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1. Constants 

 – Euclidean circle’s length-to-diameter ratio: 

         77.1...;653592141.3 2/1   .    (1.1) 

 – Natural logarithm base (sometimes called the Euler number or the Napier constant): 
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from that value, the logarithm conversion factors are as follows (for any  > 0): 
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 – The Euler (or “Euler-Mascheroni”) constant: 
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2. Combinatorics, sums, and series 

(i) Combinatorics 

 – The number of different permutations, i.e. ordered sequences of k elements selected from a set 
of n distinct elements (n  k), is 
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in particular, the number of different permutations of all elements of the set (n = k) is 
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 – The number of different combinations, i.e. unordered sequences of k elements from a set of n  
k distinct elements, is equal to the binomial coefficient 
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In an alternative, very popular “ball/box language”, nCk is the number of different ways to put in a box, 
in an arbitrary order, k balls selected from n distinct balls.  

 – A generalization of the binomial coefficient notion is the multinomial coefficient,  
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which, in the standard mathematical language, is a number of different permutations in a multiset of l 
distinct element types from an n-element set which contains kj (j = 1, 2,…l) elements of each type. In the 
less formal “ball/box language”, the coefficient (2.3) is the number of different ways to distribute n 
distinct balls between l distinct boxes, each time keeping the number (kj) of balls in the jth box fixed, but 
ignoring their order inside the box. The binomial coefficient nCk, given by Eq. (2.2), is a particular case 
of the multinomial coefficient (2.3) for l = 2 – counting the explicit box for the first one, and the 
remaining space for the second box, so that if k1  k, then k2 = n – k. 

 – One more important combinatorial quantity is the number Mn
(k) of different ways to place n 

indistinguishable balls into k distinct boxes. It may be readily calculated from Eq. (2.2) as the number of 
different ways to select (k – 1) partitions between the boxes in an imagined linear row of (k – 1 + n) 
“objects” (balls in the boxes and partitions between them): 
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(ii) Sums and series 

 – Arithmetic progression: 
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in particular, at r = 1 it is reduced to the sum of n first natural numbers: 
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 – Sums of squares and cubes of n first natural numbers: 
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 – The Riemann zeta function: 
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the particular values frequently met in applications are 
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– Finite geometric progression (for real   1): 
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in particular, if  2 < 1, the progression has a finite limit at n   (called the geometric series): 
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 – Binomial sum (also called the “binomial theorem”): 
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where nCk are the binomial coefficients given by Eq. (2.2). 

 – The Stirling formula: 
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for most applications in physics, the first term1 is sufficient. 

 – The Taylor (or “Taylor-Maclaurin”) series: for any infinitely differentiable function f (): 
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note that for many functions this series converges only within a limited, sometimes small range of 

deviations ~ . For a function of several arguments, f(1,2,…,N), the first terms of the Taylor series are 
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– The Euler-Maclaurin formula, valid for any infinitely differentiable function f(): 
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1 Actually, this leading term was conjectured by A. de Moivre in1733, before J. Stirling’s proof of the series. 
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the coefficients participating in this formula are the so-called Bernoulli numbers:2 
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3. Basic trigonometric functions 

 – Trigonometric functions of the sum and the difference of two arguments: 3 

               bababa sinsincoscoscos  ,    (3.1a) 

               bababa sincoscossinsin  .    (3.1b) 

 – Sums of two functions of arbitrary arguments: 
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 – Trigonometric function products: 

         )cos()cos(coscos2 bababa  ,    (3.3a) 

          )sin()sin(cossin2 bababa  ,    (3.3b) 

          )cos()cos(sinsin2 bababa  ;    (3.3c)  

for the particular case of equal arguments, b = a, these three formulas yield the following expressions 
for the squares of trigonometric functions, and their product: 
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 – Cubes of trigonometric functions: 
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 – Trigonometric functions of a complex argument: 
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    (3.5) 

2 Note that definitions of Bk (or rather their signs and indices) vary even in the most popular handbooks.  
3 I am confident that the reader is quite capable of deriving the relations (3.1) by representing exponent in the 
elementary relation ei(a  b) = eiaeib as a sum of its real and imaginary parts, then Eqs. (3.3) directly from Eqs. (3.1), 
and then Eqs. (3.2) from Eqs. (3.3) by variable replacement; however, I am still providing these formulas to save 
their time. (Quite a few formulas below are included for of the same reason.) 
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 – Sums of trigonometric functions of n equidistant arguments: 

            





















 


















 2
sin

2
sin

2

1

cos

sin

cos

sin

1

 nn
k

n

k

.   (3.6) 

 

4. General differentiation 

 – Full differential of a product of two functions:  

          ).()()( dgfgdffgd       (4.1) 

 – Full differential of a function of several independent arguments, f(1, 2,…, n): 
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 – Curvature of the Cartesian plot of a smooth function f(): 
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5. General integration 

 – Integration by parts:4  
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 – Numerical (approximate) integration of 1D functions: the simplest trapezoidal rule, 
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has a relatively low accuracy (error of the order of (h3/12)d2f/d2 per step), so that the following 
Simpson formula, 
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whose error per step scales as (h5/180)d4f/d4, is used much more frequently.5  

 

4 This formula immediately follows from Eq. (4.1). 
5 Higher-order formulas (e.g., the Bode rule), and other guidance including ready-for-use codes for computer 
calculations may be found, for example, in the popular reference texts by W. H. Press et al., cited in Sec. 16 
below. Besides that, some advanced codes are used as subroutines in the software packages listed in the same 
section. In some cases, the Euler-Maclaurin formula (2.12) also may be useful for numerical integration. 
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6. A few 1D integrals6 

(i) Indefinite integrals 

 – Integrals with (1 + 2)1/2: 
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 – Miscellaneous indefinite integrals: 
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(ii) Semi-definite integrals: 

 – Integrals with 1/(e 1): 
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(iii) Definite integrals 

 – Integrals with 1/(1 + 2):7 

        ,
210
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d      (6.5a) 

6 A powerful (and free :-) interactive online tool for working out indefinite 1D integrals is available at 
http://integrals.wolfram.com/index.jsp.  
7 Eq. (6.5a) follows immediately from Eq. (6.3d), and Eq. (6.5c) from Eq. (6.2b) – more examples of the 
(intentional) redundancies in this list. 
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 – Integrals with (1 –  2s)1/2: 
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where (s) is the gamma function, which is most often defined (for Re s > 0) by the following integral: 
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The key property of this function is the recurrence relation, which is valid for any s  0, –1, –2,…: 
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Since, according to Eq. (6.7a), (1) = 1, Eq. (6.7b) for non-negative integers takes the form 
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(where 0!  1). Because of this, for integer s = n + 1  1, Eq. (6.7a) reduces to 
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Other frequently met values of the gamma function are those for positive semi-integer values: 
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– Integrals with 1/(e 1): 
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where (s) is the Riemann zeta-function – see Eq. (2.6). Particular cases: for s = 2n, 
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where Bn are the Bernoulli numbers – see Eq. (2.12). For the particular case s = 1 (when Eq. (6.8a) 
yields uncertainty), 
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 – Integrals with exp{– 2}: 
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for applications the most important particular values of s are 0 and 2: 
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though we will also run into the cases s = 4 and s = 6: 
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for odd integer values s = 2n + 1 (with n = 0, 1, 2,…), Eq. (6.9a) takes a simpler form: 
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 – Integrals with cosine and sine functions: 
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 – Integrals with logarithms: 
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 – Integral representations of the Bessel functions of integer order: 
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7. 3D vector products 

(i) Definitions: 

 – Scalar (“dot-“) product:   

      



3

1j
jjbaba ,     (7.1) 

where aj and bj are vector components in any orthogonal coordinate system. In particular, the vector 
squared (the same as its norm squared) is the following scalar: 
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 – Vector (“cross-”) product: 
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where {nj} is the set of mutually perpendicular unit vectors8 along the corresponding coordinate system 
axes.9 In particular, Eq. (7.3) yields 

           .0aa       (7.4) 

(ii) Corollaries (readily verified by Cartesian components): 

 – Double vector product (the so-called bac minus cab rule): 

             )()()( baccabcba  .     (7.5) 

 – Mixed scalar-vector product (the operand rotation rule): 

                   bacacbcba  .    (7.6) 

8 Other popular notations for this vector set are { je } and { jr̂ }. 
9 It is easy to use Eq. (7.3) to check that the direction of the product vector corresponds to the well-known “right-
hand rule” and to the even more convenient corkscrew rule: if we rotate a corkscrew's handle from the first 
operand toward the second one, its axis moves in the direction of the product. 
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 – Scalar product of vector products: 

                cbdadbcadcba  ;    (7.7a) 

in the particular case of two similar operands (say, a = c and b = d), the last formula is reduced to 

          222 )()( baba  ab .     (7.7b) 

 

8. Differentiation in 3D Cartesian coordinates 

 – Definition of the del (or “nabla”) vector operator : 10 
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where rj is a set of linear and orthogonal (Cartesian) coordinates along directions nj. In accordance with 
this definition, the operator  acting on a scalar function of coordinates, f(r),11 gives its gradient, i.e. a 
new vector: 
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 – The scalar product of del by a vector function of coordinates (a vector field), 
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compiled by formally following Eq. (7.1), is a scalar function – the divergence of the initial function: 
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while the vector product of  and f, formed in a formal accordance with Eq. (7.3), is a new vector – the 
curl (in European tradition, called rotor and denoted rot) of  f: 
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 – One more frequently met “product” is (f)g, where f and g are two arbitrary vector functions 
of r. This product should be also understood in the sense implied by Eq. (7.1), i.e. as a vector whose jth 
Cartesian component is 
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10 One can run into the following notation:   /r, which is convenient in some cases, but may be misleading in 
quite a few others, so it will be not used in this series. 
11 In this, and four next sections, all scalar and vector functions are assumed to be differentiable. 
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9. The Laplace operator 2  

 – Expression in Cartesian coordinates – in the formal accordance with Eq. (7.2): 
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 – According to its definition, the Laplace operator acting on a scalar function of coordinates 
gives a new scalar function: 
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  – On the other hand, acting on a vector function (8.3), the operator 2 returns another vector: 
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 Note that Eqs. (9.1)-(9.3) are only valid in Cartesian (i.e. orthogonal and linear) coordinates, but 
generally not in other orthogonal coordinates – see, e.g., Eqs. (10.3), (10.6),  (10.9) and (10.12) below. 

 

10. Operators  and 2 in the most important systems of orthogonal coordinates12 

(i) Cylindrical13 coordinates {, , z} (see Fig. below) may be defined by their relations with the 
Cartesian coordinates: 
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 – Gradient of a scalar function: 
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 – The Laplace operator of a scalar function: 
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 – Divergence of a vector function of coordinates (f = n f + n f + nz fz): 
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12 Some other orthogonal curvilinear coordinate systems are discussed in EM Sec. 2.3.
13 In the 2D geometry with fixed coordinate z, these coordinates are called polar. 

1r

2r

zr 3

0

r






Essential Graduate Physics                         MA: Math Appendix 

 
Selected Mathematical Formulas        Page 12 of 16 

 – Curl of a vector function: 
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 – The Laplace operator of a vector function: 
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(ii) Spherical coordinates {r, , } (see Fig. below) may be defined as: 
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 – The Laplace operator of a scalar function: 

           
2

2

22
2

2
2

)sin(

1
sin

sin

11




 































f

r

f

rr

f
r

rr
f .  (10.9) 

 – Divergence of a vector function f = nr fr + n f + n f : 
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 – Curl of the similar vector function: 
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 – The Laplace operator of a vector function: 
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11. Products involving   

(i) Useful zeros: 

 – For any scalar function )(rf , 

       0) (  ff gradcurl .    (11.1) 

 – For any vector function )(rf , 

         .0) ( div  fcurlf     (11.2) 

 (ii) The Laplace operator expressed via the curl of a curl: 

          fff  2 .     (11.3) 

(iii) Spatial differentiation of a product of a scalar function by a vector function: 

 – The scalar 3D generalization of Eq. (4.1) is 

          ggg   fff .     (11.4a) 

 – Its vector generalization is similar:  

                    ggg   fff .    (11.4b) 

(iv) 3D spatial differentiation of products of two vector functions: 

                      fggfgfgfgf   ,   (11.5) 

                 fggffggfgf   ,   (11.6) 

                gffggf   .    (11.7) 

 

12. Integro-differential relations 

 (i) For an arbitrary surface S limited by closed contour C: 

 – The Stokes theorem, valid for any differentiable vector field f(r): 

                  
CCS

n

S

drfdrdd rffrf 22  ,   (12.1) 

where d2r  nd2r is the elementary area vector (normal to the surface), and dr is the elementary contour 
length vector (tangential to the contour line). 

(ii) For an arbitrary volume V limited by closed surface S: 

 – Divergence (or “Gauss”) theorem, valid for any differentiable vector field f(r): 

                
S

n

SV

rdfdrd 223 rff .    (12.2) 

 – Green’s theorem, valid for two differentiable scalar functions f(r) and g(r): 

        
S

n
V

rdfggfrdfggf 2322  .   (12.3) 
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 – An identity valid for any two scalar functions f and g, and a vector field j with j = 0 (all 
differentiable): 

             
S

n

V

rdfgjrdfggf 23)()(  jj .    (12.3) 

 

13. The Kronecker delta and Levi-Civita permutation symbols 

 – The Kronecker delta symbol (defined for integer indices): 

            


 


otherwise.,0

   , if,1 jj'
jj'      (13.1) 

 – The Levi-Civita permutation symbol for three integer indices (each taking one of the values 1, 
2, or 3): 

       












 coincide.  indices any two if,0

3...,1231 :order )odd"(" incorrect""any in  follow indices   theif ,1

2...,1321 :order )even"(" correct""any in  follow indices  theif,1

"' jjj  (13.2) 

 – Relation between the products of the Levi-Civita and Kronecker symbols: 

             

j"l"j"l'j"l

j'l"j'l'j'l

jl"jl'jl

l"l'l
kk'k"jj'j"

δδδ

δδδ

δδδ





3

1,,

 ;    (13.3a) 

the summation of three such relations written for three different values of  j = k yields the so-called 
contracted epsilon identity: 

               j"k'j'k"j"k"j'k'
j

jk'k"jj'j" δδδδ 


3

1

 .    (13.3b) 

 

14. The Dirac delta function, sign function, and step function 

 – Definition of 1D delta function (for real a < b): 

             


 

    otherwise,,0

,0 if),0(
)()(

baf
df

b

a

     (14.1) 

where f() is any function continuous near  = 0. In particular (if f() = 1 near  = 0),  

     


 

 otherwise.,0

,0 if,1
)(

ba
d

b

a

      (14.2) 

 – Relation to the Heaviside step function  () and the sign function sgn()  

     )sgn(
2

1
)()( 







d

d

d

d
 ,    (14.3a) 
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where 

  



















.1 if,1

,0 if,1
)sgn(

,1 if,1

,0if,0

2

1)sgn(
)(








   (14.3b) 

 – An important integral:14 

            )(2  




dseis .     (14.4) 

 – 3D generalization: the delta function (r) of the radius-vector is defined as  

                


 

 otherwise;,0

 ,0 if),0(3 Vf
rdf

V

rr      (14.5) 

it may be represented as a product of 1D delta functions of Cartesian coordinates: 

          )()()()( 321 rrr  r .     (14.6) 

(The 2D generalization is similar.) 

 

15. The Cauchy theorem and integral 

 Let a complex function f(z) be analytic within a part of the complex plane z, which is limited by 
a closed contour C and includes point z’. Then 

        0)( 
C

dzzf ,     (15.1) 

            'i
'

d

C

zf
zz
z

zf 2)( 
 .     (15.2) 

 The first of these relations is usually called the Cauchy integral theorem (or the “Cauchy-
Goursat theorem”), and the second one, the Cauchy integral (or the “Cauchy integral formula”). 

 

16. References 

(i) Properties of some special functions are briefly discussed at the relevant points of the lecture notes 
(in alphabetical order): 

 – Airy functions: QM Sec. 2.4; 
– Bessel functions: EM Sec. 2.7; 
– Fresnel integrals: EM Sec. 8.6; 

 – Hermite polynomials: QM Sec. 2.9; 

14 The coefficient in this relation may be readily recalled by considering its left-hand side as the Fourier-integral 
representation of the function f(s)  1, and applying Eq. (14.1) to the reciprocal Fourier transform: 

  .)(2
2

1
1)( 





 


 desf is
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 – Laguerre polynomials (both simple and associated): QM Sec. 3.7; 
 – Legendre polynomials, associated Legendre functions: EM Sec. 2.8 and QM Sec. 3.6; 
 – Spherical Bessel functions: QM Secs. 3.6 and 3.8; 
 – Spherical harmonics: QM Sec. 3.6. 
 

 (ii) For more formulas and their discussions, I can recommend the following handbooks (in alphabetical 
order):15 

  – M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Formulas, Dover, 1965;16 
  – I. Gradshteyn and I. Ryzhik, Tables of Integrals, Series, and Products,  5th ed., Acad. Press, 1980; 
  – G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed., Dover, 

2000; 
  – A. Prudnikov et al., Integrals and Series, vols. 1 and 2, CRC Press, 1986. 

 The popular textbook 

  – G. Arfken et al., Mathematical Methods for Physicists, 7th ed., Acad. Press, 2012 

may be also used as a formula manual.  

 Many formulas are also available from the symbolic calculation parts of commercially available 
software packages listed in Sec. (iv) below. 

 

(iii) Probably the most popular collection of numerical calculation codes are the twin manuals 

  – W. Press et al., Numerical Recipes in Fortran 77, 2nd ed., Cambridge U. Press, 1992; 
  – W. Press et al., Numerical Recipes [in C++ – KKL], 3rd ed., Cambridge U. Press, 2007. 

 These lecture notes include very brief introductions into numerical methods of differential 
equation solution: 

 – ordinary differential equations: CM Sec. 5.7, and 
 – partial differential equations: CM Sec. 8.5 and EM Sec. 2.11, 

which include references to the literature for further reading. 

 

(iv) The most popular software packages for numerical and symbolic calculations, all with plotting 
capabilities (in alphabetical order): 

 – Maple (http://www.maplesoft.com/); 
 – MathCAD (http://www.ptc.com/products/mathcad/); 
 – Mathematica (http://www.wolfram.com/products/mathematica/index.html); 
 – MATLAB (http://www.mathworks.com/products/matlab/); 
 – Maxima (https://maxima.sourceforge.io/index.html). 

15 On a personal note, perhaps 90% of all formula needs throughout my research career were satisfied by a  
wonderfully compiled old book: H. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed., 
Macmillan, 1961. Its used copies, rather amazingly, are still available online. 
16 See also later printings; an updated version of this collection is now available online at http://dlmf.nist.gov/. 


