the limit T  Tc, the molecular-field approximation, applied to the 
Ising model with a spatially constant order parameter, gives results similar to those of Landau’s mean-
field theory with certain coefficients a and b. Calculate these coefficients and list the critical exponents 
defined by Eqs. (4.26), (4.28), (4.29), and (4.32), given by this approximation. 

 Solution: In the molecular-field approximation, the statistical sum of a d-dimensional Ising 
system is given by Eq. (4.68) of the lecture notes:  

.2  where,cosh2 ef
ef Jdhh

T

h
Z   

Using it to construct the free energy, we have to include the background term F = JdN 2
, i.e. the first 

term in Eq. (4.64), as well because it also depends on the order parameter. From here, and the 
fundamental Eq. (2.63), the free energy per “spin” is 

29 Note that according to Eq. (4.26), this relation means that the critical exponent   is equal to ½, as was already 
found (using a different approach) in the solution of Problem 14. 
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As a sanity check, the equilibrium condition F/ = 0 yields the equation 

T

heftanh , 

which coincides with Eq. (4.69) derived directly from statistics. 

 Landau’s mean-field theory may be quantitatively correct only if the order parameter  tends to 
zero, and the external field h is also small, so hef  0. In this limit, we may expand Eq. (*) into the 
Taylor series in small  and h. By combining the series ln(1 + ) =  –  2/2 + and cosh = 1 +  2/2 + 
 4/24 +, we get 
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and displaying, per Eq. (4.46), only the leading terms up to O(4) and O(h), we get 
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Since according to Eq. (4.72), in the molecular-field approximation, the product 2Jd is just the critical 
temperature Tc, the last formula may be rewritten as 
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Comparing this result with Landau’s expansion (4.46) with  = 0, 
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where  0 < – t~  (Tc – T)/Tc << 1, we see that all their three leading terms coincide if 
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where n = N/V is the volumic density of the “spins”.  

 So, in the molecular-field approximation, the free energy of the Ising model (and hence all its 
thermodynamic characteristics) is reduced, at T  Tc, to that described by Landau’s mean-field theory, 
at least for the spatially-independent order parameter.30 As a result, the critical exponents of the latter 
theory, calculated in Sec. 4.3:  

3,1½,,0   , 

30 An extension of this analysis to (relatively slow) variations of the order parameter in space requires the 
molecular-field approximation to be generalized – similarly in spirit to the van der Pol method in classical 
mechanics (see, e.g., CM Sec. 5.3) and the WKB approximation in quantum mechanics (see, e.g., QM Sec. 2.4). 
Such generalization is a very good additional exercise, highly recommended to advanced readers. 
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are valid for the former approximation as well. 

 This calculation illustrates again that Weiss’ molecular-field approximation and Landau’s theory 
belong to different levels of physical phenomenology, and shows how dangerous it is to label them both 
“mean-field theories”. (Unfortunately, in physics this term is over-used, and often requires a 
qualification.) 

 

 Problem 4.21. Assuming that the statistical sum ZN of a field-free, open-ended 1D Ising system 
of N “spins” with arbitrary coefficients Jk is known, calculate ZN+1. Then use the result to obtain an 
explicit expression for ZN and compare it with Eq. (4.88) of the lecture notes. 

 Solution: For a field-free, open-ended chain with arbitrary Jk, Eq. (4.23) of the lecture notes may 
be rewritten as 







1

1
1

N

k
kkkm ssJE . 

The statistical sum of the chain is 
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T

J

T

E
Z .  (*) 

Let us assume that we already know this sum (of 2N-1 terms), and use it to calculate the statistical sum 
ZN+1 (of 2N terms) for a similar chain of ZN+1 spins. The energy of the new system differs from that of the 
old one only by the addition of the energy  = –JNsNsN+1 of the new coupling link. For any fixed set of 
“old” spins {s1, s2,…, sN}, the additional energy may take only two values, JN, thus replacing each term 
of the sum (*) with two terms, with additional factors exp{–/T} = exp{JN/T}. As a result, we get 
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 Now we may apply this simple recurrence relation sequentially, starting from the (easy) case N = 
2, i.e. for the system with just one link, whose statistical sum has only four terms, with two equal pairs: 
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. 

Now we can use Eq. (**) sequentially to write the result for an arbitrary N  2:  
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For a uniform chain, with J1 = J2 =…= JN-1  J, this expression reduces to 

             
1

cosh22










N

N T

J
Z .      

 This formula differs from Eq. (4.88), for a ring of (N – 1) sites and our current case h = 0, only 
by an inconsequential front factor of 2. So, as the reader can see, for the zero-field case, this solution of 
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the 1D Ising problem is much easier than the transfer matrix approach described in Sec. 4.5 of the 
lecture notes. 

  

  Problem 4.22. Use the molecular-field approximation to calculate the critical temperature and 
the low-field susceptibility of a d-dimensional cubic lattice of spins, described by the so-called classical 
Heisenberg model:31   

 
 

k
k

k,k'
k'km JE shss . 

Here, in contrast to the (otherwise, very similar) Ising model (4.23), the spin of each site is described as 
a classical 3D vector sk = {sxk, syk, szk} of unit length: sk

2 = 1. 

 Solution: Let us align the z-axis with the direction of the external magnetic field h, and use the 
shorthand szk  sk; then the energy of the mth state may be rewritten as 

   
 

 
k

k
k,k'

yk'ykxk'xkk'km shssssssJE . 

In the molecular-field approximation, each Cartesian component of the spin should be represented in a 
form similar to Eq. (4.62) of the lecture notes. However, due to the symmetry of the problem with 
respect to the reflections x  –x and y  –y, the average s may be different from zero only for the z-
component (for which it equals ). Hence the two last terms in the parentheses include only the squares 
of fluctuation terms: 

  
 

 
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k
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Multiplying the parentheses under the first sum and neglecting all terms quadratic in small fluctuations 
(see the discussion of the transition from Eq. (4.63) to Eq. (4.64) of the lecture notes), we get an 
expression formally similar to Eq. (4.64) for the Ising model, 

  ,ef
2 

k
km shNJdE   

describing a set of N independent classical “spins” sk placed into the effective (external + “molecular”) 
field (4.65): 
                  Jdhh 2ef  .     (*) 

However, in contrast with the Ising model, sk may now take any real values from –1 to +1. 

 This situation was one of the subjects of Problem 2.4, and we can use its solution. In our current 
notation, the result for the order parameter reads 

              .coth
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h
Ls ef 




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


     (**) 

This Langevin function is qualitatively but not quantitatively similar to Eq. (4.69) for the Ising model; 
most substantially, it has a three-fold lower slope at the origin: 

31 This classical model is formally similar to the generalization of the genuine (quantum) Heisenberg model (21) 
to an arbitrary spin s and serves as its infinite-spin limit. 
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Th h 3
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

. 

 This difference affects the phase transition temperature Tc. Indeed, combining Eqs. (*) and (**), 
and linearizing the result in small h, hef, and  (exactly as was done in Sec. 4.4 of the lecture notes for 
the Ising model), for the low-field susceptibility, we get the same Curie-Weiss law (4.76), 

c
0

1

TTh h 





 
 , 

but with a three times lower critical temperature: 

3

2
c

Jd
T  . 

 This reduction is a natural result of the spin-to-field interaction weakening due to the availability 
of intermediate values, –1 < sk < +1, of the field-aligned spin components. In turn, this availability is the 
immediate result of taking into account all three Cartesian components of the vector s. 

 

 Problem 4.23. Use the molecular-field approximation to calculate the coefficient a in Landau’s 
expansion (4.46) for a 3D cubic lattice of spins described by the classical Heisenberg model (whose 
analysis was the subject of the previous problem). 

 Solution: As was discussed in the model solution of the previous problem, in the molecular-field 
approximation, the energy of such a system (for the case d = 3) is reduced to 

 cos,6with  ,cos3 efefef
2   JhhhshNJEE
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k
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'
m , 

where k is the angle between the direction of the kth spin vector (of the unit length) and the applied 
field. Besides the non-fluctuating offset 

23 NJEEE '
mm  , 

this is just the energy of a system of independent classical magnetic dipoles in the effective external 
field hef. Though an analysis of this system was one of the subjects of Problem 2.4, the statistical sum 
was not directly calculated in its model solution; let us do this now, by using the same transition from 
summation to integration over the full solid angle d = sindd: 
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At h = 0, i.e. hef = 6J, this expression is reduced to  

T

J

J

T
Z



 6

sinh
3

2
 . 

 Now, similarly to how this task was performed for the Ising model in the solution of Problem 20, 
we may calculate the free energy F/N per spin by using Eq. (2.63) of the lecture notes, but adding to it 
the non-fluctuating offset of the energy, F/N = E/N = 3J2: 
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Expanding this expression into the Taylor series in the small order parameter , and, we get32 
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We see that the coefficient at 2 vanishes at T = 2J, i.e. at the critical temperature Tc = 2J (already 
calculated in Problem 22 for an arbitrary dimensionality d), and is negative below Tc, as it should – see 
Eq. (4.44) of the lecture notes. Now comparing this result with the Landau’s expansion of F at 
temperatures close to Tc,   
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where V is the volume of the system, we get 

,
2

3
3 cnTJna   

where n = N/V is the spin density. Note that this value of a, in terms of the critical temperature, is three 
times higher than that calculated in the solution of Problem 20 for the Ising model, at the same coupling 
constant J. This is the same three-fold change as was discussed, for the low-field susceptibility of single 
spins, in the solution of Problem 2.4, and for the molecular-field value of the critical temperature, in the 
solution of the previous problem. 

 

 Problem 4.24. Use the molecular-field approximation to calculate the critical temperature of the 
ferromagnetic transition for the d-dimensional cubic Heisenberg lattice of arbitrary (either integer or 
half-integer) quantum spins s. 

 Hint: This model is described by Eq. (4.21) of the lecture notes, with σ̂ now meaning the vector 
operator of spin s, in units of Planck’s constant . 

 Solution: Let us start with rewriting the classical Ising model (4.23) in an equivalent form 


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

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'
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k
kkk

k
km sJhsEEE , 

where the sum over k’ is limited to the sites adjacent to the site number k. As Eqs. (4.64)-(4.65) show, 
the molecular-field approximation is reduced to the replacement of the expression in the parentheses 
with its ensemble average (plus a constant irrelevant for the averaging procedure): 


'

'efef   where,const
k

kkkk sJhhhs'EE . 

32 The second Landau coefficient, b, may be readily calculated by keeping the next term, proportional to 5, in the 
Taylor expansion of the sinh function. 
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 Inspired by this observation, let us rewrite Eq. (4.21) in a similar form:  

             
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'
'' ˆˆˆwith  ,ˆˆ

k
kkk

k
k JHHH σhσ ,   (*) 

and pursue the mean-field approximation by averaging the expression in the parentheses, with the only 
difference that now this should be the average not only over an ensemble of many similar spins but also 
over the quantum states of each spin – i.e. its quantum-mechanical expectation value:33 

             
'

'efef   whereconst,ˆˆˆ
k

kkkk J'HH σhhhσ .    

Since this averaging gives similar results for all spins of the lattice, including the 2d ones adjacent to 
any given site, this relation becomes  

σhh Jd2ef  . 

 The quantum properties of a system with the Hamiltonian, i.e. of a spin placed into a classical 
magnetic field, are well-known. In this series, besides a detailed discussion of these properties in QM 
Sec. 5.7, their summary sufficient for our current purposes was given in the Hint to Problem 2.7 of this 
course. Moreover, the statistical properties of this system were already calculated in the solution of that 
problem. In particular, it shows that the average spin is directed along the applied field, and in the low-
field limit (in our current notation – see Eq. (4.22) of the lecture notes):  
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With the replacement h  hef, Eq. (**) turns into the self-consistency relation  
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This relation is satisfied at h  0 (i.e. the order parameter arises even without an external field) when 
2Jds(s + 1)/3T = 1, giving us the following critical temperature of the ferromagnetic transition in the 
Heisenberg lattice: 

                 
 
3

12
c


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ssJd
T .     (***) 

 This result may be compared with Eq. (4.72) of the lecture notes for the classical Ising system, 
and the solution of Problem 22. In particular, at s  , Eq. (***) tends to the critical temperature of the 
classical Heisenberg model, after the proper rescaling of the “spin” magnitude (s2  1). 

  

 

33 See, e.g., QM Secs 1.2-1.3. 
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Chapter 5. Fluctuations 

 Problem 5.1. By treating the first 30 digits of number  = 3.1415 as a statistical ensemble of 
integers k (equal to 3, 1, 4, 1, 5,), calculate the average k and the r.m.s. fluctuation k.  Compare the 
results with those for the ensemble of randomly selected decimal integers 0, 1, 2,, 9. 

Solution: A high-precision value of  may be either found on many Web sites, e.g., in Wikipedia 
(http://en.wikipedia.org/wiki/Pi), or generated by using any digital calculator (say, that on your 
smartphone) – for example, as 4 tan-1(1). For our purposes, we need just M = 30 first digits: 

 = 3.14159 26535 89793 23846 26433 8327 

From here, the calculation can be done either with a computer, by writing and running a simple script, 
using the number rounding routine readily available in virtually all numerical libraries to reformat the 
number into the integer array km = 3, 1, 4,…, or just by brute force, by using a calculator. For 30 digits, 
the required time is comparable (and insignificant :-). The results are: 
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 For an infinite set of random decimal integers (with equal probabilities Wn = 1/N to take any of N 
= 10 possible values kn = n’  n – 1 = 0, 1, 2,…,9), the corresponding expectation values are34 
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i.e. close to the results as for the digits of the number .  

 A good sanity check here is that the difference between the calculated averages of k in these two 
(very similar) statistical ensembles is much smaller than their absolute r.m.s. uncertainties. Note also 
that the relative statistical uncertainty of the random integer set would be nonvanishing (and 
substantial!) even if their number N was infinite: 

34 For the sum calculation, the well-known MA Eqs. (2.5b) and (2.6a) may be used. 
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 Problem 5.2. An ideal classical gas of N similar particles fills a spherical cavity of radius R. 
Calculate the variance of fluctuations of the position r of its center of mass, in equilibrium. 

 Solution: According to the center of mass definition,35 for a system of particles of the same mass, 
its radius vector r is expressed via those of the particles as 

        



N

k
kN 1

,
1

rr       (*) 

where k are particle numbers. (The numbering order is arbitrary.) Due to the spherical symmetry of our 
problem, the average position of the center of mass has to be in the cavity’s center, so by taking this 
point for the origin, we have r = 0. Due to the spherical symmetry of our system, the probabilities of 
the c.o.m.’s deviations from that point in any direction are equal, so let us start with the calculation of 
the scalar variance 

  .~~ 2222 rr  rrr  

 Since for an ideal gas, all rk are uncorrelated, Eq. (*) is functionally similar to Eq. (5.7) of the 
lecture notes, so by reviewing the derivation of  Eq. (5.11), we can readily get its analog: 

22 1
krN

r  . 

Since all positions of a free particle inside the cavity have the same probability density w = 1/V, where V 
= (4/3)R3 is the sphere’s volume, we may use Eq. (2.10) to write 
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so, finally,  
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 Also, due to the already mentioned fluctuation isotropy, the variances of all Cartesian 
coordinates of the center of mass of this system are equal; hence we may write 
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1~~~ 22222222 R
N

rzyxzyx   

 

 Problem 5.3. Calculate the variance of fluctuations of a magnetic moment m placed into an 
external magnetic field H, within the same two models as in Problem 2.4:36 

35 See, e.g., CM Eq. (4.13). 
36 Note that these two cases may be considered as the non-interacting limits of, respectively, the Ising model 
(4.23) and the classical limit of the Heisenberg model (4.21), whose analysis within the Weiss approximation was 
the subject of Problems 4.22 and 4.23.  
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 (i) a spin-½ with a gyromagnetic ratio , and 
 (ii) a classical magnetic moment m, of a fixed magnitude m0, but an arbitrary orientation, 

both in thermal equilibrium at temperature T. Compare the results. 

 Hint: Mind all three Cartesian components of the vector m. 

 Solutions:  

 (i) As was discussed in the model solution of Problems 2.2-2.4, for a spin-½ in an external 
magnetic field, the stationary values of the magnetic moment’s component in the field’s direction are 
m0, where m0  /2. The corresponding energies are   

 ,0 hEm  Bm ,  

so their probabilities W in the canonical ensemble are  
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 The average square of mz may be calculated similarly: 

    2
0

2
0

2
0

2
0

2 )( mmmmm   WWWWz . 

Now we can use the general Eq. (5.4b) to calculate the variance of the moment’s fluctuations: 

       ThT

h
zzz /cosh

tanh
2

2
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222~ m
mmmmm  .   (*) 

 Note that this result may be also obtained differently – by using Eq. (5.37a) of the lecture notes 
and the analogy between two canonical pairs of variables: {–P, V} for a system under mechanical 
pressure and {0H, mz} for a single magnetic moment, or rather its component in the direction of the 
field.37 This analogy immediately yields Eq. (*) again: 
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 In the limit of relatively high temperatures, i.e. of relatively low fields (h << T), the denominator 
of this expression tends to 1, so the moment’s variance is the largest, approaching m0

2, while in the 
opposite, low-temperature (high-field) limit, the fluctuations are exponentially small: 










T

h

T

h
z at  ,0

2
exp4 2

0
2~ mm . 

37 See, e.g., Secs. 1.1 and 4.5 of the lecture notes, in particular Eq. (1.3), and the discussion leading to Eq. (4.90).  
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This is a natural result for a system with the energy gap  = 2h separating the ground state of the system 
from its (only) excited state.  

 Now let us consider two other components of the magnetic moment. Their averages evidently 
equal zero due to the axial symmetry of the system:  

      0 yx mm . 

The same symmetry may be used to write mx
2 = my

2, so since m2  mx
2 + my

2 + mz
2, we have 

           2
0

2222222

2

1

2

1

2

1
mmmmmmmm  zyxyx . 

Here we should avoid the error of taking m2 equal to m0
2. Indeed, in quantum mechanics, the 

expectation value of the spin’s square is S2 = 2s(s + 1), so for a spin-½, S2 = (3/4)2. (Since this 
equality is valid for any quantum state of the spin, it is also valid for the average over any statistical 
ensemble.) Hence, for m  S, we get  

2
0

22222 3
4

3
mm   S , 

so 

  2
0

2
0

2
0

2222 3
2

1~~ mmmmmmm  yxyx . 

This is the same result as we had for 2~
zm  in the absence of the field – a good sanity check. 

 So, the fluctuations of the lateral components of the magnetic moment are temperature-
independent and physically caused just by their quantum uncertainty. (These fluctuations are ultimately 
large even at T = 0, and thermal agitation of the spin at T > 0 cannot increase them.)  

 (ii) As was discussed in the model solution of Problem 2.4, in this model, the probability 
distribution is continuous, with the angular density 
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(with the same notation, h  mB, for the normalized magnetic field), giving the following averages: 
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. 

 We may now calculate the average squares of all Cartesian components of the vector m in the 
same way. However, since due to the axial symmetry of the problem, those of the x- and y-components 
have to be equal, it is convenient to calculate them both in one shot: 
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These integrals may be worked out exactly as in the solution of Problem 2.4, by introducing the new 
variable   (h/T)cos, so cos = (T/h), sin d   –d(cos) = –(T/h)d, and sin2 = 1 – (T/h)22: 
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The first of these two integrals is exactly the same as was (easily :-) worked out above, while the second 
one requires two sequential integrations by parts, giving 
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As a result, we get 
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Finally, since the length m0 of the vector m is the same in all its possible states, we may write 

2
0

2222 mmmmm  zyx , 

so the square of the remaining, field-aligned component of the magnetic moment may be calculated as 
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and the general relation (5.4b) yields 
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 As was already discussed in the model solution of Problem 2.4, in the high-temperature (low-
field) limit h << T, the expression in the parentheses participating in Eqs. (**) and (***) approaches 
h/3T << 1, so our results are reduced to a very simple, field-independent expression 

2
0

222

3

1~~~ mmmm  zyx . 

This is very natural because in the absence of the field, the system is fully isotropic.  
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 However, in the opposite, low-temperature/high-field limit, when the same expression in the 
parentheses tends to 1 – T/h, Eqs. (**) and (***) give very different results for the field-aligned and 
field-normal components: 

hT
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yxzyx 
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,

2
2
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22
0

22 ~~~~ mmmmmm . 

The physical reason for this difference is that small deviations of the moment vector from the field-
aligned direction nz give an energy contribution that is quadratic in mx and my: 
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so their variances have to (and do!) satisfy the equipartition theorem (2.48): 
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On the other hand, the deviations of the z-component of the momentum from its value (m0) 
corresponding to the exact alignment, in this limit, are much smaller: 

   2
0

22

0

22

0

2/1222
00

~~
~~

~~~ ,for  ,
2

mmm
m

mm
mmmmmmm 


 yx

yx
yxzz ; 

as a result, their variance is of a higher order in the small parameter T/h. 

 Finally, comparing the results for the two models of a spin in a magnetic field, we see that they 
are rather different. Most significantly, in the low-temperature limit, the classical Heisenberg model 
(which agrees with quantum mechanics for large values of spin, s >> 1) does not exhibit the 
exponentially small fluctuations of mz, which are typical for s = ½ (and any finite value of spin), because 
of the availability of intermediate states with 0 <  < , filling the gap between the two extreme values 
(E = h) of the energy. 

 

 Problem 5.4. For a field-free two-site Ising system with energy values Em = –Js1s2, in thermal 
equilibrium at temperature T, calculate the variance of energy fluctuations. Explore the low-temperature 
and high-temperature limits of the result. 

 Solution: This system has two doubly degenerate values of its energy E:  
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Hence its statistical sum is  
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the average of the system’s energy is 
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so the energy fluctuation variance38 
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 At low temperatures, T << J, the function cosh(J/T) is very large, so the fluctuations are 
exponentially small, due to the gap 2J in the energy spectrum of the system. On the other hand, in the 
opposite limit of high temperatures, cosh(J/T)  1, and the energy fluctuation variance approaches the 
temperature-independent value J 2. 

 

 Problem 5.5. In a system in thermodynamic equilibrium with fixed T and , both the number N 
of particles and the internal energy E may fluctuate. Express the mutual correlation factor of these 
fluctuations via the average of E. Spell out the result for an ideal classical gas of N >> 1 particles. 

 Solution: The mutual correlation factor of the fluctuations NNN ~
 and EEE ~

 may be 

readily expressed via the averages N, E, and NE:39 

                ENENEENNEN ~~
.   (*) 

In the lecture notes, the average energy E was expressed via the statistical sum Z of the Gibbs 
(canonical) ensemble – see Eqs. (2.61b) and (5.16). However, our current system, with fixed T and , is 
a member of a grand canonical ensemble, so let us first express E via the grand statistical sum (2.107). 
According to Eq. (2.106), 
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Now, taking clues from the calculations of the variances of N and E at the beginning of Sec. 5.2, let us 
rewrite the first of these expressions as 
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and differentiate both sides over the chemical potential: 
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This means that we may write 

38 Alternatively, the same result may be obtained as E/(-) – see Eq. (5.19) of the lecture notes,  
39 Cf. Eq. (5.3) for the variance. 
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But according to Eq. (5.22) of the lecture notes, the last term is just the product EN, so comparing the 
resulting relation with Eq. (*), we get a very simple result: 
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E
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,     (**) 

which is structurally similar to Eqs. (5.19) and (5.24) for the variances of these two fluctuations. 

  In a classical gas of non-interacting particles, the total internal energy E is the sum of individual 
energies of all particles, whose average  is a function of temperature alone, so for N >> 1, E  
N(T), giving 
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But according to Eq. (5.26) of the lecture notes, the last derivative equals N/T, so the general Eq. (**) 
is reduced to 
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, 

very much in the spirit of Eq. (5.27). The close similarity of these results is especially evident in their 
normalized form: 
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 Problem 5.6. As was mentioned in Sec. 5.2 of the lecture notes, the variance of energy 
fluctuations in a system with fixed T and  (i.e. a member of a grand canonical ensemble) is generally 
different from that in a similar system in which T and N are fixed, i.e. a member of a canonical 
ensemble. Calculate and interpret the difference. 

 Solution: According to Eq. (2.106) of the lecture notes, for the grand canonical ensemble,  
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Taking clues from Eq. (5.19), let us differentiate both sides of the second of Eqs. (*) over (–):  
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 According to Eq. (5.19), the first term on the right-hand side would give the energy fluctuation 
variance in the Gibbs (canonical) ensemble, i.e. at a fixed number of particles in the system, while the 
second term may be spelled out by using Eq. (**): 
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so Eq. (***) becomes 
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Per Eq. (*) of the solution of the previous problem, the expression in the last parentheses is just EN
~~

, 

so for the energy fluctuation variance in the grand canonical ensemble, we get 
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and using the final general result (**) of the same solution,  
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. 

 As Eq. (****) clearly shows, the difference between the results for two statistical ensembles is 
due to the fact that if  rather than N is fixed, the number of particles may fluctuate, causing correlated 
energy fluctuations. 

 

 Problem 5.7. For a uniform three-site Ising ring with ferromagnetic coupling (and no external 
field), in thermal equilibrium at temperature T, calculate the correlation coefficients Ks  sksk' for both 
k = k' and k  k'.  

 Solution: In all Ising models, each "spin" sk may take only the values 1, so its square equals 1 in 
any state of the system, and hence sk

2 equals 1 for any k and any parameters. However, the mutual 
correlation coefficients sksk',40 with k’  k, require calculation. 

 The energy of a particular state of the ring is given by Eq. (4.78) of the lecture notes with N = 3 
and h = 0: 

  0with  ,133221  JssssssJEm . 

This system has 23 = 8 different states. In two of them, the "spins" are all aligned (in either of the two 
possible directions), so for them Em = –3J. In the remaining six states, one spin is directed against two 
others, so Em = –J (+1 – 1 – 1)  +J. Hence, the statistical sum is41 
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40 Note that for an Ising system in an external field, which may have   sk  0, a more appropriate definition of 

the correlation coefficient (which ensures its full decay at  k – k’  ) is k'kk'kk'ks ssssssK  ~~ . 
41 See also the solution of Problem 4.16. 
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so the probabilities of having some (not particular) states of these two groups are equal to 
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TJTJ

TJ
W . 

 Since the product sksk'  (with k  k') may take only two values: (+1) when the spins k and k' are 
aligned with each other, and (–1) otherwise, we may write 

  WWWWssK k'ks )1()1( , 

where W are the corresponding probabilities, with W+ + W– = 1. If the spins are all aligned (in the above 
nomenclature, state group 1), then all sksk'  =1. However, if one of them is misaligned (group 2), there is 
only a 1/3 chance that any given pair of spins k and k' is aligned – because this is the chance that the 
misaligned spin has number k”  k, k’, i.e. is not involved in this pair. Hence, W+ = W1 + (1/3)W2, while 
W– = 1 – W+ = (2/3)W2, so, finally: 

 
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1
221 . 

 This result shows that in the low-temperature limit, T << J, the mutual correlation coefficient 
approaches 1. This is natural because the probability W1 of the full spin alignment approaches 1, while 
W2 is exponentially small. In the opposite limit of high temperatures, exp{–4J/T}  1 – 4J/T, and the 
mutual correlation is low: 

.for  ,1 kk'
T

J
K s   

Note, however, that sksk' is positive for any ratio J/T. This is natural, because the ferromagnetic 
coupling, with J > 0, always favors spin alignment.  

   

 Problem 5.8.* For a field-free 1D Ising system of N >> 1 “spins”,  in thermal equilibrium at 
temperature T, calculate the correlation coefficient Ks  slsl+n, where l and (l + n) are the numbers of 
two specific spins in the chain. 

 Hint: Consider a mixed partial derivative of the statistical sum calculated in Problem 4.21 for an 
Ising chain with an arbitrary set of Jk, over a part of these parameters. 

 Solution: For this system, the general Eq. (2.7), with the Gibbs-distribution probabilities Wm = 
exp{–Em/T}/ZN, becomes 
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where ZN was calculated in the solution of Problem 4.21: 
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Let us use the fact that all sk
2 = 1 to rewrite Eq. (*) in the following mathematically equivalent form: 
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and compare it with the following mixed partial derivative: 
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On one hand, if we differentiate ZN in the first form of Eq. (**) and then use Eq. (***) for Ks, we get 
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On the other hand, if we use ZN in the last form of Eq. (**) instead, then the same derivative is 
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Comparing these two expressions for Dn, with ZN again taken from the second form of Eq. (**), we get a 
surprisingly simple result: 
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which is valid for arbitrary coupling coefficients Jk (both inside and outside of the interval [l, l + n]) and 
arbitrary positions of the sites l and (l + n) in the open chain.42  

 For a particular case of a uniform chain, the result becomes even simpler, and depends only on 
the distance n between the involved sites: 
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ss ,    (***) 

where the constant nc (not necessarily an integer), 

42 This result is also valid for a closed Ising ring, but only if the site distance n is much smaller than the ring’s 
length N. (This is why for a ring with N = 3, considered in the previous problem, Eq. (****) gives the correct 
result only in the limit J << T when strong fluctuations suppress the difference between open strings and closed 
rings.) For a uniform ring with N >> 1 sites, the general expression for Ks may be calculated (even for h  0) by 
using the transfer matrix approach – see, e.g., Sec. 5.3 in the book by Yeomans, cited in the lecture notes.  
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plays the role of the correlation radius of this 1D system – cf. Eq. (4.30) whose pre-exponential factor, 
as well as Eq. (4.31), are valid only for systems with nonvanishing Tc. 

 

 Problem 5.9. Within the framework of the Weiss molecular-field approximation, calculate the 
variance of spin fluctuations in the d-dimensional Ising model. Use the result to derive the conditions of 
quantitative validity of the approximation. 

 Solution: Since in the Ising model, the variable sk
2 = (1)2  1 in any state of the system, its 

statistical average also equals 1 within any (reasonable :-) approach to the model – including the Weiss 
approximation. Combining this fact with Eq. (4.69) of the lecture notes, we get 

)/(cosh

1
)/(tanh1~

ef
2ef

222222

Th
Thssss kkkk   . 

(Actually, we could get this result also from Eq. (*) of the model solution of Problem 3, with the 
replacement h  hef, which is the essence of Weiss’ approach.) 

 The key assumption of the Weiss theory is 22~ ks . Reviewing the dependence of hef   h + 

2Jd on the parameters of the system, which was discussed in Sec. 4.4 (see, in particular, Figs. 4.8 and 
4.9), we may conclude that for stable stationary states, this strong inequality is fulfilled (and hence the 
theory is asymptotically correct) at: 

 (i) low temperatures, T << 2Jd (meaning, within that theory, that T << Tc) at any field h, and 
 (ii) high external fields, h2 >> T2, at any ratio 2Jd/T  Tc/T. 

 As was mentioned in Sec. 4.3, long-range interactions between the “spins” sk suppress the 
fluctuations and thus broaden the region of validity of the molecular-field approximation. 

 

 Problem 5.10. Calculate the variance of energy fluctuations in a quantum harmonic oscillator 
with frequency , in thermal equilibrium at temperature T, and express it via the average energy. 

 Solution: Plugging the result given by Eq. (2.72) of the lecture notes for the average energy E of 
the oscillator, in the form 
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where   1/T, into the general Eq. (5.19), we get 
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It is straightforward to verify that Eqs. (*) and (**) are simply related: 

            
22~

EEE   .     (***) 
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This means, in particular, that the r.m.s. fluctuation of energy is always larger than its average value:  

EE  . 

 Note, however, that this relation, as well as Eq. (***) as such,43 are valid only if E is referred to 
the ground-state energy /2 of the oscillator (as it is in Eq. (2.72) of the lecture notes); it is invalid for 
the total energy given by Eq. (2.80), where the energy is referred to the minimum of U(x): 

      
2total


 EE . 

For this reference point, Eq. (***) takes a different form: 
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EE  

so the relation between the r.m.s. fluctuation of energy and its average is opposite: 

totalEE  . 

 

 Problem 5.11. The spontaneous electromagnetic field inside a closed volume V is in thermal 
equilibrium at temperature T. Assuming that V is sufficiently large, calculate the variance of fluctuations 
of the total energy of the field, and express the result via its average energy and temperature. How large 
should the volume V be for your results to be quantitatively valid? Evaluate this limitation for room 
temperature. 

 Solution: As was discussed in Sec. 2.6(i) of the lecture notes, the spontaneous electromagnetic 
field in a sufficiently large closed volume V has the following average energy: 
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Applying to this result the general Eq. (5.19), we get 
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Now using Eq. (*) again, we may reduce the result to a very simple form: 

ETE 4
~ 2  , 

which shows that the relative r.m.s. fluctuation of the energy, 

43 That formula was first obtained as early as 1909 by A. Einstein from Planck’s radiation law (which does not 
take the ground state energy into account) and is reproduced in some textbooks without proper qualification. 
Please note again that the ground state energy is not only measurable but also responsible for several important 
phenomena – see the discussion in Sec. 2.6 of the lecture notes. 
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decreases with the growth of both temperature and volume. (This result has important implications for 
accurate measurements of the fundamental anisotropy of the cosmic microwave background radiation.) 

 Proceeding to the second task of the assignment, note that Eq. (*) is strictly valid only if the 
volume V is much larger than the cube of the wavelength, i.e. if V >> c3/3, for all substantial 
frequencies. As was discussed in Sec. 2.6(i), in thermal equilibrium, their scale is given by the relation 
(2.87): max ~ T, so the required condition is 

33

max

~ 

















T

cc
V




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For room temperature (T  kBTK  1.3810-23J/K300K  410-21J), the right-hand side of this relation 
is of the order of 10–15m3  (10 m)3, i.e. is small on the human scale, but not quite microscopic either. 

 

 Problem 5.12. Express the r.m.s. uncertainty of the occupancy Nk of a certain quantum state with 
energy k by non-interacting: 

 (i) classical particles, 
 (ii) fermions, and 
 (iii) bosons, 

in thermodynamic equilibrium, via the state’s average occupancy Nk, and compare the results. 

 Solutions: As was discussed in Sec. 2.8 of the lecture notes, for a statistical ensemble of non-
interacting particles, we may use the grand canonical distribution for the sub-ensemble of particles on 
the same energy level. Hence we may apply Eq. (5.24), which was derived from this distribution, to the 
level occupancy Nk: 
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 (i) For classical particles, the dependence of Nk on the chemical potential  is given by the 
same formula (5.25) as for the total number of particles: 
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 so we may repeat the (very simple) derivation of Eq. (5.27) to get a similar result: 
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  (ii)-(iii) For fermions and bosons, Nk is given by the very similar expressions (2.115) and 
(2.118), which may be merged into a single formula (just as it was done in Sec. 3.2): 
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with the upper sign for fermions and the lower sign for bosons. Now applying Eq. (*) to this formula, 
we get 
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Expressing the exponent participating in both parts of this fraction, from Eq. (***), 

    1
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k N
T   , 

and plugging this expression into Eq. (****), we get the following final result: 

      2/12 1  i.e.,1
~

kkkkkk NNNNNN    . 

 Comparing it with Eq. (**), we see that, for a given average value Nk of the level occupancy, 
its fluctuations in the case of fermions are smaller, and in the case of bosons, larger than those for 
classical particles. (Both results tend to each other at Nk  0, i.e. in the classical limit – see Eq. (3.1) 
of the lecture notes.) 

 

 Problem 5.13. Write a general expression for the variance of the number of particles in the ideal 
gases of bosons and fermions, at fixed V, T, and . Spell out the result for the degenerate Fermi gas.  

 Solution: Combining the general Eq. (5.24) of the lecture notes, 
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, 

with Eq. (3.40) for the average number of particles in an ideal gas, 
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(where the upper sign is for the fermions and the lower one is for the bosons), we get 
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 For the degenerate Fermi gas, this integral (with the upper sign) may be worked out explicitly, 
but in this case, it is easier to return to Eq. (*) because in the limit T  0, the Fermi distribution 
becomes just a step function tapering off at  =  = F (see the discussion in Sec. 3.3), and hence 
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Now by using Eq. (3.43) for the 3D density of states g3()  dNstates/d in the same volume, this 
expression may be rewritten in a physically transparent form: 

   F33
2~  TgTgN  , 

which is in full accord with the physical picture of fluctuations limited to a ~T-thin energy layer at the 
Fermi surface. 

 

 Problem 5.14. Express the variance of the number of particles,  2~
N V,T,, of a single-phase 

system in equilibrium, via its isothermal compressibility    NTT PVV ,/1  . 

 Solution: Per Eq. (5.24) of the lecture notes, the requested variance 
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However, as was proved in the solution of Problem 1.10, the isothermal compressibility of a single-
phase system may be expressed via the same partial derivative: 
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Comparing these expressions, we get 

V

N
TN TTV

2

,,

2~ 

 . 

 Note that Eq. (5.24) was derived for the grand canonical ensemble of fixed-volume systems, so 
our result is also valid only for such an ensemble, i.e. if the chemical potential  does not fluctuate 
significantly. (As a reminder, in a canonical ensemble,   may fluctuate but the number N of particles 
does not fluctuate at all, by definition.) 

 

 Problem 5.15.* Calculate the low-frequency spectral density of fluctuations of the pressure P of 
an ideal classical gas, in thermal equilibrium at temperature T, and estimate their variance. Compare the 
former result with the solution of Problem 3.2. 

 Hint: You may consider a cylindrically shaped container of volume 
V = LA (see the figure on the right), and start by using the Maxwell 
distribution of velocities to calculate the spectral density of the force F(t) 
exerted by the confined particles on its plane lid of area A, approximating 
the force with a delta-correlated process. 

 Solution: Let us first consider one particle of the gas and the force 
f(t) it exerts on the lid in the direction normal to its plane – see the figure above. By the delta function’s 
definition, the constant c in the approximation f(t)f(t + ) = c() may be calculated as the following 
integral: 

   dttc )()( ff , 

TN ,
)(tF

L

A



Essential Graduate Physics               SM: Statistical Mechanics            

Problems with Solutions                  Page 185 

over an interval larger than the collision duration c but smaller than the time interval t = 2L/ v  
between two sequential collisions, where v is the component of the particle’s velocity component in the 
direction normal to the lid. Due to the particles’ independence, we may replace, in the above formula, 
the averaging over a statistical ensemble of similar particles (with the same  v ) with that over the time 
interval t: 
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 dt

t
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... . 

Introducing, instead of , a new variable t’  t +  , we get 
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The time integral in the last expression is just the momentum transferred from the particle to the lid 
during one elastic collision, equal to 2m v , so 
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 For such a short-pulse process as f(t) (see, e.g., Fig. 5.4 of the lecture notes), its time average, 
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 is negligible in comparison with its r.m.s. fluctuation:  
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(this almost evident fact will be proved a posteriori, in just a minute), so Eq. (*) may be rewritten as  

3
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v
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m
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Per to Eq. (5.62), this delta-correlated process has the following low-frequency spectral density: 
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Now we may prove Eq. (**) by making the estimate of the r.m.s. fluctuation, given by Eq. (5.60): 
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where max is the frequency where the spectral density becomes substantially smaller than its low-
frequency value. Besides a numerical factor of the order of 1 (its exact calculation would require a 
specific model of the particle collisions with the lid), this frequency is just the reciprocal collision time 
c, so 
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For the gas to behave ideally, the intervals t between lid hits by molecules have to be much longer than 
the hit duration c, so the last factor has to be much larger than 1, thus proving Eq. (**). 

 The spectral densities of independent force fluctuations from different molecules (each with its 
own velocity v) just add up, so for the low-frequency spectral density of the net force we get 

     3
2

00 v
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
 fF .  

This statistical average may be readily calculated from the properly normalized Maxwell distribution 
(3.5), i.e. the Gaussian distribution of each velocity component, with the variance v2 = p2/m2  = T/m: 
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This is a table integral,44 equal to 1!/2 = ½, so we get 
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and, finally, the spectral density of the pressure P(t) = F(t)/A is 
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 An approximate but fair estimate of the pressure fluctuation variance may now be achieved, as 
above, by replacing the integral participating in the last form of Eq. (5.60) with the product SP(0)max ~ 
SP(0)/c:45 
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This estimate differs, by the last factor, from the so-called “thermodynamic” formula cited in a footnote 
in Sec. 5.3 of the lecture notes. Indeed, for a classical ideal gas, with the average pressure P = NT/V, 
held at fixed temperature T, and hence with (–P/V)T = NT/V2, that formula yields 

        
2

2
2~

V

NT
P  .      (WRONG!)   (****) 

The difference is due to the short-pulse nature of the pressure force (which cannot be accounted for in 
the way the “thermodynamic” formula is usually derived), which extends the pressure fluctuation 
bandwidth to frequencies ~1/c, much higher than the value ~v21/2/L ~ 1/t implied by that formula. 

44 See, e.g., MA Eq. (6.9e) with n = 1. 
45 Note that Eq. (**) for the force imposed by a single molecule, which was proved above, does not mean that P 
<< P. Indeed, due to the independence of molecular hits, P  N1/2F, while P  N F , so for the usual 
“astronomical” values N ~ 1023, the ratio P/P  1/N1/2 is much smaller than 1.  
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(This fact and the deficiency of the traditional derivation of Eq. (****) were recognized long ago,46 but 
this formula is still being copied from old textbooks to new ones.) 

 Now let us compare Eq. (***), rewritten for the total force F  = PA exerted by all molecules, 
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with the drag coefficient calculated in the solution of Problem 3.2, 
2/1

8









 mT

V

NA
. 

We see that they are simply related:  
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


)0(F
. 

 In this equality, we may readily recognize the general relation (5.73) between the thermal 
fluctuations and dissipation, i.e., the classical limit of the fluctuation-dissipation theorem (5.98) – thus 
providing a good sanity check of Eq. (***). 
 
 
 Problem 5.16. Calculate the low-frequency spectral density of fluctuations of the 
electric current I(t) due to the random passage of charged particles between two conducting 
electrodes – see the figure on the right. Assume that the particles are emitted, at random 
times, by one of the electrodes, and are fully absorbed by the counterpart electrode. Can 
your result be mapped onto some aspect of the electromagnetic blackbody radiation? 

 Hint: For the current I(t), use the same delta-correlated-process approximation as for the force 
F(t) in the previous problem. 

 Solution: At the given conditions, the current I(t) is a sum of short independent pulses, with a 
duration c of the order of the time of the particle’s passage between the electrodes. On a time scale 
much larger than c, we can write. 

)()()(  CtItI  . 

Integrating both parts of this equation over the time of one current pulse, and transforming it exactly as 
in the model solution of the previous problem, we get  

  ,0)()()(
2
  dttIdtItIC 

 

where  is the average (cyclic) frequency of singe-electron passage events. But the integral in the 
brackets is just the electric charge q of one particle. Taking into account that the product q  is equal to 
the time-averaged (“dc”) current I , we get 

46 See, e.g., R. Burgess, Phys. Lett. A 44, 37 (1973) and references therein. In brief, the “thermodynamic” 
derivation implies a continuous, uniform spread of the momentum 2m v  transferred from each particle to the 
piston during one hit, over the whole time period t = 2L/ v  between the adjacent hits. Such a spread could be 
achieved, for example, by replacing the usual hard piston with a conducting, voltage-biased lid inducing an 
electric field that would press charged particles of the gas to the opposite lid of the gas-confining cylinder. I am 
not aware of any practical implementation of such a system. 

q
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 )()()(  i.e.,2  IqtItIIqqC  . 

(Since, unlike in the previous problem, all the pulse “areas” I(t)dt are equal to q and hence to each 
other, their statistical averaging is unnecessary.) Now Eq. (5.62) of the lecture notes immediately yields 
a constant low-frequency spectral density: 

         
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By using Eq. (5.61), this expression may be recast into its common form 







IqI 2
~ 2 . 

 This is the famous Schottky formula for the shot noise, which was briefly mentioned in Sec. 5.5 
of the lecture notes – see Eq. (5.82) and its discussion. (It was first derived in 1918 by W. Schottky 
using a different approach, based on the Poisson probability distribution (5.31) of the number of 
particles passing through the system during a time interval t >> c.) 

 Now proceeding to the electromagnetic radiation, let some source of it (say, a set of similar 
atoms being continuously excited to an energy level Ee = Eg + ) emit its quanta, each with energy , 
independently of each other, and the radiation backflow be negligible. Then replacing the above 
arguments for the electric current I(t) with those for the power flow P(t) of the radiation (time-averaged 

over a time interval much larger than /P), we may expect the spectral density of its fluctuations 
(frequently called the photon shot noise) to be expressed by a formula similar to Eq. (*): 

PP 


2
)0(


S . 

 Both the detailed quantum theoretical analysis of radiation and experiments (mostly, in optical 
photon counting) confirm this result. Unfortunately, its more formal derivation would require much 
more time than I have in this series, so I have to refer the reader to special literature.47  

 

 Problem 5.17. Perhaps the simplest model of the diffusion is the 1D discrete random walk: each 
time interval , a particle leaps, with equal probability, to any of the two adjacent sites of a 1D lattice 
with a spatial period a. Prove that the particle’s displacement during a time interval t >>  obeys Eq. 
(5.77) of the lecture notes, and calculate the corresponding diffusion coefficient D.  

 Solution: The particle’s displacement at time t = N, i.e. after N random leaps, is obviously 

         ,
1




N

n
nasq      (*) 

where sn is a random number that may take just two values, 1, with equal probabilities W = ½, and 
hence with a vanishing statistical average:48 sn = 0; as a result, q = 0 as well. From Eq. (*), we can 
calculate the displacement squared, and its statistical average: 

47 See, e.g., either M. Lax, Fluctuation and Coherent Phenomena in Classical and Quantum Physics, Gordon and 
Breach, 1968, or W. Louisell, Quantum Statistical Properties of Radiation, Wiley, 1990. 
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Since different values sn are statistically independent, any mutual correlation coefficient snsn’ with n  
n’ is equal to the product of averages, and hence to zero.49 As a result, nonvanishing contributions to the 
right-hand side of Eq. (**) are given only by N terms with n = n’, i.e. sn

2. But sn
2 equals 1 for any sign 

of sn, so Eq. (**) reduces to   

.
2

22 t
a

Naq


  

 Due to the condition t >> , this result is approximately valid not only for discrete values N 
(where it is exact), but also for any times t.  Comparing it with Eq. (5.77), we see that this model indeed 
describes the 1D diffusion, with the following diffusion coefficient: 

2

2a
D  . 

In agreement with common sense, D grows both with the jump size a, and with the frequency 1/ of the 
jumps. 

 

 Problem 5.18.50 A long uniform string, of mass  per unit length, is 
attached to a firm support, and stretched with a constant force (“tension”) T – 
see the figure on the right. Calculate the spectral density of the random force F(t) 
exerted by the string on the support point, within the plane normal to its length, 
in thermal equilibrium at temperature T. 

 Hint: You may assume that the string is so long that transverse waves propagating along it from 
the support point never come back.  

 Solution: Temporarily, let us ignore the fluctuations, and assume that the support point is being 
slightly moved, in the plane normal to the string, following some externally-fixed law q0(t) independent 
of the string motion. (This motion may be two-dimensional, so generally, it has to be described with a 
2D vector.) Such displacement imposes the boundary condition,  

        )(,0 0 tt qq  ,     (*) 

on the transverse waves q(z, t) that are excited, by this motion, to propagate along the string. (Here z is 
the axis directed along the string, with the origin at the attachment point.) According to classical 
mechanics,51 if such waves are not too large ( q(z, t)/z  << 1), their dynamics obeys the linear wave 
equation 

48 This “Markovian” process is evidently memory-free, and hence ergodic, so this averaging may be understood 
as either that over an ensemble of many different random walks, or over an ensemble of many sequential leaps, 
within a very long walk of the same particle. 
49 Note that a similar argument was used in Sec. 5.1 of the lecture notes to derive Eq. (5.12). 
50 This problem, conceptually important for the quantum mechanics of open systems, was also given in Chapter 7 
of the QM part of this series.  
51 See, e.g., CM Sec. 6.4, in particular Eq. (6.40), with m = d, ef  = T/d, and an arbitrary constant d.  

T
 tF
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At the condition given in the Hint,52 the solution of this equation, satisfying the boundary condition (*), 
has the form of a wave, 
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traveling from the wall with velocity v = (T/)1/2. This wave of string displacements is accompanied by 
the following wave of the transverse force:53 
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exerted by the “right” part of the string (as seen from the given point z) on its “left” part. (The constant 
Z is called the wave impedance of the system.) 

 Applying this result to the point z = 0, we see that the string provides, for the support point’s 
motion, a damping (drag) force described by Eq. (5.64) of the lecture notes, F = –dq0(t)/dt,  with the 
drag coefficient  = Z, i.e. has the generalized susceptibility () = i = iZ – see Eqs. (5.89)-
(5.90).54 Since this result is valid regardless of the actual motion q0(t), we may use it to spell out Eq. 
(5.98) for our particular case: 
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 In human-scale systems, the divergence of this result at    is cut off (at least) by the 
violation of the already mentioned condition q(z, t)/z << 1 of its validity. Indeed, according to Eq. 
(**), the derivative on its left-hand side of this inequality equals –[q(z, t)/t]/v, and for a sinusoidal 
oscillation with an amplitude A and frequency , its magnitude grows with frequency as A/v. 

 

 Problem 5.19.55 Each of the two 3D isotropic harmonic oscillators, with mass m, resonance 
frequency 0, and damping coefficient  > 0, has the electric dipole moment d = qs, where s is the 
vector of the oscillator’s displacement from its equilibrium position. Use the Langevin formalism to 
calculate the average potential of electrostatic interaction (a particular case of the so-called London 
dispersion force) of these oscillators separated by distance r >> (T/m)1/2/0, in thermal equilibrium at 

52 This condition is quite realistic if the waves propagate with some attenuation. – see, e.g., CM Sec. 6.6. (If this 
attenuation is nonvanishing but not too high, it does not affect the forthcoming fluctuation analysis.) 
53 See, e.g., CM Eqs. (6.45) and (6.47). 
54 This result should not be too surprising, because the support point’s motion induces traveling waves of the 
string, which carry away from it (“to infinity”) the mechanical power P   (q/t)2 – see. e.g. CM Eq. (6.49). 
55 This system, with an arbitrary temperature, was the subject of QM Problem 7.6, with Problem 5.20 of that 
course serving as the background. However, the method used in the model solutions of those problems requires 
one to prescribe, to the oscillators, different frequencies 1 and 2 at first, and only after this more general 
problem has been solved, pursue the limit 1  2, while neglecting dissipation altogether. The goal of this 
problem is to show that the result of that solution is valid even at nonvanishing damping. 
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temperature T >> 0. Also, explain why the approach used to solve a very similar Problem 2.18 is not 
directly applicable to this case. 

 Hint: You may like to use the following integral:      





41

1

0
2

222

2








d . 

 Solution: If the interaction between the oscillators is negligible, in the classical limit, each of 
them may be described by the Langevin equation (5.65) with  = m0

2, which is valid for each Cartesian 
component of the displacement vector s. Merging these equations into the vector form, and multiplying 
all terms by the ratio q/m, for the electric dipole moment d = qs of the oscillator, we get 
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Since the Langevin forces exerted on each dipole by their dissipative environments are random, 
independent, and isotropic, so are the spontaneously induced dipole moments d1,2. As a result, the 
energy of their electrostatic interaction,56 
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vanishes at its direct statistical averaging.  

 A non-zero average London dispersion force appears in the next order in the small parameter 
(q2/40r

3), and may be conveniently described as a result of the fact that the Lorentz force F = qE of 
the electric field57 
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of each random dipole d = d1,2, at the location r2,1 of the counterpart dipole, induces in it a proportional 

and correlated component )(
~

1,22,11,2 rd E  of its dipole moment, so the statistical averages 21
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dE  do not vanish, contributing to the average interaction energy58 
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 Let us calculate the first term of this sum, by using the fact that the differential equation (*) is 
linear, and it is hence it is useful to Fourier-expand both its right-hand side and its solution – for 
example, as in Eq. (5.52) of the lecture notes: 
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56 See, e.g., EM Eq. (3.16), in which the dipole moments are denoted as p1,2. 
57 See, e.g., EM Eq. (3.13). In the second form of this expression, the z-axis is assumed to be directed along the 
vector r. 
58 See, e.g., EM Eq. (3.15b). Note the factors ½, which are due to the induced nature of the moments 1,2

~
d .
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Then for the Fourier amplitudes at an arbitrary frequency , Eq. (*) yields the relation (see also Eq. 
(5.67) of the lecture notes): 
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From the similar Fourier image of Eq. (**) (which is also linear, though algebraic rather than 
differential), the complex amplitude of the electric field at the location r2  r of the dipole 2 is 
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The Lorentz force F = qE of this field should be added to the right-hand side of Eq. (*) written for the 

second dipole. Since this force is independent of the environment-induced force  t2
~

F  and the equation 
is linear, we may use it, in the form, 
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to calculate the field-induced part of the dipole moment. The similar Fourier expansion yields 
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 At this point, we have to be careful because the interaction energy U is a quadratic rather than a 
linear form, so we have to calculate it using all components of their Fourier extensions. Performing 
absolutely the same calculation as at the derivation of Eq. (5.60) of the lecture notes, we get  
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where S12() is the mutual spectral density of the operands, which is defined similarly to Eq. (5.57): 
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(In plain English, Eq. (****) says that the contributions of all frequencies to the average interaction of 
the dipoles are additive.) In order to calculate S12(), we may use Eq. (***) and then Eq. (**), getting 
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where in the last expression, the index 1 has been dropped for notation brevity, because the participating 
averages do not depend on the dipole number. Since all Cartesian components of the spontaneously 
fluctuating dipole d described by Eq. (*) have similar statistics, the expression in the last parentheses is 
just six times one of them – say dxdx’, with 
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 According to its definition (5.55), the autocorrelation function on the right-hand side of this 
relation does not change at the simultaneous change of signs of the frequencies   and ’: 
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Hence the mutual correlation function has to change the sign of its imaginary part at such frequency 
change. As a result, Eq. (****) may be recast as follows: 
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so adding the independent and equal contribution U21, for the full interaction energy we get 
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 So far, our result is valid for arbitrary temperatures. At T >> 0 (and in thermal equilibrium), 
we may use Eq. (5.73a), i.e. the classical limit of the fluctuation-dissipation theorem, for the spectral 
density of force: 
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With this simplification, we may use the integral provided in the Hint,59 with  = 2/0, to spell out the 
result: 
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59 Actually, it may be readily worked out by differentiation, over a parameter, of the following (generally useful) 
table integral: 
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but I did not want to distract the reader’s attention from physics. 
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 Remarkably, this final result does not depend on the oscillator’s damping , making it valid even 
at   0. In this limit, it coincides with the classical limit of the result obtained in the solution of QM 
Problem 7.6. (The result for an arbitrary 0/T ratio, obtained in that solution, also follows from our 
general formula, but only for  << 0.) 

 Note that an attempt60 to solve this problem by a direct calculation of the average E value of 
the total energy of the system, 
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by using the same classical approach as was used for the solution of the (conceptually, very similar) 
Problem 2.18, yields a surprising result: 

TE 6 . 

 This equality is in accord with the equipartition theorem, describing the sum of classical 
contributions T/2 by the 12 half-degrees of freedom of the two non-interacting 3D oscillators, but gives 
no average interaction energy. The explanation of this result may be found in the solution of QM 
Problem 3.20: a simple coordinate transform shows that our system is exactly equivalent to that of six 
non-interacting 1D harmonic oscillators with slightly different frequencies, which depend on the 
interaction parameter   q2/40r

3m0
2 << 1. At T ~ 0, the average energy of each oscillator, and 

hence the net average energy E of the system does depend on   r–3 describing the interaction energy. 
However, if when pursuing the limit T >> 0, we take the energy of each 1D oscillator equal exactly T 
from the very beginning, as we implicitly do in the classical approach, this dependence is lost, together 
with the U calculated above. 

 

 Problem 5.20.* Within the van der Pol approximation,61 calculate the major statistical properties 
of small fluctuations of classical self-oscillations (including their linewidth), at: 

 (i) a free (“autonomous”) run of the oscillator, and 
 (ii) its phase being locked by an external sinusoidal force,  

assuming that the fluctuations are caused by a noise with a smooth spectral density Sf(). 

 Solution:  In the van der Pol approximation, the solution of the (weakly nonlinear) differential 
equation describing self-oscillations is looked for in the quasi-sinusoidal form62  

60 This is a very useful additional exercise, highly recommended to the reader. 
61 See, e.g., CM Secs. 5.2-5.5. Note that in quantum mechanics, a similar approach is called the rotating-wave 
approximation (RWA) – see, e.g., QM Secs. 6.5, 7.6, 9.2, and 9.4. 
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                           tttAttAtq  coscos ,    (*) 

with slowly changing amplitude A(t) and phase (t). In the absence of fluctuations, and at sufficiently 
weak phase-locking force, the dynamics of (t), i.e. of the difference between the full phase  of the 
oscillator and that of the phase-locking force of frequency , may be described by the following 
reduced (or “van der Pol”, or “RWA”) equation:63   

       cos ,     (**) 

where    – 0 is the detuning (the difference between  and the own frequency 0 of the oscillator), 
and the parameter  is proportional to the phase-locking force’s amplitude. (As it follows from an 
elementary analysis of Eq. (**), this parameter, in particular, determines the frequency range of phase-
locking in the absence of fluctuations: max – min = 2   .) 

 In order to account for fluctuations, we need to recall that the right-hand side of the reduced 
equation (**)  results from the following time averaging,64  

  ,cos
1 0 


f
A

 

of the right-hand side f(t) of the initial differential equation of motion taken in the “0th approximation” 
that ignores the relatively slow evolution of A and . As was discussed in Sec. 5.5 of the lecture notes, 

within the Langevin formalism, a noise source is described as an additional term,  tf
~

, in the right-hand 
of that initial equation of motion, so we need to add, to the right-hand side of the reduced equation (**), 
the following term: 
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titi
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., 

where A may be treated as a constant (the average amplitude of the self-oscillations) and f is the Fourier 

image of  tf
~

 – see Eq. (5.52). 

 This expression shows that the Langevin term has two components, which differ from the 
original noise (besides the scaling front factor) only by shifting its frequency spectrum by . In the van 
der Pol approximation, the time averaging may be carried over any time period t much larger than the 
oscillation period 2/, with the only requirement for it to be still much shorter than the shortest time 
scale of the reduced equation(s) dynamics, in our case of the order of 1/max[  ,   ]. This averaging 
retains only low-frequency components of the averaged function – in our case, the components with the 
“mathematical” frequencies close to , i.e. the “physical” (positive) frequencies close to . If the 
initial noise is indeed broadband, its spectral density Sf(), defined by  Eq. (5.57), is virtually constant 
within such a narrow interval.  Hence, its addition generalizes the reduced equation (**) as follows: 

62 See, e.g., CM Eq. (5.41). Note that here, in contrast to CM Sec. 5.4, the capital letters  and 0 are used to 
denote the frequencies of the phase locking force and the oscillator, to distinguish them from the frequencies  of 
the Fourier components of fluctuations. 
63 See, e.g., CM Eq. (5.68). In this approximation, the oscillation amplitude A(t) may be considered constant – see 
CM Eq. (5.71) and its discussion. 
64 See, e.g., the second of CM Eqs. (4.57a). 



Essential Graduate Physics               SM: Statistical Mechanics                

Problems with Solutions                  Page 196 

             t ~
cos  ,     (***) 

where  t~ , at the low frequencies of our interest, may be treated as a process with zero average and a 
constant spectral density 
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According to the discussion at the end of Sec. 5.4 of the lecture notes, the correlation function of such a 
process may be approximated with Eq. (5.62): 
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Now we are ready to consider the two specific cases listed in the problem’s assignment. 

 (i) The free-running (“autonomous”) mode of the self-oscillator may be described by Eq. (***) 
with  = 0, giving the linear differential equation 

                    t ~
 , 

which may be readily integrated: 
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so Eq. (*) yields 
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 In the absence of fluctuations, this expression describes coherent self-oscillations at the own 
frequency 0 of the oscillator: 

   constcos 00~  tAtq  . 

The noise  t~  induces the fluctuations  t~  of the phase around this deterministic evolution, which 

obey exactly the same equation as the coordinate fluctuation  tq~  of a free 1D “Brownian particle” in  
Einstein’s problem – see Eq. (5.74). Repeating the calculation that followed this formula in the lecture 
notes, we see that the phase  of the autonomous oscillator performs a random walk with the diffusion 
coefficient proportional to the spectral density of the noise source: 
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 This phase diffusion has important implications for the self-oscillation process q(t). Indeed, let 
us calculate its correlation function: 

             

          .~~cos~~2cos
2

~cos~cos

000

2

00
2









ttttt
A

ttttAtqtqK q

 



Essential Graduate Physics               SM: Statistical Mechanics            

Problems with Solutions                  Page 197 

Since in a statistical ensemble of similar autonomous oscillators, the full phase  of the oscillations 
takes all values (modulo 2) with equal probability, the statistical average of the first term vanishes, 
leaving us with  
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where the last representation is exactly valid for any integer N > 0. Since in our approximation (****),65 

the function  t~  is delta-correlated, the partial integrals in this product are statistically independent, 
and our statistical average breaks into a product of averages: 
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At sufficiently large N, and hence sufficiently small integration intervals /N, the exponent in each n 
may be expanded into the Taylor series, with only three leading terms kept, so 
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 By the definition of the random function  t~ , its statistical average equals zero, so the second 
term in the last form of this equality vanishes, while the average in its last term is just the correlation 
function K(t’ – t”). Thus, plugging it from Eq. (****), we get an expression independent of the time 
step number n: 
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Since this result is independent of the running index n, the correlation function of the process q(t) is just 
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But the last limit is just exp{–},66 so we finally get a very simple (and very important!) result:  

65 For our current autonomous case, with  = 0, this approximation is valid if the spectral density Sf() of the 
noise is virtually constant in a frequency interval (around the self-oscillation frequency 0) that is larger than the 
oscillation linewidth we are currently calculating – see below. 
66 See, e.g., MA Eq. (1.2a) with n = –N/. 
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with  given by Eq. (****). 

 This formula describes the gradual suppression of the coherence of the self-oscillations on the 
time scale 1/.67 Now let us apply to this result the Wiener-Khinchin theorem (5.58): 
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 This expression describes the so-called Lorentz broadening of the oscillation line, with the half-
linewidth equal to the  given by Eq. (****). Note again that according to that relation, at small 
fluctuations (giving  << 0), for which this delta-correlated approximation of the noise is valid, the 
linewidth of oscillations at frequencies  ~ 0 is determined by the initial noise intensity Sf() at close 
frequencies, but it acts on the oscillator via the intensity S(0) of frequency fluctuations at much lower 
frequencies  ~  << 0. This fact is important because for some self-oscillators (such as dc-voltage-
biased Josephson junctions68), low-frequency external noise may directly “wobble” the oscillation 
frequency, and hence provide additional line broadening.  

 (ii) For a phase-locked oscillator (  0,     <   ), in the absence of fluctuations, Eq. (**) 
describes a transient process in which the phase   approaches a constant: 

    2/122
000 sin   i.e.,coswith   ,  


t , 

so the oscillations q(t) = Acos[t – (t)] settle to the frequency  of the external force, rather than to 0 
– this is exactly what is called phase locking (or “synchronization”). In this case, a small noise (not 
strong enough to disrupt the phase locking69) causes not the unrestricted phase diffusion, but rather 
small fluctuations of the phase around the stable value 0. In order to find their spectral density, we may 
linearize Eq. (***) by taking    tt  ~

0  , expanding the nonlinear function cos into the Taylor 

series in small  t~ , and keeping only the two leading terms. This yields the linear differential equation  

   t ~~sin~
0  , 

67 Note that this calculation essentially repeats the derivation of Eq. (7.89) in QM Sec. 7.3. This is natural because 
the quantum state dephasing described in that section is essentially the decoherence of the fundamental 
oscillations of the quantum-mechanical wavefunction in time (with frequency E/) under the effect of low-
frequency external fluctuations imposed by the environment.
68 See, e.g., brief discussions in EM Sec. 6.5 and QM Secs. 1.6 and 2.8. 
69 For a description of such disruptions, see the solution of Problem 28 below.  
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which may be solved as was discussed in Sec. 5.5, by the Fourier transform of the functions  t~  and 

 t~ . For their Fourier images, the linearized equation yields the relation 

   
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
0

0 sin

1
  i.e.,sin




i
i , 

which enables us to express the spectral density of phase fluctuations via that of the noise source, given 
by Eq. (***): 
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Plugging this expression into Eq. (5.60), we may readily calculate the fluctuations’ variance:70 
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 This result shows that the fluctuations are the smallest at the center of the phase-locking region 
(  0), where the hold of the external force on the oscillators’ phase is the most firm, and grow 
infinitely toward either edge of the region (  ) where the phase locking effect is most fragile. 
However, in any case, these phase fluctuations, with their infinite variance, are much smaller than those 
in the autonomous oscillator analyzed in Task (i), and do not result in oscillation line broadening. This is 
natural because the phase locking essentially does not allow the oscillation’s instant frequency 

   to deviate significantly from the frequency  of the locking force: 
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S
SSS f
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 Problem 5.21. Calculate the correlation function of the coordinate of a 1D harmonic oscillator 
with low damping, in thermal equilibrium. Compare the solution with that of the previous problem. 

 Solution: The spectral density of fluctuations of the oscillator’s coordinate is given by Eq. (5.68) 
of the lecture notes.71 With the simplification (5.69), valid at low damping and   0, it becomes  

     
m

S
m

Sq 2
  and  ,with  ,

4

1
0022




 


 F . 

From here, the correlation function may be found using the Fourier transform (5.59):72 
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


 d

m

S
dSK qq

F . 

70 If you need to, see MA Eq. (6.5a). 
71 Please note again that, as was noted at the derivation of that result, the direct statistical average of the noise-
induced oscillations q(t) vanishes, so the correlation function is the simplest quantitative time-domain 
characteristic of the noise-induced random oscillations.  
72 Note that this discussion is valid for the general (quantum) case,  ~ T, only if both Kq() and Sq() are 
understood in the sense of the symmetrized functions defined by Eqs. (5.95)-(5.96). 
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Since at low damping ( << 0), this integral converges rapidly near the point  = 0, i.e. near  = 0, we 
may formally extend the limits of integration over   from – to +, and get 
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This is a table integral73 equal to (/2)exp{-}, so using the fluctuation-dissipation theorem (5.98) for 
SF(0), within the Ohmic model of dissipation (() = i), 
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we finally get 
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As a sanity check, at  = 0, this expression gives the same result for Kq(0)  q2 as Eq. (2.78) with  = 
0 = (/m)1/2.  

 Note that the functional form,  
  eKK qq 0cos)0()( , 

of our current result (quantitatively valid only for low damping,  << 0) is similar to that for the 
autonomous self-oscillator analyzed in Task (i) of the previous problem, despite the quite different 
physics of these two processes: the noise “filtration” by a passive oscillator in our current case vs. the 
noise broadening of the spectral line of an active self-oscillator. The significant difference between these 
two processes may be revealed by comparing their other statistical measures – for example, the time-
averaged probability distributions w(q); such comparison is highly recommended to the reader as an 
additional exercise.  

Note also that this problem may be also solved using a 1D version of Eq. (5.177), by calculating 
the probability distribution w(q, p, ) from the 1D version of the Fokker-Planck equation (5.149). 
However, as should be clear from the solution of the similar problem for high damping, carried out at 
the end of Sec. 5.8, this way is substantially longer, so there is no good motivation for applying it to this 
linear system, for which the Langevin formalism used above gives a much simpler approach. 

 

 Problem 5.22. A lumped electric circuit consisting of a capacitor C shortened with an Ohmic 
resistor R is in thermal equilibrium at temperature T. Use two different approaches to calculate the 
variance of the thermal fluctuations of the capacitor’s electric charge Q. Estimate the effect of quantum 
fluctuations. 

 Solution: The simplest approach is to notice that the capacitor’s electric energy, 

73 See, e.g., MA Eq. (6.11). 
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C

Q
E

2

2

 , 

is a quadratic function of Q, so according to the equipartition theorem (2.48), in the thermal-fluctuation 
(i.e. classical) limit, the average energy of this “half-degree of freedom” has to equal T/2: 

22

2 T

C

Q
 . 

Since due to the system’s symmetry with respect to the charge’s sign, Q = 0, the above relation holds 

for the charge fluctuations QQQ 
~

as well, so, finally, 

         CTQ 2~
.      (*) 

 A possible concern with this approach is that it ignores the energy of the internal degrees of 
freedom of the resistor (which, in this system, plays the role of the fluctuation-generating environment). 
This is why a more prudent approach is to use the Langevin equation together with the Nyquist theorem. 
The lumped character of the circuit enables us to use for its analysis the usual Kirchhoff rules. For that, 
the Johnson-Nyquist noise of the physical (noise-inducing) resistor may be represented as a separate 
fluctuation current source connected in parallel with a noise-free 
resistor R with current I = V/R = Q/CR – see the figure on the right.74 
As a result, the Kirchhoff node rule yields 

   tI
Q

dt

dQ
tI
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dQ ~
  i.e.,

~ 


, 

where   RC is the charge relaxation time constant. Performing the same transfer to the Fourier images 
of the fluctuations and then to their spectral densities as was described at the beginning of Sec. 5.5 of the 
lecture notes for Eq. (5.65), we get 
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Now by using Eq. (5.60) for the charge fluctuation variance, together with the Nyquist formula (5.81c) 
for SI(), we get 
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thus confirming the result (*). 

 The Langevin-equation approach also enables a semi-quantitative discussion of the quantum 
effects in the system. Indeed, comparing Eqs. (5.92) and (5.98), we see that the transfer from the thermal 
to the full (thermal + quantum) fluctuations may be achieved by the replacement 

74 If this point is not quite clear, see, e.g., the model solution of EM Problem 4.2. (Alternatively, we might use a 
voltage (e.m.f.) fluctuation source, described by Eq. (5.82), connected in series with the noise-free resistor. The 
reader is encouraged to show that this alternative approach gives the same final result.) 

RC  tI
~QV
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in the spectral density of noise sources. For our current case, it yields 
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Since coth  1 at   , this integral diverges on its upper limit, i.e. at frequencies  >> 1/, T/. At 
room temperature, the last condition is satisfied at  >> 1014 s-1. At the frequencies that high, most 
macroscopic resistors deviate from the simple dispersion-free Ohmic approximation I = V/R, and the 
spectral density of their noise becomes lower than that given by Eqs. (5.81), making the integral 
converge. Denoting the frequency of such a cutoff as max, and assuming that it is much higher than 1/, 
we may use Eq. (**) to write the estimate 







2
,max~

~ max2 
TCQ . 

 

 Problem 5.23. Consider a very long, uniform, two-wire transmission line 
(see the figure on the right) with a wave impedance Z, which allows the 
propagation of TEM electromagnetic waves with negligible attenuation. Calculate 
the variance V2 of spontaneous fluctuations of the voltage V  between the 
wires within a small interval  of cyclic frequencies, in thermal equilibrium at temperature T.  

 Hint: As an E&M reminder,75 in the absence of dispersive materials, TEM waves propagate with 
a frequency-independent velocity, and with the voltage V  and current I (see the figure above) related as 
V (x,t)/I(x,t) = Z, where Z is the line’s wave impedance. 

 Solution: Since in a traveling TEM wave, the electric and magnetic fields, and hence the local 
voltage V(t) and the local current I(t) vary in time simultaneously (“in phase”), the instantaneous power 
carried by a sinusoidal wave through a cross-section of the transmission line is 

 ),(cos)cos()cos()()()( 2
2

 
  tkxtkxItkxtItt

Z

V
VVP  (*) 

where V and I are the voltage and current amplitudes, related by the wave impedance Z, and the two 
signs describe two possible directions of the wave’s propagation. Thus the time-averaged power carried 
by the wave is 

.
2

22
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For a wave traveling with a velocity c (not necessarily equal to the speed of light), its average energy in 
the line of length is 
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75 See, e.g., EM Sec. 7.6. 
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 On the other hand, according to Eq. (2.80) of the lecture notes, in thermal equilibrium, the 
statistical-ensemble average (which in this case includes the time average) of this energy should be 
equal to 

,
2

coth
2 T

E
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  

so for each wave mode, 

.
2

coth
2

2
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V   

 Since the velocity c of the TEM waves does not depend on frequency, their wavenumber is 
related to frequency as k = /c, so the number of TEM modes corresponding to a small interval   
2 of physical (positive) frequencies is 
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where the front factor 2 describes two possible intervals of k (positive and negative), i.e. two possible 
directions of wave propagation – see Eq. (*). Since the intensities of waves with different frequencies 
and directions sum up independently, the required variance of the voltage is  

            ,
2

coth
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222 
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 T
N
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regardless of c. 

 

 Problem 5.24.  Now consider a similar long transmission line but terminated, at one end, with an 
impedance-matching Ohmic resistor R = Z. Calculate the variance V2 of the voltage across the 
resistor, and discuss the relation between the result and the Nyquist formula (5.81b), including 
numerical factors. 

 Hint: A termination with resistance R = Z absorbs incident TEM waves without reflection. 

 Solution:  Such an impedance-matched resistor cannot chance the wave statistics, and hence Eq. 
(**) of the model solution of the previous problem, with Z replaced with R, gives the requested voltage 

variance. In particular, in the classical limit  << T, 

              .22  


RTV      (*) 

It may look like this result contradicts the Nyquist formula (5.81b), which gives a twice larger numerical 
factor. 

 In order to resolve this paradox, we should notice that in the Langevin-approach analysis of Sec. 
5.5, we have represented the environmental force as the sum  

 tFFF
~

 , 

and then argued that for the Ohmic dissipation, the force’s average over a thermally-equilibrium 
ensemble of environments, with the same motion q(t), may be expressed by Eq. (5.64), 

 tqq FFF
~

  so,    . 
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 Mapping this formula onto the electric circuit case (see the discussion following Fig. 5.9 of the 
lecture notes), we get  
                 tRIt VVVV

~~
 ,    (**) 

where the variance of the second term, within a cyclic frequency interval , is given by Eq. (5.81b), 

             .42~ 





RTV      (***) 

 From the point of the electric lumped circuit theory,76 
Eq. (**) is an algebraic description of the equivalent circuit 
including the deterministic resistor R and an ideal (internal-
resistance-free) voltage source with the e.m.f.’s variance given 
by Eq. (***), connected in series – see the solid-line part of 
the figure on the right. If the voltage V is measured with an 
ideal voltmeter (with infinite internal resistance), then the current I in the circuit vanishes, and the 
variance of the measured voltage is indeed given by Eq. (***).77 

 However, in our current problem, we are discussing voltage measurements in a different circuit, 
in which the “noisy” resistor is connected to a semi-infinite transmission line. For TEM waves, the 
lumped equivalent circuit of this system for outcoming waves (those generated by fluctuations in the 
load resistor and disappearing at infinity) may be obtained78 by complementing the equivalent circuit 
with a noise-free resistor of magnitude Z, representing the transmission line – see the dashed-line part of 
the figure above. This equivalent circuit clearly shows that for Z = R, the random e.m.f. is equally 
divided between the internal and external resistors, so the variance of the outcoming wave voltage is 

  .2
2

2 ~ 
  

 RT/VV  

 In equilibrium, incoming waves have equal voltage variance, so adding these two (incoherent) 
contributions, we recover our result (*) obtained from mode counting. By the way, this is exactly the 
way H. Nyquist first derived his theorem – correctly for the classical limit  << T and with a “small” 
error for the general, quantum case. This error was corrected later by H. Callen and T. Welton, who used 
a different approach (and considered a more general situation). 

Problem 5.25. An overdamped classical 1D particle escapes from a potential 
well with a smooth bottom but a sharp top of the barrier – see the figure on the right. 
Perform the necessary modification of the Kramers formula (5.139). 

76 See, e.g., EM Secs. 4.1 and 6.6. 
77 By the way, this equivalent circuit gives an alternative way to derive Eq. (5.81c) of the lecture notes. Indeed, if 
the resistor is connected to an ideal ammeter (with zero internal resistance), we see that the voltage  V  vanishes, 

while the fluctuation current  becomes equal to R/~
V , with the variance  

  .//
~ 22

2
2 ~~

RRI VV   

Together with Eq. (5.81b), this relation immediately gives Eq. (5.81c). 
78 See, e.g., EM Sec. 7.6. 
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 Solution: In this case, the quadratic approximation (5.135) is inapplicable, and has to be replaced 
with a linear one: 

  )()( 222 qqFqUqqU  , 

where F  dU/dq at q = q2  – 0 is the internal slope of the potential at its sharp edge. Now, taking into 
account the strong inequality (5.127), the integral on the right-hand side of Eq. (5.131) may be 
calculated as 
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Comparing this result with Eq. (5.136) for a smooth-edge well, we see that the necessary modification of 
Eq. (5.139) affects only the pre-exponential coefficient, 
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rather than the Arrhenius exponent. 

 

 Problem 5.26.* Similar particles, whose spontaneous electric dipole moments p have a field-
independent magnitude p0, are uniformly distributed in space with a density n so low that their mutual 
interaction is negligible. Each particle may rotate without substantial inertia but with a kinematic 
friction torque proportional to its angular velocity. Use the Smoluchowski equation to calculate the 
complex dielectric constant () of such a medium, in thermal equilibrium at temperature T, for a weak, 
linearly-polarized rf electric field. 

 Solution: According to the E&M basics,79 the complex dielectric constant of a macroscopically-
isotropic medium is 

                   



E

P
 0 ,     (*) 

where P is the complex amplitude of the polarization P(t) of the medium by an rf electric field E(t) 
with frequency  and complex amplitude E. In the absence of interactions between the particles, P(t) = 
np(t), where p(t) is the dipole moment of one particle,80 so our task is reduced to a calculation of the 
statistical average of the complex amplitude p of this moment – or more exactly, of its Cartesian 
component aligned with the field. In a linearly-polarized wave, this direction does not change in time, 
and we may select it for the z-axis, so the only component we need is  

cos0pp z , 

79 See, e.g., EM Sec. 7.2, in particular Eq. (7.26b). 
80 See, e.g., EM Eq. (3.49). 
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where  is the usual polar angle. Since the potential energy of the dipole’s interaction with the external 
field,81 

    cos0 ttU Ep Ep , 

also depends (besides time) only on the polar angle,82 the probability distribution of the particle’s 
orientation also may depend only on this angle and time: 

 tww , . 

 In order to spell out the Smoluchowski equation (5.122) for this function, we need to accept a 
certain definition of the kinematic friction (“drag”) coefficient  for the rotational motion we are 
considering. Let us define it by quantifying the assumed linear relation between the drag torque  (i.e. 
the statistical average of the torque  exerted on the particle by its environment) and the particle’s 
angular velocity in the following way:  = –d/dt. Then the Langevin equation for the polar angle , 
at negligible inertial effects, is similar to Eq. (5.107) with m  0 and the replacement q  : 

      ,0~with  ,~, 



 tttU 


   

where the right-hand side describes the fully random part of . With this notation, Eq. (5.122) becomes 

        
2

2

002

2

sincos




































 w

Tt
w

tw
w

T
U

w
t

w
EpEp .  (**) 

 In the absence of the external field, E(t) = 0, Eq. (**) equation reduces to the usual diffusion 
equation (5.114), with the diffusion coefficient D given by the Einstein relation (5.78): D = T/, even 
though for our current angular coordinate, both D and  have dimensionalities different from those at 
the linear motion. A more important difference is that in our current case, the coordinate space is limited 
to the segment 0    , so at t >>   /T, the diffusion makes the probability distribution tend to a 
constant value w0 defined by the normalization condition. If we, just as was done in the model solution 
of Problem 2.4, use the condition  

  ,1,sin
2

004

 




 twddwd  

then w0 = 1/4.  

 Next, if E(t) is different from zero but small in the sense  p0E  << T, then it is almost obvious 
from Eq. (**) that it may be satisfied with the following distribution:83 

    1~with  ,cos, 0

0

1
10 

Tw

w
twwtw

Ep
 . 

81 See, e.g., EM Eq. (3.15a). 
82 Strictly speaking, it is also important that kinematic friction eventually erases all traces of the past initial 
conditions (which could depend on the azimuthal angle as well). 
83 Since 0cos

4




d , the term proportional to w1 does not change the above value of w0. 
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Indeed, plugging this expression into Eq. (**) and keeping only the terms of the 1st order in the small 
parameter w1/w0, we see that all retained terms are proportional to cos. Requiring this equality to be 
valid for all values of , we get the following simple ordinary differential equation: 

             1001 Twtww  Ep .     (***) 

Since this equation is linear, it allows for a ready analytical solution even for an arbitrary function E(t). 
However, for our limited purposes, we may consider just a sinusoidal (“monochromatic”) field, 

    tit ω  expRe EE , 

naturally leading (at t >> ) to a similar solution w1(t) = Re(wexp{–it}). Plugging these expressions 
into Eq. (***), we get 


  iT

wwTwwwi ω
ω 


Ep

Ep 0
000   i.e., . 

 Now we can calculate the statistical (not time!) average of the needed z-component of the dipole 
moment: 

         ,expReexpRe
3

4
coscos 0

4

2
01

4

0 titiwdtwdtwz  


  ppppp  

with 

         


 iTiT
w ωω







33

4 2
00

00

EpEp
pp . 

As a sanity check, in the limit   0, the last expression gives the result 

,
3

2
0

Tz

Ep
p   

similar to that obtained for a classical magnetic dipole in the solution of Problem 2.4: 

.
3

2
0

Tz

Bm
m   

Returning to arbitrary frequencies and plugging the result for p into Eq. (*) with P = n p, we get 

 



iT

n



1

1

3

2
0

0

p
, 

where   /T is the already mentioned dipole relaxation time. This expression shows, in particular, that 
the imaginary part of the complex dielectric constant, which scales the dissipative energy loss in the 
medium,84 

    
22

2
0

13
Im






T

n"
p

, 

reaches its maximum at  = 1/. 

84 See, e.g., EM Sec. 7.2. 
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 Problem 5.27.* Prove that for systems with relatively low inertia/(i.e. relatively high damping), at 
not very high temperatures, the Fokker-Planck equation (5.149) reduces to the Smoluchowski equation 
(5.122) – in the sense described by Eq. (5.153) and the accompanying statement in the lecture notes. 

 Solution: In the nomenclature used in Sec. 5.6-5.7, the limit we are considering corresponds to 
either a very small mass m, or a very high drag coefficient , or both:85 

               U
m q

2  where  



 .    (*) 

Comparing the scale of the terms on the right-hand side of the Fokker-Planck equation (5.149),  

      wT
m

Uw
m

w
t

w
pqpq
2














 









  pp

 ,    

in light of Eq. (*), we may see that the character of the evolution of the probability density w in time 
very much depends on whether the parentheses in the second term of the right-hand side are very close 
to zero or not. If not (as at  most points of the 6D [q, p] space), then this term is much larger than the 
first one, and the equation may be well approximated as 

 U
m

wT
m

wwT
m

Uw
t

w
qpppqp 


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
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 


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0
202 with  , p

ppp
. (**) 

 The right-hand side of this equation differs from the left-hand side of Eq. (5.150), which was 
analyzed in Sec. 5.7 of the lecture notes, only by the offset of the momentum by p0 (which is generally a 
function of q and t, but is small in the limit m/  0). Now repeating the calculation that has resulted in 
Eq. (5.152), we see that Eq. (**) describes a relatively rapid (with the time scale tq  m/) relaxation,86 
in the momentum space, of the initial distribution w(q, p, t0), to a Gaussian peak centered at p0:87 

    
  

),(
2

,
exp),(

2
0 t
mT

t
tw q

qpp
pq, w











 
 ,    (***) 

where w(q, t) is some function independent of p.  

 Next, let us quantify the assumption that the temperature is not overly high by accepting that the 
resulting characteristic spread p = (mT)1/2 of the function w(q, p, t) in the momentum space is much 
smaller than (m/)F, where F is the scale of the deterministic force –Uq. Then, as a result of the initial 
fast relaxation of the momentum to the value p0, the second term on the right-hand side of the Fokker-
Planck equation becomes negligible, and in the remaining terms, we may make the replacement p  p0, 
i.e. p/m  –qU/, so the equation reduces to 

85 The  so defined may be interpreted as an effective spring constant, which generally depends on both q and t. 
86 A good feeling of this time hierarchy may be obtained by reviewing the relaxation dynamics of a fluctuation-
free 1D system, for example, a damped pendulum – see, e.g., the model solution of CM Problem 5.20, especially 
for the case Q < 1. 
87 Strictly speaking, this conclusion is restricted by the requirement (well fulfilled in most applications) for the 
deterministic force F = –U(q, t) to either be time-independent or change slowly on the short time scale t1. 
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  wTUw
t

w
pqq
21



 


 . 

Plugging in the limiting form (***) of the function w and integrating both sides of the resulting equation 
over the momentum space, we get 

            ,
1 32




pdwTU
t pqq 


 w

w
      

where (by integrating as in Eq. (3.6) of the lecture notes) we may write  

          ttwmTpd
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
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





 
 w . 

 In order to carry out the integration in the last term of the equation for w, let us use the following 
mathematical identity: 

              www qp qpqp
2

2
2 111





















 .   (****) 

Now we may notice that our initial Fokker-Plank equation describes a classical system whose Langevin 
equation of motion is the natural 3D generalization of Eq. (5.107): 

     tt U
dt

d
Um qq FF

~~
  i.e.,   qpqq   . 

This means that in our limit (*) of a relatively slowly changing force (1/tq  |  / << 1/tp  /m), the 
sum p + q evolves as a single variable, so the probability distribution of w(q, p, t) at any certain instant 
t may be, besides some constant, a function of only the combination p + q (and time):88   

    qpzzpq    where,,,, tftw . 

Since the operator (p – -1q) of such a function returns zero: 

      ,0  so,,,,  qpzqzp ftfftf  zz  

the integral over p of the first term on the right-hand side of Eq. (****) vanishes. Hence we are left with 
the integral of its last term: 

 tqpdtwpdtw qqq ,
1

),(
1

),(
1 2

2
32

2
32

2
w  

pq,pq, , 

turning the above equation for w into the Smoluchowski equation (5.122).

 

 Problem 5.28.* Use the 1D version of the Fokker-Planck equation (5.149) to prove the solution 
(5.156) of the Kramers problem.  

 Solution: Obviously, the 1D version of Eq. (5.149) is 

88 An additional exercise for the reader: prove this statement directly from the Fokker-Planck equation. 
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Let the potential U be time-independent: U = U(q). Then (as was mentioned in Sec. 5.7 of the lecture 
notes) in static equilibrium when not only w/t but also the probability current (5.151),  

p

w
Tw

m

p
jw 


 , 

vanish, Eq. (*) has the (easily verifiable) exact stationary solution 
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
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2
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2

 , 

which is just the 1D version of Eq. (3.24) and a natural generalization of Eq. (5.152). 

 However, to solve the Kramers problem, we need to 
calculate an exponentially small but still nonvanishing current Iw 
for a particle in the potential well shown in Fig. 5.10 of the 
lecture notes (reproduced on the right), again with T << U0. For 
this, the above expression for w should be modified; let us look 
for the solution in the following natural form: 
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Here f(q, p) is a smooth function that changes only close to the potential barrier’s top point q2, while the 
value w(q1, 0) may be chosen to satisfy the following natural generalization of the normalization 
condition (5.134) without the factor f(q, p): 
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where the approximation (5.133) has been used for the potential well’s bottom part. Near the barrier’s 
top q2, a different quadratic approximation is valid – see Eq. (5.135): 
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In this approximation, Eq. (*) reduces to  
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Now plugging in w in the form (**) and canceling similar multipliers, we get a similar equation for the 
function f(q, p): 
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 As a sanity check, the equation is evidently satisfied with f = const; however, this expression, 
corresponding to zero probability current jw, does not satisfy our boundary conditions. Indeed, in 

q
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accordance with the discussion in Sec. 5.6 and the above choice of w(q1, 0), the function f has to satisfy 
the following boundary conditions: 
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so it has to change within the region   ./~~ 2/1
2Tq  Due to the similarity of the differential equation for 

f with respect to the coordinate and the momentum, the natural trial solution is 
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and  is a constant coefficient. The solution’s substitution into our partial differential equation for f(q, p) 
turns it into the following ordinary differential equation: 
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In order for this equation to be indeed an ordinary one, the expression in the square brackets has to be a 
function of qpp ~~   only. This condition gives us the following characteristic equation for :
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Of the two roots of this quadratic equation, 
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only + allows the function f(q, p) to satisfy our boundary conditions. Indeed, with the characteristic 
equation satisfied, the differential equation for the function  becomes 
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and may readily integrated twice: 
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This solution shows that the fraction in the exponent is positive only for the choice  = +,: 
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where89  
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Because of that, the calculated function  
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at q~   –.90 Selecting the coefficient C so that this constant equals 1, i.e. 
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we get both of our boundary conditions for this function satisfied. 

 What remains is to use the calculated function f(q, p), and hence the distribution w(q, p) given by 
Eq. (**), to find the full probability current  
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Since any stationary solution of the 1D Fokker-Planck equation keeps the current independent of q, we 
may calculate it at any point, the most convenient choice being the barrier’s top q2 where q~  = 0, so 
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This double integral may be worked out by parts, taking into account that the product of the flipped 
functions vanishes at both limits p  : 
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89 This formula was given without proof in the lecture notes – see Eq. (5.154). Note that in the classical theory of 
oscillations, the fraction   /2m is called the damping coefficient – see, e.g., CM Sec. 5.1. 
90 Since we actually need the function f(q, p) to approach 1 not at q  –, but at q  q1, there is always a finite 
range of values p > 0 for which this boundary condition remains unsatisfied. A careful analysis of this problem 
(see, e.g., the review paper by V. Mel’nikov cited in Sec. 5.7 of the lecture notes) shows that our result, i.e. the 
Kramers formula (5.154) is valid only if the damping is not too low: /m2 >> T/U0.  
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As a result, for the reciprocal lifetime of the metastable state, we get the following expression: 
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This expression may be further simplified by noticing that using the definition of 2’, the characteristic 
equation (****) with  = + may be rewritten as  
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so we finally get simply 

,exp
242

exp
2

1 0

2/1

2

2
2
2

2

10

2

21







































T

U

mmT

U' 







 

which is the combination of Eqs. (5.111b) and (5.154) of the lecture notes. 

 

 Problem 5.29. A constant external torque, applied to a 1D mechanical pendulum with mass m 
and length l, has displaced it by angle 0 < /2 from the vertical position. Calculate the average rate of 
the pendulum’s rotation induced by relatively small thermal fluctuations of temperature T. 

 Solution: According to basic 
classical mechanics, the potential 
energy of a 1D pendulum placed 
into a vertical gravity field g and 
biased with an additional torque T  
is  

  ,constcos   TmglU  

where  is the pendulum’s deviation 
from its vertical position. The figure 
on the right shows plots of this 
function (frequently called the 
washboard potential) for three 
representative values of the torque. 
At T = 0, the potential is 2-
periodic, so all energy minima 
(corresponding to the stable static 
positions of the pendulum) have the 1 0.5 0 0.5 1
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same value of U. 

 However, any nonzero T  leads to a tilt of the potential pattern. If T  is not too large:  T  < mgl, 

the function U() still has a set of minima separated by 2-intervals of , but with the adjacent energy 
minima offset by 2T. The positions 0 of these minima may be found from the usual condition dU/d 
= 0, giving 

             .sin 0 mgl

T
       (*) 

This formula is also valid for the (unstable) positions 0’ of the energy maxima separating the minima 
(for example, the points  and  =  – 2 shown in the figure above for the case T/mgl = 0.5) but 

from the corresponding values of d2U/d2 = mglcos we see that cos0 > 0, while cos0’ < 0. From 
here, we can readily calculate the potential energy barriers separating any energy minimum from the two 
adjacent ones – see the figure above:91 
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  Small thermal fluctuations not only “wobble” the pendulum near its equilibrium position 0, but 
also lead to rare swings of the pendulum over its top position, i.e. to jumps over one of these potential 
barriers. Since the jumps over lower barriers are more frequent, the system gradually drifts in a certain 
direction – if T  > 0, then toward larger values of  – in the figure above, to the right. In order to 

calculate the speed of this drift, i.e. the average angular velocity  , at the eventually approached 

stationary distribution of the probability, let us select a broad region  >> 2 located well downstream 
from the initial position of the pendulum. Here, due to the jump randomness, the probabilities W of 
adjacent well occupation become equal and time-independent, so the probability current is proportional 
to the difference ( – ), where  and  are the rates (probabilities per unit time) of the jumps 
over the corresponding barriers – see the labels in the figure above. Since each jump creates, on average, 
the shift of the angle by 2 in the corresponding direction, the resulting average angular velocity is 

                 2 .     (**) 

 If the thermal fluctuations are low in the sense T << min[U, U] and the pendulum’s damping 
is not too low (see below), we may use, for each of the rates, the Arrhenius law (5.111b). Indeed, each 
rate is just the reciprocal lifetime of the metastable state of the system in the potential well due to the 
corresponding decay channel: 
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Here the effective attempt time A is the same for both barriers and is given by the Kramers formula 
(5.154) with 1 = 2  0: 

91 Note that the assignment specifies 0 rather than T, so all the results below will be expressed in terms of this 
angle. In order to express them in terms of torque, one can always use Eq. (*). 
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and  the damping, i.e. the coefficient in the pendulum’s Langevin equation represented in the form 
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So, using the above expressions for the potential barrier heights, we get 

    0000
AA

sinsinhsincos2exp
4

expexp
2 





 uu

T

U

T

U
























  , 

where u  mgl/T >> 1. 

 As was mentioned in Sec. 5.7, the original Kramers formula is only valid if the damping is not 
too low: /0 >> T/U0. However, in the system we are discussing now, the requirements for the damping 
are even higher. Indeed, Eq. (**) implies that the jumps between the adjacent potential wells are single 
random events independent of each other. In our system, this condition requires the pendulum to settle, 
after the jump over a barrier, at the bottom of the adjacent well, losing the extra energy to damping fast 
– before reaching the next potential barrier during the first “swing” over the well. Classical oscillation 
theory says92 that for this, the ratio /0 has to be larger than 1 or so. The exact threshold for /0 is a 
function of 0 but it is not very important, because all the practical applications of this result I am aware 
of are for strongly overdamped systems, with /0 >> 1. (As it follows from Eq. (***), and as we have 
seen from the Kramers problem’s solution using the Smoluchowski equation in Sec. 5.6, in this limit, 
the attempt time is independent of m: A = 2/, where  = 2m is the drag coefficient.)93 

 Speaking of important applications of this theory, some of them are: 

 – phase locking in oscillators,94 where the sum ( + ) gives the rate of the spontaneous 
violations of the locking regime, and 
 – Josephson junctions,95 where the difference ( – ) determines the dc voltage drop across a 
nominally superconducting junction biased by dc current I = Ic sin0 < Ic: 
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ee

V



 
2

. 

(In single-flux-quantum digital devices based on the Josephson junctions,96 the sum ( + ) gives the 
full rate of single-bit errors.)  

 

92 See, e.g., CM Sec. 5.1. 
93 By the way, in this limit, the simple form of the function U() enables an analytical calculation of   for 

arbitrary ratios u = mgl/T and T/mgl – even if the latter ratio is larger than 1 by magnitude, so Eq. (*) is no longer 
valid. This result, first obtained by R. Stratonovich in 1959, may be represented in several forms – see, e.g., Sec. 2 
in the review paper by A. Vystavkin et al., Rev. Phys. Appl. 9, 79 (1974). 
94 See, e.g., the model solution of Problem 15(i) and references therein. 
95 See, e.g., CM Problem 2.11, EM Sec. 6.5, and QM Secs. 1.6 and 2.8, and references therein. 
96 See, e.g., P. Bunyk et al., Int. J. on High Speed Electronics and Systems 11, 257 (2001). 
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Problem 5.30. A classical particle may occupy any of N similar sites. Its interaction with the 
environment induces random uncorrelated jumps from the occupied site to any other site, with the same 
time-independent rate . Calculate the correlation function and the spectral density of fluctuations of the 
instant occupancy n(t) (equal to either 1 or 0) of a site. 

 Solution: By performing an obvious generalization of the master equations (4.100) for two-state 
systems to N states, we may write the following system of equations for the probability Wj that the 
particle occupies the  jth site: 
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jj'
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jj'jj'jj'j WWW
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(As was noted in Sec. 4.5 of the lecture notes, such master equations may be valid even for many 
quantum systems, with the off-diagonal elements Wjj’ of their density matrices either decayed or 
uncoupled from the diagonal elements Wjj’  Wj.97) 

 For our current simple case of equal rates (j’j = jj’ = ), the system reduces to 

j
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)1(
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 . 

Since the sum of Wj’ over all j’ (including j’ = j) should be equal to 1, the sum on the right-hand side of 
this equation is equal to (1 – Wj), turning it into a linear differential equation for just one variable: 

 jjjj NWWNWW  1)1()1( . 

This equation may be readily solved for an arbitrary initial condition, giving the result functionally 
similar to Eq. (5.171):98 
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The stationary value W(), approached by W(t) at t  , immediately yields the (rather obvious) result 
for the average site’s occupancy (in the stationary state of the system, implied by the assignment): 

N
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. 

 Now we can use the general Eq. (5.167) to calculate the correlation function of the instant 
occupancy:99 
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Since one of the two possible occupancy numbers is zero, only one term (with n = n’ = 1) of the four 
may give a nonvanishing contribution to this sum: 

97 See, e.g., QM Sec. 7.6, in particular, the discussion leading to Eq. (7.194). 
98 It is obvious that in this uniform system, all the results are independent of the site number, so from this point 
on, the index j is dropped. 
99 Please note again the somewhat counter-intuitive dual nature of Eq. (5.167): it expresses an average for a 
stationary process via the probability evolution in a non-stationary case – with special initial conditions. 
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From here, by using the general solution (*) with W(0) = 1 and the replacement t , we get 
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As a sanity check, a particular case of this result, 
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may be readily verified by a simpler calculation: 
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 Now we are ready to calculate the correlation function of the occupancy fluctuations: 

  

,
111

1
11

)()()()()(~)(~)(

ΓΓ
22

2





NN e
N

N

N
e

NNN

ntntnntnntntntnK n

 















 



 

and then use the Wiener-Khinchin theorem (5.58) to find their spectral density: 
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 This result describes a zero-frequency-centered Lorentzian line (typical for such problems – see, 
e.g., the two-state problem solved in Sec. 5.8 of the lecture notes), with the cutoff frequency (i.e. the 
fluctuation bandwidth) N. As an additional sanity check, the result shows that for a system consisting 
of just one site (N = 1), Sn() = 0, i.e. the site’s occupancy does not fluctuate – of course. As a less 
obvious corollary, the low-frequency fluctuation intensity 

3

11
)0(

N

N
Sn







, 

as a function of N, reaches its maximum already for two sites and then decreases. 

 Note also that for the particular case N = 2, the result is applicable to Ehrenfest’s dog-flea system 
(see Problem 2.1) with just one flea. However, in this particular case, the entropy (whose calculation 
was the subject of that problem) does not change in time because it has the largest possible value S = ln 
N = ln2 from the very beginning. 
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Chapter 6. Elements of Kinetics 

 Problem 6.1. Use the Boltzmann equation in the relaxation-time approximation to derive the 
Drude formula for the complex ac conductivity (). Give a physical interpretation of the result’s trend 
at high frequencies. 

 Solution: For a uniform system in a spatially uniform ac field E(t), we may neglect, in the 
Boltzmann-RTA equation (6.18), the term proportional to rw, but have to retain the term w/t. Then, 
in the same low-field approximation as was used in Sec. 6.2 of the lecture notes to derive Eq. (6.25), we 
get the following generalization of that relation to our time-dependent case: 

           
 





 0

~~ w
tq

w

t

w
vE .     (*) 

From here, looking for the time dependence of the variables E and w~  in the form exp{–it}, we get the 
following relation between their complex amplitudes: 





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w
qwi vv EE . 

Comparing this result with Eqs. (6.25), we see that the only change due to the non-zero frequency  is 
the new factor (1 – i) in the denominator of expressions for the probability perturbation, and hence for 
the complex amplitude j of the electric current j given by Eq. (6. 26). Hence, the same factor appears in 
the complex conductivity () defined by a relation similar to Eq. (6.28), but for the complex 
amplitudes j and E: 

   







i


1

0

E

j
, 

where (0) is given by Eq. (6.29) – and hence by the Drude formula (6.32). 

 For the interpretation purposes, let us rewrite this result as  

22 )(1

)0(
)( ,

)(1

)0(
)(with  ),()()(











 "'"i' . 

These formulas show that the real part ’ of the conductivity, responsible in particular for the Joule heat 
generation, drops fast as soon as the field frequency exceeds the reciprocal relaxation time 1/ (in most 
practical conductors, from ~1011 to ~1013 s–1), while its imaginary part ” first grows with frequency, 
and then starts dropping as well, but slower – as 1/. The latter behavior, with a -independent 
imaginary conductivity: 

         1for  ,
)0(

)(
2

 



m

nq
" ,    (**) 

corresponds to collision-free oscillations of particle displacements, induced by the external ac field. 
Hence Eq. (**) does not depend on the scattering model and is very general. 
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 Note also that the frequency dependence of the current density at  >> 1 is similar to that of the 
current I flowing through a lumped inductance L (with the voltage V = LdI/dt, and hence I = iV/L). 
Due to this similarity, the ” given by Eq. (**) is called the kinetic inductance of a conductor, because, 
in contrast to the usual “magnetic” inductance, it is due to the finite mass m (inertia) of the charge 
carriers, rather than the magnetic field it induces. This effect is especially noticeable in superconductors, 
whose linear electrodynamics may be approximately described as that of the usual conductors but with 
negligible scattering, i.e. with   = , so Eq. (**), with n and m replaced with certain effective 
parameters, is valid in a very broad range of frequencies starting from zero.100  
 

 Problem 6.2. At t = 0, similar particles were uniformly distributed in a plane layer of thickness 
2a: 

 


 


           otherwise.  ,0

,for  ,
0, 0 axan

xn  

At t > 0, the particles are allowed to propagate by diffusion through an unlimited uniform medium. Use 
the variable separation method101 to calculate the time evolution of the particle density distribution. 

 Solution: In the absence of a drift-inducing field, we may calculate the distribution n(r, t) using 
the drift-diffusion equation (6.50) with U = 0. In this case, it is reduced to a simple diffusion equation 
similar to Eq. (5.116): 

m

T
DnD

t

n 





with  ,2 . 

Since this equation is isotropic, the initial 1D distribution n = n(x, 0) results in a 1D distribution n(x, t) at 
all later times, and its evolution may be described by the 1D version of the diffusion equation: 
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




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.      (*) 

 Let us look for its solution in the variable-separated form: 

                xXtTtxn k
k

k, .     (**) 

Plugging an arbitrary term of this series into Eq. (*) and dividing both sides by DTkXk, we obtain 

2
2

2

const
11

k
dx
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Xdt

dT

DT
k

k

k

k

 . 

Solving the two resulting simple ordinary differential equations for Tk and Xk, we get102 

  kxbXtDkaT kkkk cos,exp 2  , 

100 A more detailed discussion of this issue may be found in EM Sec. 6.4.   
101 A detailed introduction to this method (repeatedly used in this series) may be found, for example, in EM Sec. 
2.5. 
102 Another possible contribution to the function Xk(x), proportional to sinkx, has been dropped because there is no 
reason for the function n(x, t) to violate its initial spatial symmetry: n(–x, t) = n(x, t). 
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with (so far) arbitrary ak and bk. Since the length of the diffusion segment (–  x  +) is infinite, the 
spectrum of the possible values of k is continuous, so plugging these solutions back into Eq. (**), we 
need to replace the summation over k with integration: 

         kkkk bacdkkxtDkctxn  




  where,cosexp, 2 .   (***) 

 What remains is to find the function ck from the initial condition at t = 0: 
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As usual for the reciprocal Fourier transform, let us multiply both parts of this equation by e–ik’x, and 
integrate the result over the whole x-axis. Changing the order of integration on the left-hand side, we get 
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The inner integral on the left-hand side equals 2 [(k – k’) + (k + k’)],103 so the outer integration is 
easy, giving 

 
k'

k'an
dxk'x

n
cc

a

a

kk

sin
cos

22

1 00
'' 

 



 . 

 Due to the symmetry of the left-hand side of Eq. (***), ck’ has to be an even function of k’, so 
(dropping the prime index of k) this result becomes 

k

kan
ck

sin0


 . 

Plugging this expression into Eq. (***), we may fold the integral in it onto the positive semi-axis. The 
result is 

   

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txn


.      (****) 

 Plots of this distribution for several values of the 
normalized time t/T, where T  a2/2D, are shown in the 
figure on the right. They show that the initially 
rectangular distribution of the particle density first 
smears at the edges very fast, but the later (at t >> T) 
spread of the particles becomes slower and slower with 
time. This is very natural in light of the basic law (5.77) 
of diffusion of a single particle (equivalent to a delta-
functional initial distribution of n), in our current 
notation reading 

103 If needed, see, e.g., MA Eq. (14.4). 
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     2/12Dtx  . 

 Reversing the same statement into the time domain, we may say that the genuine characteristic 
time of a substantial change of the particle distribution is not the constant T  a2/2D but rather the 

evolving scale t ~ (x)2/D, where x is the spatial width of the sharp feature(s) of the distribution. (At t 
>> T, this is the full width x  x >> a of the whole distribution, so t  ~ t >> T.) In this sense, we may 
say that the process of diffusion does not have a unique time scale. 

 

 Problem 6.3. Solve the previous problem using an appropriate Green’s function for the 1D 
version of the diffusion equation, and discuss the relative convenience of the results. 

 Solution: The spatial-temporal Green’s function of any linear, homogeneous, partial differential 
equation in 1+1 dimensions (one spatial coordinate + time) may be defined by the following general 
formula for the equation’s solution at t > t0:  

                 00000 ,;,,, dxtxtxGtxntxn 




 .    (*) 

Applied to the delta-functional initial conditions, this definition yields 

   0000 ,  if),,;,(),( xxtxntxtxGtxn   . 

However, such a solution (with t0 = 0) of the diffusion equation (*) of the previous problem, similar to 
Eq. (5.114) of the lecture notes:  
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was already discussed in Sec. 5.6 – see Eqs. (5.112)-(5.113). From these relations, 

 
   

 
  

     2/1
02

2
0

2/100 2with  ,
2

exp
2

1
,;, ttDtx

tx

xx

tx
txtxG 











 
 


, 

so Eq. (*), also with t0 = 0, becomes 
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 For the initial conditions specified in the previous problem,  
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we get104 

104 This integral may be readily expressed via a difference of two values of the so-called error function  
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2

erf d ; 

however, for most practical purposes, the explicit integral form (**) is preferable. 
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 These formulas yield exactly the same plots of function n(x, t) as shown in the model solution of 
the previous problem – despite the substantial difference in the expression forms. Indeed, the result 
(****) of the previous problem is just the Fourier-integral expansion of Eq. (**). However, for practical 
calculations, there is a big difference between these two integral forms: the real-space integral in Eq. 
(**) converges faster at relatively small times, t << T  a2/2D, while the reciprocal-space integral 
obtained in the previous problem’s solution by the variable separation, converges faster at t >> T, when 

only relatively small values of the effective wave number k, with  k  ~ 1/(Dt)1/2 << 1/a, give noticeable 
contributions into it. 

 

 Problem 6.4. Particles with the same initial spatial distribution as in the two previous problems 
are now freed at t = 0 to propagate ballistically – without scattering. Calculate the time evolution of their 
density distribution at t > 0, provided that initially, the particles were in thermal equilibrium at 
temperature T. Compare the solution with that of the previous problem.  

 Solution: Since the particles do not interact and propagate independently of each other, we may 
calculate their density as 

  pdtwNtn 3,,),(  prr , 

where w(r, p, t) is the probability distribution of a single particle. In the absence of scattering and 
external fields, this distribution is described by the Liouville equation (6.9) with F = 0:105  
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For our 1D initial conditions, wi(x, p)  w(r, p, 0) = n(x, 0) w0(p), where w0(p) is the equilibrium 
(Maxwell) distribution (3.5)-(3.6): 
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the solution of Eq. (*) may depend only on one spatial coordinate (x), so it is reduced to 

x
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. 

 This equation is obviously satisfied with any function of one argument, f p = fp(x – pxt/m), 
describing the ballistic (acceleration-free) propagation of a particle with the initial velocity vx = px/m 
along the x-axis. This time evolution does not affect the probability distribution in the momentum space 
and along the transverse coordinates y and z. Hence in our case,  

105 Note that the same equation follows from the Fokker-Planck equation (5.149) with qU = 0 and  = 0. 
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so the spatial distribution we are looking for is 
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Now rewriting Eq. (**) as 
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we get the solution valid for any initial distribution n(x, 0): 
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 For our particular simple distribution, this expression is reduced to  

 
   

 
  ,exp

2
exp

2
, 2

2/1
0

2

2/1
0

/

/

























d

n
dp

mT

p

mT

n
txn

taxm

taxm
x

x  

where  

 
  tvt

m

T
tx

tx

ax
x

2/12
2/1

,
2












 . 

 Hence, due to the Maxwell distribution (**) of the initial momenta, the functional dependence of 
the particle density on the spatial coordinates is the same as in the case of diffusion – see Eq. (**) in the 
solution of the previous problem. However, in our current case of ballistic propagation,  the effective 
width x(t) of the spatial distribution is directly proportional to t rather than to t1/2 as in the case of 
diffusion, so the time evolution of the particle density is rather different. 

 

Problem 6.5.* Calculate the dc electric conductance of a narrow uniform conducting link 
between two bulk conductors, in the low-voltage and low-temperature limit, neglecting the electron 
interaction and scattering inside the link.  

Solution: As was discussed in Sec. 3.3 of the lecture notes, at T  0, any fermions (including 
electrons) in equilibrium fill all quantum states up to the Fermi energy F. Next, as we know from Sec. 
6.3 (see, in particular, Fig. 6.5c), if bulk conductors are weakly connected, with no voltage applied 
between them, their Fermi levels 
become aligned. The voltage V 
applied between the conductors 
offsets their whole energy spectra 
by eV, so the single-particle 
energy diagram of the system 
looks as sketched in the figure on 
the right, where the filled energy 
levels are highlighted. 

bulk conductor 1
bulk conductor 2

narrow link 

x

  F
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Since the link is uniform, the longitudinal component x of the electron’s energy inside it is 
conserved.106 As the energy diagram in the figure above shows, it can move from conductor 1 to 
conductor 2 only if this energy is within the range107 

          FF   xeV ,      

where  is the energy corresponding to the transverse factor (y, z) of the wavefunction describing the 
electron’s motion along the channel: 

     xikzya xexp,  r .  

Neglecting, for simplicity, the electron’s interaction with the crystal lattice, we may find the wave 
number kx from the dispersion relation 
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 If the applied voltage is relatively low, eV << F, the number N of different electron states with 
the same  transverse wavefunction (y, z), may be calculated as 
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where the front factor of 2 is due to two possible electron’s spin states with the same “orbital” 
wavefunction (r), while dN/dx is the 1D density of the orbital states, which may be calculated as108  
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With this result, Eq. (*) becomes 
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 Each of these traveling-wave states carries the probability current109  
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The wave’s amplitude  a  has to be calculated from the normalization condition 
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106 The WKB approximation (discussed, e.g., in QM Sec. 2.4) may be used to show that the result of this analysis 
is also valid for the so-called “adiabatic” channels whose cross-section is slowly changing along the length. 
Moreover, strictly speaking, the result is only valid for such adiabatic channels, with smoothed interfaces between 
the bulk conductors and the channel, because only for such a geometry, the electron scattering at the link 
entrance/exit (the effect swept under the carpet in the provided solution :-) is negligible.  
107 The left inequality ensures that this state in conductor 2 is empty, and hence available for occupation by the 
traveling electron. 
108 See, e.g., QM Eq. (1.100). 
109 See, e.g., QM Eq. (2.5) with /x = kx. 
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From here, we get  
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 Now we may use Eqs. (**) and (***) to calculate the full electric current carried by one 
populated transverse mode (y, z) (sometimes called the quantum channel or the “ballistic channel”): 
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This means that the electric conductance due to one fully populated quantum channel is given by a 
wonderfully simple expression: 
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This result had been derived by R. Landauer in 1957 but attracted common attention only in the 
late 1980s when the effect of longitudinal conductance quantization was observed experimentally in 
narrow links formed by negatively biased gate electrodes in 2D electron gas in semiconductor 
heterojunctions – see, e.g., the figure below. As the negative gate voltage is reduced, the link’s width w 
is increased, so the transverse quantization energy   22/2mw2 + const is reduced, and at certain gate 
voltage values, new and new quantum channels become populated, increasing the conductance by 
discrete steps equal to Gq. 

 

 

 

 

 

 

 

 

 

 

 

 

The most important feature of Eq. (****) is its independence of the electron mass m, channel 
dimensions, and any other parameters of the used sample. A similar (but, due to the suppression of 
backscattering by the magnetic field, much more robust and hence more precise) conductance 
quantization takes place at the quantum Hall effect.110 

110 See, e.g., QM Sec. 3.2. Note also a very similar effect of thermal conductance quantization – see, e.g., K. 
Schwab et al., Nature 404, 974 (2000) and references therein. 

The geometry of a typical conductance quantization experiment using a semiconductor heterojunction, 
and its result. VG1&G2 is the voltage applied to the “gate” electrodes G1 and G2 (marked in the inset) used 
to squeeze the 2D electron gas from under them and thus form (and control the width of) a quasi-1D 
conducting link between two broader conducting electrodes. Adapted from C. Rössler et al., New J. 
Phys. 13, 113006 (2011). © IOP, reproduced with permission. 
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Since Eq. (****) was derived neglecting electron scattering, it is also interesting to think about 
the physics of the channel’s conductance Gq, in particular, in the context of the corresponding Joule heat 
power P = IV = GqV

2. The extra energy eV picked up by each electron during its passage through the 
ballistic channel is turned into heat not inside the channel (where, in our simple model, there is no 
scattering and hence no energy dissipation), but somewhere inside the bulk electrodes, due to a gradual 
loss of the gained energy via inelastic (e.g., electron-phonon) interactions. This is one more twist of the 
interplay between the elastic and inelastic scattering at Ohmic conductivity, which was discussed at the 
end of Sec. 6.2 of the lecture notes. 

 

 Problem 6.6. Calculate the effective capacitance (per unit area) of a broad plane sheet of a 
degenerate 2D electron gas, separated by an insulating gap of thickness d from a well-conducting 
ground plane. 

 Solution: Per the solution of Problem 3.20 (see also Problem 3.8), in the degenerate limit (T << 
), the Fermi energy of a gas of N particles, which are confined to a 2D sheet of area A, is  

A

N

mT

2

0F

   . 

At that calculation, the Coulomb interaction effects have been neglected. The most important of these 
effects111 is that the distributed electric charge of the gas, with the areal density 

A

qN

A

Q
 , 

creates a uniform electric field of magnitude E = /0  in the gap between the gas and the ground plane, 
where   is the dielectric constant of the material filling the gap.112 As a result, the electrostatic potential 
of the layer (relative to that of the ground plane) becomes 

A

Nqdd
d

00 
  E , 

so the electrochemical potential (6.40) of the layer 
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 As was discussed in Sec. 6.3, the net electrochemical potential ’ (divided by q) is what we 
usually measure as the voltage V – in our current case, between the electron gas and the ground plane. 
As we know from basic electrostatics, capacitance C is just the ratio Q/V, so the capacitance per unit 
area (C/A) is the ratio /V, and Eq. (*) may be represented as 

111 Another effect is the Coulomb interaction of the electrons within the gas, leading, in particular, to their mutual 
scattering. In solids, this effect is typically less important, due to the compensating positive charge of the atomic 
lattice. In contrast, the charge Q discussed in this solution is the uncompensated charge of additional electrons. 
112 If this formula is not evident, please consult EM Secs. 2.2 and 3.4. 
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In the circuit theory language, this means that the effective capacitance C of the 2D electron gas sheet is 
a connection, in series: 

qe

111

CCC
 , 

of the usual “electrostatic” capacitance 

A
d

C 0
e


 , 

and the so-called quantum capacitance113 

A
mq

C
2

2

q


 . 

 The physics of this effect is pretty straightforward: by its definition, the electrochemical potential 
is the average energy necessary to add one particle from the environment (in our case, from the ground 
plane, which serves as a virtually unlimited reservoir of electrons) to the system. In our current case, 
such addition requires, first, overcoming the Coulomb repulsion of the electrons already in the sheet 
and, second, giving to the additional electron the Fermi energy of the gas F, to enable it to fill the 
lowest quantum state not yet occupied – just above F. In the simple model analyzed above, these energy 
increments are independent, leading to the addition of the two contributions to the effective potential ’, 
and hence to the addition of the reciprocal capacitances describing each of the energy components. 

 For free electrons (with  q  = e  1.610–19 C and m = me  0.9110–30 kg), the quantum 
capacitance is quite macroscopic, Cq/A  0.67 F/m2, and becomes even smaller (so the important 
fraction 1/Cq becomes larger) in semiconductors with lower effective electron mass – e.g., m  0.2 me in 
the conduction band of Si. Because of that, its effects may be noticeable in some modern electron 
devices – most importantly, in the ubiquitous silicon field-effect transistors with their very thin gate-
insulating layers. (For comparison with the above estimate of Cq/A, the ratio Ce/A for modern gate-oxide 
layers is of the order of 0.1 F/m2.) 

 

Problem 6.7. Give a quantitative description of the dopant atom ionization, which would be 
consistent with the conduction and valence band occupation statistics, using the same simple model of 
an n-doped semiconductor as in Sec. 6.4 of the lecture notes (see Fig. 6.7a), and taking into account that 
the ground state of the dopant atom is typically doubly degenerate, due to two possible spin orientations 
of the bound electron. Use the results to verify Eq. (6.65), within the displayed limits of its validity. 

 Solution: For spelling out the electroneutrality condition (6.62), 

       , npn     (*) 

we need to express the concentrations n, p, and n+ via the parameters  
and T (in equilibrium, common for all components of the system), for 
given energies V, C, and D – see Fig. 6.7a, which is reproduced on the 
right. As was argued in Sec. 6.4, at T <<   C – V, Eqs. (6.58): 

113 Note that both Ce and Cq are always positive, regardless of the charge of the particles (e.g., electrons). 

V

D C



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are independent of the dopant excitation statistics, so we need only to express the number n+ of activated 
(ionized) dopants via the above parameters and the full concentration nD of the dopant atoms.  

 This may be done similarly to the calculation of N0 in the solution of Problem 3.9. With the 
assumption given in the assignment, each donor atom may be in either of three different states: one 
ionized state, without an electron, with a certain energy a, and any of two ground states, with one 
electron of some spin orientation, with the energy a + D. Applying the general Eqs. (2.106)-(2.107) to a 
grand canonical ensemble of such systems, we may find the corresponding probabilities: 
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so W0,1 are independent of  the background energy a: 
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From here, the average number of ionized atoms (per unit volume) is 
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.     (***) 

As a sanity check, Eq. (***) shows that at fixed  and T, the fraction n+/nD of the activated donors 
increases as D is increased – as it should, according to the energy diagram shown above.  

 With this expression for n+, the electroneutrality condition (*) takes the form 
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.  (****) 

Generally, this transcendental equation for  cannot be solved analytically. However, it may be readily 
used to plot the electron density n, given by the first of Eqs. (**), as a function of nD, with the chemical 
potential  used as the parameter – see the solid red line in the figure below, calculated for parameters 
typical for semiconductors. (Note the log-log scale of the plot, covering several orders of magnitude of 
both densities.) The plot shows that at T << , there are three distinct branches of n as a function of the 
dopant density nD.  

 (i) If the density is very low, nD << ni,114 the last term in Eq. (****) is negligible, so the 
semiconductor remains practically intrinsic, with n  p  ni and the chemical potential near the midgap: 
  (C + V)/2. 

114 Note again that ni is a very strong function of temperature – se the second of Eqs. (6.60). 
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 (ii) In the (most typical) case when nD 
becomes well above ni, the density n+ of 
activated atoms and the electron density n are 
virtually equal to nD (and hence temperature-
independent), with the hole density p 
decreasing and the chemical potential inching 
toward the conduction band edge – see Eqs. 
(6.65) of the lecture notes: 

.ln,,
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D n
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n
pnn    

 This result means that the donor atoms 
may be fully activated even if the apparent 
ionization energy (C – D) is much higher than 
T – as it is in the example shown in the plot 
above. The mathematical explanation of this 
counterintuitive fact is given by Eq. (***): 
what is important for the full activation is for 
the Fermi level  to be well (by a few T) 
below D. The handwaving physical interpretation I can offer is that at nD >> ni, the relatively abundant 
electrons with the energy D would readily go down to the Fermi level (playing the role of an effective 
particle source – cf. Fig. 2.13 of the lecture notes) with a lower energy , and from there be re-
distributed into the conduction and valence bands – mostly to the former one. (Such interpretation of the 
Fermi level as a virtually unlimited reservoir of particles is generally useful for semi-quantitative 
analyses of other systems as well.) 

 (iii) Finally, if nD becomes so high that the  expressed by Eq. (6.65) of the lecture notes enters 
the T-wide vicinity of the doping level D, the last term in Eq. (****) becomes somewhat lower than nD, 
causing a proportional reduction of n – see the deviation of the solid red line from the (straight) dashed 
one at the top right corner of the figure above. However, as the plot shows, for typical parameter values, 
this effect is relatively minor, so Eq. (6.65) is almost precise within many orders of magnitude of nD.  

    

  Problem 6.8. Generalize the solution of the previous problem to the 
case when the n-doping of a semiconductor by nD donor atoms (per unit 
volume) is complemented with its simultaneous p-doping by nA acceptor atoms 
whose energy A – V of activation, i.e. of accepting an additional electron and 
hence becoming a negative ion, is much lower than the bandgap  – see the 
figure on the right.  

 Solution: In this case, the electroneutrality condition should also take into account the density  n– 

of negatively ionized acceptor ions, becoming 
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The density n– may be calculated just like n+ was in the solution of the previous problem, just taking into 
account the difference between the electrons and holes by replacing (D – ) with ( – A) – see the 
figure above. The result is115 
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With this expression, and the formulas for n, p, and n+ given in the solution of the previous problem, Eq. 
(*) turns into 

      T

n

T
n

T

n

T
n

/exp21
exp

/exp21
exp

D

DV
V

A

AC
C 














 











 

. (**) 

 In the general case, this transcendental equation for  cannot be solved analytically. However, it 
may be used to plot, for example, the reciprocal dependence of the donor doping level nD, as a function 
of the   it yields, for several values of nA – see the figure below. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 The plots clearly show that at the usual conditions T <<  and nD, nA << nC, nV, there are three 
distinct ranges of doping, where Eq. (**) yields simple results: 

 (i) At nD  nA, the value of   is close to the midgap, the exponents in the terms proportional to 
nA and nD are much smaller than 1 (showing that the dopant atoms of both types are fully activated), and Eq. 
(**) is reduced to  
      DA npnn  .     (***) 

115 Note that in some semiconductors, the degeneracy of electrons on the level A may be different from 2. (In Si, 
it is equal to 4.) In this case, the factor 2 in the expression for n-, and hence in Eq. (**), should be replaced with 
the proper degeneracy factor. However, this change of the pre-exponential factor has virtually no effect on the 
results presented below, in particular on the plots of  vs. nD. 
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This equation is similar to Eq. (6.63) of the lecture notes, just with nD replaced with the difference (nD – 
nA). With this replacement, its solution is given by Eq. (6.64): 
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where ni is the intrinsic carrier density ni given by Eq. (6.60): 
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 The most important feature of this result is that   

AD nnpn  , 

so the sign of (n – p), i.e. of the effective charge of carriers, may be controlled by doping. Such 
compensated semiconductors are convenient for some special applications, but in most semiconductor 
devices, one of the following two limits is used.  

 (ii) If ni, nA << nD (but nD is still much lower than the effective density nC of states in the 
conduction band), the situation is reduced to the high n-doping analyzed in Sec. 6.4 of the lecture notes, 
where Eqs. (6.65) are valid: 
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The straight dashed line in the figure above shows the first of these approximate equalities. The 
relatively minor deviations from it in the top right corner of the plots are due to a close approach of  to 
D – see the previous problem. 

 (iii) In the opposite limit of dominating p-doping (ni, nD << nA << nV), Eq. (**) is reduced to the 
equally simple Eqs. (6.67): 
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so the carrier densities and the Fermi level are virtually independent of nD – see the left, nearly-vertical 
tails of the plots in the figure above.116  

  

 Problem 6.9. A nearly ideal classical gas of N particles with mass m was in thermal equilibrium 
at temperature T, in a closed container of volume V. At some moment, an orifice of a very small area A 
is opened in one of the container’s walls, allowing the particles to escape into the surrounding 
vacuum.117 In the limit of very low density n  N/V, use simple kinetic arguments to calculate the r.m.s. 
velocity of the escaped particles during the time period when the total number of such particles is still 
much smaller than N. Formulate the conditions of validity of your results in terms of V, A, and the mean 
free path l.    

116 For a more detailed discussion of semiconductor doping statistics (as well as some other issues discussed in 
Sec. 6.4), I can recommend the classical monograph by W. Shockley, Electrons and Holes in Semiconductors, D. 
Van Nostrand, 1950. 
117 In chemistry and related fields, this process is frequently called effusion. 
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 Solution: Assuming that the linear dimensions of the orifice are much smaller than those of the 
container, so A << V2/3, let us calculate the average velocity of the particles that hit the orifice area 
during a time interval t >> A1/2/v0, where v0  (3T/m)1/2 is their r.m.s. velocity in equilibrium – see Eq. 
(3.9) of the lecture notes. For that, let us also assume that, at the same time, t is much less than l/v0, so 
the particle collisions on their last path to the orifice may be neglected. In this case, only the particles 
flying directly toward the orifice may pass through it – see the figure on the right. 
Moreover, the velocities of such particles should satisfy the condition v ≥ r/t, where r 
is the distance of the particle from the hole at the beginning of the interval t. (If the 
linear size scale of the orifice, A1/2, is much smaller than this r, it is not important 
which exactly part of the hole we are speaking about here.) Hence, as the figure on the 
right shows, the number of such particles, with velocities within a small range [v, v + 
dv], is proportional to the volume of the semi-sphere of the radius r = vt, i.e. to r3 = 
(vt)3: 
       ,)()(const 3 dvvwtvdN      

where the probability density w(v) obeys the 1D Maxwell distribution, 

.
2

exp)(
2










T

mv
vw  

(Since the particles from each point may reach the hole area only if they fly in a certain direction, the 
distribution should be for one Cartesian component of the velocity only.)  As a result, we may write 
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where c is some “constant” – which may still depend on the velocity’s direction. Now the average v2 of 
the molecules hitting the hole area, from a fixed direction, may be calculated as118 
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Since this result does not include the velocity’s direction, it is valid for the whole particle flux. It 
also is independent of the time interval t, but since particle collisions were neglected at its derivation, it 
may look like it is only valid for intervals within the initially assumed range  
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 .     (***) 

However, if the loss of particles is sufficiently small, as assumed in the assignment, the effusion does 
not change the statistical distribution of the particles because their diffusive reflections from the 
container walls and mutual scattering tend to restore the distribution at each point. (The process is 
frequently called thermalization.) Hence Eq. (**) is applicable to each sequential time interval after the 
orifice opening, even at t >> A1/2/v0. Note, however, that the interval (***) disappears if l is reduced to 

118 Both involved dimensionless integrals are of the type MA Eq. (6.9e) – with n = 2 and n = 1, respectively. 
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approach the scale of the linear sizes of the orifice, A1/2. Hence the important condition of validity of our 
analysis is A1/2 << l. (We have also neglected possible reflections of the particles from the orifice area – 
the assumption which is certainly correct if the wall thickness is much smaller than both l and A1/2.)  

 Finally, we have also neglected interparticle collisions/interactions. According to the discussion 
in Sec. 3.5, this is possible if the gas density n is much smaller than 1/r0

3, where r0 is the linear scale of 
the particle’s size. (This condition is equivalent to r0 << l – see the solution of Problem 12 below.) 

Note that according to Eq. (**), the escaping particles are, on average, hotter than the gas as a 
whole. Hence the effusion tends to cool the gas, so the maintenance of its temperature would require a 
flow of heat from the environment.   

 

 Problem 6.10. For the system analyzed in the previous problem, calculate the rate of particle 
flow through the orifice – the so-called effusion rate. Discuss the limits of validity of your result. 

 Solution: Let us calculate the effusion rate, which may be defined as 

      0
dt

dN
,     

using the same ballistic approach as in the model solution of the previous problem. 
Consider a small group of particles having a certain velocity v, with an angle  to 
the direction normal to the wall with the orifice in it – see the figure on the right. 
The area dA’ of transverse displacements (normal to the velocity vector v), leading 
to the particle’s passage through the orifice, is Acos, while the range dr of the 
radial distances, leading to such a passage during a small time interval dt, is dr = 
vdt, so the number of such escaping particles is 

          dtvnAwdtvwnAdA'drnwrdnwdN  coscos3 vvvv  ,  (*) 

where n  N/V is the spatial density of the particles, and w(v) is the 3D Maxwell distribution given by 
Eqs. (3.5)-(3.6) of the lecture notes, rewritten in terms of velocities v = p/m: 
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 Since v in Eq. (*) is the magnitude of the particle’s velocity, the product vcos participating in 
that expression is just its Cartesian component vn normal to the wall, so the summation of the 
contributions (*) over all velocities may be represented in the Cartesian form 

 vwvddvvnAdtdN nn 



 2

0

, 

where v is the velocity within the plane of the wall, and the integration is limited only to the velocities 
directed toward the wall, i.e. vn  0. Since w(v) may be represented as a product of three similar 
Cartesian distributions (see Eq. (3.5) again), each of them normalized to 1, the inner integral is 
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so we need to actually integrate only in one direction: 
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Thus, the effusion rate is 
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
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where v0 = (3T/m)1/2 is the r.m.s. velocity of the particles – see Eq. (3.9) of the lecture notes.119 

 This result is only valid if the characteristic effusion time  = N/ is sufficiently long: 

3/2

0

3/1

  giving, VA
v

V
 , 

i.e. the condition assumed from the very beginning. Another condition of applicability of Eq. (**) is that 
the density n of particles and their temperature T are kept constant (which may require a control 
mechanism with a response time much shorter than .) In addition, just as in the previous problem, the 
result requires the mean free path to be much longer than the linear size of the orifice: l >> A1/2, and the 
wall thickness to be much smaller than both l and A1/2. Note that since the mean free path in a typical gas 
at ambient conditions is very small (e.g., ~70 nm in the air), this condition may be fulfilled only for 
extremely small orifices. However, it is typically well satisfied in the so-called molecular ovens used for 
emitting ultra-pure atomic and molecular beams into high vacuum (in particular, for epitaxial thin-film 
deposition120 and isotope separation), where Eq. (**) serves as the baseline formula for the effusion 
rate.121 

 

 Problem 6.11. Use simple kinematic arguments to estimate: 

 (i) the diffusion coefficient D, 
 (ii) the thermal conductivity , and 
 (iii) the shear viscosity , 

of a nearly ideal classical gas with mean free path l. Compare the result for D with that calculated in 
Sec. 6.3 of the lecture notes from the Boltzmann-RTA equation.  

119 Note that the same result (**) may be also obtained in a slightly different way (actually, used in most 
textbooks), by considering what fraction f of particles, in an elementary volume d3r = r2drd, with r = vt and 
hence dr = vdt, has velocities directed toward the orifice (the answer is f = Acos/4r2), and then integrating the 
resulting particle number dN = nfdr3 over all velocities in spherical coordinates, with d3v = v2dvd. Let me leave 
the completion of this approach for the reader as a simple but useful additional exercise. 
120 See, e.g., Chapters 6 and 7 in D. Smith, Thin-Film Deposition, McGraw-Hill, 1995. 
121 The fact that this rate is proportional to 1/m1/2 has a special name: the Graham law. This law is of particular 
practical importance for isotope separation, especially because it is valid for the diffusion coefficient as well – see 
the next problem. 
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 Hint: In fluid dynamics, the shear viscosity (frequently called simply "viscosity") is defined as 
the coefficient  in the following relation: 

j

j'

j

j'

r

v

dA

d






F
. 

Here dFj' is the j' th Cartesian component of the elementary tangential force exerted by one part of a 
fluid, separated from its counterpart by an imaginary plane normal to some direction nj (with j  j', and 
hence nj  nj'), dAj is the elementary area of this interface, and v(r) is the fluid velocity’s distribution.122  

 Solution: The common approach to the calculation of all these kinetic coefficients is to consider, 
just as mentioned in the Hint, an imaginary plane interface normal to some axis nj. Next, let us consider 
a subset of particles, with the number dn per unit volume, whose velocities in the direction normal to the 
interface are within any of two small intervals dvj around some values vj. If the gas is in equilibrium, 
then during a small time interval dt, an elementary area dAj of the interface will be crossed only by the 
particles with the initial distances rj <  vj  dt from it – half of them in the direction deemed positive 
(the plus index below), and half in the opposite one (the minus index): 

              jj dAdtv
dn

dN
2

 .     (*) 

This expression is the baseline for all the particular required estimates. 

 (i) According to Fick’s law (see Eqs. (5.118) and (6.48) of the lecture notes), the diffusion 
coefficient D may be defined via the linear relation between the density jn of the particle flow and the 
small density gradient that causes this flow – the diffusion: 

nDn j . 

This means that the net rate of the particle flow through area dAj of our imaginary interface is 

                  j
j

jjnn dA
r

n
DdAdI



 j .    (**) 

 For our model, the left-hand side of this relation is just the sum of the fractions (dN+ – dN–)/dt for 
particles within all possible intervals dvj. With the direct substitution of Eq. (*) into Eq. (**), we would 
get zero result, but at a non-zero gradient of n, and hence dn, we have to modify the former relation as  

 
2

rdn
v

dtdA

dN
j

j

 , 

where r are the two points in which a particle crossing the interface had its last scattering events (and 
hence, on average, equilibrated with other particles at this location). Considering the gradient (dn)/rj 
sufficiently small on the scale of dn/l, where l is the mean free path, we may Taylor-expand dn in small 
(r)j (referred to the point where the particle crosses the interface), and limit the expansion to two 
leading terms: 

122 See, e.g., CM Eq. (8.56). Note the difference between the shear viscosity coefficient  considered in this 
problem and the drag coefficient  whose calculation was the task of Problem 3.2. Despite the similar (traditional) 
notation, and belonging to the same realm (kinematic friction), these coefficients have different definitions and 
even different dimensionalities. 
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Subtracting these two expressions from each other, we get 

 
j

j
j

j

r
r

dn
v

dtdA

dNdN





 

2

1
, 

where rj is the jth Cartesian component of the vector r  r+ – r–. Though, nominally, r are the positions 
of the last scattering events of two different particles (before each of them crosses the interface), r 
should have approximately the same statistics as the vector of a single particle’s shift between its two 
sequential scattering events.123 By defining  as the statistical average of the time before and hence after 
a scattering event (cf. the classical derivation of the Drude formula in Sec. 6.2.), the jth Cartesian 
component of such a shift is 2  vj . Hence for the average over all particles of our subset, we may write 
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 Now let us sum up (dN+ – dN–) over all intervals dvj. Assuming  to be independent of the 
particle energy (as it is in the Boltzmann-RTA approximation),124 the sum of all products vj

2dn yields 
vj

2n, where n is the total particle density, while the velocity averaging is over all particles. Due to the 
gas’ isotropy, the last average is just v2/3, and we get 
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so the comparison with Eq. (**) yields125 

lvvD
2/122

3

1

3

1
  ,  

where, at the last step, the mean free path’ definition (6.51c) was used. This estimate agrees with Eq. 
(6.51b) of the lecture notes. However, given the approximate treatment of the collision statistics in this 
analysis, and the phenomenological nature of Eq. (6.17) itself, this exact agreement of the numerical 
coefficients cannot be considered much more than a lucky coincidence. 

 (ii) Now let us use the same approach to calculate the thermal conductivity coefficient , which 
may be defined by Eq. (6.105) of the lecture notes. Let us assume that  the chemical potential  of the 
gas and its electrochemical potential '  are constant;126 then this relation is simply 

            
j

j r

T
T




  hh   i.e., jj  ,    (***) 

123 This assumption is perhaps the largest source of imprecision of the numerical coefficients in the forthcoming 
estimates. 
124 As the solution of the next problem will show, in many cases this is not a very good assumption and may cost 
us one more numerical factor of the order of 1. 
125 Note that since v2 = 3T/m, this result means that D  m–1/2, i.e. the diffusion obeys the same Graham law as 
the effusion – see the solution of Problem 10. 
126 Per the definition (6.40) of ’, for a gas of charge-free particles, ' = , so these two conditions are equivalent. 
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where jh is the energy flow density. In our simple model, we may calculate the jth Cartesian component 
of the density as the sum (over all velocities vj) of the contributions127 

   
dtdA
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j

  rr 
, 

where dN now may be taken directly from Eq. (*) but the difference of the particle energies  on the 
opposite sides of the interface, due to the gradient T/rj, has to be taken into account. If the gradient is 
sufficiently small (much smaller than T/l), we may treat the energy just as the particle concentration in 
the previous task, getting 
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Now the summation of contributions from all particles, again with the assumption of a constant , yields 
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Though one of three Cartesian components of the particle’s kinetic energy  = mv2/2 is correlated with 
vj

2, for a simple estimate, we may ignore this correlation, by taking 
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where cV  /T is the specific heat per particle.128 Now the comparison with Eq. (***) yields 
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 A comparison of this result with that following from the Boltzmann-RTA equation will be the 
subject of Problem 13 below. 

 (iii) In statistical physics, the velocity v in the definition of , given in the Hint, should be 
understood as the statistical average v of the particle velocities:  
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,     (****) 

where dF is the average force exerted by the "upper" part of the gas (with rj > 0) upon its "lower" 
counterpart. (The force exerted upon the "upper" part is evidently –dF.) In our model, each particle of 
the subsets dN+ and dN– carries, through the interface, a tangential mechanical momentum with the j’ th 
component equal to mvj’. As a result, the contribution of a subset of dn molecules, with the velocities 
close to some v, to the net momentum transferred across the area dAj' during the time interval dt in the 
positive direction, i.e. to –dFj', may be calculated as 

127 Comparing this expression with Eq. (6.104) of the lecture notes, please remember that our current calculation 
is for  = const, so the terms, proportional to the chemical potential on both sides of the interface, cancel. 
128 As a reminder, according to the equipartition theorem, for free classical particles with negligible thermal 
excitation of their internal degrees of freedom, i.e. with three half-degrees of freedom, cV = 3/2 – see Eq. (3.31). 
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Now acting just as in the previous tasks of this problem, in the presence of a small gradient vj'/rj, we 
may write 
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so the summation over all particles gives129 
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Comparing this expression with Eq. (****), we get the following estimate of the viscosity coefficient: 
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 Problem 6.12. Use simple kinematic arguments to relate the mean free path l in a nearly ideal 
classical gas to the full cross-section  of mutual scattering of its particles.130 Then use the result to 
express the thermal conductivity and the viscosity coefficient estimates made in the previous problem, 
in terms of .  

 Solution: Let us first consider the scattering of a uniform, parallel flux of particles by a single 
immobile scattering center. By definition,131 its full cross-section is 

areaunit per  particlesincident  ofnumber  average

particles scattered ofnumber  average
 . 

In a medium with a relatively low number n <<  –3/2 of similar scattering centers per unit volume, the 
scattering events may be considered as independent. Let us consider a plane slab of area A and a small 
thickness dx, singled out inside such a medium. The average number of scatterers in it is nAdx, so the 
total scattering area, as seen by the incident particles propagating along the x-axis, is nAdx. Due to the 
assumed scattering event independence, the average fraction of the particles scattered by all these 
centers is (nAdx)/A ndx. This means that the flux jn of still-unscattered particles is reduced, at the 
small distance dx, by jnndx, giving the following law of its decay along the propagation axis: 

        n
n jn
x

j





.      

129 Note that here, the factoring of the averages is more “clean” (less approximate) than in the previous task, 
because the two Cartesian components of the velocity, vj and vj’, are independent.  
130 I am sorry to use the same letter for the cross-section as for the electric Ohmic conductivity. (Both notations 
are very traditional.) Let me hope this will not lead to confusion; the conductivity is not discussed in this problem.  
131 This definition is common for particle scattering description in classical and quantum mechanics, and maps 
onto a similar definition at wave scattering – see, e.g., CM (3.70), EM Eq. (8.39), and QM Eq. (3.59). 
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 On the other hand, the same decay of the incident flux may be described in the language of the 
relaxation-time approximation – see Eq. (6.17) of the lecture notes. In the picture where the initial flux 
of the particles had been initially uniform over the volume, and then the scattering was suddenly turned 
on everywhere, it describes a space-uniform decay of the non-equilibrium part of the probability density 
w, and all its functionals including jn, with the time constant : 

       


nn j
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j
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
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.       

 The comparison of these two expressions for the same small change djn yields the following 
relation between the passed distance dx in the first case and the passed time dt in the second case 

        
ndt

dx 1
 .       (*) 

 If the incident particles move in the same direction with the same velocity v amidst immobile 
scattering centers, then we may also write dx/dt = v. If the particle velocities differ in direction and 
magnitude, but the scattering centers are still immobile, it is fairer to replace v in this relation with its 
r.m.s. value (3.9): dx/dt  v21/2 = (3T/m)1/2. However, in the gas where the scatterers are similar 
particles and move with similar velocities, a better estimate of dx/dt is given by the r.m.s. value of the 
relative velocity vrel  v1 – v2 of the mutually scattering particles. This value may be readily calculated 
assuming the independence of the directions of the vectors v1,2: 
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where v without an index refers to the velocity of a single particle in an immobile (“lab”) reference 
frame. In this case, we may write 

2/122 v
dt

dx
 , 

and comparing this estimate with Eq. (*), get the approximate equality 

12
2/12 vn . 

Now using the mean free pass’ definition given by Eq. (6.51b) of the lecture notes, l  v21/2, we 
finally get  
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 For an approximate description of collisions between molecules, they may be treated as hard 
spheres with an effective diameter def defined as the smallest impact parameter at which the mutual 
scattering may be ignored. (This is essentially the hardball model that was discussed in Sec. 3.5 of the 
lecture notes, with def  2r0 – see Fig. 3.7.132) In this approximation, 
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132 Rather confusingly, it is def  (rather than r0) what is often called the van der Waals radius of the particle. 
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For many molecules, def is virtually constant within a broad range of kinetic energies ; in this case, Eq. 
(**) shows that l is temperature-independent, while the relaxation time  is not: 

2/12/12 
 Tvl . 

This means, in particular, that the constant- approximation used in most of Chapter 6 of the lecture 
notes cannot work well in this case. Note, however, that this scaling is valid only for a classical gas and 
only within the hardball model.133 

 Now  returning to the estimates made in the solution of the previous problem, 
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we may use Eq. (**) to rewrite them as 
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 Note that in view of the approximations used at the derivation of these formulas, it would be 
naïve to expect them to give quantitative agreement with experiment. A more important role of Eqs. 
(***) for applications is to give the approximate functional dependence of the kinetic parameters on 
temperature ( ,  T1/2), and especially to explain their virtual independence of the particle density n. 
Indeed, since for nearly ideal gases, with their relatively small particle density n  N/V <<  –3/2,  is 
independent of the gas density, so are the heat conductivity and the viscosity coefficient. Note also that 
somewhat counter-intuitively, the second of Eqs. (***) predicts the viscosity of such gases to grow with 
temperature (due to the growth of v2  T), and experiment confirms this conclusion. Even more 
interestingly, for most gases this trend (i.e. a drop of  at cooling) continues for a while even beyond the 
gas condensation point, i.e. in the liquid state of the substance – only to be replaced with the viscosity’s 
rapid (exponential) increase as the temperature approaches the liquid’s freezing point. 

 

 Problem 6.13. Use the Boltzmann-RTA equation to calculate the thermal conductivity of a nearly 
ideal classical gas, measured in conditions when the applied thermal gradient does not create a net 
particle flow. Compare the result with that following from the simple kinetic arguments (Problem 11). 

 Solution: For a non-degenerate gas, the condition specified in the assignment should be taken 
very seriously. Indeed, let us first forget about it for a minute and calculate  directly from Eq. (6.107) 
of the lecture notes: 
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For a classical gas, we may use the high-temperature limit of Eqs. (2.115) and (2.118):  
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133 As perhaps the most important counter-example, at the so-called Rutherford scattering of charged particles 
with the Coulomb interaction U  1/r, the total cross-section  is infinite, at least in the limit n  0 – see, e.g., 
CM Eq. (3.73) and the solution of QM Problem 3.8. 
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giving, in particular: 
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This exponentially decaying function of  provides a fast convergence of the integral in Eq. (*) at 
energies ~T. Since, according to Eq. (3.34), the factor  in the classical gas is negative, with    much 
larger than T, the factor ( – )2  in that formula may be approximated with 2. As a result, we get  
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This expression differs from Eq. (6.31) for  (in the corresponding limit for the function N()) only by 
the extra factor 2/Tq2, so we immediately may use Eq. (6.32) to write  
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TTq


2

2

2







 .  (WRONG!)  (**) 

 However, in the conditions specified in the assignment, this apparent result is wrong. Indeed, the 
 given by Eq. (*) is the coefficient defined by Eq. (6.105); in the absence of the electric field (or just 
for charge-free particles), i.e. when ’ = , it reads 

      Tμ
q

T
Tμ

q
 





S

hj ,    (***) 

where the last form is obtained by using Eq. (6.108). This relation is reduced to the Fourier law (6.114), 

                Thj , 

only if  = 0. However, for a gas of uncharged particles, this condition is hard to implement in 
experiment. It is much easier to ensure that the applied temperature gradient does not result in the net 
particle flow. (For example, we may heat up one end of a long, 
sealed tube, which is thermally insulated on its lateral sides – see 
the figure on the right.134) 

 In order to analyze this situation, let us rewrite Eq. 
(6.97), with ’ = , for the particle flow density jn = j/q:  

                              T
qqn 
S


2

j . 

It shows that in conditions when there is no particle flow, jn = 0, the application of a temperature 
gradient unavoidably creates a gradient of the chemical potential:135 

Τq  S . 

134 For a gas of charged particles, for example of electrons in a metal, this condition, jn  j/q = 0, may be imposed 
simply by disconnecting a long sample, made of this metal, from an external conducting electric circuit – see, e.g., 
Fig. 6.12 of the lecture notes. 
135 Note that this is essentially Eq. (6.102), only with  = ’. 
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Plugging this expression into Eq. (***), we see that the effective thermal conductance differs from the   
given by Eq. (*): 

0for  ,with  , 2
efefh  nTT jj  S . 

 Per Eqs. (6.101) and (6.110), valid at T << F, for a degenerate Fermi gas, this thermal 
conductivity reduction is of the order of (T/F)2, i.e. negligible, so in this case, Eq. (6.109) and hence 
the Wiedemann-Franz law  (6.110) are valid regardless of the measurement conditions. However, for a 
classical gas, the situation is different. Indeed, by plugging the corresponding formula for [–N()/] 
(see above) into Eq. (6.98), and working out two simple integrals,136 we readily get137 
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

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
 

Tm

Tn
T

Tq


SS . 

Comparing this expression with Eq. (**), we see that the leading term of the correction, proportional to 
(/T)2 >> 1, exactly cancels with the crude approximation’s result (**). Hence, this “seed” thermal 
conductivity  should be re-calculated from Eq. (*) more carefully, by keeping all three terms of the 
sum ( – )2 = 2 – 2 + 2. A straightforward calculation,138 yields the following finite result:  

       
m

Tn
2

5
ef  ,      (****) 

which is significantly lower than the  given by Eq. (**). 

 In order to compare this result with the estimate obtained in the solution of Problem 11, let us 
rewrite the latter by using Eq. (3.9), v2 = 3T/m:139 

               
m

Tn
cV

  .        

Now we should take into account that at the derivation of Eqs. (6.106)-(6.107) from Eq. (6.104) in Sec. 
6.5, the particle’s energy  was associated with its kinetic energy only, thus neglecting the possible 
thermal excitation of its internal degrees of freedom. Thus for a fair comparison, we should take cV 
equal to the corresponding value 3/2, so this estimate becomes 

      
m

Tn
2

3
 , 

We see that this result differs from Eq. (****) only by a numerical factor of (5/2)/(3/2)  1.7; as was 
discussed in the model solution of the previous problem, this is not too bad for such a crude estimate,  
even without a correction for the larger heat capacity of the diatomic nitrogen molecule: cV = 5/2 instead 

136 They are both of the type MA Eq. (6.7a), one with s = 7/2 and the other one with s = 5/2 – see also MA Eq. 
(6.7e). 
137 It is instructive to compare this expression with Eq. (6.101) of the lecture notes, which is valid in the opposite, 
degenerate limit T << .  
138 It involves one more integral of the same type MA Eq. (6.7a), with s = 9/2. 
139 Note that at its derivation we have ignored the particle flow, so the comparison of the resulting  with ef is 
more or less fair – at least within the framework of rather crude assumptions made at the derivation. 
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of cV = 3/2 implied by our theory. (Let me leave the analysis of how such correction should be made, for 
the reader’s additional exercise.) 

 Nevertheless, we should remember that, as was noted in the lecture notes, the Boltzmann-RTA 
equation may give unreliable numerical factors in its results for classical gases, because its assumption 
of an energy-independent scattering time  is frequently too crude for the broad distribution of particle 
energies in such systems. 

 

 Problem 6.14. Use the Boltzmann-RTA equation to calculate the shear viscosity of a nearly ideal 
gas. Spell out the result in the classical limit, and compare it with the estimate made in the solution of 
Problem 11. 

 Solution: Per Problem 11, the shear viscosity  of a fluid is defined by the relation 

      
j

j'

j

j'

r

v

dA

d






F
, 

where dF is the average force exerted by the "upper" part of the gas (with rnj > 0) on its "lower" 
counterpart. As was discussed in the solution of that problem, in a nearly ideal gas, the equal and 
opposite force (–dF) exerted on the “upper” part may be calculated as the average momentum being 
transferred to that part from the “lower” part of the gas, i.e. as 

          pwdvvmdmv
dA

d
jj'jj'

j

j' 3
nj

F
,    (*) 

where djn = vwd3p is the elementary flow of particles with the velocity v – cf. Eq. (6.26) of the lecture 
notes. As in other cases discussed in Chapter 6, the unperturbed, isotropic part w0 of the probability 
density w gives zero contribution into such an integral, so instead of w, we may use its small 
perturbation w~  created by the average velocity’s gradient v. From the Boltzmann-RTA equation 
(6.18) with /t = 0 and F = 0,140 we get141 




  



 vv 0
0

~ w
ww , 

where  is the internal energy of the particle – in our case of free particles, the kinetic energy due to 
deviations of their particular velocities from that of the collective motion of the gas: 

 
2

2
vv 


m

  . 

With the vector v directed along the j’ th axis and its gradient directed along the jth axis, we may re-
write this equality as 

    
j

j'

jjjjjj'j r

v
vvmvvvv

m




 '

2
"

2

'
2    so,

2
n  . 

140 In Eq. (6.18), this is the explicit force applied to each particle, not the effective shear force we are calculating. 
141 In contrast to the case of thermal conductance, discussed in Sec. 6.5 of the lecture notes, here we may take  
= 0 because a velocity gradient in a gas with T = 0 does not create a gradient of the chemical potential. 
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Now after the differentiation, at the plane of our interest (i.e. at the interface between the “upper” and 
“lower” parts of the gas), we may take the average gas velocity for the reference, so 
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jj r
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 20~   and,


 n . 

Plugging this expression into Eq. (*), and then using Eq. (6.19) of the lecture notes, we get 
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where  is the solid angle of possible directions of the vector p, and hence of the vector v = p/m.  For 
the angular integration, we may use the spherical coordinates with the polar z-axis directed, for example, 
along nj and the x-axis directed along nj’, so vj = vcos,  vj’ = vsincos, and the integral is  
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With the same substitutions as at the derivation of Eq. (6.30), our result reduces to a 1D integral over the 
particle energy  = p2/2m (so that p = (2m)1/2, dp = (m/2)1/2): 
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 In the classical gas limit, both quantum distributions (3.38) are reduced to  
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and we may spell our result as  
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The last integral142 is equal to (7/2) = (15/8)1/2, and using Eq. (3.32) of the lecture notes in the form  
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we, finally, get simply 
Tn  . 

142 See, e.g., MA Eqs. (6.7a) and (6.7e). 
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 However, taking into account Eq. (3.9), v2 = 3T/m, this is exactly the estimate obtained in the 
solution of Problem 11: 

Tnmvn   2

3
, 

even though, in view of the rather crude approximations made at its derivation, the similarity of the 
numerical coefficients should not be understood as much more than a lucky coincidence.  

 

 Problem 6.15. Use a simple model of a thermoelectric refrigerator (“cooler”) based on the Peltier 
effect to analyze its efficiency. In particular, explain why the fraction ZT given by Eq. (6.113) of the 
lecture notes may be used as the figure-of-merit of materials for such devices. 

 Solution: For a simple analysis, let us assume that the temperature difference T  TH – TL 
supported by the cooler is much smaller than the absolute temperature T  TL  TH – as it is in most 
practical thermoelectric systems. Due to this assumption, we may neglect the temperature-induced 
variations of the transport coefficients , , and  in the device. 

 Let us also neglect the temperature drop across the voltage source in the thermoelectric loop – 
see Fig. 6.13 of the lecture notes – just as this was done at the derivation of the key Eq. (6.112). In 
practice, this drop is minimal because a typical cooler comprises a battery of many similar 
thermoelectric couples 
connected in parallel for the 
heat flow but in series for the 
electric current – see the figure 
on the right. As the figure 
shows, each of these couples 
operates just as the loop shown 
in Fig. 6.13, and it is sufficient 
to carry out an analysis of only 
one of them – say, of the couple inside the dashed-line rectangle.  

 As was discussed in Sec. 1.4, the cooler’s efficiency may be most adequately quantified with its 
coefficient of performance (COP) defined by Eq. (1.69). For a continuously running (rather than the 
cyclic) system, it is more natural to count both QL and W in that formula per unit time, and hence 
rewrite that definition as 

                 
e

LCOP
P

P
 ,      (*) 

where PL is the power flow into the low-temperature load, and Pe is the electric power used to run the 
device. The numerator of this fraction may be calculated as the difference between the sum of two 
undesirable (positive) heat flows: the flow from the hot plate to the cold one due to the unavoidable 
thermal conductivity of G of each element of the couple, and a half of the Joule heat generated in each 
element,143 and the beneficial (negative) Peltier-effect power (6.112), with the Peltier coefficients given 
by Eq. (6.108):  
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143 The second half of the heat flows into the hot bath. 
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Here G and R are, respectively, the thermal conductance and the electric resistance of each element.144 In 
the denominator of the fraction (*), we have to account not only for the Ohmic voltage drop V = IR on 
each element but also for the thermo e.m.f. V = T (S1 – S2) on the thermocouple as a whole due to the 
Seebeck effect – see Eq. (6.103) of the lecture notes: 

 21
2
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Hence, in our model, 

         
 
 

 













2

2

21
2

21
2 2/ZT/1

2

2
COP

TT

T

T

TIRI

TIRIT

SS
SSG

,  (*) 

where  

       
 

T
RG4

ZT
2

21 SS 
 ,     (**) 

and    2RI/(S1 – S2)T is the normalized current.  

 This result shows that the COP depends on the device parameters only in the combination ZT. In 
most practical implementations, two materials of the couple are based on the same semiconductor, but 
one is p-doped and another is n-doped. As Eq. (6.98) shows, this makes their Seebeck coefficient signs 
opposite. A popular choice of dopant concentrations is to make S1   S2   S, so  S1 – S2   2S. Also, 

if the element’s material is uniform, the product GR is equal to / independently of the element’s 
geometry.145 In this case, Eq. (**) is reduced to Eq. (6.113) of the lecture notes. 

 As the final form of Eq. (*) shows, if ZT is much larger than 1, the second fraction may be made 
close to 1 by taking the current relatively small ( << 1), so the COP may approach the front factor 
T/T, in which we may readily recognize the Carnot value (1.70): 

LH

L
Carnot(COP)

TT

T


 . 

However, as was mentioned in Sec. 6.5, practical values of ZT are not too high, and to calculate the 
maximum value of the COP, Eq. (*) should be optimized over the parameter  – in, practice, over the 
current I driving the cooler. Such optimization is easy in the limit T/T  0.146 In this case, the second 
term in the numerator of Eq. (*) is negligibly small, so the normalized efficiency 








2

Carnot

ZT/1

(COP)

COP
r . 

144 In this simple analysis, the values of G and R are assumed to be similar for both elements of the thermocouple. 
Additional analysis shows that in the general case, the COP is optimized by taking their products GR equal to each 
other; in this case, all the above formulas remain valid. 
145 For example, if the element is a cylinder of length d and the base area A (see the figure above), then G = A/d 
and R = d/A. The reader is challenged to prove the equality GR = /  for an arbitrary geometry.
146 As a reminder, all our analysis is only valid if this fraction is much smaller than 1. Additional analysis shows 
that the effect of a non-zero (but still small) ratio T/T on (COP)max may be approximately described by either the 
replacement of the last 1 in the numerator of Eq. (***) with the ratio TH/TL  1 + T/T, or the replacement of the 
last 1 in its denominator with the ratio TL/TH  1 – T/T. 
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 The left panel of the figure below shows this ratio as a function of  for several representative 
values of ZT.  

 

 

 

 

 

 

 

 

 

 

 
 Note that the COP becomes positive (and hence the device indeed starts working as a cooler) 
only when the current exceeds a certain value: 
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so the Peltier effect overcomes the unintentional heat leakage from the hot plate to the cold one. The 
maximum value of the COP ratio, 
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is reached at  

  11ZT
ZT

1 2/1
opt   ; 

beyond this value, the COP decreases due to the faster growth of the Joule heat I2R.  

 The right panel of the figure above shows the optimized ratio r as a function of ZT, on the 
appropriate log-log scale. We may see that the state-of-the-art thermoelectric materials with ZT ~ 2 may 
yield a cooler’s efficiency of about one-fourth of the Carnot limit. 

 

 Problem 6.16. Use the heat conduction equation (6.119) to calculate the amplitude of day-
periodic temperature variations at depth z under the surface of the soil with temperature-independent 
specific heat cV and thermal conductivity , and negligible thermal expansion. Assume that the incident 
heat flux is a sinusoidal function of time, with amplitude j0 per unit area. Estimate the temperature 
variation amplitude, at depth z = 1 m, for a typical dry soil, taking necessary parameters from a reliable 
source. 

 Solution: Since the heat conduction equation, 
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is linear, it is natural to look for its solution in the variable-separated form 
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where  is the frequency of the external heat flux. Indeed, by plugging this solution into Eq. (*), we see 
that it is satisfied, provided that the parameter  obeys the following characteristic equation: 
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 By the physical sense of the problem, the temperature variations have to decrease with the depth 
z, so in the last expression, we need to take the upper sign, giving Re > 0. As a result, our solution 
takes the form 

        const
2

  and,
2

exp0with  ,Re
2/12/1






































z

D
z

D
AzAezAT

TT

ti 
. 

Note that it describes not only an exponential decay of the temperature oscillation amplitude A(z) with 
the depth z but also a simultaneous linear growth of the phase shift  between these oscillations and 
their cause – the external heat flux. 147 

 What remains is to calculate the constant A(0) by comparing the heat flow at the soil’s surface, 
which follows from our solution: 

        ,0Re0Re
const

2/12/1

00h 

































 
 


  titi

eA
D

eA
D

i
T

T
z

T
zzz nnj   

with the given external flux jh(t) = –nzj0Re[e–i(t + const)]. The comparison gives 
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so, finally, 
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 For a realistic numerical estimate of day-periodic variations, we may take j0 = 0.3 kW/m2, 
somewhat smaller than the maximum flux of solar radiation at its normal incidence on the Earth’s 
surface (~1.4 kW/m2), in order to crudely account for the sunlight reflection and the moderating effect 
of the atmosphere. For typical dry soil parameters, such an authoritative source as 
www.engineeringtoolbox.com gives   1.5 W/mK, cV  CV/M  800 J/kgK, and   M/V  1,200 
kg/m3, so cV  CV/V = (CV/M)(M/V)  106 J/m3K.148 With these numbers and the frequency  

147 Let me hope that the reader has noticed the complete mathematical similarity between this problem and the 
standard description of the electromagnetic skin effect in conductors – see, e.g., EM Sec. 6.3.  
148 As an exception, I am leaving temperature in SI units, so our answer would be in kelvins as well. 
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corresponding to the period of 1 day (  0.72710-4 s–1), for the depth of z = 1 m, Eq. (**) yields A(z)  
0.21 K, much smaller than the amplitude of temperature oscillations at the surface: A(0)  30 K. This big 
ratio, A(0)/A(z)  150 (which, in contrast to A(0), is not affected by atmospheric effects and the accepted 
magnitude of j0) is natural, taking into account that for our parameters, the characteristic depth of the 
temperature oscillation decay,   1/Re = (2/cV)1/2, is about 20 cm. This is why in moderate 
climates, with the average temperatures well about the water’s freezing point, burying water pipes just a 
few feet below the surface is a reliable way to preserve them from freezing in winter.  

 

 Problem 6.17. Use Eq. (6.119) to calculate the time evolution of temperature in the center of a 
uniform solid sphere of radius R, initially heated to a uniformly distributed temperature Tini, and at t = 0 
placed into a heat bath that gives the sphere’s surface a constant temperature T0.  

 Solution: Due to the spherical symmetry of the system, Eq. (6.119),  
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Introducing the temperature’s deviation   0,
~

TTtrT   from the boundary value T(R, t) = T0, we may 

formulate our boundary problem as follows: 
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. 

 Looking for its general solution in the variable-separated form 
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for the nth partial solution, we get 
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where n is the variable separation constant. The resulting ordinary differential equation for Tn is 
elementary, giving  

 tnn  expT  , 

while that for Rn, with the substitution Rn(r) = fn(r)/r,150 reduces to the well-known 1D Helmholtz 
equation, 

149 If needed, you may consult MA Eq. (10.9) with / = / = 0. 
150 This substitution is frequently used in spherically symmetric problems of other fields of physics as well, 
especially electrodynamics and quantum mechanics – see, e.g., EM Sec. 8.1, in particular, Eqs. (8.7)-(8.8), and 
QM Sec. 3.1, in particular Eqs. (3.4)-(3.7). 
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with  ,0 . 

This equation, with the boundary conditions Rn(0)   and Rn(R) = 0, i.e. fn(0) = fn(R) = 0, immediately 
yields the following eigenfunctions and eigenvalues of the problem: 
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where n = 1, 2,…, so the general solution (*) of our boundary problem may be spelled out as 
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Here the constant , defined as  
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is the time scale of the thermal relaxation of the sphere, while the expansion coefficients Cn have to be 

chosen to satisfy the initial condition   0ini0,
~

 TTrT  , giving the system of equations  
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 This system may be solved, as usual at the reciprocal Fourier transform, by multiplying both 
parts of this equation by r sin(n’r/R), with an arbitrary integer n’, and their integration over the interval 
[0, R]. At this integration, all terms with n’  n under the sum on the left-hand side vanish due to the 
eigenfunctions’ orthogonality, while the term with n’ = n yields Cn(R/2). As a result, we get 
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This integral may be readily worked out by parts, giving 
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Plugging this Cn into Eq. (**), for the center of the 
sphere (r  0), we get the following final result: 
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 This time dependence is plotted with the 
solid red line in the figure on the right, while the 
dashed blue line shows the first term’s contribution. 
The figure shows that the influence of higher terms 
(with n > 1) is significant only during an initial 
period of the relaxation, where their superposition 
describes an effective delay of the simple exponential relaxation by ~0.7. 
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 Problem 6.18. Suggest a reasonable definition of the entropy production rate (per unit volume), 
and calculate this rate for stationary thermal conduction, assuming that it obeys the Fourier law, in a 
material with negligible thermal expansion. Give a physical interpretation of the result. Does the 
stationary temperature distribution in a sample correspond to the minimum of the total entropy 
production in it? 

 Solution: In contrast to conserved physical variables, the entropy’s density s  dS/dV satisfies (as 
any continuous function of r and t) only a generalized continuity equation: 

ss r
t

s



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j , 

(where js is the entropy current density), with its right-hand side, generally, not equal to zero. Hence the 
rs in this relation may be rationally called the entropy production rate. In a stationary (time-independent) 
situation, this relation yields 
         ssr j  .      (*) 

According to the fundamental Eq. (1.19), with a temperature-independent volume V, we may write dS = 
dQ/T, so js may be calculated just as jh/T, where jh is the heat flow density, and Eq. (*) yields 
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 In contrast to the entropy, the internal energy, and hence (in the absence of mechanical work and 
the Joule heat generation) its heat-related part u, is a conserved variable, so it satisfies the continuity 
equation with zero right-hand side: 
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, 

so in a stationary situation, the first term on the right-hand side of Eq. (**) vanishes, and that relation 
reduces to 
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1
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T
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Now using the Fourier law (6.114), jh = –T, we finally get 
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 Next, per Eq. (6.119) of the lecture notes, 
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the stationary temperature distribution in a uniform sample of volume V obeys the Laplace equation 2T 
= 0. However, it is well known,151 that this equation is equivalent to the requirement of the minimum of 
the following functional: 

  rdT
V

32

  . 

151 For proof, see, e.g., the solution of EM Problem 1.16, with the replacement   T.  
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 Comparing this expression with the full rate of entropy production in the sample, per Eq. (***), 
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we see that if the temperature gradient is so low that T  const, the stationary distribution of temperature 
approximately corresponds to the minimum of Rs – the statement which is sometimes called the 
minimum entropy production principle. However, the same comparison shows that if the temperature of 
the sample is significantly non-uniform, this principle is not valid. (It may be also violated by the 
sample’s parameter non-uniformity.) 
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